Mass Defect from Nuclear Physics to Mass Spectral Analysis.
Pourshahian, Soheil
2017-09-01
Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? Graphical Abstract ᅟ.
USDA-ARS?s Scientific Manuscript database
A comprehensive characterization of C-glycosyl flavones in wheat germ has been conducted using multi-stage high resolution mass spectrometry (HRMS) combined with mass defect filter (MDF). MDF performed the initial search of raw data with defined mass ranges and mass defect windows to generate the n...
Mass defect effects in atomic clocks
NASA Astrophysics Data System (ADS)
Yudin, Valeriy; Taichenachev, Alexey
2018-03-01
We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.
Dier, Tobias K F; Egele, Kerstin; Fossog, Verlaine; Hempelmann, Rolf; Volmer, Dietrich A
2016-01-19
High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.
Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella
2008-11-15
The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
Iodine-Containing Mass-Defect-Tuned Dendrimers for Use as Internal Mass Spectrometry Calibrants
NASA Astrophysics Data System (ADS)
Giesen, Joseph A.; Diament, Benjamin J.; Grayson, Scott M.
2018-03-01
Calibrants based on synthetic dendrimers have been recently proposed as a versatile alternative to peptides and proteins for both MALDI and ESI mass spectrometry calibration. Because of their modular synthetic platform, dendrimer calibrants are particularly amenable to tailoring for specific applications. Utilizing this versatility, a set of dendrimers has been designed as an internal calibrant with a tailored mass defect to differentiate them from the majority of natural peptide analytes. This was achieved by incorporating a tris-iodinated aromatic core as an initiator for the dendrimer synthesis, thereby affording multiple calibration points ( m/z range 600-2300) with an optimized mass-defect offset relative to all peptides composed of the 20 most common proteinogenic amino acids. [Figure not available: see fulltext.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
Modification of graphene by ion beam
NASA Astrophysics Data System (ADS)
Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.
2017-09-01
Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.
NASA Technical Reports Server (NTRS)
Athale, R.; Lee, S. H.
1976-01-01
Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.
Yoon, Seung-Yil; Sagi, Hemi; Goldhammer, Craig; Li, Lei
2012-01-01
Container closure integrity (CCI) is a critical factor to ensure that product sterility is maintained over its entire shelf life. Assuring the CCI during container closure (C/C) system qualification, routine manufacturing and stability is important. FDA guidance also encourages industry to develop a CCI physical testing method in lieu of sterility testing in a stability program. A mass extraction system has been developed to check CCI for a variety of container closure systems such as vials, syringes, and cartridges. Various types of defects (e.g., glass micropipette, laser drill, wire) were created and used to demonstrate a detection limit. Leakage, detected as mass flow in this study, changes as a function of defect length and diameter. Therefore, the morphology of defects has been examined in detail with fluid theories. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it has been verified that the method was robust, and capable of determining the acceptance limit using 3σ for syringes and 6σ for vials. Sterile products must maintain their sterility over their entire shelf life. Container closure systems such as those found in syringes and vials provide a seal between rubber and glass containers. This seal must be ensured to maintain product sterility. A mass extraction system has been developed to check container closure integrity for a variety of container closure systems such as vials, syringes, and cartridges. In order to demonstrate the method's capability, various types of defects (e.g., glass micropipette, laser drill, wire) were created in syringes and vials and were tested. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it was verified that the method showed consistent results, and was able to determine the acceptance limit using 3σ for syringes and 6σ for vials.
NASA Astrophysics Data System (ADS)
Giannakos, Konstantinos
2016-02-01
The motion of a railway vehicle on the rail running table, that is the area of the rail-head where the wheel is rolling, is a forced oscillation with a forcing excitation (track defects), and damping expressed by a random function. In the case of the Non-Suspended Masses the forces resulting from the excitation of short wavelength are large and have great effect on the rolling of the wheel. The track, is simulated as an elastic means with damping. In this paper the second order differential equation is presented for the case of a railway vehicle rolling on a railway track and its solution is presented for the Non-Suspended Masses of the vehicle. Furthermore the influence of the depth of the defect is examined and a sensitivity analysis of the influence of the Non-Suspended Masses and the track defects on the Acting loads is performed.
Ubukata, Masaaki; Jobst, Karl J; Reiner, Eric J; Reichenbach, Stephen E; Tao, Qingping; Hang, Jiliang; Wu, Zhanpin; Dane, A John; Cody, Robert B
2015-05-22
Comprehensive two-dimensional gas chromatography (GC×GC) and high-resolution mass spectrometry (HRMS) offer the best possible separation of their respective techniques. Recent commercialization of combined GC×GC-HRMS systems offers new possibilities for the analysis of complex mixtures. However, such experiments yield enormous data sets that require new informatics tools to facilitate the interpretation of the rich information content. This study reports on the analysis of dust obtained from an electronics recycling facility by using GC×GC in combination with a new high-resolution time-of-flight (TOF) mass spectrometer. New software tools for (non-traditional) Kendrick mass defect analysis were developed in this research and greatly aided in the identification of compounds containing chlorine and bromine, elements that feature in most persistent organic pollutants (POPs). In essence, the mass defect plot serves as a visual aid from which halogenated compounds are recognizable on the basis of their mass defect and isotope patterns. Mass chromatograms were generated based on specific ions identified in the plots as well as region of the plot predominantly occupied by halogenated contaminants. Tentative identification was aided by database searches, complementary electron-capture negative ionization experiments and elemental composition determinations from the exact mass data. These included known and emerging flame retardants, such as polybrominated diphenyl ethers (PBDEs), hexabromobenzene, tetrabromo bisphenol A and tris (1-chloro-2-propyl) phosphate (TCPP), as well as other legacy contaminants such as polychlorinated biphenyls (PCBs) and polychlorinated terphenyls (PCTs). Copyright © 2015 Elsevier B.V. All rights reserved.
Searching for topological defect dark matter via nongravitational signatures.
Stadnik, Y V; Flambaum, V V
2014-10-10
We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.
A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.
2016-07-12
Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less
Schultz, Peter A.
2016-03-01
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies.
Davidoff, Candice; Neitz, Maureen; Neitz, Jay
2016-09-01
The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red-green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects.
Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies
Davidoff, Candice; Neitz, Maureen; Neitz, Jay
2016-01-01
Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081
Interface for the rapid analysis of liquid samples by accelerator mass spectrometry
Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham
2014-02-04
An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.
Kim, So Yoon; Lee, Ji-Hyeon; Merrins, Matthew J.; Gavrilova, Oksana; Bisteau, Xavier; Kaldis, Philipp; Satin, Leslie S.; Rane, Sushil G.
2017-01-01
The failure of pancreatic islet β-cells is a major contributor to the etiology of type 2 diabetes. β-Cell dysfunction and declining β-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary β-cell dysfunction to the progressive deterioration of β-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in β-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in β-cell proliferation, reduced β-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in β-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary β-cell dysfunction to progressive β-cell mass deterioration in diabetes. PMID:28100774
Hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia in a cat.
Linton, Michael; Tong, Lydia; Simon, Adrian; Buffa, Eugene; McGregor, Ross; Labruyére, Julien; Foster, Darren
2016-01-01
A 14-year-old, female neutered domestic shorthair presented for dyspnoea. Thoracic ultrasonography and radiography showed that a heterogeneous mass was present within the pericardial sac, and the mass continued caudally with the mesenteric fat. On CT, the outline of the diaphragm was not continuous and there was an obvious defect with diaphragmatic thickening present at the mid-level of the liver. A pleural effusion and a small-volume pericardial effusion were also present. A ventral midline coeliotomy and median sternotomy revealed a 5 × 6 × 7 cm firm, irregular, tan-coloured soft tissue mass within the pericardial sac attached to both the diaphragmatic defect and liver. The mass was carefully dissected away from the heart and the diaphragmatic defect was repaired with primary closure. Postoperatively, the cat had a persistent pneumothorax that required continuous pleural suction for 41 h. The cat died 44 h postoperatively. Histopathology and immunohistochemistry confirmed the mass to be a hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia (PPDH). This is the first reported case of metaplastic transformation of liver into a sarcoma in a cat with PPDH. In addition, hepatic fibrosarcoma is a rarely reported location for fibrosarcoma in this species.
Ab initio phonon point defect scattering and thermal transport in graphene
NASA Astrophysics Data System (ADS)
Polanco, Carlos A.; Lindsay, Lucas
2018-01-01
We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.
Reconstruction of maxillary cemento-ossifying fibroma defect with buccal pad of fat.
Sivaraj, Subramonian; Jeevadhas, Pratheep
2013-07-01
A cemento-ossifying fibroma (COF) is a rare benign neoplasm of maxilla when compared with mandible (World Health Organization, 1992). COF of maxilla may be quite large and locally very aggressive lesion. These tumor mass was peeled out by en-bloc excision using gentle blunt dissection. This paper presents 35-year-old male patient who had a gradually expanding lobular mass in the left maxillary posterior region for past 1 year. He has been treated successfully by surgical en-bloc resection. Various techniques were used to reconstruction the defect. Buccal pad of fat is a simple technique having advantages like good vascularity, adaptability, good closure of the defect with favorable prognosis.
Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.
Xavier, L J P; da Costa, D R; Chaves, A; Pereira, J M; Farias, G A
2016-12-21
We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.
2017-09-01
The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.
Ab initio phonon point defect scattering and thermal transport in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polanco, Carlos A.; Lindsay, Lucas R.
Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less
Ab initio phonon point defect scattering and thermal transport in graphene
Polanco, Carlos A.; Lindsay, Lucas R.
2018-01-04
Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less
Hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia in a cat
Linton, Michael; Tong, Lydia; Simon, Adrian; Buffa, Eugene; McGregor, Ross; Labruyére, Julien; Foster, Darren
2016-01-01
Case summary A 14-year-old, female neutered domestic shorthair presented for dyspnoea. Thoracic ultrasonography and radiography showed that a heterogeneous mass was present within the pericardial sac, and the mass continued caudally with the mesenteric fat. On CT, the outline of the diaphragm was not continuous and there was an obvious defect with diaphragmatic thickening present at the mid-level of the liver. A pleural effusion and a small-volume pericardial effusion were also present. A ventral midline coeliotomy and median sternotomy revealed a 5 × 6 × 7 cm firm, irregular, tan-coloured soft tissue mass within the pericardial sac attached to both the diaphragmatic defect and liver. The mass was carefully dissected away from the heart and the diaphragmatic defect was repaired with primary closure. Postoperatively, the cat had a persistent pneumothorax that required continuous pleural suction for 41 h. The cat died 44 h postoperatively. Histopathology and immunohistochemistry confirmed the mass to be a hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia (PPDH). Relevance and novel information This is the first reported case of metaplastic transformation of liver into a sarcoma in a cat with PPDH. In addition, hepatic fibrosarcoma is a rarely reported location for fibrosarcoma in this species. PMID:28491416
Resist process optimization for further defect reduction
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi; Iseki, Tomohiro; Marumoto, Hiroshi; Takayanagi, Koji; Yoshida, Yuichi; Uemura, Ryouichi; Yoshihara, Kosuke
2012-03-01
Defect reduction has become one of the most important technical challenges in device mass-production. Knowing that resist processing on a clean track strongly impacts defect formation in many cases, we have been trying to improve the track process to enhance customer yield. For example, residual type defect and pattern collapse are strongly related to process parameters in developer, and we have reported new develop and rinse methods in the previous papers. Also, we have reported the optimization method of filtration condition to reduce bridge type defects, which are mainly caused by foreign substances such as gels in resist. Even though we have contributed resist caused defect reduction in past studies, defect reduction requirements continue to be very important. In this paper, we will introduce further process improvements in terms of resist defect reduction, including the latest experimental data.
Matthias, Nadine; Hunt, Samuel D.; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A.; Li, Yong; Huard, Johnny; Darabi, Radbod
2018-01-01
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. PMID:29331939
Meng, T; Thayer, S; Venn, A; Wu, F; Cicuttini, F; March, L; Dwyer, T; Halliday, A; Cross, M; Laslett, L L; Jones, G; Ding, C; Antony, B
2018-05-25
To describe the associations between childhood adiposity measures and adulthood knee cartilage defects and bone marrow lesions (BMLs) measured 25 years later. 327 participants from the Australian Schools Health and Fitness Survey (ASHFS) of 1985 (aged 7-15 years) were followed up 25 years later (aged 31-41 years). Childhood measures (weight, height and skinfolds) were collected in 1985. Body mass index (BMI), overweight status and fat mass were calculated. Participants underwent 1.5 T knee magnetic resonance imaging (MRI) during 2008-2010, and cartilage defects and BMLs were scored from knee MRI scans. Log binomial regressions were used to examine the associations. Among 327 participants (47.1% females), 21 (6.4%) were overweight in childhood. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects (Weight relative risk (RR) 1.05/kg, 95% confidence interval (CI) 1.01-1.09; BMI 1.10/kg/m 2 , 1.01-1.19; Overweight 2.22/yes, 1.21-4.08; fat mass 1.11/kg, 1.01-1.22), but not tibiofemoral cartilage defects. Childhood adiposity measures were not significantly associated with adulthood knee BMLs except for the association between childhood overweight status and adulthood patellar BMLs (RR 2.87/yes, 95% CI 1.10-7.53). These significant associations persisted after adjustment for corresponding adulthood adiposity measure. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects and, to a lesser extent, BMLs, independent of adulthood adiposity measures. These results suggest that adiposity in childhood has long-term effects on patellar structural abnormalities in young adults. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo
1998-01-01
A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.
Mechanisms of oxygen permeation through plastic films and barrier coatings
NASA Astrophysics Data System (ADS)
Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian
2017-10-01
Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Hao, Huilian; Wang, Linlin
2016-12-01
Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.
Filling defects in the pancreatic duct on endoscopic retrograde pancreatography.
Taylor, A J; Carmody, T J; Schmalz, M J; Wiedmeyer, D A; Stewart, E T
1992-12-01
Filling defects in the pancreatic duct are a frequent finding during endoscopic retrograde pancreatography (ERP) and have a variety of causes. Some filling defects may be artifactual or related to technical factors and, once their origin is recognized, can be disregarded. Others may be due to acute changes of pancreatitis and should prompt more careful injection of contrast material into the duct. Intraluminal masses may represent calculi or a neoplasm, either of which may require surgery or endoscopic intervention. The exact nature of these filling defects may not be apparent on radiographs, and other studies may be needed. This article reviews our approach to the evaluation of filling defects in the pancreatic duct.
Tutorial: Novel properties of defects in semiconductors revealed by their vibrational spectra
NASA Astrophysics Data System (ADS)
Stavola, Michael; Fowler, W. Beall
2018-04-01
This is an introductory survey of the vibrational spectroscopy of defects in semiconductors that contain light-mass elements. The capabilities of vibrational spectroscopy for the identification of defects, the determination of their microscopic structures, and their dynamics are illustrated by a few examples. Several additional examples are discussed, with a focus on defects with properties not obviously accessible by vibrational spectroscopy, such as the diffusivity of an impurity, the negative U ordering of electronic levels, and the time constant for a nuclear-spin flip. These novel properties have, nonetheless, been revealed by vibrational spectra and their interpretation by theory.
Matthias, Nadine; Hunt, Samuel D; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A; Li, Yong; Huard, Johnny; Darabi, Radbod
2018-03-01
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA) muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Topology and strong four fermion interactions in four dimensions
NASA Astrophysics Data System (ADS)
Catterall, Simon; Butt, Nouman
2018-05-01
We study massless fermions interacting through a particular four-fermion term in four dimensions. Exact symmetries prevent the generation of bilinear fermion mass terms. We determine the structure of the low-energy effective action for the auxiliary field needed to generate the four-fermion term and find it has an novel structure that admits topologically nontrivial defects with nonzero Hopf invariant. We show that fermions propagating in such a background pick up a mass without breaking symmetries. Furthermore, pairs of such defects experience a logarithmic interaction. We argue that a phase transition separates a phase where these defects proliferate from a broken phase where they are bound tightly. We conjecture that, by tuning one additional operator, the broken phase can be eliminated with a single BKT-like phase transition separating the massless from massive phases.
Brennan, Marie-Luise; Adam, Margaret P; Seaver, Laurie H; Myers, Angela; Schelley, Susan; Zadeh, Neda; Hudgins, Louanne; Bernstein, Jonathan A
2015-01-01
The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity. © 2014 Wiley Periodicals, Inc.
Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.
Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M
2007-09-11
The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Carmichael, Suzan L; Yang, Wei; Gilboa, Suzanne; Ailes, Elizabeth; Correa, Adolfo; Botto, Lorenzo D; Feldkamp, Marcia L; Shaw, Gary M
2016-03-01
We examined whether risks of 32 birth defects were higher than expected in the presence of overweight or obese body mass index (BMI) and low diet quality, based on estimating individual and joint effects of these factors and calculating relative excess risk due to interaction. Analyses included mothers of 20,250 cases with birth defects and 8617 population-based controls without birth defects born from 1997 to 2009 and interviewed for the National Birth Defects Prevention Study. We used logistic regression to generate adjusted odds ratios (AORs) reflecting the combined effects of BMI and diet quality. We focused analyses on 16 birth defects (n = 11,868 cases, 8617 controls) for which initial results suggested an association with BMI or diet quality. Relative to the reference group (normal weight women with not low diet quality, i.e., >lowest quartile), AORs for low diet quality among normal weight women tended to be >1, and AORs for overweight and obese women tended to be stronger among women who had low diet quality than not low diet quality. For 9/16 birth defects, AORs for obese women who had low diet quality-the group we hypothesized to have highest risk-were higher than other stratum-specific AORs. Most relative excess risk due to interactions were positive but small (<0.5), with confidence intervals that included zero. These findings provide evidence for the hypothesis of highest birth defect risks among offspring to women who are obese and have low diet quality but insufficient evidence for an interaction of these factors in their contribution to risk. © 2015 Wiley Periodicals, Inc.
Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes.
Kidambi, Piran R; Boutilier, Michael S H; Wang, Luda; Jang, Doojoon; Kim, Jeehwan; Karnik, Rohit
2017-05-01
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large-area (≈0.2 cm 2 ) single-crystalline graphene membranes. A novel, polymer-free picture frame assisted technique, coupled with a stress-inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well-defined cylindrical ≈200 nm pores. Diffusion-driven flow shows selective transport of ≈0.66 nm hydrated K + and Cl - ions over ≈1 nm sized small molecules, indicating the presence of selective sub-nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub-nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mass Defect Labeling of Cysteine for Improving Peptide Assignment in Shotgun Proteomic Analyses
Hernandez, Hilda; Niehauser, Sarah; Boltz, Stacey A.; Gawandi, Vijay; Phillips, Robert S.; Amster, I. Jonathan
2006-01-01
A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2′-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology. PMID:16689545
Oil defect detection of electrowetting display
NASA Astrophysics Data System (ADS)
Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang
2015-08-01
In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.
Determination of volatile marker compounds of common coffee roast defects.
Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian
2016-11-15
Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cosmological structure formation from soft topological defects
NASA Technical Reports Server (NTRS)
Hill, Christopher T.; Schramm, David N.; Fry, J. N.
1988-01-01
Some models have extremely low-mass pseudo-Goldstone bosons that can lead to vacuum phase transitions at late times, after the decoupling of the microwave background.. This can generate structure formation at redshifts z greater than or approx 10 on mass scales as large as M approx 10 to the 18th solar masses. Such low energy transitions can lead to large but phenomenologically acceptable density inhomogeneities in soft topological defects (e.g., domain walls) with minimal variations in the microwave anisotropy, as small as delta Y/T less than or approx 10 to the minus 6 power. This mechanism is independent of the existence of hot, cold, or baryonic dark matter. It is a novel alternative to both cosmic string and to inflationary quantum fluctuations as the origin of structure in the Universe.
NASA Astrophysics Data System (ADS)
Fouquet, Thierry N. J.; Cody, Robert B.; Ozeki, Yuka; Kitagawa, Shinya; Ohtani, Hajime; Sato, Hiroaki
2018-05-01
The Kendrick mass defect (KMD) analysis of multiply charged polymeric distributions has recently revealed a surprising isotopic split in their KMD plots—namely a 1/z difference between KMDs of isotopes of an oligomer at charge state z. Relying on the KMD analysis of actual and simulated distributions of poly(ethylene oxide) (PEO), the isotopic split is mathematically accounted for and found to go with an isotopic misalignment in certain cases. It is demonstrated that the divisibility (resp. indivisibility) of the nominal mass of the repeating unit (R) by z is the condition for homolog ions to line up horizontally (resp. misaligned obliquely) in a KMD plot. Computing KMDs using a fractional base unit R/z eventually corrects the misalignments for the associated charge state while using the least common multiple of all the charge states as the divisor realigns all the points at once. The isotopic split itself can be removed by using either a new charge-dependent KMD plot compatible with any fractional base unit or the remainders of KM (RKM) recently developed for low-resolution data all found to be linked in a unified theory. These original applications of the fractional base units and the RKM plots are of importance theoretically to satisfy the basics of a mass defect analysis and practically for a correct data handling of single stage and tandem mass spectra of multiply charged homo- and copolymers.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Catheter closure of secundum atrial septal defects.
O'Laughlin, M P
1997-01-01
Catheter occlusion of atrial septal defects has its roots in the 1950s, with early devices being implanted during closed-heart surgery without cardiopulmonary bypass. For the past 20 years, various catheter-delivered devices have undergone testing and refinement. Designs have included single- and double-disk prostheses, with a variety of materials, delivery systems, and techniques. In this monograph, the history of atrial septal defect occluders and their evaluation, results, and prognoses will be outlined. The early work of King and Mills has been advanced in the forms of the Rashkind and Lock-USCI Clamshell occluders (USCI; Billerica, Mass), the "buttoned" device (custom made by E.B. Sideris), the Babic atrial septal defect occlusion system (Osypka, GmbH; Grenzach-Wyhlen, Germany), the Das-Angel Wings atrial septal defect occlusion device (Microvena Corporation; White Bear Lake, Minn), and others. The future holds promise for approved devices in the treatment of selected secundum atrial septal defects.
Zeng, Su-Ling; Duan, Li; Chen, Bai-Zhong; Li, Ping; Liu, E-Hu
2017-07-28
Detection of metabolites in complex biological matrixes is a great challenge because of the background noise and endogenous components. Herein, we proposed an integrated strategy that combined background subtraction program and modified mass defect filter (MMDF) data mining in a Microsoft Excel platform for chemicalome and metabolome profiling of the polymethoxylated flavonoids (PMFs) in Citri Reticulatae Pericarpium (CRP). The exogenously-sourced ions were firstly filtered out by the developed Visual Basic for Applications (VBA) program incorporated in the Microsoft Office. The novel MMDF strategy was proposed for detecting both target and untarget constituents and metabolites based on narrow, well-defined mass defect ranges. The approach was validated to be powerful, and potentially useful for the metabolite identification of both single compound and homologous compound mixture. We successfully identified 30 and 31 metabolites from rat biosamples after oral administration of nobiletin and tangeretin, respectively. A total of 56 PMFs compounds were chemically characterized and 125 metabolites were captured. This work demonstrated the feasibility of the integrated approach for reliable characterization of the constituents and metabolites in herbal medicines. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Yuanyuan; Zhan, Hao; Zhong, Liuyi; Yan, Fangrong; Feng, Feng; Liu, Wenyuan; Xie, Ning
2016-07-01
A method of total ion chromatogram combined with chemometrics and mass defect filter was established for the prediction of active ingredients in Picrasma quassioides samples. The total ion chromatogram data of 28 batches were pretreated with wavelet transformation and correlation optimized warping to correct baseline drifts and retention time shifts. Then partial least squares regression was applied to construct a regression model to bridge the total ion chromatogram fingerprints and the antitumor activity of P. quassioides. Finally, the regression coefficients were used to predict the active peaks in total ion chromatogram fingerprints. In this strategy, mass defect filter was employed to classify and characterize the active peaks from a chemical point of view. A total of 17 constituents were predicted as the potential active compounds, 16 of which were identified as alkaloids by this developed approach. The results showed that the established method was not only simple and easy to operate, but also suitable to predict ultraviolet undetectable compounds and provide chemical information for the prediction of active compounds in herbs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barbara, Joanna E; Castro-Perez, Jose M
2011-10-30
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; He, Yihui; Wessels, Bruce W.; Kanatzidis, Mercouri G.
Heavy metal chalcohalides Hg3Q2I2 (Q =S, Se and Te) have shown significant promise as X-ray and γ-ray detector materials. To assess the fundamental physical properties important for their performance as detectors, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and native defect properties. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Hg3Q2I2 have either indirect (Q =S, Se) or direct (Q =Te) band gaps within 1.9-2.25 range which is optimal for a detector material, and very small electron effective masses (0.19 m0 for Hg3Se2I2) which could result in a good carrier mobility-lifetime product μτ . We further investigated a large set of native defects in the most promising candidate material, Hg3Se2I2, to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are iodine vacancies, mercury vacancies, and selenium vacancies followed by antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Optimizing Toxic Chemical Removal through Defect-Induced UiO-66-NH2 Metal-Organic Framework.
Peterson, Gregory W; Destefano, Matthew R; Garibay, Sergio J; Ploskonka, Ann; McEntee, Monica; Hall, Morgan; Karwacki, Christopher J; Hupp, Joseph T; Farha, Omar K
2017-11-13
For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH 2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.
2014-07-01
Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.
Strain engineering in epitaxial Ge1- x Sn x : a path towards low-defect and high Sn-content layers
NASA Astrophysics Data System (ADS)
Margetis, Joe; Yu, Shui-Qing; Bhargava, Nupur; Li, Baohua; Du, Wei; Tolle, John
2017-12-01
The plastic strain relaxation of CVD-grown Ge1-x Sn x layers was investigated in x = 0.09 samples with thicknesses of 152, 180, 257, 570, and 865 nm. X-ray diffraction-reciprocal space mapping was used to determine the strain, composition, and the nature of defects in each layer. Secondary ion mass spectrometry was used to examine the evolution of the compositional profile. These results indicate that growth beyond the critical thickness results in the spontaneous formation of a relaxed and highly defective 9% Sn layer followed by a low defect 12% Sn secondary layer. We find that this growth method can be used to engineer thick, strain-relaxed, and low defect density layers. Furthermore we utilize this strain-dependent Sn incorporation behavior to achieve Sn compositions of 17.5%. Photoluminesence of these layers produces light emission at 3.1 μm.
Electronic structure and defect properties of selenophosphate Pb2P2Se6 for γ-ray detection
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; Im, Jino; Wessels, Bruce W.; Kanatzidis, Mercouri G.; Freeman, Arthur J.
Heavy metal chalco-phosphate Pb2P2Se6 has shown a significant promise as an X-ray and γ-ray detector material. To assess the fundamental physical properties important for its performance as detector, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and static dielectric constants. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Pb2P2Se6 is an indirect band gap material with the calculated band gap of 2.0 eV, has small effective masses, which could result in a good carrier mobility-lifetime product μτ , and a very high static dielectric constant, which could lead to high mobility of carriers by screening of charged scattering centers. We further investigated a large set of native defects in Pb2P2Se6 to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are selenium vacancies, followed by lead vacancies, then phosphorus vacancies and antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
Development of a Moldable, Biodegradable Polymeric Bone Repair Material
1994-03-30
minimally encapsulated by fibrous tissue. Histomorphometric analysis of day 14 specimens showed a very mild foreign body response in terms of area. This...significant visual evidence of foreign body response seen for any Atrix test article. A mass of dense fibrotic tissue was found near the defect site...article in the defect and medullary cavity. The test article was minimally encapsulated by fibrotic tissue. Histomorphometric analysis showed this
Bartter syndrome presenting as poor weight gain and abdominal mass in an infant.
Heffernan, Annie; Steffensen, Thora S; Gilbert-Barness, Enid; Perlman, Sharon
2008-01-01
Bartter syndrome, a group of disorders that encompasses multiple genetic defects with similar clinical presentation, has been divided into six different genotypes, according to different genetic defects, and into three main clinical variants (or phenotypes). Classic laboratory findings in all variants include hypochloremia, hypokalemia, and metabolic alkalosis with excessive excretion of chloride and potassium. Classic Bartter syndrome, neonatal Bartter syndrome, and Gitelman syndrome are the three main clinical variants. Classic Bartter syndrome and neonatal Bartter syndrome have defects in genes that affect transport channels in the ascending loop of Henle, where as in Gitleman syndrome the defect occurs in the transport channels of the distal convoluted tubule. Classic Bartter syndrome and neonatal Bartter syndrome have similar presenting symptoms, potential outcomes, and treatment, but different ages at presentation. Gitelman syndrome, a more benign condition than the other clinical variants, has the classic hallmark finding of hypomagnesemia and low to normal excretion of calcium. This differentiates it from the classic and neonatal variants of the disease. With early diagnosis and proper treatment, Bartter syndrome has a good prognosis. But failure to identify it can lead to tubulointerstitial nephritis and renal failure. We present a case of a 6-month-old boy with Bartter syndrome who presented with poor weight gain and an abdominal mass.
Inertial effects in systems with magnetic charge
NASA Astrophysics Data System (ADS)
Armitage, N. P.
2018-05-01
This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa, E-mail: Kawase.Kazumasa@ak.MitsubishiElectric.co.jp; Motoya, Tsukasa; Uehara, Yasushi
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) have been treated with Ar plasma excited by microwave. The changes of the mass densities, carrier trap densities, and thicknesses of the CVD-SiO{sub 2} films with the Ar plasma treatments were investigated. The mass density depth profiles were estimated with X-Ray Reflectivity (XRR) analysis using synchrotron radiation. The densities of carrier trap centers due to defects of Si-O bond network were estimated with X-ray Photoelectron Spectroscopy (XPS) time-dependent measurement. The changes of the thicknesses due to the oxidation of Si substrates were estimated with the XRR and XPS. Themore » mass densities of the CVD-SiO{sub 2} films are increased by the Ar plasma treatments. The carrier trap densities of the films are decreased by the treatments. The thicknesses of the films are not changed by the treatments. It has been clarified that the mass densification and defect restoration in the CVD-SiO{sub 2} films are caused by the Ar plasma treatments without the oxidation of the Si substrates.« less
Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas
2014-10-07
Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-06-10
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Defect evolution and impurity migration in Na-implanted ZnO
NASA Astrophysics Data System (ADS)
Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.
2011-11-01
Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.
Li, Liande; Borkovich, Katherine A.
2006-01-01
The filamentous fungus Neurospora crassa is able to utilize a wide variety of carbon sources. Here, we examine the involvement of a predicted G-protein-coupled receptor (GPCR), GPR-4, during growth and development in the presence of different carbon sources in N. crassa. Δgpr-4 mutants have reduced mass accumulation compared to the wild type when cultured on high levels of glycerol, mannitol, or arabinose. The defect is most severe on glycerol and is cell density dependent. The genetic and physical relationship between GPR-4 and the three N. crassa Gα subunits (GNA-1, GNA-2, and GNA-3) was explored. All three Gα mutants are defective in mass accumulation when cultured on glycerol. However, the phenotypes of Δgna-1 and Δgpr-4 Δgna-1 mutants are identical, introduction of a constitutively activated gna-1 allele suppresses the defects of the Δgpr-4 mutation, and the carboxy terminus of GPR-4 interacts most strongly with GNA-1 in the yeast two-hybrid assay. Although steady-state cyclic AMP (cAMP) levels are normal in Δgpr-4 strains, exogenous cAMP partially remediates the dry mass defects of Δgpr-4 mutants on glycerol medium and Δgpr-4 strains lack the transient increase in cAMP levels observed in the wild type after addition of glucose to glycerol-grown liquid cultures. Our results support the hypothesis that GPR-4 is coupled to GNA-1 in a cAMP signaling pathway that regulates the response to carbon source in N. crassa. GPR-4-related GPCRs are present in the genomes of several filamentous ascomycete fungal pathogens, raising the possibility that a similar pathway regulates carbon sensing in these organisms. PMID:16896213
USDA-ARS?s Scientific Manuscript database
A seed-specific maize mutant, defective endosperm18 (de18), accumulates approximately 40% less dry mass and 10- to 15- fold less auxin (IAA) as compared to the De18; however, a causal basis of these changes is not known. Cellular analyses here showed that the de18 developing endosperm had lower tota...
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.
2018-02-01
Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.
Local defect resonance (LDR): A route to highly efficient thermosonic and nonlinear ultrasonic NDT
NASA Astrophysics Data System (ADS)
Solodov, Igor
2014-02-01
The concept of LDR is based on the fact that inclusion of a defect leads to a local drop of rigidity for a certain mass of the material that should manifest in a particular characteristic frequency of the defect. A frequency match between the driving ultrasonic wave and this characteristic frequency provides an efficient energy pumping from the wave directly into the defect. For simulated and realistic defects in various materials the LDR-induced local resonance increase in the vibration amplitude averages up to ˜ (20-40 dB). Due to a strong resonance amplification of the local vibrations, the LDR-driven defects manifest a profound nonlinearity even at moderate ultrasonic excitation level. The nonlinearity combined with resonance results in efficient generation of the higher harmonics and is also used as a filter/amplifier in the frequency mixing mode of nonlinear NDT. The LDR high-Q thermal response enables to realize a frequency-selective imaging with an opportunity to distinguish between different defects by changing the driving frequency. The LDR-thermosonics requires much lower acoustic power to activate defects that makes it possible to avoid high-power ultrasonic instrumentation and proceed to a noncontact ultrasonic thermography by using air-coupled ultrasonic excitation.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
NASA Astrophysics Data System (ADS)
Sun, Y. Y.; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, S. B.
2014-10-01
The behavior of cation substitutional hole doping in GaN and ZnO is investigated using hybrid density functional calculations. Our results reveal that Mg substitution for Ga (MgGa) in GaN can assume three different configurations. Two of the configurations are characterized by the formation of defect-bound small polaron (i.e., a large structural distortion accompanied by hole localization on one of the neighboring N atoms). The third one has a relatively small but significant distortion that is characterized by highly anisotropic polaron localization. In this third configuration, MgGa exhibits both effective-mass-like and noneffective-mass-like characters. In contrast, a similar defect in ZnO, LiZn, cannot sustain the anisotropic polaron in the hybrid functional calculation, but undergoes spontaneous breaking of a mirror symmetry through a mechanism driven by the hole localization. Finally, using NaZn in ZnO as an example, we show that the deep acceptor levels of the small-polaron defects could be made shallower by applying compressive strain to the material.
Özçetin, Mustafa; Karacı, Mehmet; Toroslu, Ertuğ; Edebali, Nurullah
2016-01-01
Pituitary adenomas usually arise from the anterior lobe of the pituitary gland and are manifested with hormonal disorders or mass effect. Mass effect usually occurs in nonfunctional tumors. Pituitary adenomas may be manifested with visual field defects or rarely in the form of total oculomotor palsy. Visual field defect is most frequently in the form of bitemporal hemianopsia and superior temporal defect. Sudden loss of vision, papilledema and ophthalmoplegia may be observed. Pituitary apoplexy is defined as an acute clinical syndrome characterized with headache, vomiting, loss of vision, ophthalmoplegia and clouding of consciousness. The problem leading to pituitary apoplexy may be decreased blood supply in the adenoma and hemorrhage following this decrease or hemorrhage alone. In this article, we present a patient who presented with fever, vomiting and sudden loss of vision and limited outward gaze in the left eye following trauma and who was found to have pituitary macroadenoma causing compression of the optic chiasma and optic nerve on the left side on cranial and pituitary magnetic resonance imaging. PMID:27738402
Insights into dynamic processes of cations in pyrochlores and other complex oxides
Uberuaga, Blas Pedro; Perriot, Romain
2015-08-26
Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation
NASA Astrophysics Data System (ADS)
Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim
2016-02-01
High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.
High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation.
Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P; de Voogt, Pim
2016-02-01
High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ.
Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong
2012-07-17
The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEAmore » chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.« less
Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong
2013-08-01
The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...
2015-10-06
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Trapping of drops by wetting defects
't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder
2014-01-01
Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935
Unique properties of halide perovskites as possible origins of the superior solar cell performance.
Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
2014-07-16
Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-07-15
Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis), have been combined to classify virgin olive oil samples based on the presence or absence of sensory defects. The reference sensory values were provided by an official taste panel. Different data fusion strategies were studied to improve the discrimination capability compared to using each instrumental technique individually. A general model was applied to discriminate high-quality non-defective olive oils (extra-virgin) and the lowest-quality olive oils considered non-edible (lampante). A specific identification of key off-flavours, such as musty, winey, fusty and rancid, was also studied. The data fusion of the three techniques improved the classification results in most of the cases. Low-level data fusion was the best strategy to discriminate musty, winey and fusty defects, using HS-MS, MIR and UV-vis, and the rancid defect using only HS-MS and MIR. The mid-level data fusion approach using partial least squares-discriminant analysis (PLS-DA) scores was found to be the best strategy for defective vs non-defective and edible vs non-edible oil discrimination. However, the data fusion did not sufficiently improve the results obtained by a single technique (HS-MS) to classify non-defective classes. These results indicate that instrumental data fusion can be useful for the identification of sensory defects in virgin olive oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nath, Anjali K; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A
2009-01-01
Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.
Nath, Anjali K.; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C.; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A.
2009-01-01
Background Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Methodology/Principal Findings Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. Conclusions/Significance The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs. PMID:19156209
Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.
2018-04-01
Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.
NASA Astrophysics Data System (ADS)
Schultz, Peter
To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, William
Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structuremore » of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.« less
Flatz, K M; Glaser, C; Flatz, W H; Reiser, M F; Matis, U
2014-01-01
The aim of our study was to implement and test an imaging protocol for the detection and evaluation of standardised cartilage defects using high-field magnetic resonance imaging (MRI) and to determine its limitations. A total of 84 cartilage defects were created in the femoral condyles of euthanized dogs with a minimum body mass of 25 kg. The cartilage defects had a depth of 0.3 to 1.0 mm and a diameter of 1 to 5 mm. T1-FLASH-3D-WE-sequences with an isotropic voxel size of 0.5 x 0.5 x 0.5 mm and an anisotropic voxel size of 0.3 x 0.3 x 0.8 mm were used. In addition to quantitative evaluation of the cartilage defects, the sig- nal intensities, signal-to-noise ratios and contrast-to-noise ratios of the cartilage were determined. Of special interest were the limita- tions in identifying and delineating the standardised cartilage defects. With the anisotropic voxel size, more cartilage defects were detectable. Our results demonstrated that cartilage defects as small as 3.0 mm in diameter and 0.4 mm in depth were reliably detected using anisotropic settings. Cartilage defects below this size were not reliably detected. We found that for optimal delineation of the joint cartilage and associated defects, a higher in-plane resolution with a larger slice thickness should be used, corresponding to the anisotropic settings employed in this study. For the delineation of larger cartilage defects, both the anisotropic and isotropic imaging methods can be used.
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
A theory of deep point defects imbedded in otherwise perfect semiconductor crystals is developed with the aid of pseudopotentials. The dominant short-range forces engendered by the impurity are sufficiently weakened in all cases where the cancellation theorem of the pseudopotential formalism is operative. Thus, effective-mass-like equations exhibiting local effective potentials derived from nonlocal pseudopotentials are shown to be valid for a large class of defects. A two-band secular determinant for the energy eigenvalues of deep defects is also derived from the set of integral equations which corresponds to the set of differential equations of the effective-mass type. Subsequently, the theory in its simplest form, is applied to the system Al(x)Ga(1-x)As:Se. It is shown that the one-electron donor level of Se within the forbidden gap of Al(x)Ga(1-x)As as a function of the AlAs mole fraction x reaches its maximum of about 300 meV (as measured from the conduction band edge) at the cross-over from the direct to the indirect band-gap at x = 0.44 in agreement with experiments.
Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif
Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N
2015-01-01
Context Mice with null mutations in Matrix Extracellular Phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE over expression induces opposite effects. Also, Genome Wide Association studies show MEPE plays a major role in bone mass. We hypothesized the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. Design To test our theory we over expressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse over expresses ASARM-peptides and is defective for the PHEX gene. Results The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. Conclusions The C-terminal ASARM-motif plays a major role in regulating bone–mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide is chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also effects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments. PMID:26051469
NASA Astrophysics Data System (ADS)
van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.
2015-12-01
Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.
N-cadherin Regulation of Bone Growth and Homeostasis is Osteolineage Stage-Specific
Fontana, Francesca; Hickman-Brecks, Cynthia L.; Salazar, Valerie S.; Revollo, Leila; Abou-Ezzi, Grazia; Grimston, Susan K.; Jeong, Sung Yeop; Watkins, Marcus; Fortunato, Manuela; Alippe, Yael; Link, Daniel C.; Mbalaviele, Gabriel; Civitelli, Roberto
2017-01-01
N-cadherin inhibits osteogenic cell differentiation and canonical Wnt/β-catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N-cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N-cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin-insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2 deleted mice, suggesting N-cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β-catenin accumulation after administration of an anti-Dkk1 antibody are enhanced in N-cadherin deficient mice. Thus, while lack of N-cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N-cadherin in osteolineage cells favors bone formation. Hence, N-cadherin inhibition may widen the therapeutic window of osteoanabolic agents. PMID:28240364
Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing
2016-10-24
Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Design Method for Topologically Insulating Metamaterials
NASA Astrophysics Data System (ADS)
Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara
Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.
Wide-field reflective scanning optical systems
NASA Technical Reports Server (NTRS)
Abel, I. R.
1973-01-01
Catoptric optical scanning system provides relatively fast line-scan rate for two-dimensional coverage. Rapid scan rates require low focal ratios between components and smallest possible masses. System is relatively free from monochromatic defects and chromatic aberrations.
EPR and ENDOR Studies of Point Defects in Lithium Tetraborate Crystals
2012-12-14
the US and its allies. Terrorist groups have shown interest in seeking and deploying weapons of mass destruction and mass disruption--weapons that...5]. Lithium tetraborate, has been grown pure and doped with many different elements including transition metals, actinides , and rare earth...microwave cavity is said to be “ critically coupled” when there is no reflected microwave power. Absorption of microwaves, which occurs when the magnetic
A case report: mixed thrombus formation in a previously sutured right atrium.
Yunfei, Ling; Dongxu, Li; Shuhua, Luo; Yabo, Wang; San, Deep; Changping, Gan; Ke, Lin; Qi, An
2014-08-01
We describe the case of a 19-year-old Chinese woman who nine months prior underwent repair of an atrial septal defect and came to our hospital with a right atrial mass attached to the anterior wall of the right atrium on transthoracic echocardiography. Pathologic examination revealed the mass was a mixed-type thrombosis with some unusual organization, which previously was not described in literature.
Near-field transport of {sup 129}I from a point source in an in-room disposal vault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolar, M.; Leneveu, D.M.; Johnson, L.H.
1995-12-31
A very small number of disposal containers of heat generating nuclear waste may have initial manufacturing defects that would lead to pin-hole type failures at the time of or shortly after emplacement. For sufficiently long-lived containers, only the initial defects need to be considered in modeling of release rates from the disposal vault. Two approaches to modeling of near-field mass transport from a single point source within a disposal room have been compared: the finite-element code MOTIF (A Model Of Transport In Fractured/porous media) and a boundary integral method (BIM). These two approaches were found to give identical results formore » a simplified model of the disposal room without groundwater flow. MOTIF has then been used to study the effects of groundwater flow on the mass transport out of the emplacement room.« less
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
2013-08-01
Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.
The interaction between divacancies and shallow dopants in irradiated Ge:Sn
NASA Astrophysics Data System (ADS)
Khirunenko, L. I.; Pomozov, Yu. V.; Sosnin, M. G.; Abrosimov, N. V.; Riemann, H.
2014-02-01
It has been found that upon annealing of irradiated Ge doped with gallium and Sn simultaneously with disappearance of divacancies V20 the appearance of the new absorption spectrum consisting of sharp lines was observed. The spectrum is identical to the absorption spectrum of gallium. It is shown that the defect, to which the new spectrum corresponds, has hydrogen-like properties. The distances between the lines in the spectrum are in good agreement with those predicted by effective-mass theory. The appearance of Fano resonance in the continuum region in addition to intracenter transitions of the defect was detected. The defect found is identified as SnV20Ga. The binding energy for the ground state of the SnV20Ga centers has been estimated.
Adding gauge fields to Kaplan's fermions
NASA Astrophysics Data System (ADS)
Blum, T.; Kärkkäinen, Leo
1994-04-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.
NASA Astrophysics Data System (ADS)
Singh, Abhishek; Pandey, Tribhuwan
2014-03-01
The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.
Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ
2014-01-01
Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878
NASA Astrophysics Data System (ADS)
Matsukawa, Takashi; Liu, Yongxun; Mori, Takahiro; Morita, Yukinori; Otsuka, Shintaro; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku
2017-06-01
The influence of extension doping on parasitic resistance and its variability has been investigated for FinFETs. Electrical characterization of FinFETs and crystallinity evaluation of the doped fin structure are carried out for different fin thicknesses and different donor species for ion implantation, i.e., As and P. Reducing the fin thickness and the use of donor species with a larger mass cause serious degradation in the variability and median value of the parasitic resistance. Crystallinity evaluation by transmission electron microscope reveals that significant crystal defects remain after dopant activation annealing for the cases of smaller fin thickness and the implanted dopant with a larger mass. The unrecovered defects cause serious degradation in the parasitic resistance and its variability. In 1998, he joined the Electrotechnical Laboratory, which is former organization of National Institute of Advanced Industrial Science and Technology (AIST). He has been working on development of front-end process technology, variability issues of the FinFETs and technologies for suppressing the variability. He is now a group leader of the AIST and leads the research on the silicon-based CMOS devices. He is a member of the IEEE Electron Devices Society, and the Japan Society of Applied Physics.
On the interplay of point defects and Cd in non-polar ZnCdO films
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.
2013-01-01
Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.
NASA Astrophysics Data System (ADS)
Harb, N.; Bezzazi, B.; Mehraz, S.; Hamitouche, K.; Dilmi, H.
2017-11-01
The requests of lightening of the structures and gains in performance lead to search for new materials and the associated processes for aeronautical and space applications. Long-fiber composites have been used for many years for these applications; they make it possible to reduce the mass of the structures because of their excellent compromise of mass/rigidity / resistance. The materials in general contain defects which are essentially due to their nature and their mode of elaboration. To this purpuse, we carried out a probabilistic analysis of the mechanical behavior in three-point bending of composite materials with a thermosetting matrix in order to highlight the influence of the number of folds of the fibers and the nature of the fibers on the dispersion of the defects in the stratified structures fiberglass, carbon fiber laminates and hybrid (carbon / glass) laminates. From the results obtained, the dispersion of the defects is lower in the laminates of greater number of plies of the fibers and the hybrid laminates; the more the number of folds increases the more the mechanical characteristics increase; the hybrid laminates exhibit better mechanical properties compared to laminates of the same type of fiber. Finally, a morphological analysis of fracture structures and facies was investigated by scanning electron microscope (SEM) observations.
Maternal obesity and congenital heart defects: a population-based study123
Mills, James L; Troendle, James; Conley, Mary R; Carter, Tonia; Druschel, Charlotte M
2010-01-01
Background: Obesity affects almost one-third of pregnant women and causes many complications, including neural tube defects. It is not clear whether the risk of congenital heart defects, the most common malformations, is also increased. Objective: This study was conducted to determine whether obesity is associated with an increased risk of congenital heart defects. Design: A population-based, nested, case-control study was conducted in infants born with congenital heart defects and unaffected controls from the cohort of all births (n = 1,536,828) between 1993 and 2003 in New York State, excluding New York City. The type of congenital heart defect, maternal body mass index (BMI; in kg/m2), and other risk factors were obtained from the Congenital Malformations Registry and vital records. Mothers of 7392 congenital heart defect cases and 56,304 unaffected controls were studied. Results: All obese women (BMI ≥ 30) were significantly more likely than normal-weight women (BMI: 19–24.9) to have children with a congenital heart defect [odds ratio (OR): 1.15; 95% CI: 1.07, 1.23; P < 0.0001]. Overweight women were not at increased risk (OR: 1.00; 95% CI: 0.94, 1.06). The risk in morbidly obese women (BMI ≥ 40) was higher (OR: 1.33; 95% CI: 1.15, 1.54; P = 0.0001) than that in obese women with a BMI of 30–39.9 (OR: 1.11; 95% CI: 1.04, 1.20; P = 0.004). There was a highly significant trend of increasing OR for congenital heart defects with increasing maternal obesity (P < 0.0001). The offspring of obese women had significantly higher ORs for atrial septal defects, hypoplastic left heart syndrome, aortic stenosis, pulmonic stenosis, and tetralogy of Fallot. Conclusions: Obese, but not overweight, women are at significantly increased risk of bearing children with a range of congenital heart defects, and the risk increases with increasing BMI. Weight reduction as a way to reduce risk should be investigated. PMID:20375192
Qandeel, Haitham; O'Dwyer, Patrick J
2016-04-01
It is an acceptable concept that the ventral hernia defect area will increase with a rise in intra-abdominal pressure (IAP). The literature lacks the evidence about how much this increase is in vivo. The aim of this study was to objectively measure the change in the ventral hernia defect area with increasing intra-abdominal pressure. In a prospective study of laparoscopic ventral hernia repair, the area of hernia defect was measured from inside the abdomen using a sterile paper ruler. The horizontal (width) and vertical (length) measurements of the defect were taken at two pressure points: (IAP = 8 mmHg) and (IAP = 15 mmHg). The hernia defect area was calculated as an oval shape using a standard formula. Eighteen consecutive patients with a ventral hernia were included in this study (8 males: 10 females). Median age was 60 years (30-81), body mass index (BMI) was 29.9 (22.6-37.6). Changing the IAP significantly, (P < 0.001) changed the values of horizontal and vertical measurements, and the calculated area of the ventral hernia defect. The median calculated defect area, as an oval shape, was 5.6 cm(2) (Q1-Q3 = 3.5-15.5) and 6.9 cm(2) (Q1-Q3 = 4.5-18.7) at 8 and 15 mmHg IAP, respectively. The calculated area of mesh required to cover the defect with a 5 cm overlap increased by a median of 5% (Q1-Q3 = 3-6%). The change in defect area did not differ significantly between obese and non-obese patients (P = 0.5). Dynamic, rather than static, measurements of ventral hernia area during laparoscopy provide a simple way of in vivo objective measurement that helps the surgeon choose the appropriate area of mesh. When choosing mesh area, we support the trend toward a larger overlap of at least 5 cm if less precise methods of measuring defect area are been used.
Improved depth profiling with slow positrons of ion implantation-induced damage in silicon
NASA Astrophysics Data System (ADS)
Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.
2003-10-01
Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Qiudi; Liu, Cunming; Wan, Yangyang
Spinel nickel ferrite (NiFe2O4) emerges as a promising low-cost catalyst for water splitting but it usually shows low catalytic activity because of its limited number of active sites and poor conductivity. For the first time, herein we have successfully overcome its weaknesses using defect engineering approach by creating oxygen vacancies in NiFe2O4. The existence of oxygen vacancy not only shifts up the d-band center, strengthens the adsorption of H2O, and thus provides more active catalytic sites, but also tunes the electron configuration and creates massive number of defective donor states in the band gap to facilitate charge transfer processes. Themore » optimal defective catalyst showed significantly enhanced catalytic OER performance with an OER overpotential as low as 0.35 V at 10 mA cm-2 and a Tafel slope of only ~40 mV dec-1. Moreover, the impressive specific mass and area current density of 17.5 A g-1 and 0.106 A m-2 at 1.58 V vs. RHE have been achieved, which are ~23 and ~36 times higher than that of defect-free counterpart, respectively.« less
Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System
Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye
2016-01-01
In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642
Tangjaroen, Somard; Watanapa, Prasit
2014-02-01
Port-site hernia (PSH) is one of the complications after laparoscopic cholecystectomy (LC). Closure of the fascial defect has been mentioned to prevent such complication. However, the results are still controversial. The present study was done to clarify whether unclosed fascial defect was actually the risk factor for the development of PSH MATERIAL AND METHOD: Two hundred ninety four patients underwent LC by a single surgeon at Kalasin Hospital between 2007 and 2010. The procedure was done by using a four-port technique without closure of any fascial defects. The male:female ratio was 85:209, and the mean body mass index was 24.38 +/- 3.33 (SD). The mean operative time was 18.71 +/- 3.76 minutes and there was no postoperative wound infection. Patients were regularly followed-up and underwent both supine and upright physical examination. The mean duration of follow-up period was 4.94 +/- 1.31 years with the shortest follow-up period of two years. None of the patients in the present study developed PSH in any port sites during the follow-up period. Unclosed fascial defect may not have the significant risk factor of developing PSH after LC.
Graphene defects induced by ion beam
NASA Astrophysics Data System (ADS)
Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek
2017-10-01
The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.
Bulk Diffusion via a ``kick-out'' method for Lithium in the decomposition reaction LiAlH4/Li3AlH6
NASA Astrophysics Data System (ADS)
Rolih, Biljana; Ozolins, Vidvuds; Ozolins Team
2013-03-01
In the pursuit to find a practical system for hydrogen storage, complex metal hydrides have long been considered as viable candidates due to their high hydrogen content. However, some of the challenges faced with these types of systems are poor thermodynamics or kinetics. The underlying mechanisms, and their limiting processes, for the decomposition of these materials need to be understood. From experimental work on the decomposition of hydrogen storage materials, it has been suggested that bulk diffusion of metal species is the bottleneck for hydrogen release. In this work is the dehydrogenation we investigated the system LiAlH4 LiAlH6 with favorable hydrogen release (5.3 wt %), at moderate temperatures. Using first-principles density functional theory we found the defects facilitating mass transport by calculating individual formation energies, highest concentrations, and activation barriers for defect mobility. The mass transport of Lithium is found to be mediated by a ``kick-out'' mechanism. The results are used to further our understanding of the fundamental mechanism of mass transport and evaluate the possibility of kinetics as the limiting process in this reaction.
Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke
2016-09-28
Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.
Novel foamy origin for singlet fermion masses
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2017-10-01
We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.
Ba 2TeO as an optoelectronic material: First-principles study
Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...
2015-05-21
The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less
Eddy-Current Inspection Of Tab Seals On Beverage Cans
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1994-01-01
Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Hannon, Charles P; Weber, Alexander E; Gitelis, Matthew; Meyer, Maximillian A; Yanke, Adam B; Cole, Brian J
2018-04-01
To compare the osteochondral allograft (OCA) outcomes of bipolar defects with isolated femoral defects and to investigate the optimal treatment of bipolar defects by comparing femoral OCA with tibial debridement to femoral OCA and tibial microfracture. A series of patients with 2-year follow-up from March 2004 to September 2015 after femoral OCA for bipolar chondral defects was identified. Group 1 contained patients with tibial defects treated with debridement and group 2 contained patients with microfractured tibial defects. A third group (group 3) with isolated femoral defects treated with OCA was identified and matched by gender, body mass index (BMI), laterality, and OCA size to groups 1 and 2. Patient-specific, defect-specific, intraoperative, and postoperative data including patient-reported outcomes were collected on all patients. The study groups were compared using analyses of variance, paired sample t tests, and χ-square analyses. Thirty-six patients who had femoral OCA for bipolar lesions were identified with 20 patients in group 1 and 16 patients in group 2. Group 3 had 20 patients. There were no differences between the 3 groups in terms of gender (P = .616), BMI (P = .271), number of previous surgeries (P = .451), femoral or tibial defect size (P = .296), and OCA size (P = .981). Preoperative to postoperative patient-reported clinical outcomes (PROs) revealed statistical and clinically meaningful improvement in all 3 groups, but did not differ between groups. Patient-specific and defect-specific factors did not correlate with PROs. The graft survivorship for group 1 was 85% at 4.5 years, 100% for group 2 at 2.5 years, and 95% for group 3 at 3.8 years. Regardless of tibial treatment, patients with bipolar defects treated with femoral OCA have clinically meaningful improvements in PROs and excellent graft survivorship comparable to isolated femoral OCAs at more than 2 years. Level III, case-control study. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Photoluminescence as a tool for characterizing point defects in semiconductors
NASA Astrophysics Data System (ADS)
Reshchikov, Michael
2012-02-01
Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.
Effects of surface preparation on quality of aluminum alloy weldments
NASA Technical Reports Server (NTRS)
Kizer, D.; Saperstein, Z.
1968-01-01
Study of surface preparations and surface contamination effects on the welding of 2014 aluminum involves several methods of surface analysis to identify surface properties conducive to weld defects. These methods are radioactive evaporation, spectral reflectance mass spectroscopy, gas chromatography and spark emission spectroscopy.
Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2
NASA Astrophysics Data System (ADS)
Lu, Haichang; Guo, Yuzheng; Robertson, John
2018-02-01
Although monolayer HfS2 and SnS2 do not have a direct bandgap like MoS2, they have much higher carrier mobilities. Their band offsets are favorable for use with WSe2 in tunnel field effect transistors. Here, we study the effective masses, intrinsic defects, and substitutional dopants of these dichalcogenides. We find that HfS2 has surprisingly small effective masses for a compound that might appear partly ionic. The S vacancy in HfS2 is found to be a shallow donor while that in SnS2 is a deep donor. Substitutional dopants at the S site are found to be shallow. This contrasts with MoS2 where donors and acceptors are not always shallow or with black phosphorus where dopants can reconstruct into deep non-doping configurations. It is pointed out that HfS2 is more favorable than MoS2 for semiconductor processing because it has the more convenient CVD precursors developed for growing HfO2.
Perforator Flaps after Excision of Large Epidermal Cysts in the Buttocks
Kim, Sang Wha; Yang, Seong Hyeok; Kim, Jeong Tae
2014-01-01
Background Epidermal cysts are commonly occurring masses usually less than 5 cm in diameter, but in predisposed patients, epidermal cysts can grow relatively large due to chronic infection. Methods From June 2002 to July 2010, 17 patients received 19 regional perforator-based island flaps to cover defects due to the excision of large epidermal cysts (diameter >5 cm) in the buttocks. Eight patients had diabetes, and seven had rheumatoid arthritis. The pedicles were not fully isolated to prevent spasms or twisting. Results All the flaps survived completely, except for one case with partial necrosis of the flap, which necessitated another perforator-based island flap for coverage. There were two cases of wound dehiscence, which were re-closed after meticulous debridement. There were no recurrences of the masses during follow-up periods of 8.1 months (range, 6-12 months). Conclusions In patients with large epidermal cysts and underlying medical disorders, regional perforator-based island flaps can be the solution to coverage of the defects after excision. PMID:24665422
Tsai, Julie; Qiu, Wei; Kohen-Avramoglu, Rita; Adeli, Khosrow
2007-01-01
Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.
Exploring the multiverse with topological defects
NASA Astrophysics Data System (ADS)
Zhang, Jun
Inflationary cosmology suggests a nontrivial spacetime structure on scales beyond our observable universe, the multiverse. Based on the observation that topological defects and vacuum bubbles can spontaneously nucleate in a de Sitter like inflating space, we explore two different aspects of the multiverse model in this thesis. Hence the main body of this study consists of two parts. In the first part, we investigate domain walls and cosmic strings that may nucleate in the false vacuum. If we live in a bubble universe surrounded by the false vacuum, as suggested by the eternal inflationary multiverse model, the nucleating defects could collide with our bubble universe, and leave potentially observable signals. We investigate different kinds of collisions and their consequences. We suggest such collisions generically result in signals such as radiation and gravitational waves or the defects themselves or a combination of both propagating into our bubble, and therefore provide a new approach to searching for the multiverse. In the second part, we study the fate of domain walls and vacuum bubbles that could nucleate in the slow roll inflation. We show that, depending on their sizes, these objects will form either black holes or wormholes after inflation. We study the spacetime structure of the resulting wormholes. Our analysis indicates the presence of domain walls and vacuum bubbles in the slow roll inflation has significant effects on the global structure of our universe, that is by forming wormholes, it can lead to the picture of a multiverse. We also calculate the mass spectrum of the resulting black holes and wormholes under certain assumptions. We argue that the observation of a population of black holes with such mass spectrum could be considered as evidence of the existence of both inflation and multiverse.
Impact of Missing Data for Body Mass Index in an Epidemiologic Study.
Razzaghi, Hilda; Tinker, Sarah C; Herring, Amy H; Howards, Penelope P; Waller, D Kim; Johnson, Candice Y
2016-07-01
Objective To assess the potential impact of missing data on body mass index (BMI) on the association between prepregnancy obesity and specific birth defects. Methods Data from the National Birth Defects Prevention Study (NBDPS) were analyzed. We assessed the factors associated with missing BMI data among mothers of infants without birth defects. Four analytic methods were then used to assess the impact of missing BMI data on the association between maternal prepregnancy obesity and three birth defects; spina bifida, gastroschisis, and cleft lip with/without cleft palate. The analytic methods were: (1) complete case analysis; (2) assignment of missing values to either obese or normal BMI; (3) multiple imputation; and (4) probabilistic sensitivity analysis. Logistic regression was used to estimate crude and adjusted odds ratios (aOR) and 95 % confidence intervals (CI). Results Of NBDPS control mothers 4.6 % were missing BMI data, and most of the missing values were attributable to missing height (~90 %). Missing BMI data was associated with birth outside of the US (aOR 8.6; 95 % CI 5.5, 13.4), interview in Spanish (aOR 2.4; 95 % CI 1.8, 3.2), Hispanic ethnicity (aOR 2.0; 95 % CI 1.2, 3.4), and <12 years education (aOR 2.3; 95 % CI 1.7, 3.1). Overall the results of the multiple imputation and probabilistic sensitivity analysis were similar to the complete case analysis. Conclusions Although in some scenarios missing BMI data can bias the magnitude of association, it does not appear likely to have impacted conclusions from a traditional complete case analysis of these data.
Freely-migrating-defect production during irradiation at elevated temperatures
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.
1988-12-01
Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.
Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James
2014-04-01
Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
NASA Astrophysics Data System (ADS)
Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.
2014-03-01
Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.
Porter, J; Barrett, T
2005-01-01
Type 2 diabetes mellitus is caused by a combination of insulin resistance and ß cell failure. The polygenic nature of type 2 diabetes has made it difficult to study. Although many candidate genes for this condition have been suggested, in most cases association studies have been equivocal. Monogenic forms of diabetes have now been studied extensively, and the genetic basis of many of these syndromes has been elucidated, leading to greater understanding of the functions of the genes involved. Common variations in the genes causing monogenic disorders have been associated with susceptibility to type 2 diabetes in several populations and explain some of the linkage seen in genome-wide scans. Monogenic disorders are also helpful in understanding both normal and disordered glucose and insulin metabolism. Three main areas of defect contribute to diabetes: defects in insulin signalling leading to insulin resistance; defects of insulin secretion leading to hypoinsulinaemia; and apoptosis leading to decreased ß cell mass. These three pathological pathways are reviewed, focusing on rare genetic syndromes which have diabetes as a prominent feature. Apoptosis seems to be a final common pathway in both type 1 and type 2 diabetes. Study of rare forms of diabetes may help ion determining new therapeutic targets to preserve or increase ß cell mass and function. PMID:15772126
Salaria, Sanjeev Kumar; Gupta, Neha; Bhatia, Vineet; Nayar, Amit
2015-01-01
Peripheral ossifying fibroma (POF) is a local gingival reactive lesion, thought to be originating from the superficial periodontal ligament. It is found most often in the anterior maxilla with predilection for females and high recurrence rate. Clinically, the lesion is observed in gingiva or interdental papilla and manifested either as sessile or pedunculated mass which may appear ulcerated or erythematous or exhibit no color difference from the adjacent healthy gingival tissue. The present case report describes the diagnosis, treatment of POF, and immediate management of residual functional and cosmetic mucogingival defect which originated as a sequel of excisional biopsy of recurrent POF by utilizing modification of Grupe and Warren technique (modified laterally displaced flap). Clinical healing was uneventful at 2 weeks, and excellent coverage of residual mucogingival defect without any evidence of recession and or recurrence of POF was observed at surgical site 9 months postoperatively. PMID:26604587
Salaria, Sanjeev Kumar; Gupta, Neha; Bhatia, Vineet; Nayar, Amit
2015-09-01
Peripheral ossifying fibroma (POF) is a local gingival reactive lesion, thought to be originating from the superficial periodontal ligament. It is found most often in the anterior maxilla with predilection for females and high recurrence rate. Clinically, the lesion is observed in gingiva or interdental papilla and manifested either as sessile or pedunculated mass which may appear ulcerated or erythematous or exhibit no color difference from the adjacent healthy gingival tissue. The present case report describes the diagnosis, treatment of POF, and immediate management of residual functional and cosmetic mucogingival defect which originated as a sequel of excisional biopsy of recurrent POF by utilizing modification of Grupe and Warren technique (modified laterally displaced flap). Clinical healing was uneventful at 2 weeks, and excellent coverage of residual mucogingival defect without any evidence of recession and or recurrence of POF was observed at surgical site 9 months postoperatively.
Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...
2017-07-01
Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less
Maternal occupation and the risk of neural tube defects in offspring.
Kim, Jihye; Langlois, Peter H; Mitchell, Laura E; Agopian, A J
2017-07-19
We evaluated the association between maternal occupation and the risk of neural tube defects (NTDs) in offspring. Data for 491 nonsyndromic cases were obtained from the Texas Birth Defects Registry for deliveries between 1999 and 2009. We randomly selected 2,291 controls among all live births in Texas during this time. Maternal occupations were classified using automated software and manual assignment. Multivariable logistic regression analyses were used to examine the relationship between maternal occupation and risk for any NTD, adjusting for maternal race/ethnicity, any diabetes, and maternal body mass index. These analyses were repeated for spina bifida specifically. Some maternal occupations, particularly those related to business/finance, health care practice, and cleaning/maintenance, were significantly associated with increased risk of spina bifida and/or any NTD. Further research is needed to identify the specific occupational exposures related to NTD risk.
Effects of Hypogravity on Osteoblast Differentiation
NASA Technical Reports Server (NTRS)
Globus, Ruth; Doty, Steven
1997-01-01
Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells.
Retinoic acid-induced lumbosacral neural tube defects: myeloschisis and hamartoma.
Cai, WeiSong; Zhao, HongYu; Guo, JunBin; Li, Yong; Yuan, ZhengWei; Wang, WeiLin
2007-05-01
To observe the morphological features of the lumbosacral neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) and to explore the pathogenesis of these defects. Rat embryos with lumbosacral NTDs were obtained by treating pregnant rats with administration of atRA. Rat embryos were obtained by cesarean. Fetuses were sectioned and stained with hematoxylin-eosin (H&E). Relevant structures including caudal neural tube were examined. In the atRA-treated rats, about 48% embryos showed lumbosacral NTDs. There appeared a dorsally and rostrally situated, neural-plate-like structure (myeloschisis) and a ventrally and caudally located cell mass containing multiple canals (hamartoma) in the lumbosacral NTDs induced by atRA. Retinoic acid could disturb the notochord and tail bud development in the process of primary and secondary neurulation in rat embryos, which cause lumbosacral NTDs including myeloschisis and hamartoma. The morphology is very similar to that happens in humans.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
Exercise Promotes Healthy Aging of Skeletal Muscle
Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.
2016-01-01
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505
Static and dynamic properties of incommensurate smectic-A(IC) liquid crystals
NASA Technical Reports Server (NTRS)
Lubensky, T. C.; Ramaswamy, Sriram; Toner, John
1988-01-01
The elasticity, topological defects, and hydrodynamics of the incommensurate smectic A(IC) phase liquid crystals are studied. The phase is characterized by two colinear mass density waves of incommensurate spatial frequency. The elastic free energy is formulated in terms of a displacement field and a phason field. It is found that the topological defects of the system are dislocations with a nonzero phason field and phason field components. A two-dimensional Burgers lattice for these dislocations is introduced. It is shown that the hydrodynamic modes of the phase include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics.
He, Miao; Kratz, Lisa E.; Michel, Joshua J.; Vallejo, Abbe N.; Ferris, Laura; Kelley, Richard I.; Hoover, Jacqueline J.; Jukic, Drazen; Gibson, K. Michael; Wolfe, Lynne A.; Ramachandran, Dhanya; Zwick, Michael E.; Vockley, Jerry
2011-01-01
Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. PMID:21285510
Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering.
Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G; Ching, Kuan Y; Jonnalagadda, Umesh S; Oreffo, Richard O C; Hill, Martyn; Tare, Rahul S
2014-12-07
Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects.
Wang, Yicun; Jiang, Hui; Deng, Zhantao; Jin, Jiewen; Meng, Jia; Wang, Jun; Zhao, Jianning; Sun, Guojing; Qian, Hongbo
2017-01-01
To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled.
Wang, Yicun; Jiang, Hui; Deng, Zhantao; Meng, Jia; Wang, Jun
2017-01-01
Background To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. Methods 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Results Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. Conclusions It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled. PMID:29333448
Effects of rf power on chemical composition and surface roughness of glow discharge polymer films
NASA Astrophysics Data System (ADS)
Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing
2016-03-01
The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.
Li, Xiaolin; Brownawell, Bruce J.
2009-01-01
A sensitive and robust method of analysis for quaternary ammonium compounds (QACs) in marine sediments is presented. Methods for extraction, sample purification, and HPLC-Time-of-Flight-MS analysis were optimized, providing solutions to problems associated with analysis of QACs, such as dialkyldimethylammonium (DADMAC) and benzalkonium (BAC) compounds experienced previously. Recognized in this study are the exceptionally high positive mass defects characteristic of alkylammonium or protonated alkylamine ions. No alternative and chemically-viable elemental formulas exist within 25.2 mDa when the number of double bond equivalents is low, effectively allowing facile discrimination of this compound class in complex mixtures. Accurate mass measurements of diagnostic collision induced dissociation fragment ions and heavy isotope peaks were obtained and also seen to be uniquely heavy compared to other elemental formulae. In the case of BACs, the ability to resolve masses of alkylamine fragment ions is greater than it is for molecular ions, opening up a wide range of potential applications. The power of utilizing a combination of approaches is illustrated with the identification of non-targeted DADMAC C8:C8 and C8:C10, two widely used biocides previously unreported in environmental samples. Concentrations of QACs in sewage-impacted estuarine sediments (up to 74 μg/g) were higher than concentrations of other organic contaminants measured in the same or nearby samples, suggesting further study is needed. PMID:19739657
Pekel, Nihat; Ercan, Ertuğrul; Özpelit, Mehmet Emre; Özyurtlu, Ferhat; Yılmaz, Akar; Topaloğlu, Caner; Saygı, Serkan; Yakan, Serkan; Tengiz, İstemihan
2017-01-01
Objective: The standard transcatheter ventricular septal defects (VSD) closure procedure is established with arteriovenous (AV) loop and is called as antegrade approach. The directly retrograde transarterial VSD closure without using AV loop might be better option as shortens the procedure time and decreases radiation exposure. Methods: Our series consist of twelve sequential adult cases with congenital VSDs (seven with perimembranous, four with muscular, one with postoperative residuel VSD). The mean age was 26.9 (Range 18–58), the mean height was 168.75 cm (Range 155–185cm), and the mean body mass index was 23.4 (Range 17.3–28.4). Maximum and minimum defect sizes were 10 and 5 mm and the mean defect size was 6.24 mm. The procedure was performed with left heart catheterization and advancing the delivery sheath over the stiff exchange wire then VSD occlusion from left side. Results: The defects were successfully closed with this technique in eleven patients. In sixth patient, the defect could not be cannulated by the delivery sheath, as the tip of the sheath did not reach the defect and VSD was closed with same sheath by standard transvenous approach using AV loop. We didn’t encounter any complication releated to semilunar or atrioventricular valves. Atrioventricular conduction system was not affected by the procedure in any patients. The median procedure and fluoroscopy times were 66 and 16.5 minutes respectively. Conclusion: Transarterial retrograde VSD closure without using AV loop simplifies the procedure, decreases the radiation exposure, and shortens the procedure time. The only limitation in adult patients is delivery sheath length. PMID:28315566
Reconstruction of maxillary defect with musculo-adipose rectus free flap.
Low, Tsu-Hui Hubert; Lindsay, Andrew; Clark, Jonathan; Chai, Francis; Lewis, Richard
2017-02-01
The rectus myocutaneous free flap (RMFF) is used for medium to large maxillectomy defects. However, in patients with central obesity the inset could be difficult due to the bulk from excessive layer of adipose tissue. We describe a modification of the RMFF for patients with excessive central obesity with a flap consisting of adipose tissue with minimal rectus muscle; the musculo-adipose rectus free flap (MARF). Five cases of MARF reconstruction were performed between 2003 and 2013, with patients' body mass indexes ranging from 29.0 to 41.2 kg/m 2 . All patients had sinonasal tumor, of which three were adenoid cystic carcinoma, one squamous cell carcinoma, and one melanoma. Four patients had Codeiro IIIb defects and one had Codeiro II defect. Using the MARF technique, the maxillectomy defect was obliterated with vascularized adipose tissue overlying the rectus muscle and was trimmed to fit the maxillectomy defect. The adipose tissue was allowed to granulate and mucosalize. The volume of adipose tissue harvested was between 120 and 160 mL. All flaps survived with no requirement for re-exploration. Complete oro-nasal separation was achieved in all patients. The time to commencement of oral intake ranges from 5 to 15 days. One patient developed seroma and one developed wound breakdown on the donor site. The length of stay at the hospital ranges from 9 to 22 days. On follow-up ranging 7.5-32.8 months, two patients died from their malignancies. The other three patients were able to tolerate oral soft diet. The MARF may be considered as an alternative to myocutaneous rectus free flap particularly for the reconstruction of maxillary defects in patients with central obesity. © 2015 Wiley Periodicals, Inc. Microsurgery 37:137-141, 2017. © 2015 Wiley Periodicals, Inc.
Liptak, Julius M; Thatcher, Graham P; Bray, Jonathan P
2017-04-15
CASE DESCRIPTION A 12-year-old neutered male domestic shorthair cat had been treated for a mass arising from the lingual aspect of the caudal right mandibular body. Cytoreductive surgery of the mass had been performed twice over a 2-year period, but the mass recurred following both surgeries. The mass was diagnosed as an osteosarcoma, and the cat was referred for further evaluation and treatment. CLINICAL FINDINGS Clinical findings were unremarkable, except for a 2-cm-diameter mass arising from the lingual aspect of the right mandible and mild anemia and lymphopenia. Pre- and postcontrast CT scans of the head, neck, and thorax were performed, revealing that the osteosarcoma was confined to the caudal right mandibular body, with no evidence of lymph node or pulmonary metastasis. TREATMENT AND OUTCOME The stereolithographic files of the CT scan of the head were sent for computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Segmental mandibulectomy was performed, and the mandibular defect was reconstructed in a single stage with the 3-D-printed titanium prosthesis. The cat had 1 minor postoperative complication but had no signs of eating difficulties at any point after surgery. The cat was alive and disease free 14 months postoperatively. CLINICAL RELEVANCE Reconstruction of the mandible of a cat following mandibulectomy was possible with computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Cats have a high rate of complications following mandibulectomy, and these initial findings suggested that mandibular reconstruction may reduce the risk of these complications and result in a better functional outcome.
Pan, Huiqin; Yang, Wenzhi; Yao, Changliang; Shen, Yao; Zhang, Yibei; Shi, Xiaojian; Yao, Shuai; Wu, Wanying; Guo, Dean
2017-09-22
Discovery of new natural compounds is becoming increasingly challenging because of the interference from those known and abundant components. The aim of this study is to report a dereplication strategy, by integrating mass defect filtering (MDF)-oriented novelty classification and precursor ions list (PIL)-triggered high-resolution mass spectrometry analysis, and to validate it by discovering new indole alkaloids from the medicinal herb Uncaria sinensis. Rapid chromatographic separation was achieved on a Kinetex ® EVO C18 column (<16min). An in-house MDF algorithm, developed based on the informed phytochemistry information and molecular design, could more exactly screen the target alkaloids and divide them into three novelty levels: Known (KN), Unknown-but-Predicted (UP), and Unexpected (UN). A hybrid data acquisition method, namely PIL-triggered collision-induced dissociation-MS 2 and high-energy C-trap dissociation-MS 3 with dynamic exclusion on a linear ion trap/Orbitrap mass spectrometer, facilitated the acquisition of diverse product ions sufficient for the structural elucidation of both indole alkaloids and the N-oxides. Ultimately, 158 potentially new alkaloids, including 10 UP and 108 UN, were rapidly characterized from the stem, leaf, and flower of U. sinensis. Two new alkaloid compounds thereof were successfully isolated and identified by 1D and 2D NMR analyses. The varied ring E and novel alkaloid-acylquinic acid conjugates were first reported from the whole Uncaria genus. Conclusively, it is a practical chemical dereplication strategy that can enhance the efficiency and has the potential to be a routine approach for the discovery of new natural compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving the XAJ Model on the Basis of Mass-Energy Balance
NASA Astrophysics Data System (ADS)
Fang, Yuanhao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco
2014-11-01
Introduction: The Xin'anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.
Improving the XAJ Model on the Basis of Mass-Energy Balance
NASA Astrophysics Data System (ADS)
Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco
2014-11-01
The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.
Exercise Promotes Healthy Aging of Skeletal Muscle.
Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R
2016-06-14
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Multifocal tumoral calcinosis in a 4-year-old girl.
Sayar, Ilyas; Peker, Kemal; Kapısız, Alparslan; Bostancı, Isıl Esen; Gürbüzel, Mehmet; Isik, Arda; Peker, Necla Aydın
2014-01-01
Female, 4 FINAL DIAGNOSIS: Tumoral calcinosis Symptoms: Hard immobile mass Medication: - Clinical Procedure: - Specialty: Surgery. Congenital defects. Tumoral calcinosis is an uncommon condition associated with the deposition of painless calcific masses. It is more common in childhood or early adolescence of African-American females. We present a case of a 4-year-old girl with tumoral calcinosis treated surgically. The case is rather rare in terms of the age of the patient and the localization of the masses (gluteal site). In our patient, the biochemical findings were normal, except for hyperphosphatemia and elevated alkaline phosphatase. Total excision appears to lead to a good clinical outcome and a low incidence of local relapse.
Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P
2016-06-29
The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.
NASA Astrophysics Data System (ADS)
Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan
2018-03-01
Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.
2018-05-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.
Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O
2018-05-25
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1 eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Accessory Cavitated Uterine Mass: A Rare Cause of Severe Dysmenorrhea in Young Women.
Paul, P G; Chopade, Gaurav; Das, Tanuka; Dhivya, N; Patil, Saurabh; Thomas, Manju
2015-01-01
We present 3 case reports of a rare Müllerian anomaly called accessory and cavitated uterine mass (ACUM), which is found in young women >30 years of age. They presented with severe dysmenorrhea refractory to medical treatment. The patients were 17, 19, and 25 years old. The patients had the classic Müllerian anomalies. The hysteroscopic examination was normal in all 3 cases, and laparoscopic examination showed a 3- to 4-cm ill-defined mass on the right half of the uterus, without any communication to the uterine cavity. The chocolate-colored material was drained in all of the cases, during excision of the mass. The myometrial defect was sutured laparoscopically. On histological examination, the mass was found to be a cystic cavity, lined by endometrial glands and stroma, which confirmed the diagnosis of ACUM. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.
Diabetes and apoptosis: neural crest cells and neural tube.
Chappell, James H; Wang, Xiao Dan; Loeken, Mary R
2009-12-01
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.
Diabetes and apoptosis: neural crest cells and neural tube
Chappell, James H.; Dan Wang, Xiao
2016-01-01
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy. PMID:19333760
Enhancing paper strength by optimizing defect configuration
J.M. Considine; W. Skye; W. Chen; D. Matthys; David W. Vahey; K. Turner; R. Rowlands
2009-01-01
Poor formation in paper, as denoted by large local variation of mass, tends to reduce maximum tensile strength but has not been well characterized. The effect of grammage variation on tensile strength was studied by introducing carefully placed holes in tensile specimens made of three different paper materials. Previous researchers demonstrated that the point-stress...
Tosi, L L; Detsky, A S; Roye, D P; Morden, M L
1987-01-01
Using a decision analysis model, we estimated the savings that might be derived from a mass prenatal screening program aimed at detecting open neural tube defects (NTDs) in low-risk pregnancies. Our baseline analysis showed that screening v. no screening could be expected to save approximately $8 per pregnancy given a cost of $7.50 for the maternal serum alpha-feto-protein (MSAFP) test and a cost of $42,507 for hospital and rehabilitation services for the first 10 years of life for a child with spina bifida. When a more liberal estimate of the costs of caring for such a child was used, the savings with the screening program were more substantial. We performed extensive sensitivity analyses, which showed that the savings were somewhat sensitive to the cost of the MSAFP test and highly sensitive to the specificity (but not the sensitivity) of the test. A screening program for NTDs in low-risk pregnancies may result in substantial savings in direct health care costs if the screening protocol is followed rigorously and efficiently. PMID:2433011
Influence of defects and doping on phonon transport properties of monolayer MoSe2
NASA Astrophysics Data System (ADS)
Yan, Zhequan; Yoon, Mina; Kumar, Satish
2018-07-01
The doping of monolayer MoSe2 by tungsten (W) can suppress the Se vacancy concentration, but how doping and resulting change in defect concentration can tune its thermal properties is not understood yet. We use first-principles density functional theory (DFT) along with the phonon Boltzmann transport equation (BTE) to study the phonon transport properties of pristine MoSe2 and W doped MoSe2 with and without the presence of Se vacancies. We found that for samples without Se vacancy, the W doping could enhance the thermal transport of monolayer MoSe2 due to reduced three-phonon scattering phase space. For example, we observed that the 16.7% W doping increases the thermal conductivity of the monolayer MoSe2 with 2% Se vacancy by 80% if all vacancies can be suppressed by W-doping. However, the W doping in the defective MoSe2 amplifies the influence of the phonon scattering caused by the Se vacancies, which results in a further decrease in thermal conductivity of monolayer MoSe2 with defects. This is found to be related with higher phonon density of states of Mo0.83W0.17Se2 and larger mass difference between W and Se atoms compared to Mo and Se atoms. This study deciphers the effect of defects and doping on the thermal conductivity of monolayer MoSe2, which helps us understand the mechanism of defect-induced phonon transport, and provides insights into enhancing the heat dissipation in MoSe2-based electronic devices.
FGF signals from the nasal pit are necessary for normal facial morphogenesis.
Szabo-Rogers, Heather L; Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Fu, Kathy K; Richman, Joy M
2008-06-15
Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.
Xing, Jie; Zang, Meitong; Zhang, Haiying; Zhu, Mingshe
2015-10-15
Patients are usually exposed to multiple drugs, and metabolite profiling of each drug in complex biological matrices is a big challenge. This study presented a new application of an improved high resolution mass spectrometry (HRMS)-based data-mining tools in tandem to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was metronidazole-pantoprazole-clarithromycin (MET-PAN-CLAR), which is widely used in clinic to treat ulcers caused by Helicobacter pylori. First, mass defect filter (MDF), as a targeted data processing tool, was able to recover all relevant metabolites of MET-PAN-CLAR in human plasma and urine from the full-scan MS dataset when appropriate MDF templates for each drug were defined. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, worked effectively except for several trace metabolites, which were buried in the remaining background signals. Third, an integrated strategy, i.e., untargeted BS followed by improved MDF, was effective for metabolite identification of MET-PAN-CLAR. Most metabolites except for trace ones were found in the first step of BS-processed datasets, and the results led to the setup of appropriate metabolite MDF template for the subsequent MDF data processing. Trace metabolites were further recovered by MDF, which used both common MDF templates and the novel metabolite-based MDF templates. As a result, a total of 44 metabolites or related components were found for MET-PAN-CLAR in human plasma and urine using the integrated strategy. New metabolic pathways such as N-glucuronidation of PAN and dehydrogenation of CLAR were found. This study demonstrated that the combination of accurate mass-based multiple data-mining techniques in tandem, i.e., untargeted background subtraction followed by targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drugs in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Corrections to Newton’s law of gravitation - application to hybrid Bloch brane
NASA Astrophysics Data System (ADS)
Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.
2018-02-01
We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions
Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T
2013-07-16
Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.
Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F
2014-10-22
Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping
2018-01-09
It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.
Determination of aflatoxin risk components for in-shell Brazil nuts.
Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B
2011-09-01
A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis
Ren, Dabing; Ran, Lu; Yang, Chong; Xu, Meilin; Yi, Lunzhao
2018-05-18
Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) has been used as a powerful tool to profile chemicals in traditional Chinese medicines. However, identification of potentially bioactive compounds is still a challenging work because of the large amount of information contained in the raw UPLC-HRMS data. Especially the ubiquitous matrix interference makes it more difficult to characterize the minor components. Therefore, rapid recognition and efficient extraction of the corresponding parent ions is critically important for identifying the attractive compounds in complex samples. Herein, we propose an integrated filtering strategy to remove un-related or interference MS 1 ions from the raw UPLC-HRMS data, which helps to retain the MS features of the target components and expose the compounds of interest as effective as possible. The proposed strategy is based on the use of a combination of different filtering methods, including nitrogen rule, mass defect, and neutral loss/diagnostic fragment ions filtering. The strategy was validated by rapid screening and identification of 16 methoxylated flavonoids and 55 chlorogenic acids analogues from the raw UPLC-HRMS dataset of Folium Artemisiae Argyi. Particularly, successful detection of several minor components indicated that the integrated strategy has obvious advantages over individual filtering methods, and it can be used as a promising method for screening and identifying compounds from complex samples, such as herbal medicines. Copyright © 2018 Elsevier B.V. All rights reserved.
Clinical predictors of advanced sellar masses.
Rambaldini, Gloria M; Butalia, Sonia; Ezzat, Shereen; Kucharczyk, Walter; Sawka, Anna M
2007-10-01
To identify clinical variables associated with the presence of a structurally advanced sellar mass (ASM). We performed a retrospective study of patients referred for evaluation of suspected new pituitary disease or sellar mass to the Endocrine Oncology Unit of Mount Sinai Hospital in Toronto, Ontario, Canada. By multivariate analysis, we examined predictors of a structurally ASM (a sellar lesion with any of the following characteristics: diameter of >or=1 cm on magnetic resonance imaging [MRI], optic chiasmal compression on MRI, or clinical or biochemical evidence of hypopituitarism). Data from 152 patients were analyzed. Of the 152 sellar masses, 142 (93%) were pituitary adenomas. An ASM was noted in 85 of the 152 patients (56%). In the final multivariate model, male sex (odds ratio [OR], 6.23; 95% confidence interval [CI], 2.84 to 13.56; P<0.001) and self-reported visual field defect (OR, 3.62; 95% CI, 1.07 to 12.25; P = 0.039) were significantly independently associated with the presence of an ASM. The presence of new or changed headaches also tended to be associated with an ASM (OR, 2.11; 95% CI, 0.96 to 4.64; P = 0.063). Age and self-reported galactorrhea were not independently associated with the presence of an ASM and were conditionally removed from the final model. In patients with suspected sellar or pituitary disease, male sex and self-reported visual field defects independently predict the presence of an ASM. New or changed headaches also tend to be related to the presence of an ASM. The presence of predictors of an ASM should prompt expedited sellar MRI and biochemical evaluation.
Gersing, Alexandra S.; Mbapte Wamba, John; Nevitt, Michael C.; McCulloch, Charles E.; Link, Thomas M.
2016-01-01
Purpose To determine the incidence with which morphologic articular cartilage defects develop over 48 months in cartilage with signal abnormalities at baseline magnetic resonance (MR) imaging in comparison with the incidence in articular cartilage without signal abnormalities at baseline. Materials and Methods The institutional review boards of all participating centers approved this HIPAA-compliant study. Right knees of 90 subjects from the Osteoarthritis Initiative (mean age, 55 years ± 8 [standard deviation]; 51% women) with cartilage signal abnormalities but without morphologic cartilage defects at 3.0-T MR imaging and without radiographic osteoarthritis (Kellgren-Lawrence score, 0–1) were frequency matched for age, sex, Kellgren-Lawrence score, and body mass index with right knees in 90 subjects without any signal abnormalities or morphologic defects in the articular cartilage (mean age, 54 years ± 5; 51% women). Individual signal abnormalities (n = 126) on intermediate-weighted fast spin-echo MR images were categorized into four subgrades: subgrade A, hypointense; subgrade B, inhomogeneous; subgrade C, hyperintense; and subgrade D, hyperintense with swelling. The development of morphologic articular cartilage defects (Whole-Organ MR Imaging Score ≥2) at 48 months was analyzed on a compartment level and was compared between groups by using generalized estimating equation logistic regression models. Results Cartilage signal abnormalities were more frequent in the patellofemoral joint than in the tibiofemoral joint (59.5% vs 39.5%). Subgrade A was seen more frequently than were subgrades C and D (36% vs 22%). Incidence of morphologic cartilage defects at 48 months was 57% in cartilage with baseline signal abnormalities, while only 4% of compartments without baseline signal abnormalities developed morphologic defects at 48 months (all compartments combined and each compartment separately, P < .01). The development of morphologic defects was not significantly more likely in any of the subgrades (P = .98) and was significantly associated with progression of bone marrow abnormalities (P = .002). Conclusion Knee cartilage signal abnormalities detected with MR imaging are precursors of morphologic defects with osteoarthritis and may serve as imaging biomarkers with which to assess risk for cartilage degeneration. © RSNA, 2016 PMID:27135833
Ou, Yanqiu; Bloom, Michael S; Nie, Zhiqiang; Han, Fengzhen; Mai, Jinzhuang; Chen, Jimei; Lin, Shao; Liu, Xiaoqing; Zhuang, Jian
2017-09-01
Prenatal exposure to toxic trace elements, including heavy metals, is an important public health concern. Few studies have assessed if individual and multiple trace elements simultaneously affect cardiac development. The current study evaluated the association between maternal blood lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and selenium (Se) levels and congenital heart defects (CHDs) in offspring. This hospital-based case-control study included 112 case and 107 control infants. Maternal peripheral blood draw was made during gestational weeks 17-40 and used to determine trace element levels by inductively coupled plasma mass spectrometry. Multivariable logistic regression was used to assess associations and interactions between individual and multiple trace elements and fetal CHDs, adjusted for maternal age, parity, education, newborn gender, migrant, folic acid or multivitamin intake, cigarette smoking, maternal prepregnancy body mass index, and time of sample collection. Control participants had medians of 2.61μg/dL Pb, 1.76μg/L Cd, 3.57μg/L Cr, 896.56μg/L Cu, 4.17μg/L Hg, and 186.47μg/L Se in blood. In a model including all measured trace elements and adjusted for confounders, high levels of maternal Pb (OR=12.09, 95% CI: 2.81, 51.97) and Se (OR=0.25, 95% CI: 0.08, 0.77) were harmful and protective predictors of CHDs, respectively, with positive and negative interactions suggested for Cd with Pb and Se with Pb, respectively. Similar associations were detected for subgroups of CHDs, including conotruncal defects, septal defects, and right ventricle outflow tract obstruction. Our results suggest that even under the current standard for protecting human health (10μg/dL), Pb exposure poses an important health threat. These data can be used for developing interventions and identifying high-risk pregnancies. Copyright © 2017. Published by Elsevier Ltd.
Nuño-Guzmán, Carlos M; Arróniz-Jáuregui, José; Espejo, Ismael; Valle-González, Jesús; Butus, Hernán; Molina-Romo, Alejandro; Orranti-Ortega, Rodrigo I
2012-01-10
Herniation of the liver through an anterior abdominal wall hernia defect is rare. To the best of our knowledge, only three cases have been described in the literature. A 70-year-old Mexican woman presented with a one-week history of right upper quadrant abdominal pain, nausea, vomiting, and jaundice to our Department of General Surgery. Her medical history included an open cholecystectomy from 20 years earlier and excessive weight. She presented with jaundice, abdominal distension with a midline surgical scar, right upper quadrant tenderness, and a large midline abdominal wall defect with dullness upon percussion and protrusion of a large, tender, and firm mass. The results of laboratory tests were suggestive of cholestasis. Ultrasound revealed choledocholithiasis. A computed tomography scan showed a protrusion of the left hepatic lobe through the anterior abdominal wall defect and a well-defined, soft tissue density lesion in the right adrenal topography. An endoscopic common bile duct stone extraction was unsuccessful. During surgery, the right adrenal tumor was resected first. The hernia was approached through a median supraumbilical incision; the totality of the left lobe was protruding through the abdominal wall defect, and once the lobe was reduced to its normal position, a common bile duct surgical exploration with multiple stone extraction was performed. Finally, the abdominal wall was reconstructed. Histopathology revealed an adrenal myelolipoma. Six months after the operation, our patient remains in good health. The case of liver herniation through an incisional anterior abdominal wall hernia in this report represents, to the best of our knowledge, the fourth such case reported in the literature. The rarity of this medical entity makes it almost impossible to specifically describe predisposing risk factors for liver herniation. Obesity, the right adrenal myelolipoma mass effect, and the previous abdominal surgery are likely to have contributed to incisional hernia formation.
[Long-term follow-up results after open small umbilical hernia repairs].
Malý, O; Sotona, O
2014-04-01
Adult umbilical hernia is a common surgical condition in the fifth and sixth decade of life. Despite the high frequency of umbilical hernia repairs, disappointingly high recurrence rates after simple suture repairs are reported, amounting to 54%. In addition, it is reported that with the rising frequency of recurrences, the size of the hernial sac and gate gradually increases. Therefore we decided to find out the incidence of recurrences after operative repair of an umbilical hernia at our department. Patient data for this retrospective study focusing on the period between 2006 and 2010 were obtained from the electronic hospital database. Patients with umbilical hernia and the abdominal wall defect up to 3 cm who underwent primary elective procedure were included in the study. Patients with incisional hernias were excluded. All patients were contacted at least 3 years after operation to confirm the accuracy of data. A total of 127 patients were included in this study. In the abovementioned period, no mesh was used during primary surgery in any of the patients. Recurrence occurred in a total of 13.4% of patients. Approximately 40% of patients with the first recurrence were re-operated at our department, 30% of patients were re-operated in other hospitals and the rest have not sought medical attention in respect of the recurrence. Patients with recurrence did not differ from the others as regards age, body mass index or surgical site infection development. Due to the high recurrence rates after operative sutures of the umbilical hernias there is a need to thoroughly consider the potential risk factors such as the body mass index and the abdominal wall defect size. Therefore, it is recommended to use the mesh more widely during primary surgery, especially in obese patients with BMI over 30 and the wall defect size exceeding 3 cm. The question remains whether to use the mesh in all overweight patients and with wall defect smaller than 3 cm.
Multifocal tumoral calcinosis in a 4-year-old girl
Sayar, Ilyas; Peker, Kemal; Kapısız, Alparslan; Bostancı, Isıl Esen; Gürbüzel, Mehmet; Isik, Arda; Peker, Necla Aydın
2014-01-01
Patient: Female, 4 Final Diagnosis: Tumoral calcinosis Symptoms: Hard immobile mass Medication: — Clinical Procedure: — Specialty: Surgery Objective: Congenital defects Background: Tumoral calcinosis is an uncommon condition associated with the deposition of painless calcific masses. It is more common in childhood or early adolescence of African-American females. Case Report: We present a case of a 4-year-old girl with tumoral calcinosis treated surgically. The case is rather rare in terms of the age of the patient and the localization of the masses (gluteal site). In our patient, the biochemical findings were normal, except for hyperphosphatemia and elevated alkaline phosphatase. Conclusions: Total excision appears to lead to a good clinical outcome and a low incidence of local relapse. PMID:24644527
Renyi entropies of a black hole from Hawking radiation
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.
2008-09-01
The Renyi entropies of a black hole are evaluated by counting the states of the Hawking radiation which fills a thin shell surrounding the horizon. The width of the shell is determined from its energy content and the corresponding mass defect. The Bekenstein-Hawking formula for the entropy of the black hole is correctly reproduced.
Supersonic N-Crowdions in a Two-Dimensional Morse Crystal
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Chetverikov, A. P.
2018-03-01
An interstitial atom placed in a close-packed atomic row of a crystal is called crowdion. Such defects are highly mobile; they can move along the row, transferring mass and energy. We generalize the concept of a classical supersonic crowdion to an N-crowdion in which not one but N atoms move simultaneously with a high velocity. Using molecular dynamics simulations for a close-packed two-dimensional Morse crystal, we show that N-crowdions transfer mass much more efficiently, because they are capable of covering large distances while having a lower total energy than that of a classical 1-crowdion.
Mature teratoma presenting as a scalp mass in a newborn.
Seyhan, Tamer; Sener, Levent; Refik Ozerdem, Omer; Bal, Nebil
2006-09-01
Neonatal teratomas are rarely located in the scalp. We present a 10-day-old female newborn with mature teratoma of the occipital scalp. The tumor mass, which had no intracranial extension, was excised completely when the patient was 14 days old. The scalp defect was reconstructed with local flaps. No recurrence was detected 3 months after the surgery. Because the patient did not return for routine follow-up 6 months after surgery, we called the parents and learned that the patient had suddenly died. A necropsy to explain the cause of death was not available.
Hashimoto, Shunji; Zushi, Yasuyuki; Fushimi, Akihiro; Takazawa, Yoshikatsu; Tanabe, Kiyoshi; Shibata, Yasuyuki
2013-03-22
We developed a method that selectively extracts a subset from comprehensive 2D gas chromatography (GC×GC) and high-resolution time-of-flight mass spectrometry (HRTOFMS) data to detect and identify trace levels of organohalogens. The data were obtained by measuring several environmental and biological samples, namely fly ash, soil, sediment, the atmosphere, and human urine. For global analysis, some samples were measured without purification. By using our novel software, the mass spectra of organochlorines or organobromines were then extracted into a data subset under high mass accuracy conditions that were approximately equivalent to a mass resolution of 6000 for some samples. Mass defect filtering as pre-screening for the data extraction was very effective in removing the mass spectra of hydrocarbons. Those results showed that data obtained with HRTOFMS are valuable for global analysis of organohalogens, and probably of other compounds if specific data extraction methods can be devised. Copyright © 2013 Elsevier B.V. All rights reserved.
Examining Troughs in the Mass Distribution of All Theoretically Possible Tryptic Peptides
Nefedov, Alexey V.; Mitra, Indranil; Brasier, Allan R.; Sadygov, Rovshan G.
2011-01-01
This work describes the mass distribution of all theoretically possibly tryptic peptides made of 20 amino acids, up to the mass of 3 kDa, with resolution of 0.001 Da. We characterize regions between the peaks of the distribution, including gaps (forbidden zones) and low-populated areas (quiet zones). We show how the gaps shrink over the mass range, and when they completely disappear. We demonstrate that peptide compositions in quiet zones are less diverse than those in the peaks of the distribution, and that by eliminating certain types of unrealistic compositions the gaps in the distribution may be increased. The mass distribution is generated using a parallel implementation of a recursive procedure that enumerates all amino acid compositions. It allows us to enumerate all compositions of tryptic peptides below 3 kDa in 48 minutes using a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores). The results of this work can be used to facilitate protein identification and mass defect labeling in mass spectrometry-based proteomics experiments. PMID:21780838
First-principles prediction of a promising p-type transparent conductive material CsGeCl3
NASA Astrophysics Data System (ADS)
Huang, Dan; Zhao, Yu-Jun; Ju, Zhi-Ping; Gan, Li-Yong; Chen, Xin-Man; Li, Chang-Sheng; Yao, Chun-mei; Guo, Jin
2014-04-01
Most reported p-type transparent conductive materials are Cu-based compounds such as CuAlO2 and CuCrO2. Here, we report that compounds based on ns2 cations with low binding energy can also possess high valence band maximum, which is crucial for the p-type doping according to the doping limit rules. In particular, CsGeCl3, a compound with valence band maximum from ns2 cations, is predicted as a promising p-type transparent conductive material by first-principles calculations. Our results show that the p-type defect Ge vacancy dominates its intrinsic defects with a shallow transition level, and the calculated hole effective masses are low in CsGeCl3.
BMP-2-regenerated calvarial bone: a biomechanical appraisal in a large animal model.
Cray, James; Henderson, Sarah E; Smith, Darren M; Kinsella, Christopher R; Bykowski, Michael; Cooper, Gregory M; Almarza, Alejandro J; Losee, Joseph E
2014-11-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is gaining popularity in craniofacial applications. Calvarial defects are, under normal circumstances, subjected to only minimal levels of the biomechanical stresses known to play an important role in osteogenesis, yet regenerated calvarial bone must be capable of withstanding traumatic forces such that the underlying neurocapsule is protected. The aim of this study is to, for the first time, assess the biomechanical properties of calvarial bone regenerated with derivations of a commercially available rhBMP-2-based system. Standardized calvarial defects were created in 23 adult male canines. These defects were treated with rhBMP-2 on one of several carriers. After 24 weeks, the biomechanical properties of the rhBMP-2-generated bone were compared to those of controls with a modified punch-out test (Bluehill 2; Instron, Norwood, Mass) and compared using a paired nonparametric analyses (SPSS, 17.0, Chicago, Ill). In a previously published report, defects across all the rhBMP-2 therapy groups were observed to have a mean rate of 99.5% radio-opacity at 24 weeks indicating nearly full bony coverage of the calvarial defect (compared to 32.7% in surgical controls). For ultimate load, ultimate energy, and first peak energy, there were significant differences (P<0.05) with the control native bone having more robust biomechanical properties than the rhBMP-2-generated bone. We conclude from these findings that rhBMP-2-generated calvarial bone is significantly less protective against trauma than native bone at 6 months. Further investigation is required to assess the efficacy of rhBMP-2 in healing calvarial defects in the longer term.
Clinical Features of Childhood Primary Ciliary Dyskinesia by Genotype and Ultrastructural Phenotype
Ferkol, Thomas W.; Rosenfeld, Margaret; Lee, Hye-Seung; Dell, Sharon D.; Sagel, Scott D.; Milla, Carlos; Zariwala, Maimoona A.; Pittman, Jessica E.; Shapiro, Adam J.; Carson, Johnny L.; Krischer, Jeffrey P.; Hazucha, Milan J.; Cooper, Matthew L.; Knowles, Michael R.; Leigh, Margaret W.
2015-01-01
Rationale: The relationship between clinical phenotype of childhood primary ciliary dyskinesia (PCD) and ultrastructural defects and genotype is poorly defined. Objectives: To delineate clinical features of childhood PCD and their associations with ultrastructural defects and genotype. Methods: A total of 118 participants younger than 19 years old with PCD were evaluated prospectively at six centers in North America using standardized procedures for diagnostic testing, spirometry, chest computed tomography, respiratory cultures, and clinical phenotyping. Measurements and Main Results: Clinical features included neonatal respiratory distress (82%), chronic cough (99%), and chronic nasal congestion (97%). There were no differences in clinical features or respiratory pathogens in subjects with outer dynein arm (ODA) defects (ODA alone; n = 54) and ODA plus inner dynein arm (IDA) defects (ODA + IDA; n = 18) versus subjects with IDA and central apparatus defects with microtubular disorganization (IDA/CA/MTD; n = 40). Median FEV1 was worse in the IDA/CA/MTD group (72% predicted) versus the combined ODA groups (92% predicted; P = 0.003). Median body mass index was lower in the IDA/CA/MTD group (46th percentile) versus the ODA groups (70th percentile; P = 0.003). For all 118 subjects, median number of lobes with bronchiectasis was three and alveolar consolidation was two. However, the 5- to 11-year-old IDA/CA/MTD group had more lobes of bronchiectasis (median, 5; P = 0.0008) and consolidation (median, 3; P = 0.0001) compared with the ODA groups (median, 3 and 2, respectively). Similar findings were observed when limited to participants with biallelic mutations. Conclusions: Lung disease was heterogeneous across all ultrastructural and genotype groups, but worse in those with IDA/CA/MTD ultrastructural defects, most of whom had biallelic mutations in CCDC39 or CCDC40. PMID:25493340
Fisher, Sarah C; Van Zutphen, Alissa R; Werler, Martha M; Lin, Angela E; Romitti, Paul A; Druschel, Charlotte M; Browne, Marilyn L
2017-05-01
Previous NBDPS (National Birth Defects Prevention Study) findings from 1997 to 2003 suggested that maternal antihypertensive use was associated with congenital heart defects (CHDs). We re-examined associations between specific antihypertensive medication classes and specific CHDs with additional NBDPS data from 2004 to 2011. After excluding mothers missing hypertension information or who reported pregestational diabetes mellitus, a multiple birth, or antihypertensive use but no hypertension, we compared self-reported maternal exposure data on 10 625 CHD cases and 11 137 nonmalformed controls. We calculated adjusted odds ratios [95% confidence intervals] to estimate the risk of specific CHDs associated with antihypertensive use during the month before conception through the third month of pregnancy, controlling for maternal age, race/ethnicity, body mass index, first trimester cigarette smoking, and NBDPS site. Overall, 164 (1.5%) case mothers and 102 (0.9%) control mothers reported early pregnancy antihypertensive use for their hypertension. We observed increased risk of 4 CHD phenotypes, regardless of antihypertensive medication class reported: coarctation of the aorta (2.50 [1.52-4.11]), pulmonary valve stenosis (2.19 [1.44-3.34]), perimembranous ventricular septal defect (1.90 [1.09-3.31]), and secundum atrial septal defect (1.94 [1.36-2.79]). The associations for these phenotypes were statistically significant for mothers who reported β-blocker use or renin-angiotensin system blocker use; estimates for other antihypertensive medication classes were generally based on fewer exposed cases and were less stable but remained elevated. Our results support and expand on earlier NBDPS findings that antihypertensive medication use may be associated with increased risk of specific CHDs, although we cannot completely rule out confounding by underlying disease characteristics. © 2017 American Heart Association, Inc.
Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.
Yarali, Milad; Brahmi, Hatem; Yan, Zhequan; Li, Xufan; Xie, Lixin; Chen, Shuo; Kumar, Satish; Yoon, Mina; Xiao, Kai; Mavrokefalos, Anastassios
2018-02-07
It is well understood that defect engineering can give rise to exotic electronic properties in transition-metal dichalcogenides, but to this date, there is no detailed study to illustrate how defects can be engineered to tailor their thermal properties. Here, through combined experimental and theoretical approaches based on the first-principles density functional theory and Boltzmann transport equations, we have explored the effect of lattice vacancies and substitutional tungsten (W) doping on the thermal transport of the suspended molybdenum diselenide (MoSe 2 ) monolayers grown by chemical vapor deposition (CVD). The results show that even though the isoelectronic substitution of the W atoms for Mo atoms in CVD-grown Mo 0.82 W 018 Se 2 monolayers reduces the Se vacancy concentration by 50% compared to that found in the MoSe 2 monolayers, the thermal conductivity remains intact in a wide temperature range. On the other hand, Se vacancies have a detrimental effect for both samples and more so in the Mo 0.82 W 018 Se 2 monolayers, which results in thermal conductivity reduction up to 72% for a vacancy concentration of 4%. This is because the mass of the W atom is larger than that of the Mo atom, and missing a Se atom at a vacancy site results in a larger mass difference and therefore kinetic energy and potential energy difference. Furthermore, the monotonically increasing thermal conductivity with temperature for both systems at low temperatures indicates the importance of boundary scattering over defects and phonon-phonon scattering at these temperatures.
An efficient scan diagnosis methodology according to scan failure mode for yield enhancement
NASA Astrophysics Data System (ADS)
Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok
2008-12-01
Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.
Carrier quenching in InGaP/GaAs double heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Nathan P., E-mail: nathan.p.wells@aero.org; Driskell, Travis U.; Hudson, Andrew I.
2015-08-14
Photoluminescence measurements on a series of GaAs double heterostructures demonstrate a rapid quenching of carriers in the GaAs layer at irradiance levels below 0.1 W/cm{sup 2} in samples with a GaAs-on-InGaP interface. These results indicate the existence of non-radiative defect centers at or near the GaAs-on-InGaP interface, consistent with previous reports showing the intermixing of In and P when free As impinges on the InGaP surface during growth. At low irradiance, these defect centers can lead to sub-ns carrier lifetimes. The defect centers involved in the rapid carrier quenching can be saturated at higher irradiance levels and allow carrier lifetimes tomore » reach hundreds of nanoseconds. To our knowledge, this is the first report of a nearly three orders of magnitude decrease in carrier lifetime at low irradiance in a simple double heterostructure. Carrier quenching occurs at irradiance levels near the integrated Air Mass Zero (AM0) and Air Mass 1.5 (AM1.5) solar irradiance. Additionally, a lower energy photoluminescence band is observed both at room and cryogenic temperatures. The temperature and time dependence of the lower energy luminescence is consistent with the presence of an unintentional InGaAs or InGaAsP quantum well that forms due to compositional mixing at the GaAs-on-InGaP interface. Our results are of general interest to the photovoltaic community as InGaP is commonly used as a window layer in GaAs based solar cells.« less
Petrovic, Natasa; Kis, Adrienn; Feldmann, Helena M; Bjursell, Mikael; Parker, Nadeene; Curtis, Keira; Campbell, Mark; Hu, Ping; Zhang, Dongfang; Litwin, Sheldon E; Zaha, Vlad G; Fountain, Kimberly T; Boudina, Sihem; Jimenez-Linan, Mercedes; Blount, Margaret; Lopez, Miguel; Meirhaeghe, Aline; Bohlooly-Y, Mohammad; Storlien, Leonard; Strömstedt, Maria; Snaith, Michael; Orešič, Matej; Abel, E. Dale; Cannon, Barbara; Vidal-Puig, Antonio
2006-01-01
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress. PMID:17090215
One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.
Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias
2016-12-02
We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.
Liu, Y.; Lopes, P. P.; Cha, W.; ...
2017-02-10
Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less
Detection of solder bump defects on a flip chip using vibration analysis
NASA Astrophysics Data System (ADS)
Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan
2012-03-01
Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.
Defects and oxidation of group-III monochalcogenide monolayers
NASA Astrophysics Data System (ADS)
Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun
2017-09-01
Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.
Deposition and properties of Fe(Se,Te) thin films on vicinal CaF2 substrates
NASA Astrophysics Data System (ADS)
Bryja, Hagen; Hühne, Ruben; Iida, Kazumasa; Molatta, Sebastian; Sala, Alberto; Putti, Marina; Schultz, Ludwig; Nielsch, Kornelius; Hänisch, Jens
2017-11-01
We report on the growth of epitaxial Fe1+δ Se0.5Te0.5 thin films on 0°, 5°, 10°, 15° and 20° vicinal cut CaF2 single crystals by pulsed laser deposition. In situ electron and ex situ x-ray diffraction studies reveal a tilted growth of the Fe1+δ Se0.5Te0.5 films, whereby under optimized deposition conditions the c-axis alignment coincides with the substrate [001] tilted axis up to a vicinal angle of 10°. Atomic force microscopy shows a flat island growth for all films. From resistivity measurements in longitudinal and transversal directions, the ab- and c-axis components of resistivity are derived and the mass anisotropy parameter is determined. Analysis of the critical current density indicates that no effective c-axis correlated defects are generated by vicinal growth, and pinning by normal point core defects dominates. However, for H∣∣ab the effective pinning centers change from surface defects to point core defects near the superconducting transition due to the vicinal cut. Furthermore, we show in angular-dependent critical current density data a shift of the ab-planes maxima position with the magnetic field strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Lopes, P. P.; Cha, W.
Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less
NASA Technical Reports Server (NTRS)
Stillwell, R. P.
1983-01-01
For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide.
Control of bone and fat mass by oxytocin.
Amri, Ez-Zoubir; Pisani, Didier F
2016-11-01
Osteoporosis and overweight/obesity constitute major worldwide public health burdens. Aging is associated with a decrease in hormonal secretion, lean mass and bone mass, and an increase in fat accumulation. It is established that both obesity and osteoporosis are affected by genetic and environmental factors, bone remodeling and adiposity are both regulated through the hypothalamus and sympathetic nervous system. Oxytocin (OT), belongs to the pituitary hormone family and regulates the function of peripheral target organs, its circulating levels decreased with age. Nowadays, it is well established that OT plays an important role in the control of bone and fat mass and their metabolism. Of note, OT and oxytocin receptor knock out mice develop bone defects and late-onset obesity. Thus OT emerges as a promising molecule in the treatment of osteoporosis and obesity as well as associated metabolic disorders such as type 2 diabetes and cardiovascular diseases. In this review, we will discuss findings regarding the OT effects on bone and fat mass.
Exercise Training Reduces Intrathoracic Fat Regardless of Defective Glucose Tolerance.
Honkala, Sanna M; Motiani, Kumail K; Eskelinen, Jari-Joonas; Savolainen, Anna; Saunavaara, Virva; Virtanen, Kirsi A; Löyttyniemi, Eliisa; Kapanen, Jukka; Knuuti, Juhani; Kalliokoski, Kari K; Hannukainen, Jarna C
2017-07-01
Epicardial (EAT) and pericardial (PAT) fat masses and myocardial triglyceride content (MTC) are enlarged in obesity and insulin resistance. We studied whether the high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) similarly decrease ectopic fat in and around the heart and whether the decrease is similar in healthy subjects and subjects with defective glucose tolerance (DGT). A total of 28 healthy men (body mass index = 20.7-30.0 kg·m, age = 40-55 yr) and 16 men with DGT (body mass index = 23.8-33.5 kg·m, age = 43-53 yr) were randomized into HIIT and MICT interventions for 2 wk. EAT and PAT were determined by computed tomography and MTC by H-MRS. At baseline, DGT subjects had impaired aerobic capacity and insulin sensitivity and higher levels of whole body fat, visceral fat, PAT, and EAT (P < 0.05, all) compared with healthy subjects. In the whole group, HIIT increased aerobic capacity (HIIT = 6%, MICT = 0.3%; time × training P = 0.007) and tended to improve insulin sensitivity (HIIT = 24%, MICT = 8%) as well as reduce MTC (HIIT = -42%, MICT = +23%) (time × training P = 0.06, both) more efficiently compared with MICT, and without differences in the training response between the healthy and the DGT subjects. However, both training modes decreased EAT (-5%) and PAT (-6%) fat (time P < 0.05) and not differently between the healthy and the DGT subjects. Whole body fat, visceral fat, PAT, and EAT masses are enlarged in DGT. Both HIIT and MICT effectively reduce EAT and PAT in healthy and DGT subjects, whereas HIIT seems to be superior as regards improving aerobic capacity, whole-body insulin sensitivity, and MTC.
Fouquet, Thierry; Shimada, Haruo; Maeno, Katsuyuki; Ito, Kanako; Ozeki, Yuka; Kitagawa, Shinya; Ohtani, Hajime; Sato, Hiroaki
2017-09-01
Matrix assisted laser desorption ionization (MALDI) high-resolution mass spectrometry (HRMS) and the recently introduced high-resolution Kendrick mass defect (HRKMD) analysis are combined to thoroughly characterize non-ionic surfactants made of a poly(ethylene oxide) (PEO) core capped by esters of fatty acids. A PEO monostearate surfactant is first analyzed as a proof of principle of the HRKMD analysis conducted with a fraction of EO as the base unit (EO/X with X being an integer) in lieu of EO for a regular KMD analysis. Data visualization is greatly enhanced and the distributions detected in the MALDI mass spectrum are assigned to a pristine (H, OH)-PEO as well as mono- and di-esterified PEO chains with palmitate and stearate end-groups in HRKMD plots computed with EO/45. The MALDI-HRMS/HRKMD analysis is then successfully applied to the more complex case of ethoxylated hydrogenated castor oil (EHCO) found to contain a large number of hydrogenated ricinoleate moieties (up to 14) in its HRKMD plot computed with EO/43, departing from the expected triglyceride structure. The exhaustiveness of the MALDI-HRMS/HRKMD strategy is validated by comparing the so-obtained fingerprints with results from alternative techniques (electrospray ionization MS, size exclusion and liquid adsorption chromatography, ion mobility spectrometry). Finally, aged non-ionic surfactants formed upon hydrolytic degradation are analyzed by MALDI-HRMS/HRKMD to easily assign the degradation products and infer the associated degradation routes. In addition to the hydrolysis of the ester groups observed for EHCO, chain scissions and new polar end-groups are observed in the HRKMD plot of PEO monostearate arising from a competitive oxidative ageing.
Hoyt, Adrienne T; Canfield, Mark A; Romitti, Paul A; Botto, Lorenzo D; Anderka, Marlene T; Krikov, Sergey V; Tarpey, Morgan K; Feldkamp, Marcia L
2016-11-01
While associations between secondhand smoke and a few birth defects (namely, oral clefts and neural tube defects) have been noted in the scientific literature, to our knowledge, there is no single or comprehensive source of population-based information on its associations with a range of birth defects among nonsmoking mothers. We utilized data from the National Birth Defects Prevention Study, a large population-based multisite case-control study, to examine associations between maternal reports of periconceptional exposure to secondhand smoke in the household or workplace/school and major birth defects. The multisite National Birth Defects Prevention Study is the largest case-control study of birth defects to date in the United States. We selected cases from birth defect groups having >100 total cases, as well as all nonmalformed controls (10,200), from delivery years 1997 through 2009; 44 birth defects were examined. After excluding cases and controls from multiple births and whose mothers reported active smoking or pregestational diabetes, we analyzed data on periconceptional secondhand smoke exposure-encompassing the period 1 month prior to conception through the first trimester. For the birth defect craniosynostosis, we additionally examined the effect of exposure in the second and third trimesters as well due to the potential sensitivity to teratogens for this defect throughout pregnancy. Covariates included in all final models of birth defects with ≥5 exposed mothers were study site, previous live births, time between estimated date of delivery and interview date, maternal age at estimated date of delivery, race/ethnicity, education, body mass index, nativity, household income divided by number of people supported by this income, periconceptional alcohol consumption, and folic acid supplementation. For each birth defect examined, we used logistic regression analyses to estimate both crude and adjusted odds ratios and 95% confidence intervals for both isolated and total case groups for various sources of exposure (household only; workplace/school only; household and workplace/school; household or workplace/school). The prevalence of secondhand smoke exposure only across all sources ranged from 12.9-27.8% for cases and 14.5-15.8% for controls. The adjusted odds ratios for any vs no secondhand smoke exposure in the household or workplace/school and isolated birth defects were significantly elevated for neural tube defects (anencephaly: adjusted odds ratio, 1.66; 95% confidence interval, 1.22-2.25; and spina bifida: adjusted odds ratio, 1.49; 95% confidence interval, 1.20-1.86); orofacial clefts (cleft lip without cleft palate: adjusted odds ratio, 1.41; 95% confidence interval, 1.10-1.81; cleft lip with or without cleft palate: adjusted odds ratio, 1.24; 95% confidence interval, 1.05-1.46; cleft palate alone: adjusted odds ratio, 1.31; 95% confidence interval, 1.06-1.63); bilateral renal agenesis (adjusted odds ratio, 1.99; 95% confidence interval, 1.05-3.75); amniotic band syndrome-limb body wall complex (adjusted odds ratio, 1.66; 95% confidence interval, 1.10-2.51); and atrial septal defects, secundum (adjusted odds ratio, 1.37; 95% confidence interval, 1.09-1.72). There were no significant inverse associations observed. Additional studies replicating the findings are needed to better understand the moderate positive associations observed between periconceptional secondhand smoke and several birth defects in this analysis. Increased odds ratios resulting from chance (eg, multiple comparisons) or recall bias cannot be ruled out. Copyright © 2016 Elsevier Inc. All rights reserved.
78 FR 11101 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... form of encryption and be free of any defects or viruses. For additional information about the EPA's... radical (OH); (ii) the maximum incremental reactivity (MIR) on a reactivity per unit mass basis; and (iii... discussed below. The k OH is the reaction rate constant of the compound with the OH radical in the air. This...
Coming back: autophagy in cachexia.
Penna, Fabio; Baccino, Francesco M; Costelli, Paola
2014-05-01
Cachexia is a complex syndrome characterized by body weight loss, tissue wasting, systemic inflammation, metabolic abnormalities, and altered nutritional status. One of the most prominent features of cachexia is the loss of muscle mass, mainly because of increased protein degradation rates. This review is aimed at discussing the involvement of autophagy in the pathogenesis of muscle wasting in cachexia. Modulations of muscle mass in the adult reflect an imbalance between protein synthesis and degradation rates. Muscle depletion in cachexia is associated with increased protein breakdown, mainly involving the pathways dependent on ubiquitin-proteasome and autophagy-lysosomes. This latter, in particular, was considered not relevant for a long time. Just in the last years, autophagy was shown to contribute to the pathogenesis of muscle wasting not only in myopathies because of intrinsic muscle defects, but also in muscle depletion associated with conditions such as sepsis, chronic obstructive pulmonary disease, glucocorticoid treatment, cancer cachexia, and aging. The present review highlights that both excess and defective autophagy are relevant to the onset of muscle depletion, and draws some considerations about possible therapeutic intervention aimed at modulating autophagy in order to improve muscle trophism. http://links.lww.com/COCN/A5.
NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation
Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.
2013-01-01
RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294
Quantitative assessment of carbon allocation anomalies in low temperature bainite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rementeria, Rosalia
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Quantitative assessment of carbon allocation anomalies in low temperature bainite
Rementeria, Rosalia
2017-05-24
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Lee, Hyung-Ik; Park, Jong-Bong; Xianyu, Wenxu; Kim, Kihong; Chung, Jae Gwan; Kyoung, Yong Koo; Byun, Sunjung; Yang, Woo Young; Park, Yong Young; Kim, Seong Min; Cho, Eunae; Shin, Jai Kwang
2017-10-26
We report on the degradation process by water vapor of hydrogenated amorphous silicon oxynitride (SiON:H) films deposited by plasma-enhanced chemical vapor deposition at low temperature. The stability of the films was investigated as a function of the oxygen content and deposition temperature. Degradation by defects such as pinholes was not observed with transmission electron microscopy. However, we observed that SiON:H film degrades by reacting with water vapor through only interstitial paths and nano-defects. To monitor the degradation process, the atomic composition, mass density, and fully oxidized thickness were measured by using high-resolution Rutherford backscattering spectroscopy and X-ray reflectometry. The film rapidly degraded above an oxygen composition of ~27 at%, below a deposition temperature of ~150 °C, and below an mass density of ~2.15 g/cm 3 . This trend can be explained by the extents of porosity and percolation channel based on the ring model of the network structure. In the case of a high oxygen composition or low temperature, the SiON:H film becomes more porous because the film consists of network channels of rings with a low energy barrier.
Wang, Xiuwei; Guan, Zhen; Chen, Yan; Dong, Yanting; Niu, Yuhu; Wang, Jianhua; Zhang, Ting; Niu, Bo
2015-01-01
DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs. PMID:25822193
The inclusion of ADA-SCID in expanded newborn screening by tandem mass spectrometry.
la Marca, Giancarlo; Giocaliere, Elisa; Malvagia, Sabrina; Funghini, Silvia; Ombrone, Daniela; Della Bona, Maria Luisa; Canessa, Clementina; Lippi, Francesca; Romano, Francesca; Guerrini, Renzo; Resti, Massimo; Azzari, Chiara
2014-01-01
Severe combined immunodeficiency due to adenosine-deaminase defect (ADA-SCID) is usually deadly in childhood because of severe recurrent infections. When clinical diagnosis is done, permanent damages due to infections or metabolite accumulation are often present. Gene therapy, bone marrow transplantation or enzyme replacement therapy may be effective if started early. The aim of this study was to set-up a robust method suitable for screening with a minimized preparation process and with inexpensive running costs, for diagnosing ADA-SCID by tandem mass spectrometry. ADA-SCID satisfies all the criteria for inclusion in a newborn screening program. We describe a protocol revised to incorporate adenosine and 2-deoxyadenosine testing into an expanded newborn screening program. We assessed the effectiveness of this approach testing dried blood spots from 4 genetically confirmed early-onset and 5 delayed-onset ADA-SCID patients. Reference values were established on 50,000 healthy newborns (deoxyadenosine <0.09μmol/L, adenosine <1.61μmol/L). We also developed a second tier test to distinguish true positives from false positives and improve the positive predictive value of an initial abnormal result. In the first 18 months, the pilot project has identified a newborn with a genetically confirmed defect in adenosine deaminase (ADA) gene. The results show that the method having great simplicity, low cost and low process preparations can be fully applicable to a mass screening program. Copyright © 2013 Elsevier B.V. All rights reserved.
Tian, Ji-Xin; Peng, Can; Xu, Lei; Tian, Yuan; Zhang, Zun-Jian
2013-06-01
In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high-resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate-C18 column, and then analyzed by on-line ion trap/time-of-flight mass spectrometry. With the assistance of mass defect filtering technique, full-scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MS(n) spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N-oxidation, epoxidation, methylation, dehydrogenation, de-methoxylation, O-demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, M.N.; Masri, K.A.; Dell, A.
1990-10-01
Congenital dyserythropoietic anemia type II, or hereditary erythroblastic multinuclearity with a positive acidified-serum-lysis test (HEMPAS), is a genetic anemia in humans inherited by an autosomally recessive mode. The enzyme defect in most HEMPAS patients has previously been proposed as a lowered activity of N-acetylglucosaminyltransferase II, resulting in a lack of polylactosamine on proteins and leading to the accumulation of polylactosaminyl lipids. A recent HEMPAS case, G.C., has now been analyzed by cell-surface labeling, fast-atom-bombardment mass spectrometry of glycopeptides, and activity assay of glycosylation enzymes. Significantly decreased glycosylation of polylactosaminoglycan proteins and incompletely processed asparagine-linked oligosaccharides were detected in the erythrocytemore » membranes of G.C. These results suggest that G.C. cells contain a mutation in {alpha}-ManII-encoding gene that results in inefficient expression of {alpha}-ManII mRNA, either through reduced transcription or message instability. This report demonstrates that HEMPAS is caused by a defective gene encoding an enzyme necessary for the synthesis of asparagine-linked oligosaccharides.« less
Bone alloplasty and rehabilitation of children with maxillo-facial tumors
NASA Astrophysics Data System (ADS)
Zhelezny, P. A.; Sadovoy, M. A.; Kirilova, I. A.; Zhelezny, S. P.; Podorozhnaya, B. T.; Zheleznaya, A. P.
2017-09-01
The clinical observations in the treatment and rehabilitation of 117 children with maxillofacial tumors are presented. Malignant tumors were observed in 4 patients, other 113 children had benign tumors and tumor mass. Different bone defects of maxilla of both sub-total perforating and small segmental cavity appeared after the removal of neoplasms. The orthopedic transplants from the laboratory of tissue preservation of Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics preserved by different methods were used for maxilla defects restoration. Frozen transplants were applied in 48 patients, "Kostma" transplants were used in 14 patients, "Deprodex"—in 28 patients, "Orgamax"—in 27 patients. Orthopedic transplants from mandibular bone were used for chin and condylar process defects restoration. The orthopedic and orthodontic rehabilitation of the patients with the use of removable and unremovable orthodontic equipment and dental implantation systems was carried out in the postoperative period. Good anatomical functional and esthetic results of rehabilitation were received in 92 patients (89.3%) on long dates by 10 years. In some people the face asymmetry, bite disturbance, reduction of masticatory function were registered.
A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production
Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara
2016-01-01
In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735
Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki
2009-09-01
Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.
Iron and intrinsic deep level states in Ga2O3
NASA Astrophysics Data System (ADS)
Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.
2018-01-01
Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.
Evolving Mechanistic Views and Emerging Therapeutic Strategies for Cystic Fibrosis–Related Diabetes
2017-01-01
Diabetes is a common and important complication of cystic fibrosis, an autosomal recessive genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Cystic fibrosis–related diabetes (CFRD) is associated with profound detrimental effects on the disease course and mortality and is expected to increase in prevalence as the survival of patients with cystic fibrosis continues to improve. Despite progress in the functional characterization of CFTR molecular defects, the mechanistic basis of CFRD is not well understood, in part because of the relative inaccessibility of the pancreatic tissue and the limited availability of representative animal models. This review presents a concise overview of the current understanding of CFRD pathogenesis and provides a cutting-edge update on novel findings from human and animal studies. Potential contributions from paracrine mechanisms and β-cell compensatory mechanisms are highlighted, as well as functional β-cell and α-cell defects, incretin defects, exocrine pancreatic insufficiency, and loss of islet cell mass. State-of-the-art and emerging treatment options are explored, including advances in insulin administration, CFTR modulators, cell replacement, gene replacement, and gene editing therapies. PMID:29264462
Demonstration of 2-hydroxybenzoylglycine as a drug binding inhibitor in newborn infants.
Suh, B; Wadsworth, S J; Lichtenwalner, D M
1987-01-01
Newborn infants have drug binding defects that share similarities to those of uremic subjects. Since 2-hydroxybenzoylglycine has been chemically defined to be a major drug binding inhibitor in uremia, a search for the presence of a similar compound in the sera of newborn infants was made. An organic substance that has the characteristics of 2-hydroxybenzoylglycine as supported by the retardation factor values on thin-layer chromatograms, retention times of high performance liquid chromatograms, fluorescence emission spectra, and mass spectrum has been demonstrated to be present in the majority of the neonatal sera studied. A strong positive correlation between the levels of the binding inhibitor and the extent of binding defects for nafcillin has been observed. The substance could effectively reduce the total bilirubin concentration when added to the cord sera specimens. It is concluded that 2-hydroxybenzoylglycine plays an important role in drug binding defects observed in the newborn, and the inhibitor may also play a part in the precipitation of bilirubin-induced neurotoxicity in neonates when the substance is abnormally elevated. Images PMID:3654972
Ti diffusion in ion prebombarded MgO(100). I. A model for quantitative analysis
NASA Astrophysics Data System (ADS)
Lu, M.; Lupu, C.; Styve, V. J.; Lee, S. M.; Rabalais, J. W.
2002-01-01
Enhancement of Ti diffusion in MgO(100) prebombarded with 7 keV Ar+ has been observed. Diffusion was induced by annealing to 1000 °C following the prebombardment and Ti evaporation. Such a sample geometry and experimental procedure alleviates the continuous provision of freely mobile defects introduced by ion irradiation during annealing for diffusion, making diffusion proceed in a non-steady-state condition. Diffusion penetration profiles were obtained by using secondary ion mass spectrometry depth profiling techniques. A model that includes a depth-dependent diffusion coefficient was proposed, which successfully explains the observed non-steady-state radiation enhanced diffusion. The diffusion coefficients are of the order of 10-20 m2/s and are enhanced due to the defect structure inflected by the Ar+ prebombardment.
Processing Optimization of Deformed Plain Woven Thermoplastic Composites
NASA Astrophysics Data System (ADS)
Smith, John R.; Vaidya, Uday K.
2013-12-01
This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.
Aptel, Florent; Aryal-Charles, Nischal; Tamisier, Renaud; Pépin, Jean-Louis; Lesoin, Antoine; Chiquet, Christophe
2017-06-01
To evaluate whether obstructive sleep apnea (OSA) is responsible for the visual field defects found in the fellow eyes of patients with non-arteritic ischemic optic neuropathy (NAION). Prospective cross-sectional study. The visual fields of the fellow eyes of NAION subjects with OSA were compared to the visual fields of control OSA patients matched for OSA severity. All patients underwent comprehensive ophthalmological and general examination including Humphrey 24.2 SITA-Standard visual field and polysomnography. Visual field defects were classified according the Ischemic Optic Neuropathy Decompression Trial (IONDT) classification. From a cohort of 78 consecutive subjects with NAION, 34 unaffected fellow eyes were compared to 34 control eyes of subjects matched for OSA severity (apnea-hypopnea index [AHI] 35.5 ± 11.6 vs 35.4 ± 9.4 events per hour, respectively, p = 0.63). After adjustment for age and body mass index, all visual field parameters were significantly different between the NAION fellow eyes and those of the control OSA groups, including mean deviation (-4.5 ± 3.7 vs -1.3 ± 1.8 dB, respectively, p < 0.05), visual field index (91.6 ± 10 vs 97.4 ± 3.5%, respectively, p = 0.002), pattern standard deviation (3.7 ± 2.3 vs 2.5 ± 2 dB, respectively, p = 0.015), and number of subjects with at least one defect on the IONDT classification (20 vs 10, respectively, p < 0.05). OSA alone does not explain the visual field defects frequently found in the fellow eyes of NAION patients.
Extension of optical lithography by mask-litho integration with computational lithography
NASA Astrophysics Data System (ADS)
Takigawa, T.; Gronlund, K.; Wiley, J.
2010-05-01
Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.
De Paolis, P; Mazza, L; Maglione, V; Fronda, G R
2007-06-01
Morgagni-Larrey hernia (MH) is an unusual diaphragmatic hernia of the retrosternal region. Few cases of MH, treated laparoscopically, associated with Down's syndrome (DS) have been reported in literature. On October 2004, a DS 40-year-old male was admitted to our Department with mild abdominal pain and nausea. Hematochemical tests were within the normal range. Ultrasonography showed biliary sludge and multiple gallstones. Chest X-ray revealed a right-sided paracardiac mass that appeared as MH after a thoraco-abdominal computed tomography (CT). Four trocars were placed as a routinary cholecystectomy. Abdominal exploration confirmed the presence of a voluminous hernia through a wide diaphragmatic defect (12 cm) on the left side of the falciform ligament, containing the last 20 cm ileal loops and right colon with the third lateral of transverse. After retrograde cholecystectomy and reduction of the herniated ileo-colonic tract from multiple adherences, the defect was repaired with an interrupted 2/0 silk suture and then a running 2/0 polypropylene suture. Postoperative course was complicated by pulmonary edema but subsequently the patient was discharged without further complications and has no recurrence after 2 years. In conclusion, surgery is necessary for symptomatic MH and to prevent possible severe complications. We preferred laparoscopy for the reduced morbidity compared to laparotomy, even if in our case the postoperative course was not uneventful. There are still few comparative data about the modality of closure of the defect between primary repair with nonabsorbable suture material, in case of small defects, or continuous monofilament suture or prosthesis in case of large defects.
Surface-induced magnetism of the solids with impurities and vacancies
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D.; Blinc, R.
2011-04-01
Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li+, Be++ ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε2 and the distance from the surface z0. For z0=0 and defect charge ∣Z∣=2 the energy difference is more than several hundreds of Kelvins at μ=(0.5-1)me and ε2=2-10, more than several tens of Kelvins at μ=(0.1-0.2)me and ε2=5-10, and not more than several Kelvins at μ<0.1me and ε2>15 (me is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO2, HfO2, and In2O3 thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.
NASA Astrophysics Data System (ADS)
Pries, V. V.; Proskuriakov, N. E.
2018-04-01
To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.
Transorbital and transnasal endoscopic repair of a meningoencephalocele.
Schaberg, Madeleine; Murchison, Ann P; Rosen, Marc R; Evans, James J; Bilyk, Jurij R
2011-10-01
A 71-year-old female with a history of thyroid eye disease (TED) presented for evaluation of a skull base mass noted on neuroimaging. She had previously undergone bilateral orbital decompressions and strabismus surgery and had no neurologic symptoms. Successful resection of the menigoencephalocele and repair of the skull base defect was performed through a combined transnasal endoscopic and transorbital approach, obviating the need for craniotomy.
Osborn, Daniel P S; Roccasecca, Rosa Maria; McMurray, Fiona; Hernandez-Hernandez, Victor; Mukherjee, Sriparna; Barroso, Inês; Stemple, Derek; Cox, Roger; Beales, Philip L; Christou-Savina, Sonia
2014-01-01
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto(-/-) MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+) pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
Iwata, Jun-ichi; Suzuki, Akiko; Yokota, Toshiaki; Ho, Thach-Vu; Pelikan, Richard; Urata, Mark; Sanchez-Lara, Pedro A; Chai, Yang
2014-02-01
Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFβ signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2(fl/fl);K14-Cre mice. Specifically, muscle mass was decreased in the soft palates of Tgfbr2 mutant mice, following defects in cell proliferation and differentiation. Gene expression of Dickkopf (Dkk1 and Dkk4), negative regulators of WNT-β-catenin signaling, is upregulated in the soft palate of Tgfbr2(fl/fl);K14-Cre mice, and WNT-β-catenin signaling is disrupted in the palatal mesenchyme. Importantly, blocking the function of DKK1 and DKK4 rescued the cell proliferation and differentiation defects in the soft palate of Tgfbr2(fl/fl);K14-Cre mice. Thus, our findings indicate that loss of TGFβ signaling in epithelial cells compromises activation of WNT signaling and proper muscle development in the soft palate through tissue-tissue interactions, resulting in a cleft soft palate. This information has important implications for prevention and non-surgical correction of cleft soft palate.
Peker, Nuri; Turan, Volkan; Ergenoglu, Mete; Yeniel, Ozgur; Sever, Ahmet; Kazandi, Mert; Zekioglu, Osman
2013-03-01
To evaluate the importance of ultrasonography (US) and magnetic resonance imaging (MRI) in detecting placental adherence defects. Patients diagnozed with total placenta previa (n = 40) in whom hysterectomy was performed due to placental adherence defects (n = 20) or in whom the placenta detached spontaneously after a Cesarean delivery (n = 20) were included into the study between June 2008 and January 2011, at the Department of Obstetrics and Gynecology Ege University (lzmir Turkey). Gray-scale US was used to check for any placental lacunae, sub-placental sonolucent spaces or a placental mass invading the vesicouterine plane and bladder Intra-placental lacunar turbulent blood flow and an increase in vascularization in the vesicouterine plane were evaluated with color Doppler mode. Subsequently all patients had MRI and the results were compared with the histopathologic examinations. The sensitivity of MRI for diagnosis of placental adherence defects before the operation was 95%, with a specificity of 95%. In the presence of at least one diagnostic criterion, the sensitivity and specificity of US were 87.5% and 100% respectively, while the sensitivity of color Doppler US was 62.5% with a specificity of 100%. Currently MRI appears to be the gold standard for the diagnosis of placenta accreta. None of the ultrasonographic criteria is solely sufficient to diagnose placental adherence defects, however they assist in the diagnostic process.
Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...
2014-11-11
Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs 2Zn 3Ch 4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4 are calculated to assess the viability of these materials as p-type TCMs. Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4, which are stable under ambient air, displaymore » large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77 m e) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less
An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion
NASA Astrophysics Data System (ADS)
Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.
2017-12-01
The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.
Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds
NASA Astrophysics Data System (ADS)
Sinha, Praveen
Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of defect concentrations allowed the conclusion that the In vacancy signal was due to second-shell and not third-shell defects. PAC spectroscopy was applied to study deformation -induced defects in PdIn and NiAl after mechanically milling in a SPEX 8000 vibrator mill for periods of up to four hours. For PdIn, the Pd vacancy concentration increased rapidly for short milling times and was observed to saturate at a value of 3.5(5) at.% after 10 minutes of milling when milling was carried out using a WC vial to avoid sample contamination. Such a large vacancy concentration accounts for 4.41(63) kJ mol-1 excess-stored energy in milled PdIn and implies a high density of "broken bonds" which may lead to mechanical instability of the lattice. Milling also produced In antisite atoms on the Pd sublattice. The antisite-atom concentration increased linearly with milling time, reaching a value of 4.0(7) at.% after 2 hours of milling. The Ni vacancy concentration in NiAl was also observed to increase with milling and to saturate after two hours of milling. Here, the "local" Ni vacancy concentration in the first-neighbor shell of the probe, deduced from the vacancy site fraction, was in excess of values that should occur if defects were located at random. This is attributed to binding between the Ni vacancy and the In/Cd probe, which is known from other work to be 0.22 eV.
Peripheral giant cell granuloma of the mandibular condyle presenting as a preauricular mass.
Ozcan, Cengiz; Apaydin, F Demir; Görür, Kemal; Apa, Duygu Düşmez
2005-03-01
Preauricular mass is a common symptom for patients presenting to the otorhinolaryngologist with parotid disease. Some rare extraparotid lesions, originating from the temporomandibular joint and the mandible itself, also share the same localization and therefore are to be taken into consideration for the differential diagnosis with parotid lesions. Giant cell granuloma (GCG) was first described by Jaffe in 1953. Peripheral GCG (PGCG) is an exophytic soft tissue lesion originating from the periodontal ligament and periosteum. It is located only within the oral cavity. Central GCG (CGCG) is an uncommon benign fibro-osseous lesion generally presenting as an expansible mass with cortical bone defect. It is generally located in the mandible. The brown tumor of hyperparathyroidism and giant cell tumor must be ruled out because of the microscopic similarities of these lesions. The first case of PGCG of the mandible condyle is presented, and attention is drawn to mandibular diseases for the differential diagnosis of the preauricular mass.
[Characteristics of morphogenesis of the Japanese quail embryos during microgravity
NASA Technical Reports Server (NTRS)
Dadasheva, O. A.; Gur'eva, T. S.; Sychev, V. N.; Jehns, G.; Jahns, G. (Principal Investigator)
1998-01-01
Experiments performed in the period of 1995-1996 cooperatively with US investigators within the MIR/SHUTTLE and MIR/NASA space science projects continued exploration of avian embryogenesis in microgravity. Evaluation of Japanese quail embryos incubated in spaceflight microgravity showed that for the most part they were normally developed and compliant with duration of incubation. One of the major morphometric characteristics of embryo are its mass and size. Comparative analysis of body mass values in the space and laboratory and synchronous control groups pointed to a slight retardation. Body length of space embryos mimicked their mass curve. Data on the dynamics of mass and length of Japanese quail embryos support the well-known theory according to which growth and formation are distinguished by equifinality. No differences were revealed by the investigations of individual parts of embryonic bodies in the space and control groups. However, this finding was true only with regard to the embryos that had no developmental abnormalities. A part of embryos had defective eyes (microphtalmia), limbs (twisted fingers), and beaks.
Salemis, N S
2009-08-01
Meckel's diverticulum is the most common congenital abnormality of the gastrointestinal tract and is the result of the incomplete obliteration of the omphalomesenteric duct. Herniation of Meckel's diverticulum is called Littre's hernia and is a rare occurrence. Herein is described an extremely rare case of incarcerated and strangulated Meckel's diverticulum through an incisional ventral defect in a 59-year-old female patient, who presented with manifestations of acute surgical abdomen. At emergency laparotomy, a strangulated small-bowel loop containing a Meckel's diverticulum was found, which had migrated through the subcutaneous tissues to the right iliac fossa, where a painful mass was palpated on admission. Segmental resection of the ischemic ileum was performed and the abdomen was closed without the use of a prosthetic mesh. Histopathological findings were suggestive of a true diverticulum containing heterotopic gastric mucosa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xuyi; Taraban, Marc B.; Hyland, Laura L.
2012-10-05
In making defect-free macromolecules, the challenge occurs during chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed. In proportionate branching, both the number and the length of branches increase exponentially but in opposite directions to mimic tree growth. The effectiveness of this strategy is demonstrated through the synthesis of a fluorocarbon dendron containing 243 chemically identical fluorine atoms with a MW of 9082 Da. Monodispersity is confirmed by nuclear magnetic resonance spectroscopy, mass spectrometry, and small-angle X-ray scattering. Moreover, growingmore » different parts proportionately, as nature does, could be a general strategy to achieve defect-free synthesis of macromolecules.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Graphite-to-Graphene: Total Conversion.
Buzaglo, Matat; Bar, Ilan Pri; Varenik, Maxim; Shunak, Liran; Pevzner, Svetlana; Regev, Oren
2017-02-01
The rush to develop graphene applications mandates mass production of graphene sheets. However, the currently available complex and expensive production technologies are limiting the graphene commercialization. The addition of a protective diluent to graphite during ball-milling is demonstrated to result in a game-changer yield (>90%) of defect-free graphene, whose size is controlled by the milling energy and the diluent type. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Xiao-Ping; Liang, Qiong-Lin; Xia, Jian-Fei; Wang, Yong; Hu, Ping; Wang, Yi-Ming; Zheng, Xiao-Ying; Zhang, Ting; Luo, Guo-An
2009-06-15
Disturbances in maternal folate, homocysteine, and glutathione metabolism have been reported to be associated with neural tube defects (NTDs). However, the role played by specific components in the metabolic pathways leading to NTDs remains unclear. Thus an analytical method for simultaneous measurement of sixteen compounds involved in such three metabolic pathways by high performance liquid chromatography-tandem mass spectrometry was developed. The use of hydrophilic chromatography column improved the separation of polar analytes and the detection mode of multiple-reaction monitoring (MRM) enhanced the specificity and sensitivity so as to achieve simultaneous determination of three class of metabolites which have much variance in polarity and contents. The influence of parameters such as temperature, pH, flow rate on the performance of the analytes were studied to get an optimal condition. The method was validated for its linearity, accuracy, and precision, and also used for the analysis of serum samples of NTDs-affected pregnancies and normal women. The result showed that the present method is sensitive and reliable for simultaneous determination of as many as sixteen interesting metabolites which may provide a new means to study the underlying mechanism of NTDs as well as to discover new potential biomarkers.
Gravitational wave signals from short-lived topological defects in the MSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Ayuki; Department of Physics and Astronomy, University of California,Riverside, CA, 92507; Yamada, Masaki
2015-10-09
Supersymmetric theories, including the minimal supersymmetric standard model, usually contain many scalar fields whose potentials are absent in the exact supersymmetric limit and within the renormalizable level. Since their potentials are vulnerable to the finite energy density of the Universe through supergravity effects, these flat directions have nontrivial dynamics in the early Universe. Recently, we have pointed out that a flat direction may have a positive Hubble induced mass term during inflation whereas a negative one after inflation. In this case, the flat direction stays at the origin of the potential during inflation and then obtain a large vacuum expectationmore » value after inflation. After that, when the Hubble parameter decreases down to the mass of the flat direction, it starts to oscillate around the origin of the potential. In this paper, we investigate the dynamics of the flat direction with and without higher dimensional superpotentials and show that topological defects, such as cosmic strings and domain walls, form at the end of inflation and disappear at the beginning of oscillation of the flat direction. We numerically calculate their gravitational signals and find that the observation of gravitational signals would give us information of supersymmetric scale, the reheating temperature of the Universe, and higher dimensional operators.« less
Gravitational wave signals from short-lived topological defects in the MSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Ayuki; Yamada, Masaki, E-mail: ayuki.kamada@ucr.edu, E-mail: yamadam@icrr.u-tokyo.ac.jp
2015-10-01
Supersymmetric theories, including the minimal supersymmetric standard model, usually contain many scalar fields whose potentials are absent in the exact supersymmetric limit and within the renormalizable level. Since their potentials are vulnerable to the finite energy density of the Universe through supergravity effects, these flat directions have nontrivial dynamics in the early Universe. Recently, we have pointed out that a flat direction may have a positive Hubble induced mass term during inflation whereas a negative one after inflation. In this case, the flat direction stays at the origin of the potential during inflation and then obtain a large vacuum expectationmore » value after inflation. After that, when the Hubble parameter decreases down to the mass of the flat direction, it starts to oscillate around the origin of the potential. In this paper, we investigate the dynamics of the flat direction with and without higher dimensional superpotentials and show that topological defects, such as cosmic strings and domain walls, form at the end of inflation and disappear at the beginning of oscillation of the flat direction. We numerically calculate their gravitational signals and find that the observation of gravitational signals would give us information of supersymmetric scale, the reheating temperature of the Universe, and higher dimensional operators.« less
Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S
Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli
2006-11-15
Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors onmore » the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI {>=}25 kg/m{sup 2} compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI {>=}25 kg/m{sup 2} may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT-induced perfusion defects.« less
Shiose, Akira; Desai, Parag; Criner, Gerard J; Pai, Sheela; Steiner, Robert M; Kaiser, Larry R; Guy, T Sloane; Toyoda, Yoshiya
2014-01-01
A 77-year-old woman presented with shortness of breath 1 year after a right upper lobectomy for lung cancer. She showed a possible intracardiac metastasis on positron emission tomography scan. There was no other evidence of recurrence. The large right ventricular mass was associated with the right ventricle free wall, the apex, the papillary muscle, and the chordae to the tricuspid valve. After mass resection of the right ventricle, a one-and-a-half ventricular repair was performed with tricuspid valve replacement and defect closure. The patient was discharged on postoperative day 14 without complications and has been well for the first 3 months after the surgery.
Hyperostotic Esthesioneuroblastoma: Rare Variant and Fibrous Dysplasia Mimicker
Knott, Phillip Daniel
2014-01-01
A 65-year-old male presented with a 3-year history of orbital symptoms. An imaging-based diagnosis of fibrous dysplasia involving the skull base was made at another institution. CT showed a diffuse sinonasal mass and ground-glass appearance of the bones of the anterior skull base with bony defects and mucocele formation. MRI demonstrated an accompanying intracranial and orbital rind of soft tissue mass along the hyperostotic bones. FDG-PET showed corresponding intense hypermetabolism. Small cysts were observed at the tumor-brain interface. Biopsy revealed esthesioneuroblastoma with bone infiltration that is compatible with the hyperostotic variant of esthesioneuroblastoma. There are a few cases of hyperostotic esthesioneuroblastoma reported in the literature. PMID:24497807
mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold
Labbé, Sébastien M.; Mouchiroud, Mathilde; Caron, Alexandre; Secco, Blandine; Freinkman, Elizaveta; Lamoureux, Guillaume; Gélinas, Yves; Lecomte, Roger; Bossé, Yohan; Chimin, Patricia; Festuccia, William T.; Richard, Denis; Laplante, Mathieu
2016-01-01
In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold. PMID:27876792
NASA Astrophysics Data System (ADS)
Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu
2014-01-01
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ˜5 nm, the simulated ON current is found to be in the range of 265 μA-280 μA with an ON/OFF ratio 7.1 × 106-7.4 × 106 for a VDD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.
Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures
NASA Astrophysics Data System (ADS)
Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.
2001-05-01
Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.
Currarino triad with dual pathology in the presacral mass: report of a case.
Thambidorai, C R; Muin, I; Razman, J; Zulfiqar, A
2003-07-01
Currarino triad, which comprises anorectal stenosis, anterior sacral defect, and a presacral mass, is an uncommon cause of constipation in children and adults. The presacral mass in this triad is most often caused by an anterior sacral meningocele, a teratoma, or an enterogenous cyst, but rarely may be caused by dual pathology. A neonate with Currarino triad and dual pathology in the presacral mass is described in this report. A male Chinese neonate, who presented with abdominal distention and constipation on the second day of life, was found to have features of Currarino triad. Colostomy was done in the neonatal period, and the presacral mass was excised by posterior sagittal perineal approach at the age of six months. The excised presacral mass consisted of an anterior meningocele and a teratoma. The patient continued to have constipation during follow-up and required anorectoplasty to correct residual anorectal stenosis. At the time of this report the patient was three years old and growing normally with normal anorectal function. Of a total of about 200 cases of complete Currarino triad found in the literature, in only 22 patients did the presacral mass contain both meningocele and teratoma. The features of these 22 patients and the current views on the surgical management of Currarino triad are discussed.
Dier, Tobias K F; Fleckenstein, Marco; Militz, Holger; Volmer, Dietrich A
2017-05-01
Chemical degradation is an efficient method to obtain bio-oils and other compounds from lignin. Lignin bio-oils are potential substitutes for the phenol component of phenol formaldehyde (PF) resins. Here, we developed an analytical method based on high resolution mass spectrometry that provided structural information for the synthesized lignin-derived resins and supported the prediction of their properties. Different model resins based on typical lignin degradation products were analyzed by electrospray ionization in negative ionization mode. Utilizing enhanced mass defect filter techniques provided detailed structural information of the lignin-based model resins and readily complemented the analytical data from differential scanning calorimetry and thermogravimetric analysis. Relative reactivity and chemical diversity of the phenol substitutes were significant determinants of the outcome of the PF resin synthesis and thus controlled the areas of application of the resulting polymers. Graphical abstract ᅟ.
Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy
NASA Astrophysics Data System (ADS)
Lany, Stephan; Stevanovic, Vladan
2013-03-01
The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.
NASA Astrophysics Data System (ADS)
Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.
2018-01-01
Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.
Exercise Training Reduces Intrathoracic Fat Regardless of Defective Glucose Tolerance
HONKALA, SANNA M.; MOTIANI, KUMAIL K.; ESKELINEN, JARI-JOONAS; SAVOLAINEN, ANNA; SAUNAVAARA, VIRVA; VIRTANEN, KIRSI A.; LÖYTTYNIEMI, ELIISA; KAPANEN, JUKKA; KNUUTI, JUHANI; KALLIOKOSKI, KARI K.; HANNUKAINEN, JARNA C.
2017-01-01
ABSTRACT Purpose Epicardial (EAT) and pericardial (PAT) fat masses and myocardial triglyceride content (MTC) are enlarged in obesity and insulin resistance. We studied whether the high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) similarly decrease ectopic fat in and around the heart and whether the decrease is similar in healthy subjects and subjects with defective glucose tolerance (DGT). Methods A total of 28 healthy men (body mass index = 20.7–30.0 kg·m−2, age = 40–55 yr) and 16 men with DGT (body mass index = 23.8–33.5 kg·m−2, age = 43–53 yr) were randomized into HIIT and MICT interventions for 2 wk. EAT and PAT were determined by computed tomography and MTC by 1H-MRS. Results At baseline, DGT subjects had impaired aerobic capacity and insulin sensitivity and higher levels of whole body fat, visceral fat, PAT, and EAT (P < 0.05, all) compared with healthy subjects. In the whole group, HIIT increased aerobic capacity (HIIT = 6%, MICT = 0.3%; time × training P = 0.007) and tended to improve insulin sensitivity (HIIT = 24%, MICT = 8%) as well as reduce MTC (HIIT = −42%, MICT = +23%) (time × training P = 0.06, both) more efficiently compared with MICT, and without differences in the training response between the healthy and the DGT subjects. However, both training modes decreased EAT (−5%) and PAT (−6%) fat (time P < 0.05) and not differently between the healthy and the DGT subjects. Conclusion Whole body fat, visceral fat, PAT, and EAT masses are enlarged in DGT. Both HIIT and MICT effectively reduce EAT and PAT in healthy and DGT subjects, whereas HIIT seems to be superior as regards improving aerobic capacity, whole-body insulin sensitivity, and MTC. PMID:28628064
2013-07-24
report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area...i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles ...cated nuclei in 30% of fibers observed in nonrepaired muscles ); and 3) significantly improves net torque production (i.e., 55% of the functional deficit
2010-01-07
many domains: mechanical load bearing and force transmission, immunogologic function (leukogenesis and lymphogenesis), mass transport (erythrogenesis...models including NHPs) does not reproduce upright posture of bipedal humans with respect to axial compression and rotational loading in the human lumbar...Schell, M. Mehta, M. A. Schuetz, G. N. Duda, D. W. Hutmacher. 2012. A Tissue Engineering Solution for Segmental Defect Regeneration in Load - Bearing
Renyi Entropies of a Black Hole
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.
2008-08-01
The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.
Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
NASA Astrophysics Data System (ADS)
Aly, Arafa H.; Mehaney, Ahmed
2016-11-01
This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.
Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile.
Miller, S W; Prince, B D; Bemish, R J
2017-10-01
A combined experimental and modeling effort is undertaken to assess a detection system composed of an orthogonal extraction time-of-flight (TOF) mass spectrometer coupled to a continuous ion source emitting an ion beam with kinetic energy of several hundred eV. The continuous ion source comprises an electrospray capillary system employing an undiluted ionic liquid emitting directly into vacuum. The resulting ion beam consists of ions with kinetic energy distributions of width greater than a hundred of eV and mass-to-charge (m/q) ratios ranging from 111 to 500 000 amu/q. In particular, the investigation aims to demonstrate the kinetic energy resolution along the ion beam axis (axial) of orthogonally extracted ions in measurements of the axial kinetic energy-specific mass spectrum, mass flow rate, and total ion current. The described instrument is capable of simultaneous measurement of a broad m/q range in a single acquisition cycle with approximately 25 eV/q axial kinetic energy resolution. Mass resolutions of ∼340 (M/ΔM, FWHM) were obtained for ions at m/q = 1974. Comparison of the orthogonally extracted TOF mass spectrum to mass flow and ion current measurements obtained with a quartz-crystal microbalance and Faraday cup, respectively, shows reasonable numeric agreement and qualitative agreement in the trend as a function of energy defect.
Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki
2014-02-01
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
Plasmonic-enhanced targeted nanohealing of metallic nanostructures
NASA Astrophysics Data System (ADS)
Yang, Hangbo; Lu, Jinsheng; Ghosh, Pintu; Chen, Ziyao; Wang, Wei; Ye, Hui; Yu, Qian; Qiu, Min; Li, Qiang
2018-02-01
Healing defects of metallic structures is an essential procedure for manufacturing and maintaining integrated devices. Current nanocomposite-assisted microhealing methodologies are inadequate for nanoscopic applications because of their concomitant contamination and limited operation accuracy. In this paper, we propose an optically controllable targeted nanohealing technique by utilizing the plasmonic-enhanced photothermal effect. The healing of nanogaps between two silver nanowires (NWs) is achieved by increasing the incident laser power in steps. Partial connection of NWs can be readily obtained using this technique, while near-perfect connection of NWs with the same crystal orientations is obtained only when the lattices on the two opposing facets are matched after recrystallization. This non-contaminating nanohealing technique not only provides deeper insight into the heat/mass transfer assisted by plasmonic photothermal conversion in the nanoscale but also suggests avenues for recovering mechanical, electronic, and photonic properties of defected metallic nanodevices.
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
2017-11-13
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
Misexpression of cyclin B3 leads to aberrant spermatogenesis.
Refik-Rogers, Jale; Manova, Katia; Koff, Andrew
2006-09-01
Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
Primary disorders of the lymphatic vessels--a unified concept.
Levine, C
1989-03-01
Congenital defects of lymphatics constitute a spectrum of disorders that may manifest with a variety of clinical presentations including lymphedema, chylous effusions, lymphangiomatous malformations with cystic masses and localized gigantism, and intestinal lymphangiectasia with malabsorption. These entities constitute a relatively rare group of disorders, the origin of which remains somewhat controversial, but in some it appears to be due to early lymphatic obstruction. Five cases are described, which demonstrate the anatomical pathology of these entities. A classification and description of the defects is also presented. An attempt is made to present a unified theory of origin for this seemingly diverse group of diseases. While these entities may be challenging from a diagnostic and therapeutic standpoint, a wide variety of imaging modalities, which includes lymphography, computed tomography scanning, and ultrasound, may be used to diagnose the extent and internal structural characteristics of the abnormalities.
Precise design-based defect characterization and root cause analysis
NASA Astrophysics Data System (ADS)
Xie, Qian; Venkatachalam, Panneerselvam; Lee, Julie; Chen, Zhijin; Zafar, Khurram
2017-03-01
As semiconductor manufacturing continues its march towards more advanced technology nodes, it becomes increasingly important to identify and characterize design weak points, which is typically done using a combination of inline inspection data and the physical layout (or design). However, the employed methodologies have been somewhat imprecise, relying greatly on statistical techniques to signal excursions. For example, defect location error that is inherent to inspection tools prevents them from reporting the true locations of defects. Therefore, common operations such as background-based binning that are designed to identify frequently failing patterns cannot reliably identify specific weak patterns. They can only identify an approximate set of possible weak patterns, but within these sets there are many perfectly good patterns. Additionally, characterizing the failure rate of a known weak pattern based on inline inspection data also has a lot of fuzziness due to coordinate uncertainty. SEM (Scanning Electron Microscope) Review attempts to come to the rescue by capturing high resolution images of the regions surrounding the reported defect locations, but SEM images are reviewed by human operators and the weak patterns revealed in those images must be manually identified and classified. Compounding the problem is the fact that a single Review SEM image may contain multiple defective patterns and several of those patterns might not appear defective to the human eye. In this paper we describe a significantly improved methodology that brings advanced computer image processing and design-overlay techniques to better address the challenges posed by today's leading technology nodes. Specifically, new software techniques allow the computer to analyze Review SEM images in detail, to overlay those images with reference design to detect every defect that might be present in all regions of interest within the overlaid reference design (including several classes of defects that human operators will typically miss), to obtain the exact defect location on design, to compare all defective patterns thus detected against a library of known patterns, and to classify all defective patterns as either new or known. By applying the computer to these tasks, we automate the entire process from defective pattern identification to pattern classification with high precision, and we perform this operation en masse during R & D, ramp, and volume production. By adopting the methodology, whenever a specific weak pattern is identified, we are able to run a series of characterization operations to ultimately arrive at the root cause. These characterization operations can include (a) searching all pre-existing Review SEM images for the presence of the specific weak pattern to determine whether there is any spatial (within die or within wafer) or temporal (within any particular date range, before or after a mask revision, etc.) correlation and (b) understanding the failure rate of the specific weak pattern to prioritize the urgency of the problem, (c) comparing the weak pattern against an OPC (Optical Procimity Correction) Verification report or a PWQ (Process Window Qualification)/FEM (Focus Exposure Matrix) result to assess the likelihood of it being a litho-sensitive pattern, etc. After resolving the specific weak pattern, we will categorize it as known pattern, and the engineer will move forward with discovering new weak patterns.
Xing, Jie; Zang, Meitong; Liu, Huixiang
2017-11-15
Metabolite profiling of combination drugs in complex matrix is a big challenge. Development of an effective data mining technique for simultaneously extracting metabolites of one parent drug from both background matrix and combined drug-related signals could be a solution. This study presented a novel high resolution mass spectrometry (HRMS)-based data-mining strategy to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was verapamil-irbesartan (VER-IRB), which is widely used in clinic to treat hypertension. First, mass defect filter (MDF), as a targeted data mining tool, worked effectively except for those metabolites with similar MDF values. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, was able to recover all relevant metabolites of VER-IRB from the full-scan MS dataset except for trace metabolites buried in the background noise and/or combined drug-related signals. Third, the novel ring double bond (RDB; valence values of elements in structure) filter, could show rich structural information in more sensitive full-scan MS chromatograms; however, it had a low capability to remove background noise and was difficult to differentiate the metabolites with RDB coverage. Fourth, an integrated strategy, i.e., untargeted BS followed by RDB, was effective for metabolite identification of VER and IRB, which have different RDB values. Majority of matrix signals were firstly removed using BS. Metabolite ions for each parent drug were then isolated from remaining background matrix and combined drug-related signals by imposing of preset RDB values/ranges around the parent drug and selected core substructures. In parallel, MDF was used to recover potential metabolites with similar RDB. As a result, a total of 74 metabolites were found for VER-IRB in human plasma and urine, among which ten metabolites have not been previously reported in human. The results demonstrated that the combination of accurate mass-based multiple data-mining techniques, i.e., untargeted background subtraction followed by ring double bond filtering in parallel with targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of defects on the absorption edge of InN thin films: The band gap value
NASA Astrophysics Data System (ADS)
Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.
2007-07-01
We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.
Radman, Monique; Mack, Ricardo; Barnoya, Joaquin; Castañeda, Aldo; Rosales, Monica; Azakie, Anthony; Mehta, Nilesh; Keller, Roberta; Datar, Sanjeev; Oishi, Peter; Fineman, Jeffrey
2013-01-01
Objective To determine the association between preoperative nutritional status and postoperative outcomes in children undergoing surgery for congenital heart defects (CHD). Methods Seventy-one patients with CHD were enrolled in a prospective, two-center cohort study. We adjusted for baseline risk differences using a standardized risk adjustment score for surgery for CHD. We assigned a World Health Organization Z-score for each subjects’ preoperative triceps skinfold measurement, an assessment of total body fat mass. We obtained preoperative plasma concentrations of markers of nutritional status (prealbumin, albumin) and myocardial stress (B-type natriuretic peptide, BNP). Associations between indices of preoperative nutritional status and clinical outcomes were sought. Results Subjects had a median (IQR) age of 10.2 (33) months. In the UCSF cohort, duration of mechanical ventilation (median 19 hours, IQR 29), length of ICU stay (median 5 days, IQR 5), duration of any continuous inotropic infusion (median 66 hours, IQR 72) and preoperative BNP levels (median 30 pg/mL, IQR 75) were associated with a lower preoperative triceps skinfold Z-score (p<0.05). Longer duration of any continuous inotropic infusion and higher preoperative BNP levels were also associated with lower preoperative prealbumin (12.1 ± 0.5 mg/dL) and albumin (3.2 ± 0.1) (p<0.05). Conclusions Lower total body fat mass and acute and chronic malnourishment are associated with worse clinical outcomes in children undergoing surgery for CHD at UCSF, a resource-abundant institution. There is an inverse correlation between total body fat mass and BNP levels. Duration of inotropic support and BNP increase concomitantly as measures of nutritional status decrease, supporting the hypothesis that malnourishment is associated with decreased myocardial function. PMID:23583172
la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Malvagia, Sabrina; Funghini, Silvia; Moriondo, Maria; Valleriani, Claudia; Lippi, Francesca; Ombrone, Daniela; Della Bona, Maria Luisa; Speckmann, Carsten; Borte, Stephan; Brodszki, Nicholas; Gennery, Andrew R; Weinacht, Katja; Celmeli, Fatih; Pagel, Julia; de Martino, Maurizio; Guerrini, Renzo; Wittkowski, Helmut; Santisteban, Ines; Bali, Pawan; Ikinciogullari, Aydan; Hershfield, Michael; Notarangelo, Luigi D; Resti, Massimo; Azzari, Chiara
2014-07-01
Purine nucleoside phosphorylase (PNP) deficiency is a rare form of autosomal recessive combined primary immunodeficiency caused by a enzyme defect leading to the accumulation of inosine, 2'-deoxy-inosine (dIno), guanosine, and 2'-deoxy-guanosine (dGuo) in all cells, especially lymphocytes. Treatments are available and curative for PNP deficiency, but their efficacy depends on the early approach. PNP-combined immunodeficiency complies with the criteria for inclusion in a newborn screening program. This study evaluate whether mass spectrometry can identify metabolite abnormalities in dried blood spots (DBSs) from affected patients, with the final goal of individuating the disease at birth during routine newborn screening. DBS samples from 9 patients with genetically confirmed PNP-combined immunodeficiency, 10,000 DBS samples from healthy newborns, and 240 DBSs from healthy donors of different age ranges were examined. Inosine, dIno, guanosine, and dGuo were tested by using tandem mass spectrometry (TMS). T-cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) levels were evaluated by using quantitative RT-PCR only for the 2 patients (patients 8 and 9) whose neonatal DBSs were available. Mean levels of guanosine, inosine, dGuo, and dIno were 4.4, 133.3, 3.6, and 3.8 μmol/L, respectively, in affected patients. No indeterminate or false-positive results were found. In patient 8 TREC levels were borderline and KREC levels were abnormal; in patient 9 TRECs were undetectable, whereas KREC levels were normal. TMS is a valid method for diagnosis of PNP deficiency on DBSs of affected patients at a negligible cost. TMS identifies newborns with PNP deficiency, whereas TREC or KREC measurement alone can fail. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Fkbp10 Deletion in Osteoblasts leads to Qualitative Defects in Bone
Lietman, Caressa D.; Lim, Joohyun; Grafe, Ingo; Chen, Yuqing; Ding, Hao; Bi, Xiaohong; Ambrose, Catherine G.; Fratzl-Zelman, Nadja; Roschger, Paul; Klaushofer, Klaus; Wagermaier, Wolfgang; Schmidt, Ingo; Fratzl, Peter; Rai, Jyoti; Weis, MaryAnn; Eyre, David; Keene, Douglas R.; Krakow, Deborah; Lee, Brendan H.
2017-01-01
Osteogenesis Imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65KDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast specific Col1a1 2.3kb Cre recombinase. Using μCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small angle x-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. PMID:28206698
[Adrenal incidentaloma: a clinical problem related to imaging].
de Bruijne, E L E; Burgmans, J P J; Krestin, G P; Pols, H A P; van den Meiracker, A H; de Herder, W W
2005-08-13
Two female patients, 68 and 67 years of age, were referred for right abdominal pain and pyelonephritis, respectively. During the diagnostic work-up, an unsuspected adrenal mass was found in both patients. Hormonal evaluation and imaging showed a benign non-hyperactive functioning adenoma in one patient and a pheochromocytoma in the other. Both patients were successfully treated with endoscopic adrenalectomy. Wider application and improvement of abdominal imaging procedures have caused an increase of incidentally detected adrenal masses, posing a common clinical problem. Typically, a diagnosis can be made on the basis of the characteristic radiological image. The exact nature of the defect is often unclear and further evaluation is required to determine functionality and possible malignancy. An algorithm is presented for the management of adrenal incidentalomas.
Effects of Mass Fluctuation on Thermal Transport Properties in Bulk Bi2Te3
NASA Astrophysics Data System (ADS)
Huang, Ben; Zhai, Pengcheng; Yang, Xuqiu; Li, Guodong
2017-05-01
In this paper, we applied large-scale molecular dynamics and lattice dynamics to study the influence of mass fluctuation on thermal transport properties in bulk Bi2Te3, namely thermal conductivity ( K), phonon density of state (PDOS), group velocity ( v g), and mean free path ( l). The results show that total atomic mass change can affect the relevant vibrational frequency on the micro level and heat transfer rate in the macro statistic, hence leading to the strength variation of the anharmonic phonon processes (Umklapp scattering) in the defect-free Bi2Te3 bulk. Moreover, it is interesting to find that the anharmonicity of Bi2Te3 can be also influenced by atomic differences of the structure such as the mass distribution in the primitive cell. Considering the asymmetry of the crystal structure and interatomic forces, it can be concluded by phonon frequency, lifetime, and velocity calculation that acoustic-optical phonon scattering shows the structure-sensitivity to the mass distribution and complicates the heat transfer mechanism, hence resulting in the low lattice thermal conductivity of Bi2Te3. This study is helpful for designing the material with tailored thermal conductivity via atomic substitution.
Critical mass of public goods and its coevolution with cooperation
NASA Astrophysics Data System (ADS)
Shi, Dong-Mei; Wang, Bing-Hong
2017-07-01
In this study, the enhancing parameter represented the value of the public goods to the public in public goods game, and was rescaled to a Fermi-Dirac distribution function of critical mass. Public goods were divided into two categories, consumable and reusable public goods, and their coevolution with cooperative behavior was studied. We observed that for both types of public goods, cooperation was promoted as the enhancing parameter increased when the value of critical mass was not very large. An optimal value of critical mass which led to the best cooperation was identified. We also found that cooperations emerged earlier for reusable public goods, and defections became extinct earlier for the consumable public goods. Moreover, we observed that a moderate depreciation rate for public goods resulted in an optimal cooperation, and this range became wider as the enhancing parameter increased. The noise influence on cooperation was studied, and it was shown that cooperation density varied non-monotonically as noise amplitude increased for reusable public goods, whereas decreased monotonically for consumable public goods. Furthermore, existence of the optimal critical mass was also identified in other three regular networks. Finally, simulation results were utilized to analyze the provision of public goods in detail.
High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics
2015-01-01
Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479
The new double energy-velocity spectrometer VERDI
NASA Astrophysics Data System (ADS)
Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan
2017-09-01
VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.
Redgrove, Kate A.; Nixon, Brett; Baker, Mark A.; Hetherington, Louise; Baker, Gordon; Liu, De-Yi; Aitken, R. John
2012-01-01
A common defect encountered in the spermatozoa of male infertility patients is an idiopathic failure of sperm–egg recognition. In order to resolve the molecular basis of this condition we have compared the proteomic profiles of spermatozoa exhibiting an impaired capacity for sperm-egg recognition with normal cells using label free mass spectrometry (MS)-based quantification. This analysis indicated that impaired sperm–zona binding was associated with reduced expression of the molecular chaperone, heat shock 70 kDa protein 2 (HSPA2), from the sperm proteome. Western blot analysis confirmed this observation in independent patients and demonstrated that the defect did not extend to other members of the HSP70 family. HSPA2 was present in the acrosomal domain of human spermatozoa as a major component of 5 large molecular mass complexes, the most dominant of which was found to contain HSPA2 in close association with just two other proteins, sperm adhesion molecule 1 (SPAM1) and arylsulfatase A (ARSA), both of which that have previously been implicated in sperm-egg interaction. The interaction between SPAM1, ARSA and HSPA2 in a multimeric complex mediating sperm-egg interaction, coupled with the complete failure of this process when HSPA2 is depleted in infertile patients, provides new insights into the mechanisms by which sperm function is impaired in cases of male infertility. PMID:23209833
Low leaching and low LWR photoresist development for 193 nm immersion lithography
NASA Astrophysics Data System (ADS)
Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara
2006-03-01
With no apparent showstopper in sight, the adoption of ArF immersion technology into device mass production is not a matter of 'if' but a matter of 'when'. As the technology matures at an unprecedented speed, many of initial technical difficulties have been cleared away and the use of a protective layer known as top coat, initially regarded as a must, now becomes optional, for example. Our focus of interest has also sifted to more practical and production related issues such as defect reducing and performance enhancement. Two major types of immersion specific defects, bubbles and a large number of microbridges, were observed and reported elsewhere. The bubble defects seem to decrease by improvement of exposure tool. But the other type defect - probably from residual water spots - is still a problem. We suspect that the acid leaching from resist film causes microbridges. When small water spots were remained on resist surface after exposure, acid catalyst in resist film is leaching into the water spots even though at room temperature. After water from the spot is dried up, acid molecules are condensed at resist film surface. As a result, in the bulk of resist film, acid depletion region is generated underneath the water spot. Acid catalyzed deprotection reaction is not completed at this acid shortage region later in the PEB process resulting in microbridge type defect formation. Similar mechanism was suggested by Kanna et al, they suggested the water evaporation on PEB plate. This hypothesis led us to focus on reducing acid leaching to decrease residual water spot-related defect. This paper reports our leaching measurement results and low leaching photoresist materials satisfying the current leaching requirements outlined by tool makers without topcoat layer. On the other hand, Nakano et al reported that the higher receding contact angle reduced defectivity. The higher receding contact angle is also a key item to increase scan speed. The effort to increase the receding contact angle become very important issue for not only defectivity but also scanner throughput. Some of our experimental results along this line of study are also included in the report. The last topic covered is LWR (Line Width Roughness) as an essential leverage for performance improvement, especially for the smaller CD that immersion lithography is aiming to define. Our recent effort to find effect and working concept to reduce LWR with low leaching materials is also described.
Lai, Chang-Jiang-Sheng; Tan, Ting; Zeng, Su-Ling; Qi, Lian-Wen; Liu, Xin-Guang; Dong, Xin; Li, Ping; Liu, E-Hu
2015-05-10
The aim of this study was to develop a convenient method without pretreatments for nontarget discovery of interested compounds. The segment and exposure strategy, coupled with two mass spectrometer data acquisition methods was firstly proposed for screening the saponins in extract of Panax notoginseng (Sanqi) via high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). By gradually removing certain major or moderate interference compounds, the developed segment and exposure strategy could significantly improve the detection efficiency for trace compounds. Moreover, the newly developed five-point screening approach based on a modified mass defect filter strategy and the visual isotopic ion technique was verified to be efficient and reliable in picking out the interested precursor ions. In total, 234 ginsenosides including 67 potential new ones were characterized or tentatively identified from the extract of Sanqi. Particularly, some unusual compounds containing the branched glycosyl group or new substituted acyl groups were firstly reported. The proposed integrated strategy held a strong promise for analyses of the complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guzzo, Pedro L.; Barreto, Sandra B.; Miranda, Milena R.; Gonzaga, Raysa S. G.; Casals, Sandra A.
2017-11-01
An extensive characterization of trace elements and point defects in rose quartz from the Borborema Pegmatite Province (BPP) in the northeast of Brazil was carried out by complementary spectroscopic methods. The aim here was to document the change in the configuration of point defects into the quartz lattice induced by heat-treatment and ionizing radiation. The samples were extracted from the core of two granitic rare element (REL) pegmatites, Taboa (Carnaúba dos Dantas, RN) and Alto do Feio (Pedra Lavrada, PB). The contents of Al, P, Ti, Ni, Fe, Ge, Li, Be, B and K were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Polished plates were heat-treated at 500 and 1000 °C and then irradiated with 50 kGy of γ rays. Point defects were characterized by optical (UV-Vis), infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies. In the as-received condition, [AlO4/H]0 centers, Li- and B-dependent OH defects were observed. Point defects related to Al and Li species were significantly affected by heat-treatment at 1000 °C and/or γ radiation. Paramagnetic centers such as [AlO4]0, [GeO4/Li]0, [TiO4/Li]0 and [O2 3-/Li]0 were created by the diffusion of Li+ ions from their original diamagnetic centers related to substitutional Al3+ and OH-species. The smoky color developed after irradiation and the signal intensities of the paramagnetic centers were independent from the original rose color grade. The samples from the Taboa (TB) pegmatite showed the highest concentration of Al, Ti, Fe and Li elements as well as the highest signal intensities for [AlO4]0, [AlO4/H]0, [GeO4/Li]0 and [TiO4/Li]0 centers. Although TB also showed the higher concentration of B element, the intensity of the 3597 cm-1 IR band related to [BO4/H]0 centers was higher for Alto do Feio (AF) samples. This result suggests that the uptake of B into the quartz core of each pegmatite took place through different mechanisms. It was concluded that the change in the point defect configuration was essentially governed by the motion of Li species whose incorporation into the quartz lattice is closely related to Al concentration.
Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study
NASA Astrophysics Data System (ADS)
Fiedler, Gregor; Kratzer, Peter
2016-08-01
The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.
Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C
2011-12-01
Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Cobb, Sharon D.; Croell, Anne; Dold, P.; Motafef, S.; Schweizer, M.; Volz, Martin P.; Walker, J. S.
2003-01-01
Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in the crystals. In addition to float-zone processing, detached Bridgman growth, although not a completely crucible-free method, is a promising tool to improve crystal quality. It does not suffer from the size limitations of float zoning and the impact of thermocapillary convection on heat and mass transport is expected to be negligible. Detached growth has been observed frequently during g experiments. Considerable improvements in crystalline quality have been reported for these cases. However, neither a thorough understanding of the process nor a quantitative assessment of the quality of these improvements exists. This project will determine the means to reproducibly grow GeSi alloys in a detached mode and seeks to compare processing-induced defects in Bridgman, detached-Bridgman, and floating-zone growth configurations in GeSi crystals (Si less than or equal to 10 at%) up to 20mm in diameter. Specific objectives include: measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; determination of the mechanism of detached growth including the role of convection; quantitative determination of the differences in defects and impurities for crystals grown using normal Bridgman, detached Bridgman, and floating zone (FZ) methods; investigation of the influence of a defined flow imposed by a rotating magnetic field on the characteristics of detached growth; control of time-dependent Marangoni convection in the case of FZ growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and growth of benchmark quality GeSi-single crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au; De Souza, David P.; Burch, Micah L.
Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose andmore » intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.« less
2013-01-01
Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433
2009-01-01
Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808
Effect of platelet-rich plasma in the treatment of periodontal intrabony defects in humans.
Ouyang, Xiang-ying; Qiao, Jing
2006-09-20
Platelet-rich plasma (PRP) is a kind of natural source of autologous growth factors, and has been used successfully in medical community. However, the effect of PRP in periodontal regeneration is not clear yet. This study was designed to evaluate the effectiveness of PRP as an adjunct to bovine porous bone mineral (BPBM) graft in the treatment of human intrabony defects. Seventeen intrabony defects in 10 periodontitis patients were randomly treated either with PRP and BPBM (test group, n = 9) or with BPBM alone (control group, n = 8). Clinical parameters were evaluated including changes in probing depth, relative attachment level (measured by Florida Probe and a stent), and bone probing level between baseline and 1 year postoperatively. Standardized periapical radiographs of each defect were taken at baseline, 2 weeks, and 1 year postoperatively, and analyzed by digital subtraction radiography (DSR). Both treatment modalities resulted in significant attachment gain, reduction of probing depth, and bone probing level at 1-year post-surgery compared to baseline. The test group exhibited statistically significant improvement compared to the control sites in probing depth reduction: (4.78 +/- 0.95) mm versus (3.48 +/- 0.41) mm (P < 0.01); clinical attachment gain: (4.52 +/- 1.14) mm versus (2.85 +/- 0.80) mm (P < 0.01); bone probing reduction: (4.56 +/- 1.04) mm versus (2.88 +/- 0.79) mm (P < 0.01); and defect bone fill: (73.41 +/- 14.78)% versus (47.32 +/- 11.47)% (P < 0.01). DSR analysis of baseline and 1 year postoperatively also showed greater radiographic gains in alveolar bone mass in the test group than in the control group: gray increase (580 +/- 50) grays versus (220 +/- 32) grays (P = 0.0001); area with increased gray were (5.21 +/- 1.25) mm(2) versus (3.02 +/- 1.22) mm(2) (P = 0.0001). The treatment with a combination of PRP and BPBM led to a significantly favorable clinical improvement in periodontal intrabony defects compared to using BPBM alone. Further studies are necessary to assess the long-term effectiveness of PRP, and a larger sample size is needed.
Road traffic accident among motor vehicle drivers in selected high ways.
Ahmed, M; Khanom, K; Shampa, R M; Bari, M H
2004-07-01
To assess the knowledge of the motor vehicle driver about the causes of road traffic accidents. This cross sectional study was conducted among the 107 motor vehicle drivers of selected Bus & Truck terminal & taxi stands of Dhaka city. The study was carried out during April to June 2002 at the Department of Health Promotion & Health Education of NIPSOM. The study showed about 55.1% learned driving from a friend. Out of 107 respondent 20.6% showed very high speed is one of the reason for road traffic accident.39.3% claimed for poor maintenance of roads. Regarding engine/vehicle defect 46.7% said head light defect. Increased earning is one of the reasons of very fast driving 35.5% respondent opined. These may be the reason of accident proneness of the society along with factor like family pressure, job dissatisfaction etc. Majority of the driver who took part in this study used light vehicle 54.2% and the rest 30.8% were heavy and 15% like medium light vehicle. Most of the respondent 67.3% was working as professional over for 3-6 years. 41.1% for 3 and 26.2% for 6 years. There were significant relationship (p < 0.002) between very fast driving and defective road and also engine defect were highly significant association (p < 0.005) with road traffic accident It is revealed that formal education, driving license through Bangladesh road traffic authority without unnecessary botheration, proper implementation of traffic law, training of drivers and increase level of public awareness through mass communication could reduce the road traffic accident
NASA Astrophysics Data System (ADS)
Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu
2018-05-01
Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.
Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A
2013-02-26
Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.
Simulation of laser generated ultrasound with application to defect detection
NASA Astrophysics Data System (ADS)
Pantano, A.; Cerniglia, D.
2008-06-01
Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu
2014-01-21
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of widthmore » ∼5 nm, the simulated ON current is found to be in the range of 265 μA–280 μA with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD} = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.« less
Juul, A; Vahl, N; Jørgensen, J O; Christiansen, J S; Sneppen, S B; Feldt-Rasmussen, U; Skakkebaek, N E
1998-02-01
Many studies have shown the beneficial, anabolic effects of growth hormone (GH) replacement therapy in GH deficient adults with childhood onset or adult onset disease. It is becoming increasingly evident, however, that these two groups of patients differ in many respects. Patients with adult onset GH deficiency represent fully developed individuals who have various organic, cerebral defects. By contrast, patients with childhood onset disease represent a heterogenous group comprising individuals with conditions, such as idiopathic isolated GH deficiency, genetic defects and organic defects. It is generally accepted that all children treated with GH should be retested in adulthood before adult replacement is started, as around 40% have a normal retest. It is unclear whether continued treatment with GH in childhood onset GH deficiency will yield results as positive as those seen in trials where GH is re-instituted after longer periods without treatment. Similarly, it is unknown at what timepoint cessation of GH treatment will cause a worsening in the physical state of the patient. In our placebo-controlled trial where GH was discontinued in 19 patients treated with GH during childhood, we determined exercise capacity, body composition, muscle mass and strength, cardiac function, sweating capacity, thyroid function and glucose metabolism before and after 12 months of continued treatment with GH.
Point defect induced segregation of alloying solutes in α-Fe
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2016-10-01
Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.
X-ray tomography of powder injection moulded micro parts using synchrotron radiation
NASA Astrophysics Data System (ADS)
Heldele, R.; Rath, S.; Merz, L.; Butzbach, R.; Hagelstein, M.; Haußelt, J.
2006-05-01
Powder injection moulding is one of the most promising replication methods for the mass production of metal and ceramic micro parts. The material for injection moulding, a so-called feedstock, consists of thermoplastic binder components and inorganic filler with approximately equal volume fractions. Injection moulding of the feedstock leads to a green part that can be processed to a dense metal or ceramic micro part by debinding and sintering. During the injection moulding process extremely high shear rates are applied. This promotes the separation of powder and binder leading to a particle density variation in the green part causing anisotropic shrinkage during post-processing. The knowledge of introducing density gradients and defects would consequently allow the optimization of the feedstock, the moulding parameters and the validation of a simulation tool based on the Dissipative Particle Dynamics which is currently under development, as well. To determine the particle density and defect distribution in micro parts synchrotron radiation tomography in absorption mode was used. Due to its parallel and monochromatic character a quantitative reconstruction, free of beam hardening artifacts, is possible. For the measurement, bending bars consisting of dispersed fused silica particles in a polymeric matrix were used. The presented results using this set-up show that crucial defects and density variations can be detected.
NASA Technical Reports Server (NTRS)
Wright, Matthew W.
2005-01-01
Microactuators are versatile, low-cost, low-mass electrical-mechanical devices that can be used in many applications. Microactuators consist of two electrodes sandwiching a PZT (piezo-electric) film between them. The centers of the microactuators deflect when a voltage is applied across the electrodes. In order to correctly apply this technology for use, it is important to fully characterize the actuation behavior. Measuring the deflection profile as a function of the voltage of various microactuators is crucial. This measurement process has errors associated with it, so it is being studied to determine the accuracy of the data. In certain applications, microactuators may undergo many cycles of deflection; testing various microactuators through many cycles of deflection simulates these circumstances. However, due to an unknown issue, many of the microactuators exhibit defects that cause them to fail when voltage is applied to their electrodes. These defects do not allow for the acquisition of significant deflection profiles. Vibrations are the largest cause of error in deflection measurements, and the microactuators withstand continuous cycles of deflection, yet the cause of damage is still to be determined. Future projects will be needed to characterize the deflection profiles of various microactuators and to overcome the defects in the microactuators that are currently present.
[Nephroblastoma and xeroderma pigmentosum: A rare association].
Lahlimi, F; Harif, M; Elhoudzi, J
2016-01-01
Xeroderma pigmentosum (XP) is a rare, genetically heterogeneous, autosomal recessive disorder, more common in cases of consanguinity. The basic defect underlying the clinical manifestations is a nucleotide excision repair defect leading to the defective repair of DNA damaged by ultraviolet (UV) radiation. XP is characterized by a high incidence of skin cancer on exposed regions. We report the case of a 5-year-old boy, followed for xeroderma pigmentosum since the age of 4 years. His sister also has the same anomaly. He presented an abdominal mass revealed by abdominal pain and vomiting. Radiological examinations revealed a nephroblastoma with lung metastases. He received primary chemotherapy for six cycles (vincristine, and actinomycin-d adriamycin), then surgery with ureteronephrectomy. Pathological examination of the nephrectomy specimen confirmed the diagnosis of Wilms tumor with a diffuse anaplastic component reaching 50%. The patient was treated according to the GFAOP stage III protocol, with high histological risk. The outcome was favorable but complicated by renal failure due to the toxicity of the treatment. He is currently in complete remission at 1 year from the end of treatment. The association of xeroderma pigmentosum and nephroblastoma is a rare combination. This case illustrates the problem of management of both severe and difficult conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The Drosophila Neurally Altered Carbohydrate Mutant Has a Defective Golgi GDP-fucose Transporter*
Geisler, Christoph; Kotu, Varshika; Sharrow, Mary; Rendić, Dubravko; Pöltl, Gerald; Tiemeyer, Michael; Wilson, Iain B. H.; Jarvis, Donald L.
2012-01-01
Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac1 flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac1 mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac1 Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac1 mutant. These results validate the Drosophila nac1 mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency. PMID:22745127
A mechanism for the production of hydroxyl radical at surface defect sites on pyrite
NASA Astrophysics Data System (ADS)
Borda, Michael J.; Elsetinow, Alicia R.; Strongin, Daniel R.; Schoonen, Martin A.
2003-03-01
A previous contribution from our laboratory reported the formation of hydrogen peroxide (H 2O 2) upon addition of pyrite (FeS 2) to O 2-free water. It was hypothesized that a reaction between adsorbed H 2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH •). ≡Fe(III) + H 2O (ads) → ≡Fe(II) + OH •(ads) + H + The combination of two OH • then produces H 2O 2. In the present study, we show spectroscopic evidence consistent with the conversion of Fe(III) to Fe(II) at defect sites, the origin of H 2O 2 from H 2O, and the existence of OH • in solution. To demonstrate the iron conversion at the surface, X-ray photoelectron spectroscopy (XPS) was employed. Using a novel mass spectrometry method, the production of H 2O 2 was evaluated. The aqueous concentration of OH • was measured using a standard radical scavenger method. The formation of OH • via the interaction of H 2O with the pyrite surface is consistent with several observations in earlier studies and clarifies a fundamental step in the oxidation mechanism of pyrite.
NASA Astrophysics Data System (ADS)
Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.
2018-03-01
The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.
Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun
2010-05-01
The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.
Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.
Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng
2018-05-21
Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.
Pseudoaneurysm of the Radial Artery After a Bicycle Fall.
Ratschiller, Thomas; Müller, Hannes; Schachner, Thomas; Zierer, Andreas
2018-07-01
We report a case of a 64-year-old man who developed a painful pulsatile mass in the distal forearm after a bicycle fall with fracture of the wrist. Ultrasonography confirmed a 2.5-cm large pseudoaneurysm of the radial artery. The patient underwent surgical exploration. The pseudoaneurysm was resected and the defect in the arterial wall was reconstructed with an autologous saphenous vein patch. We suggest that the double arterial supply of the hand should be preserved whenever possible.
Dhurjad, Pooja Sukhdev; Marothu, Vamsi Krishna; Rathod, Rajeshwari
2017-08-01
Metabolite identification is a crucial part of the drug discovery process. LC-MS/MS-based metabolite identification has gained widespread use, but the data acquired by the LC-MS/MS instrument is complex, and thus the interpretation of data becomes troublesome. Fortunately, advancements in data mining techniques have simplified the process of data interpretation with improved mass accuracy and provide a potentially selective, sensitive, accurate and comprehensive way for metabolite identification. In this review, we have discussed the targeted (extracted ion chromatogram, mass defect filter, product ion filter, neutral loss filter and isotope pattern filter) and untargeted (control sample comparison, background subtraction and metabolomic approaches) post-acquisition data mining techniques, which facilitate the drug metabolite identification. We have also discussed the importance of integrated data mining strategy.
Extraskeletal presentation of Ewing's Sarcoma.
Mangual, Danny; Bisbal-Matos, Luis A; Jiménez-Lee, Ricardo; Vélez, Román; Noy, Miguel
2018-03-01
The case of a 27-year-old Hispanic female who presented with an occipito-parietal tumor after suffering trauma to the area. A physical examination revealed no tenderness to palpation and with evidence of healing ulcerations. The biopsy was consistent with a synovial sarcoma. A wide excision of the mass (15cm x 14cm x 6cm) followed by a pericranial flap was performed. A follow-up CT showed recurrence involving the parietal sagittal sinus. After a second biopsy the mass was determined to be a small-cell sarcoma, consistent with Ewing's sarcoma. Chemotherapy included 8 cycles of doxorubicin, vincristine, and cyclophosphamide, with alternating cycles of etoposide and ifosfamide. A year later, a second wide excision of the mass was performed, followed by bilaminate skin substitute and skin graft placement for reconstruction of the soft-tissue defect. After chemotherapy, a follow-up PET scan showed no signs of re-uptake in any soft tissue or skeletal structures. After 2 years, the patient remains in complete remission.
Zhang, Xia; Yin, Jintuo; Liang, Caijuan; Sun, Yupeng; Zhang, Lantong
2017-12-20
Fisetin has been identified as an anticancer agent with antiangiogenic properties in mice. However, its metabolism in vitro (rat liver microsomes) and in vivo (rats) is presently not characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for data acquiring, and a four-step analytical strategy was developed to screen and identify metabolites. First, full-scan was applied, which was dependent on a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). Then PeakView 1.2 and Metabolitepilot 1.5 software were used to load data to seek possible metabolites. Finally, metabolites were identified according to mass measurement and retention time. Moreover, isomers were distinguished based on Clog P parameter. Based on the proposed method, 53 metabolites in vivo and 14 metabolites in vitro were characterized. Moreover, metabolic pathways mainly included oxidation, reduction, hydrogenation, methylation, sulfation, and glucuronidation.
Calcineurin/NFAT signaling in osteoblasts regulates bone mass.
Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R
2006-06-01
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.
Tau Zero: In the cockpit of a Bussard ramjet
NASA Astrophysics Data System (ADS)
Blatter, Heinz; Greber, Thomas
2017-12-01
A Bussard ramjet is a relativistic spacecraft, fueled by fusion energy of cosmic matter that is collected during the flight. We derive the equation of motion of such a spaceship for a given mass density in space and the fusion mass defect. Two ramjet engine scenarios, where the thrust for propulsion is generated by emission of photons or acceleration of matter, are outlined. As long as not all collected matter is transformed into fusion energy, mass engines are superior to photon engines. If the collected matter is stopped by the spacecraft before fusion it may not reach relativistic terminal velocities. For an ideal ramjet, where no matter is stopped for the generation of energy for propulsion, endless acceleration and relativistic velocities may be obtained such that crossing the universe in a human lifespan would be possible. A journey along one space coordinate and the smallest possible radii of curves were evaluated. The results are compared to the plots in the novel "Tau Zero" by Poul Anderson.
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.
1999-01-01
ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.
NASA Astrophysics Data System (ADS)
Yarloo, H.; Langari, A.; Vaezi, A.
2018-02-01
We enquire into the quasi many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on the ladder geometry, where different types of anyonic defects carry different masses induced by environmental errors. Our study verifies that the presence of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such clean, multicomponent anyonic liquid. This nonergodic dynamics suggests a promising scenario for investigation of quasi many-body localization. Computing standard diagnostics evidences that a typical initial inhomogeneity of anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. Our results unveil how self-generated disorder ameliorates the vulnerability of topological order away from equilibrium. This setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons in a generic, high energy state, originated exclusively in their exotic statistics.
Imhof, Simon; Vu, Xuan Lan; Bütikofer, Peter; Roditi, Isabel
2015-06-01
Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1(-/-) mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
[Open double-row rotator cuff repair using the LASA-DR screw].
Schoch, C; Geyer, S; Geyer, M
2016-02-01
Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).
Moores, J C; Magazin, M; Ditta, G S; Leong, J
1984-01-01
A gene bank of DNA from plant growth-promoting Pseudomonas sp. strain B10 was constructed using the broad host-range conjugative cosmid pLAFR1. The recombinant cosmids contained insert DNA averaging 21.5 kilobase pairs in length. Nonfluorescent mutants of Pseudomonas sp. strain B10 were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, or UV light and were defective in the biosynthesis of its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin. No yellow-green, fluorescent mutants defective in the production of pseudobactin were identified. Nonfluorescent mutants were individually complemented by mating the gene bank en masse and identifying fluorescent transconjugants. Eight recombinant cosmids were sufficient to complement 154 nonfluorescent mutants. The pattern of complementation suggests that a minimum of 12 genes arranged in four gene clusters is required for the biosynthesis of pseudobactin. This minimum number of genes seems reasonable considering the structural complexity of pseudobactin. Images PMID:6690426
Wang, L; Hu, X; Tao, G; Wang, X
2012-05-01
To investigate the role of lipopolysaccharide (LPS) structure in the stability of outer membrane and the ability of biofilm formation in Cronobacter sakazakii. A C. sakazakii mutant strain LWW02 was constructed by inactivating the gene ESA_04107 encoding for heptosyltransferase I. LPS were purified from LWW02, and changes in their structure were confirmed by thin-layer chromatography and electrospray ionization mass spectrometry. Comparing with the wild-type strain BAA-894, slower growth, higher membrane permeability, higher surface hydrophobicity, stronger ability of autoaggregation and biofilm formation were observed for the mutant strain LWW02. The gene ESA_04107 encodes heptosyltransferase I in C. sakazakii ATCC BAA-894. The cleavage of LPS in C. sakazakii could cause its outer membrane defects and increase its ability to form biofilms. The study is important for understanding the pathogenic mechanism and efficient control of C. sakazakii. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study
NASA Astrophysics Data System (ADS)
Gali, A.; Heringer, D.; Deák, P.; Hajnal, Z.; Frauenheim, Th.; Devaty, R. P.; Choyke, W. J.
2002-09-01
Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (OC) and a hyperdeep double donor on the Si site (OSi). In 4H-SiC OC is still a double donor but with a more localized electron state. In 3C-SiC OC is substantially more stable under any condition than OSi or interstitial oxygen (Oi). In 4H-SiC OC is also the most stable one except for heavy n-type doping. We propose that OC is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed.
Converting ceria polyhedral nanoparticles into single-crystal nanospheres.
Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein
2006-06-09
Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Cobb, Sharon D.; Croell, Arne; Dold, Peter; Kaiser, Natalie; Motakef, Shariar; Schweizer, Marcus; Volz, Martin P.; Vujisic, Ljubomir
2001-01-01
Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in the crystals. In addition to float-zone processing, detached Bridgman growth, although not a completely crucible-free method, is a promising tool to improve crystal quality. It does not suffer from the size limitations of float zoning and the impact of thermocapillary convection on heat and mass transport is expected to be negligible. Detached growth has been observed frequently during (micro)g experiments. Considerable improvements in crystalline quality have been reported for these cases. However, neither a thorough understanding of the process nor a quantitative assessment of the quality of these improvements exists. This project will determine the means to reproducibly grow Pepsi alloys in a detached mode and seeks to compare processing-induced defects in Bridgman, detached-Bridgman, and floating-zone growth configurations in Pepsi crystals (Si less or = 10 at%) up to 20mm in diameter.
Paximadis, M; Rey, M E
2001-12-01
The complete DNA A of the begomovirus Tobacco leaf curl Zimbabwe virus (TbLCZWV) was sequenced: it comprises 2767 nucleotides with six major open reading frames encoding proteins with molecular masses greater than 9 kDa. Full-length TbLCZWV DNA A tandem dimers, cloned in binary vectors (pBin19 and pBI121) and transformed into Agrobacterium tumefaciens, were systemically infectious upon agroinoculation of tobacco and tomato. Efforts to identify a DNA B component were unsuccessful. These findings suggest that TbLCZWV is a new member of the monopartite group of begomoviruses. Phylogenetic analysis identified TbLCZWV as a distinct begomovirus with its closest relative being Chayote mosaic virus. Abutting primer PCR amplified ca. 1300 bp molecules, and cloning and sequencing of two of these molecules revealed them to be subgenomic defective DNA molecules originating from TbLCZWV DNA A. Variable symptom severity associated with tobacco leaf curl disease and TbLCZWV is discussed.
The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice.
Nacerddine, Karim; Lehembre, François; Bhaumik, Mantu; Artus, Jérôme; Cohen-Tannoudji, Michel; Babinet, Charles; Pandolfi, Pier Paolo; Dejean, Anne
2005-12-01
Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.
Petroleomics: the next grand challenge for chemical analysis.
Marshall, Alan G; Rodgers, Ryan P
2004-01-01
Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry has recently revealed that petroleum crude oil contains heteroatom-containing (N,O,S) organic components having more than 20,000 distinct elemental compositions (C(c)H(h)N(n)O(o)S(s)). It is therefore now possible to contemplate the ultimate characterization of all of the chemical constituents of petroleum, along with their interactions and reactivity, a concept we denote as "petroleomics". Such knowledge has already proved capable of distinguishing petroleum and its distillates according to their geochemical origin and maturity, distillation cut, extraction method, catalytic processing, etc. The key features that have opened up this new field have been (a) ultrahigh-resolution FT-ICR mass analysis, specifically, the capability to resolve species differing in elemental composition by C(3) vs SH(4) (i.e., 0.0034 Da); (b) higher magnetic field to cover the whole mass range at once; (c) dynamic range extension by external mass filtering; and (d) plots of Kendrick mass defect vs nominal Kendrick mass as a means for sorting different compound "classes" (i.e., numbers of N, O, and S atoms), "types" (rings plus double bonds), and alkylation ((-CH(2))(n)) distributions, thereby extending to >900 Da the upper limit for unique assignment of elemental composition based on accurate mass measurement. The same methods are also being applied successfully to analysis of humic and fulvic acids, coals, and other complex natural mixtures, often without prior or on-line chromatographic separation.
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate
NASA Astrophysics Data System (ADS)
Shoko, Elvis; Kearley, Gordon J.; Peterson, Vanessa K.; Mutka, Hannu; Koza, Michael M.; Yamaura, Jun-ichi; Hiroi, Zenji; Thorogood, Gordon J.
2014-07-01
Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl0.33W1.67O6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs2O6 and RbOs2O6. Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials.
Warren, Heather F; Louie, Brian E; Farivar, Alexander S; Wilshire, Candice; Aye, Ralph W
2017-07-01
To evaluate the manometric changes, function, and impact of magnetic sphincter augmentation (MSA) on the lower esophageal sphincter (LES). Implantation of a MSA around the gastroesophageal junction has been shown to be a safe and effective therapy for gastroesophageal reflux disease, but its effect on the LES has not been elucidated. Retrospective case control study (n = 121) evaluating manometric changes after MSA. Inclusion criteria consisted of a confirmed diagnosis of gastroesophageal reflux disease by an abnormal esophageal pH study (body mass index <35 kg/m, hiatal hernia <3 cm, and absence of endoscopic Barrett disease). Manometric changes, pH testing, and proton pump inhibitor use were assessed preoperatively and 6 and 12 months after MSA. MSA was associated with an overall increase in the median LES resting pressure (18 pre-MSA vs 23 mm Hg post-MSA; P = 0.0003), residual pressure (4 vs 9 mm Hg; P < 0.0001), and distal esophageal contraction amplitude (80 vs 90 mm Hg; P = 0.02). The percent peristalsis remained unaltered (94% vs 87%; P = 0.71).Overall, patients with a manometrically defective LES were restored 67% of the time to a normal sphincter with MSA. Those with a structurally defective or severely defective LES improved to a normal LES in 77% and 56% of patients, respectively. Only 18% of patients with a normal preoperative manometric LES deteriorated to a lower category. MSA results in significant manometric improvement of the LES without apparent deleterious effects on the esophageal body. A manometrically defective LES can be restored to normal sphincter, whereas a normal LES remains stable.
Process tool monitoring and matching using interferometry technique
NASA Astrophysics Data System (ADS)
Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric
2016-03-01
The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.
Defining the Role of Free Flaps in Partial Breast Reconstruction.
Smith, Mark L; Molina, Bianca J; Dayan, Erez; Jablonka, Eric M; Okwali, Michelle; Kim, Julie N; Dayan, Joseph H
2018-03-01
Free flaps have a well-established role in breast reconstruction after mastectomy; however, their role in partial breast reconstruction remains poorly defined. We reviewed our experience with partial breast reconstruction to better understand indications for free tissue transfer. A retrospective review was performed of all patients undergoing partial breast reconstruction at our center between February 2009 and October 2015. We evaluated the characteristics of patients who underwent volume displacement procedures versus volume replacement procedures and free versus pedicled flap reconstruction. There were 78 partial breast reconstructions, with 52 reductions/tissue rearrangements (displacement group) and 26 flaps (replacement group). Bra cup size and body mass index (BMI) were significantly smaller in the replacement group. Fifteen pedicled and 11 free flaps were performed. Most pedicled flaps (80.0%) were used for lateral or upper pole defects. Most free flaps (72.7%) were used for medial and inferior defects or when there was inadequate donor tissue for a pedicled flap. Complications included hematoma, cellulitis, and one aborted pedicled flap. Free and pedicled flaps are useful for partial breast reconstruction, particularly in breast cancer patients with small breasts undergoing breast-conserving treatment (BCT). Flap selection depends on defect size, location, and donor tissue availability. Medial defects are difficult to reconstruct using pedicled flaps due to arc of rotation and intervening breast tissue. Free tissue transfer can overcome these obstacles. Confirming negative margins before flap reconstruction ensures harvest of adequate volume and avoids later re-operation. Judicious use of free flaps for oncoplastic reconstruction expands the possibility for breast conservation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice.
Pontoglio, M; Sreenan, S; Roe, M; Pugh, W; Ostrega, D; Doyen, A; Pick, A J; Baldwin, A; Velho, G; Froguel, P; Levisetti, M; Bonner-Weir, S; Bell, G I; Yaniv, M; Polonsky, K S
1998-01-01
Mutations in the gene for the transcription factor hepatocyte nuclear factor (HNF) 1alpha cause maturity-onset diabetes of the young (MODY) 3, a form of diabetes that results from defects in insulin secretion. Since the nature of these defects has not been defined, we compared insulin secretory function in heterozygous [HNF-1alpha (+/-)] or homozygous [HNF-1alpha (-/-)] mice with null mutations in the HNF-1alpha gene with their wild-type littermates [HNF-1alpha (+/+)]. Blood glucose concentrations were similar in HNF-1alpha (+/+) and (+/-) mice (7.8+/-0.2 and 7.9+/-0.3 mM), but were significantly higher in the HNF-1alpha (-/-) mice (13.1+/-0.7 mM, P < 0.001). Insulin secretory responses to glucose and arginine in the perfused pancreas and perifused islets from HNF-1alpha (-/-) mice were < 15% of the values in the other two groups and were associated with similar reductions in intracellular Ca2+ responses. These defects were not due to a decrease in glucokinase or insulin gene transcription. beta cell mass adjusted for body weight was not reduced in the (-/-) animals, although pancreatic insulin content adjusted for pancreas weight was slightly lower (0.06+/-0.01 vs. 0.10+/-0.01 microg/mg, P < 0.01) than in the (+/+) animals. In summary, a null mutation in the HNF-1alpha gene in homozygous mice leads to diabetes due to alterations in the pathways that regulate beta cell responses to secretagogues including glucose and arginine. These results provide further evidence in support of a key role for HNF-1alpha in the maintenance of normal beta cell function. PMID:9593777
Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).
Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill
2015-01-28
(Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed.
Blewett, Nathan H.; Iben, James R.; Gaidamakov, Sergei
2017-01-01
ABSTRACT Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3′ exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass. PMID:28223366
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period
Auffret, Julien; Freemark, Michael; Carré, Nadège; Mathieu, Yves; Tourrel-Cuzin, Cécile; Lombès, Marc; Movassat, Jamileh
2013-01-01
Prolactin (PRL) and placental lactogens stimulate β-cell replication and insulin production in pancreatic islets and insulinoma cells through binding to the PRL receptor (PRLR). However, the contribution of PRLR signaling to β-cell ontogeny and function in perinatal life and the effects of the lactogens on adaptive islet growth are poorly understood. We provide evidence that expansion of β-cell mass during both embryogenesis and the postnatal period is impaired in the PRLR−/− mouse model. PRLR−/− newborns display a 30% reduction of β-cell mass, consistent with reduced proliferation index at E18.5. PRL stimulates leucine incorporation and S6 kinase phosphorylation in INS-1 cells, supporting a role for β-cell mTOR signaling in PRL action. Interestingly, a defect in the development of acini is also observed in absence of PRLR signaling, with a sharp decline in cellular size in both endocrine and exocrine compartments. Of note, a decrease in levels of IGF-II, a PRL target, in the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes, is associated with a lack of PRL-mediated β-cell proliferation in embryonic pancreatic buds. Reduced pancreatic IGF-II expression in both rat and mouse models suggests that this factor may constitute a molecular link between PRL signaling and cell ontogenesis. Together, these results provide evidence that PRL signaling is essential for pancreas ontogenesis during the critical perinatal window responsible for establishing functional β-cell reserve. PMID:24064341
Concepts for laser beam parameter monitoring during industrial mass production
NASA Astrophysics Data System (ADS)
Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard
2017-02-01
In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.
Lin, Ying-Hung; Ke, Chih-Chun; Wang, Ya-Yun; Chen, Mei-Feng; Chen, Tsung-Ming; Ku, Wei-Chi; Chiang, Han-Sun; Yeh, Chung-Hsin
2017-01-05
According to recent estimates, 2%-15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins ( MGCRABGAPs ) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP-RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M
2016-09-01
Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
Recurrent pulmonary embolism due to echinococcosis secondary to hepatic surgery for hydatid cysts.
Damiani, Mario Francesco; Carratù, Pierluigi; Tatò, Ilaria; Vizzino, Heleanna; Florio, Carlo; Resta, Onofrio
2012-01-01
We describe the case of a 53-year-old man with recurrent pulmonary embolism due to intra-arterial cysts from Echinococcus. Both the patient's medical history and the computed tomographic (CT) scan abnormalities led to the diagnosis. The CT scan, performed during hospitalization in our ward, showed cystic masses in the left main pulmonary artery and in the descending branch of the right pulmonary artery. Within cystic masses, thin septa were visible, giving a chambered appearance, which was suggestive of a group of daughter cysts. In the past, our patient underwent multiple operations for recurring echinococcal cysts of the liver. After the last intervention, 4 years earlier, his postoperative course was complicated by pulmonary embolism: a CT scan showed a filling defect in the descending branch of the right pulmonary artery, which was caused by the same cystic mass as 4 years later, although smaller. This mass, not properly treated, increased in diameter. Moreover, after 4 years, there has been a new episode of embolism, which involved the left main pulmonary artery. This is the first case in which there are repeated episodes of pulmonary embolism echinococcosis after hepatic surgery for removal of hydatid cysts.
Vanathi, M; Sen, Seema; Panda, Anita; Dada, Tanuj; Behera, Geeta; Khokhar, Sudharshan
2007-01-01
To report the unusual association of unilateral congenital corneal keloid with anterior-segment mesenchymal dysgenesis and bilateral subluxated lens. A 20-year old man presented with a mass lesion involving the left cornea. The corneal lesion had been present since birth. On biomicroscopic examination, a well-defined vascularized, grayish-white mass occupying the whole of the left cornea was seen. The right eye showed multiple peripheral corneal opacities with iridocorneal adhesions, a poorly defined supranasal limbus, and a subluxated lens. Excision biopsy of the mass was done for histopathologic examination. Histopathologic examination of the excised corneal mass showed features consistent with that of a corneal keloid: thickened keratinized epithelium, absent Bowman membrane layer, and fibrovascular hyperplasia composed of hyalinized collagen fibers with irregular orientation of the collagen lamellae. During penetrating keratoplasty of the left eye, an anomalous iris pattern with poorly defined angle and a supranasal subluxated lens was also observed. Extraction of the subluxated lens was also done. The graft failed subsequent to a nonhealing persistent epithelial defect. Our case report highlights the rare association of a unilateral congenital corneal keloid with anterior-segment mesenchymal dysgenesis and bilateral subluxated lens.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.
2017-09-01
It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si crystals. The expressions obtained in the present work are very useful for the numerical simulation of grown-in defect behavior, oxygen precipitation and dopant diffusion in heavily doped Si. DFT calculations also showed that Coulomb interaction reaches approximately 30 Å from p (n)-type dopant atoms to I (V) in Si.
Hüsler, Margaret R; Danzer, Enrico; Johnson, Mark P; Bebbington, Michael; Sutton, Leslie; Adzick, N Scott; Wilson, R Douglas
2009-11-01
To determine the prenatal evolution/natural history and postnatal outcome of fetuses diagnosed with a neural tube defect (NTD) lacking the Arnold-Chiari-II malformation (ACM II). This retrospective study reviewed 16 fetuses evaluated with ultrasound (US) and MRI at a single referral center from 1/2000 to 8/2007. Follow-up studies and available postnatal outcomes were reviewed. Postpartum diagnosis was terminal myelocystoceles 7/16 (44%); myelomeningoceles (MMCs) 3/16 (19%); lipomyelomeningoceles 2/16(13%); and thoracic myelocystocele 1/16 (6%). Three patients (19%) were lost to follow-up or termination of pregnancy. Two prenatally diagnosed 'closed' NTD were postnatally found to be MMCs. Three of the myelocystoceles had additional omphalocele, bladder extrophy, imperforate anus and spinal defect (OEIS complex). For the total cohort, impaired lower extremity function was seen in 38%, impaired bladder function in 64%, and ventriculoperitoneal shunting in 8%. Four fetuses with a myelocystocele developed hindbrain herniation in the third trimester of pregnancy. The preterm delivery rate was 38%. Five of eight (63%) neonates with postnatally diagnosed myelocystoceles had mothers with a body mass index over 30. Prenatal differentiation between closed and open NTD is not always possible. Postnatal outcome of isolated myelocystocele and MMC seems to be more favorable than for an NTD with ACM II (shunt requirement). Incontinence is the major childhood morbidity. Maternal obesity may be a risk factor for closed NTDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Nimai C.; Bharatan, Sudhakar; Li Jia
2012-10-15
We report the effect of annealing on the structural, vibrational, electrical, and optical properties of heteropepitaxially grown InSbN epilayers on GaAs substrate by molecular beam epitaxy for long-wavelength infrared detector applications. As-grown epilayers exhibited high N incorporation in the both substitutional and interstitial sites, with N induced defects as evidenced from high resolution x-ray diffraction, secondary ion mass spectroscopy, and room temperature (RT) micro-Raman studies. The as-grown optical band gap was observed at 0.132 eV ({approx}9.4 {mu}m) and the epilayer exhibited high background carrier concentration at {approx}10{sup 18} cm{sup -3} range with corresponding mobility of {approx}10{sup 3} cm{sup 2}/Vs. Exmore » situ and in situ annealing at 430 Degree-Sign C though led to the loss of N but improved InSb quality due to effective annihilation of N related defects and other lattice defects attested to enhanced InSb LO phonon modes in the corresponding Raman spectra. Further, annealing resulted in the optical absorption edge red shifting to 0.12 eV ({approx}10.3 {mu}m) and the layers were characterized by reduced background carrier concentration in the {approx}10{sup 16} cm{sup -3} range with enhanced mobility in {approx}10{sup 4} cm{sup 2}/Vs range.« less
Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs
NASA Astrophysics Data System (ADS)
Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien
2018-01-01
Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.
NASA Astrophysics Data System (ADS)
Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng
2018-04-01
In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.
Vakharia, Hema; German, Greg J.; Misra, Rajeev
2001-01-01
This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed α-helical domain, while the remaining two mapped within the outer membrane-embedded β-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC. PMID:11698380
NASA Astrophysics Data System (ADS)
Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing
2017-03-01
By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.
Reduced steroidogenesis in patients with PCDH19-female limited epilepsy.
Trivisano, Marina; Lucchi, Chiara; Rustichelli, Cecilia; Terracciano, Alessandra; Cusmai, Raffaella; Ubertini, Grazia Maria; Giannone, Germana; Bertini, Enrico Silvio; Vigevano, Federico; Gecz, Jozef; Biagini, Giuseppe; Specchio, Nicola
2017-06-01
Patients affected by protocadherin 19 (PCDH19)-female limited epilepsy (PCDH19-FE) present a remarkable reduction in allopregnanolone blood levels. However, no information is available on other neuroactive steroids and the steroidogenic response to hormonal stimulation. For this reason, we evaluated allopregnanolone, pregnanolone, and pregnenolone sulfate by liquid chromatographic procedures coupled with electrospray tandem mass spectrometry in 12 unrelated patients and 15 age-matched controls. We also tested cortisol, estradiol, progesterone, and 17OH-progesterone using standard immunoassays. Apart from estradiol and progesterone, all the considered hormones were evaluated in basal condition and after stimulation with adrenocorticotropic hormone (ACTH). A generalized decrease in blood levels of almost all measured neuroactive steroids was found. When considering sexual development, cortisol and pregnenolone sulfate basal levels were significantly reduced in postpubertal girls affected by PCDH19-FE. Of interest, ACTH administration did not recover pregnenolone sulfate serum levels but restored cortisol to control levels. In prepubertal girls with PCDH19-FE, by challenging adrenal function with ACTH we disclosed defects in the production of cortisol, pregnenolone sulfate, and 17OH-progesterone, which were not apparent in basal condition. These findings point to multiple defects in peripheral steroidogenesis associated with and potentially relevant to PCDH19-FE. Some of these defects could be addressed by stimulating adrenocortical activity. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
HSV Recombinant Vectors for Gene Therapy
Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy
2010-01-01
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362
An optical and magnetic resonance study of point defects in silicon, diamond, and aluminum nitride
NASA Astrophysics Data System (ADS)
Mason, Philip Wayne
1998-12-01
Optical and magnetic resonance studies of point defects in silicon, diamond, and aluminum nitride semiconducting crystals are described in this dissertation. In silicon, an optically detected magnetic resonance (ODMR) study of a sulfur-related defect with two stable configurations, Ssb{A} and Ssb{B}, each with its own photoluminescence (PL) band and associated ODMR spectrum, is discussed. Through ODMR and related linear polarization studies, the Ssb{A} configuration is conclusively determined to have Csb1 (triclinic) symmetry (which is also the tentative finding for Ssb{B}), a controversial issue in the literature. A conversion study comparing the PL and PLODMR shows a one-to-one conversion between the two configurations for each type of signal. Related findings also tentatively suggest that the Ssb{B} configuration is metastable in both the neutral and single positive charge states of the defect. In addition, an independent analysis presented of uniaxial stress data obtained at King's College, London, shows evidence that an inverted energy-level ordering of the excited electronic effective mass states (Asb1 above E) explains the data better than the opposite ordering which is usually observed for effective mass systems. The mechanism responsible for inversion is currently not known. In diamond, a 1.4 eV Ni-related band with very sharp zero-phonon lines is studied using magnetic circular dichroism in absorption (MCDA). A tunable laser was used to directly measure circular polarization properties of transitions between individual Zeeman-split spin states. The Zeeman study also provided a determination of their associated g-values. A comparison with a theoretical model involving intra-d-shell transitions of Ni indicates that a transition from a ground state of Gammasb{5,6}(sp2E) symmetry to a Gammasb4(sp2Asb1) excited state explains the experimental MCDA findings and agrees with results from a previous uniaxial stress polarization study of luminescence associated with the same transition. Finally, a PLODMR study of several aluminum nitride crystals is also presented. The crystals were observed to emit a broad PL band comprised of numerous overlapping bands, each with its own signature ODMR signal. These new spectra include four effective spin S = 1 centers and a pair of S = 1/2 centers exhibiting characteristics expected for distant-pair recombinations. Two recombination models, either of which may explain a pair of S = 1 centers that appear to be related, are discussed.
Primordial Black Holes from Supersymmetry in the Early Universe.
Cotner, Eric; Kusenko, Alexander
2017-07-21
Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 10^{23} g. We also comment on the role that topological defects can play for PBH formation in a similar fashion.
Ma, Baojin; Han, Jing; Zhang, Shan; Liu, Feng; Wang, Shicai; Duan, Jiazhi; Sang, Yuanhua; Jiang, Huaidong; Li, Dong; Ge, Shaohua; Yu, Jinghua; Liu, Hong
2018-04-15
Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film. The cell viability and osteogenic differentiation ability of human adipose-derived stem cells (hADSCs) on the Janus membrane were assessed. The in vitro experimental results prove that the HAp nanobelt side presents high cell viability and efficient osteoinduction without any growth factor and that the PLA side can prohibit cell attachment. The in vivo repair experiments on a rat mandible defect model prove that the PLA side can prevent postoperative adhesion between bone and adjacent soft tissues. Most importantly, the HAp side has a strong ability to promote defect repair and bone regeneration. Therefore, the HAp/PLA Janus membrane will have wide applications as a kind of tissue engineering material in precise bone repair because of its unique dual osteoinduction/barrier functions, biocompatibility, low cost, and its ability to be mass-produced. Precise bone defect repair to keeping tissue integrity and original outline shape is a very important issue for tissue engineering. Here, we have designed and prepared a novel HAp/PLA Janus membrane using a casting-pervaporation method to form a layer of PLA film on paper-like HAp nanobelt film. HAp nanobelt side of the Janus membrane can successfully promote osteogenic differentiation. PLA side of the Janus membrane exhibits good properties as a barrier for preventing the adhesion of cells in vitro. Mandible repair experiments in vivo have shown that the HAp/PLA Janus membrane can promote rat mandible repair on the HAp side and can successfully prevent postoperative adhesion on the PLA side at the same time. Therefore, the HAp/PLA Janus membrane with its osteoinduction/barrier dual functions can be applied to repair bone defect precisely. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wake Nonuniformity in AN MHD Channel.
NASA Astrophysics Data System (ADS)
Hruby, Vladimir J.
The influence of a wake type nonuniformity on the effective plasma electrical conductivity and Hall parameters ((sigma)(,eff) and (beta)(,eff)) was investigated experimentally and theoretically. The experimental device consisted of a combustion -driven 1 m long linear magnetohydrodynamic generator designated Mk VII and located at the Avco Everett Research Laboratory, Inc. (AERL). The reactants were oxygen-enriched air and No. 2 fuel oil. The combustion gases were seeded with potassium carbonate in a 50 percent water solution. The nominal thermal input was 10 MW, the inlet Mach number was 1.4 and the maximum magnetic field was B = 2.3 T. The channel was resistively Faraday loaded. The nonuniformity was produced by a flat plate (a vane) located in the supersonic nozzle, which created a wake lying in a plane parallel to the magnetic field. The vane removed approximately 1 percent of the channel thermal input, which resulted in a 6 percent stagnation enthalpy defect in its wake. Traversing optical probes at three locations along the channel detected little or no conductivity defect. The absence of conductivity defect was confirmed by the generator performance which remained the same with or without the vane, all other conditions being the same. An approximate analytical model showed that conductivity in the wake can be, under certain conditions, larger than that in the free stream. A traversing stagnation pressure probe however, did detect a velocity wake at the same conditions. A small amount of water (approximately 1 percent of the total mass flow) was then injected into the plasma from the trailing edge of the vane. That resulted in a strong initial conductivity defect which completely diffused and merged with boundary layers within 0.75 m. The conductivity ((TURN) thermal) profile was recorded by means of optical diagnostics. The stagnation pressure probe recorded both thermal and stagnation pressure defects. The generated power was reduced to a fraction of the power generated without the water injection. Electrical data together with the optical data were combined to evaluate the so -called plasma nonuniformity factor (G). The experimental G fell below that predicted by an approximate analytical expression derived by Rosa (G(,R)). Numerical investigation showed that the analytical approximations are not valid for large conductivity defects. A modified analytical expression resulted in better agreement between the theory and data. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI.
Kim, Yoon Jung; Kim, Sin Gon; Lee, Yo Han
2018-01-01
Previous studies on obesity status among North Korean refugees (NKRs) have been limited. We investigated mean body mass index (BMI), waist circumference (WC), and general and central obesity prevalence among NKRs in South Korea (SK) by duration after defection from North Korea (NK), using cross-sectional data of the North Korean Refugee Health in South Korea (NORNS) study and compared these data with a sample from the general South Korean population (the fifth Korea National Health and Nutrition Examination Survey). The prevalence of general and central obesity among NKRs with duration after defection from NK of less than five years were lower than among South Koreans, except for central obesity among NKR females (obesity prevalence, 19% (12–27%) vs. 39% (34–44%) for NK vs. SK males (p < 0.001) and 19% (14–24%) vs. 27% (24–29%) for NK vs. SK females (p = 0.076); central obesity prevalence, 13% (6–19%) vs. 24% (20–29%) for NK vs. SK males (p = 0.011) and 22% (17–28%) vs. 20% (18–22%) for NK vs. SK females (p = 0.382)). The prevalence of general and central obesity among NKRs with duration after defection from NK (≥10 years) were comparable to those of South Koreans in both genders (obesity prevalence, 34% (18–50%) vs. 39% (34–44%) for NK vs. SK males (p = 0.690) and 23% (18–29%) vs. 27% (24–29%) for NK vs. SK females (0.794); central obesity prevalence, 21% (7–34%) vs. 24% (20–29%) for NK vs. SK males (p = 0.642); 22% (17–28%) vs. 20% (18–22%) for NK vs. SK females (p = 0.382)). Male sex, age and longer duration after defection from NK (≥10 years) were positively associated with obesity. As for central obesity, age was the only independently associated factor. NKR females with duration after defection from NK of less than five years had comparable central obesity prevalence to South Korean females in spite of a lower BMI, which suggests that we need further monitoring for their metabolic health among NKRs in SK. PMID:29677154
Kim, Yoon Jung; Kim, Sin Gon; Lee, Yo Han
2018-04-20
Previous studies on obesity status among North Korean refugees (NKRs) have been limited. We investigated mean body mass index (BMI), waist circumference (WC), and general and central obesity prevalence among NKRs in South Korea (SK) by duration after defection from North Korea (NK), using cross-sectional data of the North Korean Refugee Health in South Korea (NORNS) study and compared these data with a sample from the general South Korean population (the fifth Korea National Health and Nutrition Examination Survey). The prevalence of general and central obesity among NKRs with duration after defection from NK of less than five years were lower than among South Koreans, except for central obesity among NKR females (obesity prevalence, 19% (12⁻27%) vs. 39% (34⁻44%) for NK vs. SK males ( p < 0.001) and 19% (14⁻24%) vs. 27% (24⁻29%) for NK vs. SK females ( p = 0.076); central obesity prevalence, 13% (6⁻19%) vs. 24% (20⁻29%) for NK vs. SK males ( p = 0.011) and 22% (17⁻28%) vs. 20% (18⁻22%) for NK vs. SK females ( p = 0.382)). The prevalence of general and central obesity among NKRs with duration after defection from NK (≥10 years) were comparable to those of South Koreans in both genders (obesity prevalence, 34% (18⁻50%) vs. 39% (34⁻44%) for NK vs. SK males ( p = 0.690) and 23% (18⁻29%) vs. 27% (24⁻29%) for NK vs. SK females (0.794); central obesity prevalence, 21% (7⁻34%) vs. 24% (20⁻29%) for NK vs. SK males ( p = 0.642); 22% (17⁻28%) vs. 20% (18⁻22%) for NK vs. SK females ( p = 0.382)). Male sex, age and longer duration after defection from NK (≥10 years) were positively associated with obesity. As for central obesity, age was the only independently associated factor. NKR females with duration after defection from NK of less than five years had comparable central obesity prevalence to South Korean females in spite of a lower BMI, which suggests that we need further monitoring for their metabolic health among NKRs in SK.
Radman, Monique; Mack, Ricardo; Barnoya, Joaquin; Castañeda, Aldo; Rosales, Monica; Azakie, Anthony; Mehta, Nilesh; Keller, Roberta; Datar, Sanjeev; Oishi, Peter; Fineman, Jeffrey
2014-01-01
The objective of this study was to determine the association between preoperative nutritional status and postoperative outcomes in children undergoing surgery for congenital heart defects (CHD). Seventy-one patients with CHD were enrolled in a prospective, 2-center cohort study. We adjusted for baseline risk differences using a standardized risk adjustment score for surgery for CHD. We assigned a World Health Organization z score for each subject's preoperative triceps skin-fold measurement, an assessment of total body fat mass. We obtained preoperative plasma concentrations of markers of nutritional status (prealbumin, albumin) and myocardial stress (B-type natriuretic peptide [BNP]). Associations between indices of preoperative nutritional status and clinical outcomes were sought. Subjects had a median (interquartile range [IQR]) age of 10.2 (33) months. In the University of California at San Francisco (UCSF) cohort, duration of mechanical ventilation (median, 19 hours; IQR, 29 hours), length of intensive care unit stay (median, 5 days; IQR 5 days), duration of any continuous inotropic infusion (median, 66 hours; IQR 72 hours), and preoperative BNP levels (median, 30 pg/mL; IQR, 75 pg/mL) were associated with a lower preoperative triceps skin-fold z score (P < .05). Longer duration of any continuous inotropic infusion and higher preoperative BNP levels were also associated with lower preoperative prealbumin (12.1 ± 0.5 mg/dL) and albumin (3.2 ± 0.1; P < .05) levels. Lower total body fat mass and acute and chronic malnourishment are associated with worse clinical outcomes in children undergoing surgery for CHD at UCSF, a resource-abundant institution. There is an inverse correlation between total body fat mass and BNP levels. Duration of inotropic support and BNP increase concomitantly as measures of nutritional status decrease, supporting the hypothesis that malnourishment is associated with decreased myocardial function. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Zhou, Wei; Shan, Jinjun; Meng, Minxin
2018-08-17
Fructus Gardeniae-Fructus Forsythiae herb pair is an herbal formula used extensively to treat inflammation and fever, but few systematic identification studies of the bioactive components have been reported. Herein, the unknown analogues in the first-step screening were rapidly identified from representative compounds in different structure types (geniposide as iridoid type, crocetin as crocetin type, jasminoside B as monocyclic monoterpene type, oleanolic acid as saponin type, 3-caffeoylquinic acid as organic acid type, forsythoside A as phenylethanoid type, phillyrin as lignan type and quercetin 3-rutinoside as flavonoid type) by UPLC-Q-Tof/MS combined with mass defect filtering (MDF), and further confirmed with reference standards and published literatures. Similarly, in the second step, other unknown components were rapidly discovered from the compounds identified in the first step by MDF. Using the two-step screening method, a total of 58 components were characterized in Fructus Gardeniae-Fructus Forsythiae (FG-FF) decoction. In rat's blood, 36 compounds in extract and 16 metabolites were unambiguously or tentatively identified. Besides, we found the principal metabolites were glucuronide conjugates, with the glucuronide conjugates of caffeic acid, quercetin and kaempferol confirmed as caffeic acid 3-glucuronide, quercetin 3-glucuronide and kaempferol 3-glucuronide by reference standards, respectively. Additionally, most of them bound more strongly to human serum albumin than their respective prototypes, predicted by Molecular Docking and Simulation, indicating that they had lower blood clearance in vivo and possibly more contribution to pharmacological effects. This study developed a novel two-step screening method in addressing how to comprehensively screen components in herbal medicine by UPLC-Q-Tof/MS with MDF. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Hongxu; Li, Pengcheng; Liu, Zhiyong; Xu, Jianguo; Hui, Xuhui
2015-01-01
Primary benign fibrous histiocytoma (BFH) at the skull is extremely rare. Here we report a case of a 22-year-old man presented with a 1-year history of progressive enlargement subcutaneous mass on the right side of the fronto-temporo-parietal region without symptoms. The tumor was radical resected through craniotomy and the bone defect was repaired by pre-plasticity titanium mesh. Histopathologic examination confirmed a benign fibrous histiocytoma, and no signs of tumor recurrence were detected at 3-year follow-up. PMID:26823894
Third branchial cleft anomaly presenting as a retropharyngeal abscess.
Huang, R Y; Damrose, E J; Alavi, S; Maceri, D R; Shapiro, N L
2000-08-31
Branchial cleft anomalies are congenital developmental defects that typically present as a soft fluctuant mass or fistulous tract along the anterior border of the sternocleidomastoid muscle. However, branchial anomalies can manifest atypically, presenting diagnostic and therapeutic challenges. Error or delay in diagnosis can lead to complications, recurrences, and even life-threatening emergencies. We describe a case of an infected branchial cleft cyst that progressed to a retropharyngeal abscess in a 5-week-old female patient. The clinical, radiographic, and histologic findings of this rare presentation of branchial cleft cyst are discussed.
Expanding the Bethe/Gauge dictionary
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
1998-04-01
revolution. Castro "is the ^glue’ that holds the regime together and binds the masses.൨ Jose Luis Llovio- Menendez , a one-time minister who defected...8. "Suchlicki, 81. ,2Jose Luis Llovio- Menendez , Insider (New York: Bantam, 1988), 12. ,3Ibid., 58. 14Gunn, 11. 15Philip Brenner, "Cuba’s...Relations with the United States," in The Cuba Reader, (New York: Grove Press, 1989), 316. 16Jorge I. Dominguez , "United States-Cuban Relations: From Cold
Flavor condensates in brane models and dark energy
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter
2009-10-01
In the context of a microscopic model of string-inspired foam, in which foamy structures are provided by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such interactions involve splitting and capture of the matter string state by the defect, and subsequent re-emission. As a result of charge conservation, only electrically neutral matter can interact with the D-particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe, with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum expectation value (condensate) of the stress-energy tensor of the 1/2-spin fields with mixing in an effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative pressure and positive energy; however, the equation of state has wfermion>-1/3 and so the contribution of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the vacuum energy should be considered as (algebraically) additive to the flavored boson contributions, evaluated in our previous works; this should be considered as natural from (broken) target-space supersymmetry that characterizes realistic superstring/supermembrane models of space-time foam. The boson fluid is also characterized by positive energy and negative pressure, but its equation of state is, for late eras, close to wboson→-1, and hence overall the D-foam universe appears accelerating at late eras.
Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Ruuskanen, Taina M; McLeod, Matthew W; Maenhaut, Willy; Jones, Rod; Kulmala, Markku; Kalberer, Markus
2013-05-07
Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.
Effect of heat treatment and ball milling on MnBi magnetic materials
NASA Astrophysics Data System (ADS)
Li, Chunhong; Guo, Donglin; Shao, Bin; Li, Kejian; Li, Bingbing; Chen, Dengming
2018-01-01
MnBi alloy was prepared using arc melting, and was then heated at various temperatures and times. The alloy was ball milled for various lengths of time, following a heat treatment at 573 K for 20 h. The effects of the heat treatment and the ball milling on the magnetic performances of the material were investigated by analyzing the phases, the particle sizes, and the grain sizes. Results showed that the mass percentage of the LTP MnBi phase increased as the heat treatment time increased. The mass percentage initially increased and then decreased as the heat treatment temperature increased. The saturation magnetization increased quickly as the mass percentage of the LTP MnBi increased following the heat treatment. The value rose as high as 71.39 emu g-1 at 573 K for 30 h. The magnetization decreased, due to the decomposition of MnBi phases after ball milling. The coercivity increased simultaneously, due to the grain refinement, the presence of stresses, defects, and an amorphous phase. This value was improved from 0.09 to 14.65 KOe after ball milling for 24 h.
Giant solitary fibrous tumor of the diaphragm: a case report and review of literature
Ge, Wei; Yu, De-Cai; Jiang, Chun-Ping; Ding, Yi-Tao
2014-01-01
A young gentleman presented with difficulty in breathing. Computed tomography (CT) scan showed a huge mass located between the heart and stomach, which might have rooted in the diaphragm. Magnetic resonance imaging (MRI) with enhanced three dimensional construction showed a lobulated, heterogeneous soft tissue mass with short T1 weighted imaging signal and flake long T2-weighted imaging (T2WI). Tumor-enhanced scanning demonstrated heterogeneous contrast enhancement. The preliminary diagnosis was intra-abdominal huge mass and considering sarcoma. Resection was conducted where the base of the tumor was located in the diaphragm oppressing the left liver lobe and heart. The base of the tumor, together with partial surrounding of the diaphragm, pericardium base, and the left lateral hepatic segment, was resected. The defect in the diaphragm and pericardium was repaired by patching, and thoracic close drainage and abdominal drainage were placed following the surgical operation. The pathological report showed giant solitary fibrous tumor (SFT). This case report may provide a reference resource for the diagnosis and treatment of SFT located in the diaphragm. PMID:25674285
Cosmic microwave background constraints for global strings and global monopoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Eiguren, Asier; Lizarraga, Joanes; Urrestilla, Jon
We present the first cosmic microwave background (CMB) power spectra from numerical simulations of the global O( N ) linear σ-model, with N =2,3, which have global strings and monopoles as topological defects. In order to compute the CMB power spectra we compute the unequal time correlators (UETCs) of the energy-momentum tensor, showing that they fall off at high wave number faster than naive estimates based on the geometry of the defects, indicating non-trivial (anti-)correlations between the defects and the surrounding Goldstone boson field. We obtain source functions for Einstein-Boltzmann solvers from the UETCs, using a recently developed method thatmore » improves the modelling at the radiation-matter transition. We show that the interpolation function that mimics the transition is similar to other defect models, but not identical, confirming the non-universality of the interpolation function. The CMB power spectra for global strings and global monopoles have the same overall shape as those obtained using the non-linear σ-model approximation, which is well captured by a large- N calculation. However, the amplitudes are larger than the large- N calculation would naively predict, and in the case of global strings much larger: a factor of 20 at the peak. Finally we compare the CMB power spectra with the latest CMB data in other to put limits on the allowed contribution to the temperature power spectrum at multipole l = 10 of 1.7% for global strings and 2.4% for global monopoles. These limits correspond to symmetry-breaking scales of 2.9× 10{sup 15} GeV (6.3× 10{sup 14} GeV with the expected logarithmic scaling of the effective string tension between the simulation time and decoupling) and 6.4× 10{sup 15} GeV respectively. The bound on global strings is a significant one for the ultra-light axion scenario with axion masses m {sub a} ∼< 10{sup −28} eV . These upper limits indicate that gravitational waves from global topological defects will not be observable at the gravitational wave observatory LISA.« less
The new analysis method of PWQ in the DRAM pattern
NASA Astrophysics Data System (ADS)
Han, Daehan; Chang, Jinman; Kim, Taeheon; Lee, Kyusun; Kim, Yonghyeon; Kang, Jinyoung; Hong, Aeran; Choi, Bumjin; Lee, Joosung; Kim, Hyoung Jun; Lee, Kweonjae; Hong, Hyoungsun; Jin, Gyoyoung
2016-03-01
In a sub 2Xnm node process, the feedback of pattern weak points is more and more significant. Therefore, it is very important to extract the systemic defect in Double Patterning Technology(DPT), however, it is impossible to predict exact systemic defect at the recent photo simulation tool.[1] Therefore, the method of Process Window Qualification (PWQ) is very serious and essential these days. Conventional PWQ methods are die to die image comparison by using an e-beam or bright field machine. Results are evaluated by the person, who reviews the images, in some cases. However, conventional die to die comparison method has critical problem. If reference die and comparison die have same problem, such as both of dies have pattern problems, the issue patterns are not detected by current defect detecting approach. Aside from the inspection accuracy, reviewing the wafer requires much effort and time to justify the genuine issue patterns. Therefore, our company adopts die to data based matching PWQ method that is using NGR machine. The main features of the NGR are as follows. First, die to data based matching, second High speed, finally massive data were used for evaluation of pattern inspection.[2] Even though our die to data based matching PWQ method measures the mass data, our margin decision process is based on image shape. Therefore, it has some significant problems. First, because of the long analysis time, the developing period of new device is increased. Moreover, because of the limitation of resources, it may not examine the full chip area. Consequently, the result of PWQ weak points cannot represent the all the possible defects. Finally, since the PWQ margin is not decided by the mathematical value, to make the solid definition of killing defect is impossible. To overcome these problems, we introduce a statistical values base process window qualification method that increases the accuracy of process margin and reduces the review time. Therefore, it is possible to see the genuine margin of the critical pattern issue which we cannot see on our conventional PWQ inspection; hence we can enhance the accuracy of PWQ margin.
Top coat or no top coat for immersion lithography?
NASA Astrophysics Data System (ADS)
Stepanenko, N.; Kim, Hyun-Woo; Kishimura, S.; Van Den Heuvel, D.; Vandenbroeck, N.; Kocsis, M.; Foubert, P.; Maenhoudt, M.; Ercken, M.; Van Roey, F.; Gronheid, R.; Pollentier, I.; Vangoidsenhoven, D.; Delvaux, C.; Baerts, C.; O'Brien, S.; Fyen, W.; Wells, G.
2006-03-01
Since the moment immersion lithography appeared in the roadmaps of IC manufacturers, the question whether to use top coats has become one of the important topics for discussions. The top coats used in immersion lithography have proved to serve as good protectors from leaching of the resist components (PAGs, bases) into the water. However their application complicates the process and may lead to two side effects. First, top coats can affect the process window and resist profile depending on the material's refractive index, thickness, acidity, chemical interaction with the resist and the soaking time. Second, the top coat application may increase the total amount of defects on the wafer. Having an immersion resist which could work without the top coat would be a preferable solution. Still, it is quite challenging to make such a resist as direct water/resist interaction may also result in process window changes, CD variations, generation of additional defects. We have performed a systematic evaluation of a large number of immersion resist and top coat combinations, using the ASML XT:1250Di scanner at IMEC. The samples for the experiments were provided by all the leading resist and top coat suppliers. Particular attention was paid to how the resist and top coat materials from different vendors interacted with each other. Among the factors which could influence the total amount of defects or CD variations on the wafer were: the material's dynamic contact angle and its interaction with the scanner stage speed, top coat thickness and intermixing layer formation, water uptake and leaching. We have examined the importance of all mentioned factors, using such analytical techniques as Resist Development Analyser (RDA), Quartz Crystal Microbalance (QCM), Mass Spectroscopy (MS) and scatterometry. We have also evaluated the influence of the pre- and pos- exposure rinse processes on the defectivity. In this paper we will present the data on imaging and defectivity performance of the resists with and without the use of top coats. So far we can conclude that top coat/resist approach used in immersion lithography needs some more improvements (i.e. process, materials properties) in order to be implemented in high volume manufacturing.
NASA Astrophysics Data System (ADS)
Chye, Matthew B.
2011-12-01
Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.
Baehr, Leslie M; West, Daniel W D; Marcotte, George; Marshall, Andrea G; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C
2016-01-01
Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength.
Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.
2016-01-01
Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670
The Assessment of Selectivity in Different Quadrupole-Orbitrap Mass Spectrometry Acquisition Modes
NASA Astrophysics Data System (ADS)
Berendsen, Bjorn J. A.; Wegh, Robin S.; Meijer, Thijs; Nielen, Michel W. F.
2015-02-01
Selectivity of the confirmation of identity in liquid chromatography (tandem) mass spectrometry using Q-Orbitrap instrumentation was assessed using different acquisition modes based on a representative experimental data set constructed from 108 samples, including six different matrix extracts and containing over 100 analytes each. Single stage full scan, all ion fragmentation, and product ion scanning were applied. By generating reconstructed ion chromatograms using unit mass window in targeted MS2, selected reaction monitoring (SRM), regularly applied using triple-quadrupole instruments, was mimicked. This facilitated the comparison of single stage full scan, all ion fragmentation, (mimicked) SRM, and product ion scanning applying a mass window down to 1 ppm. Single factor Analysis of Variance was carried out on the variance (s2) of the mass error to determine which factors and interactions are significant parameters with respect to selectivity. We conclude that selectivity is related to the target compound (mainly the mass defect), the matrix, sample clean-up, concentration, and mass resolution. Selectivity of the different instrumental configurations was quantified by counting the number of interfering peaks observed in the chromatograms. We conclude that precursor ion selection significantly contributes to selectivity: monitoring of a single product ion at high mass accuracy with a 1 Da precursor ion window proved to be equally selective or better to monitoring two transition products in mimicked SRM. In contrast, monitoring a single fragment in all ion fragmentation mode results in significantly lower selectivity versus mimicked SRM. After a thorough inter-laboratory evaluation study, the results of this study can be used for a critical reassessment of the current identification points system and contribute to the next generation of evidence-based and robust performance criteria in residue analysis and sports doping.
Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.
Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K
2017-09-01
Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.
Cosmic Ray-Air Shower Measurement from Space
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki
1997-01-01
A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.
Galvao, Tatiana F; Brown, Bethany H; Hecker, Peter A; O'Connell, Kelly A; O'Shea, Karen M; Sabbah, Hani N; Rastogi, Sharad; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C
2012-01-01
The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy. Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30-35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca(2+)-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet. These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.
Ectopic Prolactinoma Presenting as Bacterial Meningitis: A Diagnostic Conundrum.
Akinduro, Oluwaseun O; Akinduro, Olutomi T; Gupta, Vivek; Reimer, Ronald; Olomu, Osarenoma
2018-04-01
Prolactinomas may rarely present with meningitis and cerebrospinal fluid (CSF) rhinorrhea secondary to erosion of the wall of the sella turcica. It is even more uncommon for this abnormal communication to be caused by an ectopic prolactinoma arising from the sphenoid sinus and eroding into the sella. This atypical growth pattern makes diagnosis very difficult because there may be no displacement of the normal pituitary gland. The first reported case of a patient with an ectopic prolactinoma originating within the sphenoid sinus presenting primarily with meningitis is presented, and the management strategy and surgical and nonsurgical treatment options are discussed. A 48-year-old woman presented with confusion, low-pressure headache, and fever. A lumbar puncture revealed Streptococcus pneumoniae meningitis, and she was placed on intravenous penicillin G. After initiation of antibiotics, she noticed salty tasting postnasal fluid leakage. Imaging was remarkable for bony erosion of the sphenoid sinus wall by a soft tissue mass growing from within the sinus, with no disruption of the normal pituitary gland. A biopsy was then performed with an endoscopic transnasal transsphenoidal approach, and the CSF leak was repaired with a pedicled nasoseptal flap. The final pathology was prolactinoma, and she was placed on cabergoline. Ectopic prolactinomas may rarely present as meningitis secondary to retrograde transmission of bacteria through a bony defect in the sphenoid sinus, and must be included in the differential diagnosis of any sphenoid sinus mass. Management should first address the infection, followed by surgical repair of the bony defect. Copyright © 2018 Elsevier Inc. All rights reserved.
Indium antimonide quantum well structures for electronic device applications
NASA Astrophysics Data System (ADS)
Edirisooriya, Madhavie
The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth on GaAs substrates that are oriented 2° away from the [011] direction. Chapter 3 discusses designing InSb QW layer structures that are strain balanced. By applying these defect-reducing techniques, the electron mobility in InSb quantum wells at room temperature was significantly increased. For complementary logic technology, p-channel transistors with high mobility are equally as important as n-channel transistors. However, achieving a high hole mobility in III-V semiconductors is challenging. A controlled introduction of strain in the quantum-well material is an effective technique for enhancing the hole mobility beyond its value in bulk material. The strain reduces the hole effective mass by splitting the heavy hole and light hole valence bands. Chapter 4 discusses a successful attempt to realize p-type InSb quantum well structures. The biaxial strain applied via a relaxed metamorphic buffer resulted in a significantly higher room-temperature hole mobility and a record high low-temperature hole mobility. To demonstrate the usefulness of high mobility in a device structure, magnetoresistive devices were fabricated from remotely doped InSb QWs. Such devices have numerous practical applications such as position and speed sensors and as read heads in magnetic storage systems. In a magnetoresistive device composed of a series of shorted Hall bars, the magnetoresistance is proportional to the electron mobility squared for small magnetic fields. Hence, the high electron mobility in InSb QWs makes them highly preferable for geometrical magnetoresistors. Chapter 5 reports the fabrication and characterization of InSb quantum-well magnetoresistors. The excellent transport properties of the InSb QWs resulted in high room-temperature sensitivity to applied magnetic fields. Finally, Chapter 6 provides the conclusions obtained during this research effort, and makes suggestions for future work.
Rodriguez-Calvo, Teresa; Zapardiel-Gonzalo, Jose; Amirian, Natalie; Castillo, Ericka; Lajevardi, Yasaman; Krogvold, Lars; Dahl-Jørgensen, Knut
2017-01-01
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy. PMID:28137793
Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R
1991-01-01
To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428
Low energy ion-solid interactions and chemistry effects in a series of pyrochlores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liyuan; Li, Yuhong; Devanathan, Ram
The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O.more » The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.« less
Harvey, Steven P.; Moseley, John; Norman, Andrew; ...
2018-02-27
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment
NASA Astrophysics Data System (ADS)
Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu
2016-07-01
It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in <110> and <100> silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.
Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation.
Rocca, Celine J; Kreymerman, Alexander; Ur, Sarah N; Frizzi, Katie E; Naphade, Swati; Lau, Athena; Tran, Tammy; Calcutt, Nigel A; Goldberg, Jeffrey L; Cherqui, Stephanie
2015-11-01
Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Moseley, John; Norman, Andrew
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Effect of mold designs on molten metal behaviour in high-pressure die casting
NASA Astrophysics Data System (ADS)
Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.
2017-04-01
This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.
Ferromagnetism observed in silicon-carbide-derived carbon
NASA Astrophysics Data System (ADS)
Peng, Bo; Zhang, Yuming; Wang, Yutian; Guo, Hui; Yuan, Lei; Jia, Renxu
2018-02-01
Carbide-derived carbon (CDC) is prepared by etching high purity 4H-SiC single crystals in a mixed atmosphere of 5% Cl2 and 95% Ar for 120 min and 240 min. The secondary ion mass spectroscopy (SIMS) bulk analysis technique excludes the possibility of ferromagnetic transition metal (TM) contamination arising during the experimental process. The paramagnetic and ferromagnetic components are separated from the measured magnetization-magnetic field curves of the samples. Through the use of the Brillouin function, paramagnetic centers carrying a magnetic moment of ˜1.3 μB are fitted. A resolvable hysteresis loop in the low magnetic field area is preserved at room temperature. The temperature dependence of the relative intensity of the Lorentzian-like electron spin resonance (ESR) line observed by electron spin spectroscopy reveals the existence of exchange interaction between the localized paramagnetic centers. First-principles calculations show the dominant configuration of defects in the graphitic CDC films. By calculating the energy difference between the antiferromagnetic and ferromagnetic phases, we deduce that the ferromagnetic coupling is sensitive to the concentration of defects.
Gautier, Emmanuel L.; Westerterp, Marit; Bhagwat, Neha; Cremers, Serge; Shih, Alan; Abdel-Wahab, Omar; Lütjohann, Dieter; Randolph, Gwendalyn J.; Levine, Ross L.; Tall, Alan R.
2013-01-01
A high metabolic rate in myeloproliferative disorders is a common complication of neoplasms, but the underlying mechanisms are incompletely understood. Using three different mouse models of myeloproliferative disorders, including mice with defective cholesterol efflux pathways and two models based on expression of human leukemia disease alleles, we uncovered a mechanism by which proliferating and inflammatory myeloid cells take up and oxidize glucose during the feeding period, contributing to energy dissipation and subsequent loss of adipose mass. In vivo, lentiviral inhibition of Glut1 by shRNA prevented myeloproliferation and adipose tissue loss in mice with defective cholesterol efflux pathway in leukocytes. Thus, Glut1 was necessary to sustain proliferation and potentially divert glucose from fat storage. We also showed that overexpression of the human ApoA-I transgene to raise high-density lipoprotein (HDL) levels decreased Glut1 expression, dampened myeloproliferation, and prevented fat loss. These experiments suggest that inhibition of Glut-1 and HDL cholesterol–raising therapies could provide novel therapeutic approaches to treat the energy imbalance observed in myeloproliferative disorders. PMID:23319699
NASA Astrophysics Data System (ADS)
Muramatsu, Chisako; Hayashi, Yoshinori; Sawada, Akira; Hatanaka, Yuji; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi
2010-01-01
Retinal nerve fiber layer defect (NFLD) is a major sign of glaucoma, which is the second leading cause of blindness in the world. Early detection of NFLDs is critical for improved prognosis of this progressive, blinding disease. We have investigated a computerized scheme for detection of NFLDs on retinal fundus images. In this study, 162 images, including 81 images with 99 NFLDs, were used. After major blood vessels were removed, the images were transformed so that the curved paths of retinal nerves become approximately straight on the basis of ellipses, and the Gabor filters were applied for enhancement of NFLDs. Bandlike regions darker than the surrounding pixels were detected as candidates of NFLDs. For each candidate, image features were determined and the likelihood of a true NFLD was determined by using the linear discriminant analysis and an artificial neural network (ANN). The sensitivity for detecting the NFLDs was 91% at 1.0 false positive per image by using the ANN. The proposed computerized system for the detection of NFLDs can be useful to physicians in the diagnosis of glaucoma in a mass screening.
Li, Zhenjiang; Huo, Wenhua; Li, Zhiwen; Wang, Bin; Zhang, Jingxu; Ren, Aiguo
2016-12-01
Increasing uses of titanium and silver in various products raise concerns for their potential adverse effects on pregnancy outcomes. We aimed to examine the associations between titanium and silver concentrations in maternal hair growing during the periconception period and the risk of neural tube defects (NTDs) in offspring. Our case-control study recruited 191 women with NTD-affected pregnancies and 261 women delivering healthy infants. Metal concentrations in maternal hair were measured by inductively coupled plasma-mass spectrometry. The adjusted odds ratios (AOR) of titanium concentration above the median were 1.46 (95% confidence interval (CI), 0.99-2.13) for total NTDs and 2.10 (95% CI, 1.12-3.94) for anencephaly, while OR of silver wasn't statistically significant. Titanium concentration was positively correlated with consumptions of vegetables and fruits. Maternal exposure to titanium during the periconception period was associated with an increased NTD risk in offspring, which may be partly mediated through maternal dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji
2018-02-01
The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.
Influence of subsurface defects on damage performance of fused silica in ultraviolet laser
NASA Astrophysics Data System (ADS)
Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo
2013-02-01
In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.
Yu, Huimin; Smallwood, Philip M.; Wang, Yanshu; Vidaltamayo, Roman; Reed, Randall; Nathans, Jeremy
2010-01-01
The closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and eye. In mice, targeted mutations of the genes encoding frizzled 1 (Fz1) and frizzled 2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity gene Vangl2 (Vangl2Lp), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and misorientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans. PMID:20940229
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-08-01
Headspace-Mass Spectrometry (HS-MS), Fourier Transform Mid-Infrared spectroscopy (FT-MIR) and UV-Visible spectrophotometry (UV-vis) instrumental responses have been combined to predict virgin olive oil sensory descriptors. 343 olive oil samples analyzed during four consecutive harvests (2010-2014) were used to build multivariate calibration models using partial least squares (PLS) regression. The reference values of the sensory attributes were provided by expert assessors from an official taste panel. The instrumental data were modeled individually and also using data fusion approaches. The use of fused data with both low- and mid-level of abstraction improved PLS predictions for all the olive oil descriptors. The best PLS models were obtained for two positive attributes (fruity and bitter) and two defective descriptors (fusty and musty), all of them using data fusion of MS and MIR spectral fingerprints. Although good predictions were not obtained for some sensory descriptors, the results are encouraging, specially considering that the legal categorization of virgin olive oils only requires the determination of fruity and defective descriptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas
NASA Astrophysics Data System (ADS)
Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.
2017-04-01
High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.
Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria
2011-01-01
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588
Sensing the gas metal arc welding process
NASA Technical Reports Server (NTRS)
Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.
1994-01-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Electrical and Thermal Conductivity of Solid Solution Sn1- x Mn x Te (0 ≥ x ≥ 0.04)
NASA Astrophysics Data System (ADS)
Akhundova, N. M.
2018-01-01
Electrical and thermal properties of the Sn1-xMnxTe single crystals (0 ≥ x ≥ 0.04) with contacts of eutectic alloy 57Bi + 43Sn (in mass%) are investigated at temperatures from 77 to 300 K. Experimental results show that this alloy with specified single crystals forms ohmic contact with a sufficiently low contact resistance. The electronic thermal conductivity in some samples reaches about 50% of the total thermal conductivity, and structural defects contribute significantly to the thermal resistance of the crystals.
Sensing the gas metal arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Smartt, H.B.
1992-01-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Sensing the gas metal arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Smartt, H.B.
1992-10-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
NASA Astrophysics Data System (ADS)
Li, Cheng-Jui; Tsai, Tsung-Wen; Tseng, Chien-Chou
The purpose of this research is to analyse the complex phase change and the heat transfer behavior of the Ti-6Al-4 V powder particle during the Selective Laser Melting (SLM) process. In this study, the rapid melting and solidification process is presented by Computational Fluid Dynamics (CFD) approach under the framework of the volume-of-fluid (VOF) method. The interaction between the laser velocity and power to the solidification shape and defects of the metal components will be studied numerically as a guideline to improve quality and reduce costs.
193nm high power lasers for the wide bandgap material processing
NASA Astrophysics Data System (ADS)
Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru
2017-02-01
Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.
NASA Technical Reports Server (NTRS)
Rust, David M.
1987-01-01
The Solar Maximum Mission (SMM), designed to study the solar activity, was launched on February 14, 1980, just before the 1980 peak of sunspot and flare activity. The seven instruments aboard the SMM, information received by each of the instruments, and the performance of these instruments are described, together with the repair mission carried out to replace the attitude control module and the defective electronics in the satellite's observatory. The highlights of the scientific results obtained by the SMM mission and the new discoveries made are discussed, with special attention given to the flare loops, flare loop interactions, and the mass ejection events recorded.
Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp
2017-01-01
Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test. Conclusion: Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment. PMID:28596973
HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations
NASA Astrophysics Data System (ADS)
Han, Jiaxin; Cole, Shaun; Frenk, Carlos S.; Benitez-Llambay, Alejandro; Helly, John
2018-02-01
Dark matter subhalos are the remnants of (incomplete) halo mergers. Identifying them and establishing their evolutionary links in the form of merger trees is one of the most important applications of cosmological simulations. The HBT (Hierachical Bound-Tracing) code identifies haloes as they form and tracks their evolution as they merge, simultaneously detecting subhaloes and building their merger trees. Here we present a new implementation of this approach, HBT+ , that is much faster, more user friendly, and more physically complete than the original code. Applying HBT+ to cosmological simulations, we show that both the subhalo mass function and the peak-mass function are well fitted by similar double-Schechter functions. The ratio between the two is highest at the high-mass end, reflecting the resilience of massive subhaloes that experience substantial dynamical friction but limited tidal stripping. The radial distribution of the most-massive subhaloes is more concentrated than the universal radial distribution of lower mass subhaloes. Subhalo finders that work in configuration space tend to underestimate the masses of massive subhaloes, an effect that is stronger in the host centre. This may explain, at least in part, the excess of massive subhaloes in galaxy cluster centres inferred from recent lensing observations. We demonstrate that the peak-mass function is a powerful diagnostic of merger tree defects, and the merger trees constructed using HBT+ do not suffer from the missing or switched links that tend to afflict merger trees constructed from more conventional halo finders. We make the HBT+ code publicly available.
Odo, Nnaemeka U; Mandel, Jeffrey H; Perlman, David M; Alexander, Bruce H; Scanlon, Paul D
2013-01-01
Objectives (1) To assess the impact of American Thoracic Society and European Respiratory Society (ATS/ERS) ‘acceptability’ and ‘usability’ criteria for spirometry on the estimates of restrictive ventilatory defect in a population of taconite miners. (2) To compare estimates of restrictive ventilatory defect with three different pulmonary function tests (spirometry, alveolar volume (VA) and diffusing capacity (DL,CO)). (3) To assess the role of population characteristics on these estimates. Design Cross-sectional study. Setting Current and former workers in six current taconite mining operations of northeastern Minnesota were surveyed. Participants We attempted to enrol 3313 participants. Of these, 1353 responded while 1188 current and former workers fully participated in the survey and 1084 performed complete pulmonary function testing and were assessed. Primary and secondary outcome measures We applied ATS/ERS acceptability criteria for all tests and categorised participants into groups according to whether they fully met, partially met or did not meet acceptability criteria for spirometry. Obstruction and restriction were defined utilising the lower limit of normal for all tests. When using VA, restriction was identified after excluding obstruction. Results Only 519 (47.9%) tests fully met ATS/ERS spirometry acceptability criteria. Within this group, 5% had obstruction and 6%, restriction on spirometry. In contrast, among all participants (N=1084), 16.8% had obstruction, while 4.5% had restriction. VA showed similar results in all groups after obstruction was excluded. Impaired gas transfer (reduced DL,CO) was identified in less than 50% of restriction identified by either spirometry or VA. Body mass index (BMI) was significantly related to spirometric restriction in all groups. Conclusions Population estimates of restriction using spirometry or VA varied by spirometric acceptability criteria. Other factors identified as important considerations in the estimation of restrictive ventilatory defect included increased BMI and gas transfer impairment in a relatively smaller proportion of those with spirometric restriction. These insights are important when interpreting population-based physiological data in occupational settings. PMID:23869101
Odo, Nnaemeka U; Mandel, Jeffrey H; Perlman, David M; Alexander, Bruce H; Scanlon, Paul D
2013-01-01
(1) To assess the impact of American Thoracic Society and European Respiratory Society (ATS/ERS) 'acceptability' and 'usability' criteria for spirometry on the estimates of restrictive ventilatory defect in a population of taconite miners. (2) To compare estimates of restrictive ventilatory defect with three different pulmonary function tests (spirometry, alveolar volume (VA) and diffusing capacity (DL,CO)). (3) To assess the role of population characteristics on these estimates. Cross-sectional study. Current and former workers in six current taconite mining operations of northeastern Minnesota were surveyed. We attempted to enrol 3313 participants. Of these, 1353 responded while 1188 current and former workers fully participated in the survey and 1084 performed complete pulmonary function testing and were assessed. We applied ATS/ERS acceptability criteria for all tests and categorised participants into groups according to whether they fully met, partially met or did not meet acceptability criteria for spirometry. Obstruction and restriction were defined utilising the lower limit of normal for all tests. When using VA, restriction was identified after excluding obstruction. Only 519 (47.9%) tests fully met ATS/ERS spirometry acceptability criteria. Within this group, 5% had obstruction and 6%, restriction on spirometry. In contrast, among all participants (N=1084), 16.8% had obstruction, while 4.5% had restriction. VA showed similar results in all groups after obstruction was excluded. Impaired gas transfer (reduced DL,CO) was identified in less than 50% of restriction identified by either spirometry or VA. Body mass index (BMI) was significantly related to spirometric restriction in all groups. Population estimates of restriction using spirometry or VA varied by spirometric acceptability criteria. Other factors identified as important considerations in the estimation of restrictive ventilatory defect included increased BMI and gas transfer impairment in a relatively smaller proportion of those with spirometric restriction. These insights are important when interpreting population-based physiological data in occupational settings.
Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing
2005-10-01
To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.
Hopkinson, Mark; Poulet, Blandine; Pollard, Andrea S.; Shefelbine, Sandra J.; Chang, Yu-Mei; Francis-West, Philippa; Bou-Gharios, George; Pitsillides, Andrew A.
2016-01-01
Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages. PMID:27519049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia
2008-02-08
Secondary organic aerosol (SOA) particles formed from the ozone-initiated oxidation of limonene are characterized by high-resolution electrospray ionization mass spectrometry in both the positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) products of oxidation. A combination of high resolving power (m/Δm ~60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the composition for hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O:C ratios of 0.43 and 0.50 determined from themore » positive and negative ion mode spectra, respectively. An extended reaction mechanism for the formation of the first generation SOA molecular components is proposed. The mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene, and numerous isomerization pathways for alkoxy radicals resulting from the decomposition of unstable carbonyl oxides. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy radicals shorten the carbon chain. Together these reactions yield a large number of isomeric products with broadly distributed masses. A qualitative agreement is found between the number and degree of oxidation of the predicted and measured reaction products in the monomer range.« less
Huang, Ke; Huang, Lingyi; van Breemen, Richard B
2015-04-07
Metabolic activation of drugs to electrophilic species is responsible for over 60% of black box warnings and drug withdrawals from the market place in the United States. Reactive metabolite trapping using glutathione (GSH) and analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or HPLC with high resolution mass spectrometry (mass defect filtering) have enabled screening for metabolic activation to become routine during drug development. However, current MS-based approaches cannot detect all GSH conjugates present in complex mixtures, especially those present in extracts of botanical dietary supplements. To overcome these limitations, a fast triple quadrupole mass spectrometer-based approach was developed that can detect positively and negatively charged GSH conjugates in a single analysis without the need for advanced knowledge of the elemental compositions of potential conjugates and while avoiding false positives. This approach utilized UHPLC instead of HPLC to shorten separation time and enhance sensitivity, incorporated stable-isotope labeled GSH to avoid false positives, and used fast polarity switching electrospray MS/MS to detect GSH conjugates that form positive and/or negative ions. The general new method was then used to test the licorice dietary supplement Glycyrrhiza glabra, which was found to form multiple GSH conjugates upon metabolic activation. Among the GSH conjugates found in the licorice assay were conjugates with isoliquiritigenin and glabridin, which is an irreversible inhibitor of cytochrome P450 enzymes.
Defect reduction for semiconductor memory applications using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Ye, Zhengmao; Luo, Kang; Lu, Xiaoming; Fletcher, Brian; Liu, Weijun; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2012-07-01
Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high-end memory devices. Defects occurring during imprinting can generally be broken into two categories; random defects and repeating defects. Examples of random defects include fluid phase imprint defects, such as bubbles, and solid phase imprint defects, such as line collapse. Examples of repeater defects include mask fabrication defects and particle induced defects. Previous studies indicated that soft particles cause nonrepeating defects. Hard particles, on the other hand, can cause either permanent resist plugging or mask damage. In a previous study, two specific defect types were examined; random nonfill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. We attempted to identify the different types of imprint defect types using a mask with line/space patterns at dimensions as small as 26 nm. An Imprio 500 twenty-wafer per hour development tool was used to study the various defect types. The imprint defect density was reduced nearly four orders of magnitude, down to ˜4/cm2 in a period of two years following the availability of low defect imprint masks at 26-nm half-pitch. This reduction was achieved by identifying the root cause of various defects and then taking the appropriate corrective action.
Defining defect specifications to optimize photomask production and requalification
NASA Astrophysics Data System (ADS)
Fiekowsky, Peter
2006-10-01
Reducing defect repairs and accelerating defect analysis is becoming more important as the total cost of defect repairs on advanced masks increases. Photomask defect specs based on printability, as measured on AIMS microscopes has been used for years, but the fundamental defect spec is still the defect size, as measured on the photomask, requiring the repair of many unprintable defects. ADAS, the Automated Defect Analysis System from AVI is now available in most advanced mask shops. It makes the use of pure printability specs, or "Optimal Defect Specs" practical. This software uses advanced algorithms to eliminate false defects caused by approximations in the inspection algorithm, classify each defect, simulate each defect and disposition each defect based on its printability and location. This paper defines "optimal defect specs", explains why they are now practical and economic, gives a method of determining them and provides accuracy data.
Non-basal dislocations should be accounted for in simulating ice mass flow
NASA Astrophysics Data System (ADS)
Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.
2017-09-01
Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.
Experimental evaluation of new chitin-chitosan graft for duraplasty.
Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G
2017-02-01
Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.
Histone deacetylase 3 is required for maintenance of bone mass during aging
McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Dudakovic, Amel; Carlson, Samuel W.; Ryan, Zachary C.; Kumar, Rajiv; Dadsetan, Mahrokh; Yaszemski, Michael J.; Chen, Qingshan; An, Kai-Nan; Westendorf, Jennifer J.
2012-01-01
Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the Osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKOOCN mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKOOCN mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKOOCN mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKOOCN mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging. PMID:23085085
Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter
2011-01-01
Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.
Osteochondral Allograft Transplantation of the Knee in Patients with an Elevated Body Mass Index.
Wang, Dean; Rebolledo, Brian J; Dare, David M; Pais, Mollyann D; Cohn, Matthew R; Jones, Kristofer J; Williams, Riley J
2018-02-01
Objective To characterize the graft survivorship and clinical outcomes of osteochondral allograft transplantation (OCA) of the knee in patients with an elevated body mass index (BMI). Design Prospective data on 38 consecutive patients with a BMI ≥30 kg/m 2 treated with OCA from 2000 to 2015 were reviewed. Complications, reoperations, and patient responses to validated outcome measures were examined. Failures were defined by any removal/revision of the allograft or conversion to arthroplasty. Results Thirty-one knees in 31 patients (mean age, 35.4 years [range, 17-61 years]; 87% male) met the inclusion criteria. Mean BMI was 32.9 kg/m 2 (range, 30-39 kg/m 2 ). Mean chondral defect size was 6.4 cm 2 (range, 1.0-15.3 cm 2 ). Prior to OCA, 23 patients (74%) had undergone previous surgery to the ipsilateral knee. Mean duration of follow-up was 4.1 years (range, 2-11 years). After OCA, 5 knees (13%) underwent conversion to unicompartmental (1) or total (4) knee arthroplasty. Two- and 5-year graft survivorship were 87% and 83%, respectively. At final follow-up, clinically significant improvements were noted in the pain (49.3-72.6) and physical functioning (52.9-81.3) subscales of the Short Form-36 ( P ≤ 0.001), International Knee Documentation Committee subjective form (43.5-67.0; P = 0.002), Knee Outcome Survey-Activities of Daily Living (58.2-80.4; P = 0.002), and overall condition subscale of the Cincinnati Knee Rating System (4.7-6.9; P = 0.046). Conclusions OCA can be a successful midterm treatment option for focal cartilage defects of the knee in select patients with a BMI ≥30 kg/m 2 .
Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Somik; Yin, Hongshan; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei
Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response ismore » observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.« less
Growth and Psychological Development in Postoperative Patients With Anterior Encephaloceles.
Dutta, Hemonta Kumar; Khangkeo, Chow Wachana; Baruah, Kaberi; Borbora, Debasish
2017-06-01
Anterior encephaloceles are rare malformations that are frequently associated with other brain anomalies. This study evaluates the growth and psychological development of children following encephalocele repair. Growth and psychological assessment was done in 24 children with only encephalocele (group I); nine children with encephalocele and hydrocephalus (group II); seven children with encephalocele, hydrocephalus, and secondary malformations (group III); and 40 apparently healthy control subjects. Psychological assessment was done by evaluating intelligence and temperament. Single-stage repair was performed in 38 children, and two underwent multistage repair. Major postoperative complications were noted in three individuals. The follow-up period ranged from 12 to 168 months, and during this time the growth velocity declined significantly among group II and group III patients when compared with control subjects. After adjusting the body mass index for age, our data revealed that group III participants had a significantly (P = 0.02) lower body mass index than the control group. Group III also had poor indices for intelligence quotient (P ≤ 0.01) and temperament (P ≤ 0.01). Female patients had lower temperament indices when compared with unaffected females with regard to approach withdrawal (P ≤ 0.01), mood (P = 0.026), and intensity (P = 0.03). Overall, increased disease severity adversely affected the psychological indices. Individuals with anterior encephalocele without associated intracranial defects had excellent postoperative outcomes in terms of growth and psychological developments. Hydrocephalus and agenesis of corpus callosum had the least impact on psychological development. However, the presence of secondary brain defects led to developmental delays. Gender differences in temperament may suggest a need for distinct treatment regimens to assess psychosocial well-being for males and females. Copyright © 2017 Elsevier Inc. All rights reserved.
Mice lacking the G protein γ3-subunit show resistance to opioids and diet induced obesity
Schwindinger, William F.; Borrell, Brandon M.; Waldman, Lora C.
2009-01-01
Contributing to the obesity epidemic, there is increasing evidence that overconsumption of high-fat foods may be analogous to drug addiction in that the palatability of these foods is associated with activation of specific reward pathways in the brain. With this perspective, we report that mice lacking the G protein γ3-subunit (Gng3−/− mice) show resistance to high-fat diet-induced weight gain over the course of a 12-wk study. Compared with Gng3+/+ controls, female Gng3−/− mice exhibit a 40% reduction in weight gain and a 53% decrease in fat pad mass, whereas male Gng3−/− mice display an 18% reduction in weight gain and no significant decrease in fat pad mass. The basis for the lowered weight gain is related to reduced food consumption for female and male Gng3−/− mice of 13% and 14%, respectively. Female Gng3−/− mice also show a lesser preference for high-fat chow than their female Gng3+/+ littermates, suggesting an attenuated effect on a reward pathway associated with overconsumption of fat. One possible candidate is the μ-opioid receptor (Oprm1) signaling cascade. Supporting a defect in this signaling pathway, Gng3−/− mice show marked reductions in both acute and chronic morphine responsiveness, as well as increases in endogenous opioid mRNA levels in reward-related regions of the brain. Taken together, these data suggest that the decreased weight gain of Gng3−/− mice may be related to a reduced rewarding effect of the high-fat diet resulting from a defect in Oprm1 signaling and loss of the G protein γ3-subunit. PMID:19759336
FOREWORD International Conference on Defects in Insulating Materials
NASA Astrophysics Data System (ADS)
Valerio, Mário Ernesto Giroldo; Jackson, R. A.
2010-11-01
These proceedings represent a sample of the scientific works presented during ICDIM2008, the 16th International Conference on Defects in Insulating Materials, held at the Federal University of Sergipe, Aracaju, Brazil from 24-29 August 2008. The conference was the latest in a series which began at Argonne in 1956, and which has been held most recently in Riga, Latvia (2004) and Johannesburg, South Africa (2000). The conference was also related scientifically to the EURODIM series, which have been held most recently in Milan, Italy (2006), Wroclaw, Poland (2002) and Pecs, Hungary (2010). The aim of the conference was to bring together physicists, chemists and materials scientist to discuss defects in insulating materials and their effect on materials, including their optical, mass/charge transport, energy storage and sensor properties. The conference featured 6 plenary lectures, 60 contributed lectures and about 130 posters. The posters were displayed for the whole conference, but discussed in two three-hour sessions. We are grateful to the International Advisory Committee for suggesting invited speakers and to the Programme Committee for their help in refereeing all the abstracts and choosing the contributed oral contributions. We would also like to thank the Local Organising Committee and the Brazilian Physical Society for their help with local organisation and the online registration/payment process respectively. The chairpersons would like to specially thanks all the sponsors listed below for financial support. The Federal University of Sergipe, one of the public and 'free tuition' Universities of the Country, run by the Brazilian Ministry of Education, were pleased to host this 16th meeting, the first one in Latin America. Mario E G Valerio Conference Chair Robert A Jackson Programme Chair Conference Scope Scope of the Conference was the presentation of the latest investigations on point and extended defects in bulk materials and thin films. Technological applications will be presented alongside fundamental measurements and theories. The main scientific areas included: 1 Fundamental physical phenomena Point and extended defects in wide band-gap systems: oxides, fluorides, nitrides, alkali- and silver-halides, perovskites, minerals, ceramics, nano-structures, organic molecular crystals, glasses, high-k and low-k materials, photonic crystals. 2 Defects at surfaces and interfaces Thin films and low-dimensional systems. Colloids, nano-crystals, and aggregates. Defects and material preparation technology. Defects modelling and computational methods. Radiation effects, radiation induced defects, colour centres. Luminescence of excitons, impurities, and defects. Electronic excitations, excited state dynamics, radiative and non-radiative relaxations. Scintillation, energy transfer and storage, carrier trapping phenomena. Non-linear optical phenomena. Laser active centres. Phonons and defects, electron-phonon interactions. Defect diffusion, ionic relaxations, ionic transport. 3 Technological applications Radiologic imaging and detection, scintillators, and dosimeters. Optical devices and photonics, photorefractive electro-optics, optical fibres, lasers. Materials for micro-electronics. Solid electrolytes, fuel cells, electrochemical sensors, fast ionic conductors. Conference chairpersons: Mário E G Valerio (Conference Chairman), Physics Department, Federal University of Sergipe, SE, Brasil Robert A Jackson (Programme Chairman), School of Physical and Geographical Sciences, Keele University, Keele, UK Conference committees: International Advisory Committee R Capelletti, Italy A V Chadwick, UK J Corish, Ireland J D Comins, South Africa H W den Hartog, The Netherlands K Funke, Germany Robert A Jackson, UK O Kanert, Germany A A Kaplyanskii, Russia A Lushchik, Estonia F Lüty, USA M Moreno, Spain P E Ngoepe, South Africa M Nikl, Czech Republic S V Nistor, Romania Ch Pedrini, France O F Schirmer, Germany J-M Spaeth, Germany A M Stoneham, UK M Suszynska, Poland I Tale, Latvia M E G Valerio, Brasil R T Williams, USA Programme Committee Robert A Jackson (Chair), University of Keele, UK R M Montereali, ENEA C.R. Frascati, Rome, Italy M Moreno, University of Cantabria, Spain Ch Pedrini, University Lyon, France Klaus W H Krambrock, UFMG, MG, Brasil Volkmar Dierolf, Lehigh University, USA Laszlo Kovács, Hungarian Academy of Sciences, Hungary M E G Valerio, UFS, SE, Brasil Local Organizing Committee M E G Valerio, UFS, SE, Brasil Sonia L Baldochi, IPEN, SP, Brasil Klaus W H Krambrock, UFMG, MG, Brasil Livio Amaral, UFRGS, RS, Brasil Ana R Blak, USP, SP, Brasil Marco Cremona, PUC-RJ, RJ, Brasil Anderson S L Gomes, UFPE, PE, Brasil Spero Penha Morato, LaserTools, SP, Brasil Alejandro Ayala, UFC, CE, Brasil ICDIM2008 Sponsors: Sponsors
NASA Astrophysics Data System (ADS)
Camacho, A.; Lee, J. K. W.; Fitz Gerald, J. D.; Zhao, J.; Abdu, Y. A.; Jenkins, D. M.; Hawthorne, F. C.; Kyser, T. K.; Creaser, R. A.; Armstrong, R.; Heaman, L. W.
2012-08-01
The effects of planar defects and composition on Ar mobility in trioctahedral micas have been investigated in samples from a small marble outcrop (∼500 m2) in the Frontenac Terrane, Grenville Province, Ontario. These micas crystallized during amphibolite-facies metamorphism at ∼1170 Ma and experienced a thermal pulse ∼100 Ma later at shallow crustal levels associated with the emplacement of plutons. 87Rb/86Sr ages of the phlogopites range from ∼950 to ∼1050 Ma, consistent with resetting during the later thermal event. The same phlogopites however, give 40Ar/39Ar ages between ∼950 and 1160 Ma, spanning the age range of the two thermal events. This result is intriguing because these micas have undergone the same thermal history and were not deformed after peak metamorphic conditions. In order to understand this phenomenon, the chemical, crystallographical, and microstructural nature of four mica samples has been characterized in detail using a wide range of analytical techniques. The scanning electron microscope (SEM), electron microprobe (EMP), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data show that the micas are chemically homogeneous (with the exception of Ba) and similar in composition. The Fourier transform infrared spectroscopy and Mossbauer results show that the M sites for three of the micas are dominated by divalent cations and the Fe3+/(Fe2++Fe3+) ratio for all four phlogopites ranges from 0.10 to 0.25. The stable-isotopic data for calcite indicate that this outcrop was not affected by hydrothermal fluids after peak metamorphism. No correlation between chemical composition and 87Rb/86Sr and 40Ar/39Ar age or between crystal size and 40Ar/39Ar age is observed. The only major difference among all of the micas was revealed through transmitted electron microscope (TEM), which shows that the older 1M micas contain significantly more layer stacking defects, associated with crystallization, than the younger micas. We propose that these defect structures, which are enclosed entirely within the mineral grain may serve as Ar traps and effectively increase the Ar retentivity of the mineral. As this phenomenon has not been previously documented in micas, this may have significant implications for the interpretation of 40Ar/39Ar ages of minerals which have similar defect structures.
Boudrieau, Randy J
2015-05-01
To document cumulative initial experience and long-term follow-up of the use of rhBMP-2/CRM for reconstruction of large mandibular defects (≥5 cm) in dogs. Retrospective case series. Dogs (n = 5). Medical records (October 1999-April 2011) of dogs that had mandibular reconstruction for defects/resections of ≥5 cm using rhBMP-2/CRM were reviewed. Signalment, preoperative assessment/rationale for mandibular reconstruction, surgical methods, postoperative assessment of the reconstruction (evaluation of occlusion), and complications were recorded. A definitive histologic diagnosis was obtained in dogs that had mandibular resection for mass removal. Long-term complications were determined. A minimum time frame of 2-year in-hospital follow-up was required for case inclusion. Mandibular reconstruction was successfully performed in all dogs' defects where gaps of 5-9 cm were bridged. Surgical reconstruction rapidly restored cosmetic appearance and function. All dogs healed with new bone formation across the gap. New bone formation was present within the defects as early as 2 weeks after surgery based on palpation, and new bone formation bridging the gap was documented radiographically by 16 weeks. Minor complications occurred in all dogs in the early postoperative period, and included early firm swelling and gingival dehiscence in 1 dog; late plate exposure in 3 dogs; and exuberant/cystic bone formation in 2 dogs (related to concentration/formulation of rhBMP-2/CRM). Two dogs had minor long-term complications of late plate exposure and a non-vital canine tooth; the plates and the affected canine tooth were removed. Long-term in-hospital follow-up was 5.3 years (range, 2-12.5 years); further long-term telephone follow-up was 6.3 years (range, 2-12.5 years). All owners were pleased with the outcome and would repeat the surgery again under similar circumstances. The efficacy and success of this mandibular reconstruction technique, using rhBMP-2/CRM with plate fixation, was demonstrated with bridging of large mandibular defects regardless of the underlying cause, and with excellent cosmetic and functional results. Complications were common, but considered minor and easily treated. The complications encountered revealed the importance of tailoring the use of BMPs and fixation methods to this specific anatomic location and indication. © Copyright 2014 by The American College of Veterinary Surgeons.
Peca, Donatella; Petrini, Stefania; Tzialla, Chryssoula; Boldrini, Renata; Morini, Francesco; Stronati, Mauro; Carnielli, Virgilio P; Cogo, Paola E; Danhaive, Olivier
2011-08-25
Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1)--critical for lung, thyroid and central nervous system morphogenesis and function--causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled (2)H(2)O and (13)C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry (2)H and (13)C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects.
2011-01-01
Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Conclusion Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects. PMID:21867529
Cassano, Michele; Felippu, Alexandre
2009-12-01
Endoscopic transnasal approaches to the skull base have revolutionized the treatment of cerebrospinal fluid (CSF) fistulae, making repair less invasive and more effective compared with craniotomy or extracranial techniques. This study evaluated, retrospectively, the results of endoscopic repair of dural defects with the use of mucoperiostal grafts taken from the lower turbinate. Between January 1997 and January 2007, 125 cases of anterior skull base CSF fistulae were treated endoscopically at the Instituto Felippu de Otorrinolaringologia, Sao Paolo, Brazil, and at the Department of Otolaryngology of the University Hospital "Ospedali Riuniti", Foggia, Italy. Fistula closure was achieved by overlay apposition of a lower turbinate mucoperiostal graft fixated with fibrin glue and Surgicell. The etiology of the fistula was accidental trauma in 41 cases, iatrogenic trauma in 29, skull base tumour in 12, and spontaneous in 43. The site of the defect was the sphenoid sinus in 43 patients, the cribriform plate in 42, the anterior ethmoid roof in 21, the posterior ethmoid roof in 17, and the posterior wall of the frontal sinus in 2. The success rate at first attempt was 94.4%; the 7 cases of postoperative recurrent CSF leakage involved patients presenting with spontaneous fistula and elevated intracranial pressure; 5 of these had a body-mass index > 30 and 3 suffered from diabetes mellitus. In our hands, the success rate of endoscopic fistula repair was high, even in defects larger than 2 cm. Success rates may be further improved with accurate diagnosis of elevated intracranial pressure, a contributing factor to failure of spontaneous fistula repair.
[The NIR spectra based variety discrimination for single soybean seed].
Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng
2010-12-01
With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.
Large disparity between gallium and antimony self-diffusion in gallium antimonide.
Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E
2000-11-02
The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
El-Kady, Abeer M.; Arbid, Mahmoud S.; Abd El-Hady, Bothaina M.; Marzi, Ingo; Seebach, Caroline
2014-01-01
Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation. PMID:24498345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reheis, N.; Zabernig, A.; Ploechl, L.
1994-12-31
Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less
Extranodal nasal-type NK/T-cell lymphoma of the palate and paranasal sinuses
Nikolaos, Nikitakis; Grigorios, Polyzois; Konstantinos, Katoumas; Savvas, Titsinides; Vassiliki, Zolota; Alexandra, Sklavounou; Theodoros, Papadas
2012-01-01
Summary Background: Extranodal nasal-type natural killer (NK)/T-cell lymphoma represents a rare entity, typically originating in the nasal cavity, palate or midfacial region. Signs and symptoms include non-specific rhinitis and/or sinusitis, nasal obstruction, epistaxis, facial swelling and development of deep necrotic ulceration in the midline of the palate, causing an oronasal defect. Differential diagnosis includes fungal infections, Wegener’s granulomatosis, tertiary syphilis, other non-Hodgkin’s lymphomas and malignant epithelial midline tumors. Case Report: We present a case of a 40-year-old man complaining of headache, facial pain, nasal congestion and fever. Examination revealed a large deep necrotic ulcer in the middle of the palate, presenting as an oronasal defect. Endoscopic rhinoscopy revealed crusts in the nasal cavities, moderate perforation of the nasal septum cartilage and contraction of the middle and inferior conchae. Computer tomography showed occupation of the maxillary sinuses, ethmoidal cells and sphenoidal sinus by a hyperdense soft tissue mass. Laboratory investigation revealed increased erythrocyte sedimentation rate. A wide excision of the lesion was performed. Histopathological and immunohistochemical evaluation established the diagnosis of extranodal nasal-type NK/T-cell lymphoma. The patient was treated with CHOP chemotherapy, involved-field radiotherapy and autologous bone marrow transplantation. A removable partial denture with obturator was fabricated and inserted to relieve problems caused by the oronasal defect. Conclusions: Extranodal nasal-type NK/T-cell lymphoma is a very aggressive, rapidly progressing malignant neoplasm with a poor prognosis, which can be improved by early diagnosis and combined treatment. PMID:23569495
NASA Astrophysics Data System (ADS)
Benedek, G.; Nardelli, G. F.
1967-03-01
Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon scattering. It is shown that the effect of defects on thermal conductivity and dielectric susceptibility can be accounted for by expressions which have essentially the same structure. The T matrix for a defect which affects both the mass and the short-range interaction is analyzed according to the irreducible representations of the point group which pertains to the perturbation, and the resonance conditions for Γ1, Γ12, and Γ15 irreducible representations are considered in detail for any positive impurity in KBr crystals. Hardy's deformation-dipole (DD) model is employed for the description of the host-lattice dynamics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neighbor interaction; it is shown that in polar crystals an effective-force constant has to be used in order to give a reliable description of the short-range interaction between the impurity and the host lattice. An attempt is made to define such effective force constants in the framework of the DD model. The numerical calculations concern positive monovalent impurities in KBr crystals. Γ1, Γ12, and Γ15 resonance frequencies are evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr:Li+ and KBr:Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agreement is found between the theoretical prediction and the experimental data on KBr:Li+. It is shown that some structures actually observed in the spectrum are due to peaks in the projected density of states of the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the impurity-host-lattice interaction as estimated from a priori calculations and as deduced by fitting the Γ15 resonance frequency to the experimental data. A simple explanation of the off-center position of small ions is also suggested. Finally, concentration and stress effects on the absorption coefficient are briefly discussed.
Kan, C-Y; Wen, V W; Pasquier, E; Jankowski, K; Chang, M; Richards, L A; Kavallaris, M; MacKenzie, K L
2012-01-01
The immortalization process is a fundamental step in the development of most (if not all) human cancers, including the aggressive endothelial cell (EC)-derived malignancy angiosarcoma. Inactivation of the tumor suppressor p16INK4a and the development of multiple chromosomal abnormalities are features of angiosarcoma that are recapitulated during telomerase-mediated immortalization of human ECs in vitro. The present study used a panel of telomerase-immortalized bone marrow EC (BMEC) lines to define the consequences of inactivation of p16INK4a on EC function and to identify molecular changes associated with repression of p16INK4a. In a comparison of two immortalized BMEC mass cultures and six clones, the cell lines that repressed p16INK4a showed a higher rate of proliferation and an impaired ability to undergo morphogenic differentiation and form vessel-like structures in vitro. Proteomic comparison of a p16INK4a-negative and a p16INK4a-positive BMEC mass culture at early- and late-passage time points following transduction with telomerase reverse transcriptase (hTERT) revealed altered expression of cytoskeletal proteins, including vimentin and α-tropomyosin (αTm), in the immortal cells. Immunoblot analyses of a panel of 11 immortal clones showed that cells that lacked p16INK4a expression tended to accumulate more dramatic changes in these cytoskeletal proteins than cells that retained p16INK4a expression. This corresponded with aberrant cytoskeletal architectures among p16INK4a-negative clones, which featured thicker actin stress fibers and less fluid membrane ruffles than p16INK4a-positive cells. A direct link between p16INK4a repression and defective EC function was confirmed by analysis of normal cells transfected with small interfering RNA (siRNA) targeting p16INK4a. siRNA-mediated repression of p16INK4a significantly impaired random motility and vessel formation in vitro. This report is the first to demonstrate that ECs that repress the expression of p16INK4a are prone to defects in motility, morphogenesis and cytoskeletal organization. These defects are likely to reflect alterations that occur during the development of EC-derived malignancies. PMID:22310292
Exciton center-of-mass localization and dielectric environment effect in monolayer WS2
NASA Astrophysics Data System (ADS)
Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem
2017-06-01
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
Zhang, Yuqian; Sun, Yupeng; Mu, Xiyan; Yuan, Lin; Wang, Qiao; Zhang, Lantong
2017-08-15
Vindoline (VDL) is an indole alkaloid, possessing hypoglycemic and vasodilator effects, and it is also the prodrug of many vinca alkaloids. In this paper, we analyzed in vivo (including plasma, urine, bile and faeces) and in vitro metabolic profile of VDL in rat with ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The chromatographic separation was performed on a C 18 column with a mobile phase consisted of 3mM ammonium acetate buffer and acetonitrile at a flow rate of 300μL/min. The mass spectral analysis was conducted in a positive electrospray ionization mode, and on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) were used in the biological samples analysis to trace all the potential metabolites of VDL. Twenty-five metabolites of VDL were detected by comparing with the blank sample, of which there were 2 sulfate conjugates. These data suggested that the biotransformation of VDL was deacetylation, oxidation, deoxidization, methylation, dealkylation and sulfate conjugation. This study provides useful information for further study of the pharmacology and mechanism of VDL, meanwhile, the research method can be widely applied to speculate structural features of the metabolites of other vinca alkaloids. Copyright © 2017 Elsevier B.V. All rights reserved.
Fouquet, Thierry; Torimura, Masaki; Sato, Hiroaki
2016-01-01
The degradation routes of poly(vinyl pyrrolidone) (PVP) exposed to sodium hypochlorite (bleach) have been previously investigated using chemical analyses such as infrared spectroscopy. So far, no reports have proposed mass spectrometry (MS) as an alternative tool despite its capability to provide molecular and structural information using its single stage electrospray (ESI) or matrix assisted laser desorption ionization (MALDI) and multi stage (MSn) configurations, respectively. The present study thus reports on the characterization of PVP after its exposure to bleach by high resolution MALDI spiralTOF-MS and Kendrick mass defect analysis providing clues as to the formation of a vinyl pyrrolidone/vinyl succinimide copolymeric degradation product. A thorough investigation of the fragmentation pathways of PVP adducted with sodium and proton allows one main route to be described—namely the release of the pyrrolidone pendant group in a charge remote and charge driven mechanism, respectively. Extrapolating this fragmentation pathway, the oxidation of vinyl pyrrolidone into vinyl succinimide hypothesized from the single stage MS is validated by the detection of an alternative succinimide neutral loss in lieu of the pyrrolidone release in the ESI-MSn spectra of the aged PVP sample. It constitutes an example of application of multi-stage mass spectrometry for the characterization of the degradation of polymeric samples at a molecular level. PMID:27800293
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
Scanning electron microscope automatic defect classification of process induced defects
NASA Astrophysics Data System (ADS)
Wolfe, Scott; McGarvey, Steve
2017-03-01
With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the utilization of a Hitachi RS4000 Defect Review SEM to perform Automatic Defect Classification with the objective of the total automated classification accuracy being greater than human based defect classification binning when the defects do not require multiple process step knowledge for accurate classification. The implementation of DRSEM ADC has the potential to improve the response time between defect detection and defect classification. Faster defect classification will allow for rapid response to yield anomalies that will ultimately reduce the wafer and/or the die yield.
Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle
2018-01-01
Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, B. C.
1985-01-01
Raman spectroscopy is sensitive to empirically controlled nickel electrode structural variations, and has unique potential for structural characterization of these materials. How the structure relates to electrochemical properties is examined so that the latter can be more completely understood, controlled, and optimized. Electrodes were impregnated and cycled, and cyclic voltammetry is being used for electrochemical characterization. Structural variation was observed which has escaped detection using other methods. Structural changes are induced by: (1) cobalt doping, (2) the state of change or discharge, (3) the preparation conditions and type of buffer used, and (4) the formation process. Charged active mass has an NiOOH-type structure, agreeing with X-ray diffraction results. Discharged active mass, however, is not isostructural with beta-Ni(OH)2. Chemically prepared alpha phases are not isostructural either. A disordered structural model, containing point defects, is proposed for the cycled materials. This model explains K(+) incorporation. Band assignments were made and spectra interpreted for beta-Ni(OH)2, electrochemical NiOOH and chemically precipitated NiOOH.
Zelesky, Veronica; Schneider, Richard; Janiszewski, John; Zamora, Ismael; Ferguson, James; Troutman, Matthew
2013-05-01
The ability to supplement high-throughput metabolic clearance data with structural information defining the site of metabolism should allow design teams to streamline their synthetic decisions. However, broad application of metabolite identification in early drug discovery has been limited, largely due to the time required for data review and structural assignment. The advent of mass defect filtering and its application toward metabolite scouting paved the way for the development of software automation tools capable of rapidly identifying drug-related material in complex biological matrices. Two semi-automated commercial software applications, MetabolitePilot™ and Mass-MetaSite™, were evaluated to assess the relative speed and accuracy of structural assignments using data generated on a high-resolution MS platform. Review of these applications has demonstrated their utility in providing accurate results in a time-efficient manner, leading to acceleration of metabolite identification initiatives while highlighting the continued need for biotransformation expertise in the interpretation of more complex metabolic reactions.
Albumin Apheresis for Artificial Liver Support: In Vitro Testing of a Novel Filter.
Piatek, Tomasz; Giebultowicz, Joanna; Rüth, Marieke; Lemke, Horst-Dieter; Bonn, Florian; Wroczynski, Piotr; Malkowski, Piotr; Rozga, Jacek
2018-05-16
Currently there is no direct therapy for liver failure. We have previously described selective plasma exchange therapy using a hemofilter permeable to substances that have a molecular mass of up to 100 kDa. The proof-of-concept studies and a Phase I study in patients with decompensated cirrhosis demonstrated that hemofiltration using an albumin-leaking membrane is safe and effective in removing target molecules, alleviating severe encephalopathy and improving blood chemistry. In this study a novel large-pore filter for similar clinical application is described. The performance of the filter was studied in vitro; it was found to effectively remove a wide spectrum of pathogenic factors implicated in the pathophysiology of hepatic failure, including protein bound toxins and defective forms of circulating albumin. Data on mass transport characteristics and functionality using various modes of filtration and dialysis provide rationale for clinical evaluation of the filter for artificial liver support using albumin apheresis. © 2018 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Piotrowski, Paulina K; Weggler, Benedikt A; Yoxtheimer, David A; Kelly, Christina N; Barth-Naftilan, Erica; Saiers, James E; Dorman, Frank L
2018-04-17
Hydraulic fracturing is an increasingly common technique for the extraction of natural gas entrapped in shale formations. This technique has been highly criticized due to the possibility of environmental contamination, underscoring the need for method development to identify chemical factors that could be utilized in point-source identification of environmental contamination events. Here, we utilize comprehensive two-dimensional gas chromatography (GC × GC) coupled to high-resolution time-of-flight (HRT) mass spectrometry, which offers a unique instrumental combination allowing for petroleomics hydrocarbon fingerprinting. Four flowback fluids from Marcellus shale gas wells in geographic proximity were analyzed for differentiating factors that could be exploited in environmental forensics investigations of shale gas impacts. Kendrick mass defect (KMD) plots of these flowback fluids illustrated well-to-well differences in heteroatomic substituted hydrocarbons, while GC × GC separations showed variance in cyclic hydrocarbons and polyaromatic hydrocarbons among the four wells. Additionally, generating plots that combine GC × GC separation with KMD established a novel data-rich visualization technique that further differentiated the samples.
Intraosseous hemangioma of the orbit.
Choi, June Seok; Bae, Yong Chan; Kang, Gyu Bin; Choi, Kyung-Un
2018-03-01
Intraosseous hemangioma is an extremely rare tumor that accounts for 1% or fewer of all osseous tumors. The most common sites of its occurrence are the vertebral column and calvaria. Occurrence in a facial bone is very rare. The authors aim to report a case of the surgical treatment of intraosseous hemangioma occurring in the periorbital region, which is a very rare site of occurrence and to introduce our own experiences with the diagnosis and treatment of this condition along with a literature review. A 73-year-old male patient visited our hospital with the chief complaint of a mass touching the left orbital rim. A biopsy was performed by applying a direct incision after local anesthesia. Eventually, intraosseous hemangioma was diagnosed histologically. To fully resect the mass, the orbital floor and zygoma were exposed through a subciliary incision under general anesthesia, and then the tumor was completely eliminated. Bony defect was reconstructed by performing a seventh rib bone graft. Follow-up observation has so far been conducted for 10 months after surgery without recurrence or symptoms.
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration
Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.
2015-01-01
Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925
Elefteriou, Florent; Benson, M Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F; Karsenty, Gerard
2006-12-01
The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1(ob)(-/-) mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1(ob)(-/-) mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1(ob)(-/-) mice without affecting other organ weight, while a high-protein diet overcame Atf4(-/-) and Rsk2(-/-) mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, andmore » IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.« less
General theories and features of interfacial thermal transport
NASA Astrophysics Data System (ADS)
Zhou, Hangbo; Zhang, Gang
2018-03-01
A clear understanding and proper control of interfacial thermal transport is important in nanoscale device. In this review, we first discuss the theoretical methods to handle the interfacial thermal transport problem, such as the macroscopic model, molecular dynamics, lattice dynamics and modern quantum transport theories. Then we discuss various effects that can significantly affect the interfacial thermal transport, such as the formation of chemical bonds at interface, defects and interface roughness, strain and substrates, atomic species and mass ratios, structural orientations. Then importantly, we analyze the role of inelastic scatterings at the interface, and discuss its application in thermal rectifications. Finally, the challenges and promising directions are discussed.
Multidisciplinary Management of An Unusual Isolated Alveolar Bone Infection- A Rare Case Report
B, Dixit Mala; S, Kulkarni Rahul; M, Ramugade Manoj
2015-01-01
Restoration of proximal defect of tooth is of paramount importance as its improper restoration usually results in fracture of the restoration or deteriorated periodontal health. The article reports a case with a discreet mass of alveolar bone necrosis closed to the overhanged amalgam restoration in the proximal box of the maxillary molar. As a result of this improper proximal restoration it led to deep periodontal pocket and subsequent alveolar bone necrosis which was managed successfully with combined Endodontic-Periodontic treatment. This article highlights the unfortunate sequelae of bone necrosis as a consequence of an incorrect or overlooked dental treatment and its comprehensive management. PMID:26155587
Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene
NASA Astrophysics Data System (ADS)
Hou, Dandan; Liu, Qinfu; Wang, Xianshuai; Qiao, Zhichuan; Wu, Yingke; Xu, Bohui; Ding, Shuli
2018-05-01
The mass production of graphene with high quality is desirable for its wide applications. Here, we demonstrated a facile method to exfoliate natural graphite into graphene in organic solvent by assisting of urea. The exfoliation of graphite may originate from the "molecular wedge" effect of urea, which can intercalate into the edge of natural graphite, thus facilitating the production of graphene dispersion with a high concentration up to 1.2 mg/mL. The obtained graphene is non-oxidized with negligible defects. Therefore, this approach has great promise in bulk production of graphene with superior quality for a variety of applications.
Macleod, Kay F.
2010-01-01
Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism. PMID:18800074
Thermal conductivity of an imperfect anharmonic crystal
NASA Astrophysics Data System (ADS)
Sahu, D. N.; Sharma, P. K.
1983-09-01
The thermal conductivity of an anharmonic crystal containing randomly distributed substitutional defects due to impurity-phonon scattering is theoretically investigated with the use of the method of double-time thermal Green's functions and the Kubo formalism considering all the terms, i.e., diagonal, nondiagonal, cubic anharmonic, and imperfection terms in the energy-flux operator as propounded by Hardy. The study uses cubic, quartic anharmonic, and defect terms in the Hamiltonian. Mass changes as well as force-constant changes between impurity and host-lattice atoms are taken into account explicitly. It is shown that the total conductivity can be written as a sum of contributions, namely diagonal, nondiagonal, anharmonic, and imperfection contributions. For phonons of small halfwidth, the diagonal contribution has precisely the same form which is obtained from Boltzmann's transport equation for impurity scattering in the relaxation-time approximation. The present study shows that there is a finite contribution of the nondiagonal term, cubic anharmonic term, and the term due to lattice imperfections in the energy-flux operator to the thermal conductivity although the contribution is small compared with that from the diagonal part. We have also discussed the feasibility of numerical evaluation of the various contributions to the thermal conductivity.
Effects of SF6 plasma treatment on the properties of InGaZnO thin films
NASA Astrophysics Data System (ADS)
Choi, Jinsung; Bae, Byung Seong; Yun, Eui-Jung
2018-03-01
The effects of sulfur hexafluoride (SF6) plasma on the properties of amorphous InGaZnO (a-IGZO) thin films were examined. The properties of the a-IGZO thin films were characterized by Hall effect measurement, dynamic secondary ion mass spectroscopy (SIMS), and X-ray photoelectron spectroscopy (XPS). The IGZO thin films treated with SF6 plasma before annealing had a very high resistance mainly owing to the inclusion of S into the film surface, as evidenced by SIMS profiles. On the other hand, the samples treated with SF6 plasma after annealing showed better electrical properties with a Hall mobility of 10 cm2/(V·s) than the untreated samples or the samples SF6 plasma-treated before annealing. This was attributed to the increase in the number of oxygen vacancy defects in the a-IGZO thin films owing to the enhanced out-diffusion of O to the ambient and the increase in the number of F-related donor defects originating from the incorporation of a much larger amount of F than of S into the film surface, which were confirmed by XPS and SIMS.
Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome
Dündar, Munis; Müller, Thomas; Zhang, Qi; Pan, Jing; Steinmann, Beat; Vodopiutz, Julia; Gruber, Robert; Sonoda, Tohru; Krabichler, Birgit; Utermann, Gerd; Baenziger, Jacques U.; Zhang, Lijuan; Janecke, Andreas R.
2009-01-01
Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-α1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient's fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance. PMID:20004762
Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga
NASA Technical Reports Server (NTRS)
Cobb, S. D.; Szofran, F. R.; Volz, M. P.
1999-01-01
Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.
Karuppaiah, Kannan; Yu, Kai; Lim, Joohyun; Chen, Jianquan; Smith, Craig; Long, Fanxin
2016-01-01
ABSTRACT Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth. PMID:27052727
Teratology Public Affairs Committee position paper: maternal obesity and pregnancy.
Scialli, Anthony R
2006-02-01
Compared to normal-weight women, obese women have an increased risk of infertility and pregnancy complications. The most consistently described pregnancy complications are hypertensive disorders, gestational diabetes mellitus, thromboembolic events, and cesarean section. Fetal and neonatal complications may include congenital malformations, macrosomia, and shoulder dystocia. The literature suggests that women with a body mass index (BMI) >or=30 have approximately double the risk of having a child with a neural tube defect (NTD) compared to normal-weight women, and the increased risk associated with higher maternal body weight does not appear to be modified by folic acid supplementation. The Public Affairs Committee of the Teratology Society supports the public health initiatives identified by the U.S. Food and Drug Administration in 2004 and the research initiatives identified by the National Institutes of Health in 2004. The Public Affairs Committee recommends that clinicians counsel women about appropriate caloric intake and exercise and that health-care providers educate parents about appropriate childhood nutrition. Breast-feeding should be encouraged based on evidence of a protective effect against childhood obesity, as well as other health advantages. Birth Defects Research (Part A), 2006. (c) 2006 Wiley-Liss, Inc.
S-Nitrosation destabilizes glutathione transferase P1-1.
Balchin, David; Stoychev, Stoyan H; Dirr, Heini W
2013-12-23
Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.
Chukwuanukwu, T O G; Anyanwu, S N C
2009-09-01
Abdominal wall sarcomas represent less than 1% of adult malignancies. Dermatofibrosarcoma protuberans can grow to very large sizes and the recommended resection 2-3 cm from the macroscopic tumour margin can produce very large full thickness defects of the abdominal wall. Reconstruction of such defects can be quite challenging in resource constrained areas where patients present late with giant lesions. To highlight the presentation and management challenges faced by the surgical oncologist and reconstructive surgeon in a resource constrained country when faced with giant Dermatofibrosarcoma protuberans of the abdominal wall. Prospective study of patients with abdominal wall soft tissue sarcoma presenting to the authors. Cases of giant dermatofibrosarcoma protuberns who underwent surgery were analysed. Seven cases managed over an eight year period (January 2000 to December 2007). Age ranged from 27-70 yrs with slight female preponderance 1.5:1 F:M. Three presented with recurrent fungating masses. Only one could be reconstructed with prolene mesh. One recurrence was noted during the period under study. Poverty, ignorance and lack of necessary working tools are major challenges faced by the surgical oncologist and reconstructive surgeon in resource constrained areas and pose a major obstacle to the control of cancer in these areas.
Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.
Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos
2017-10-01
The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.
High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping
2017-07-01
High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.
Fluid Flow Phenomena during Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less
The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma
NASA Astrophysics Data System (ADS)
Ai, Xing; He, Xiao-Shan; Huang, Jing-Lin; He, Zhi-Bing; Du, Kai; Chen, Guo
2018-03-01
Glow discharge polymer (GDP) films were fabricated using plasma-enhanced chemical vapor deposition. The main purpose of this work was to explore the correlations of plasma parameters with the surface morphology and chemical structure of GDP films. The intensities of main positive ions and ion energy as functions of axial distances in T2B/H2 plasma were diagnosed using energy-resolved mass spectrometry. The surface morphology and chemical structure were characterized as functions of axial distances using a scanning electron microscope and Fourier transform infrared spectroscopy, respectively. As the axial distance increases, both the intensities of positive ions and high energy ions decreases, and dissociation weakens while polymerization enhances. This leads to the weakening of the cross-linking structure of GDP films and the formation of dome defects on films. Additionally, high energy ions could introduce a strong etching effect to form etching pits. Therefore, an axial distance of about 20 mm was found to be the optimal plasma parameter to prepare the defect-free GDP films. These results could help one to find the optimal plasma parameters for GDP film deposition.
Jin, Ke; Bei, Hongbin
2018-04-30
Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys (HEAs), are compositionally complex but structurally simple, and provide a playground of tailoring material properties through modifying their compositional complexity. The recent progress in understanding the compositional effects on the energy and mass transport properties in a series of face-centered-cubic SP-CSAs is the focus of this review. Relatively low electrical and thermal conductivities, as well as small separations between the interstitial and vacancy migration barriers have been generally observed, but largely depend on the alloying constituents. We further discuss the impact of such intrinsic transport properties on their irradiation response; themore » linkage to the delayed damage accumulation, slow defect aggregation, and suppressed irradiation induced swelling and segregation has been presented. We emphasize that the number of alloying elements may not be a critical factor on both transport properties and the defect behaviors under ion irradiations. Furthermore, the recent findings have stimulated novel concepts in the design of new radiation-tolerant materials, but further studies are demanded to enable predictive models that can quantitatively bridge the transport properties to the radiation damage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Bei, Hongbin
Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys (HEAs), are compositionally complex but structurally simple, and provide a playground of tailoring material properties through modifying their compositional complexity. The recent progress in understanding the compositional effects on the energy and mass transport properties in a series of face-centered-cubic SP-CSAs is the focus of this review. Relatively low electrical and thermal conductivities, as well as small separations between the interstitial and vacancy migration barriers have been generally observed, but largely depend on the alloying constituents. We further discuss the impact of such intrinsic transport properties on their irradiation response; themore » linkage to the delayed damage accumulation, slow defect aggregation, and suppressed irradiation induced swelling and segregation has been presented. We emphasize that the number of alloying elements may not be a critical factor on both transport properties and the defect behaviors under ion irradiations. Furthermore, the recent findings have stimulated novel concepts in the design of new radiation-tolerant materials, but further studies are demanded to enable predictive models that can quantitatively bridge the transport properties to the radiation damage.« less
Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements
NASA Astrophysics Data System (ADS)
Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.
2018-06-01
Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).
Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong
2014-10-08
One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.
Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-deficient environment.
Smith, Stacey J; Amin, Samrat; Woodfield, Brian F; Boerio-Goates, Juliana; Campbell, Branton J
2013-04-15
Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst-supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/microstrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 °C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to γ-Al2O3 at an extraordinarily low temperature (below 300 °C), but this γ-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 °C. The healing of these defects accounts for many of the most interesting and widely reported properties of the γ-phase.
Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration
Lu, Li; Finegold, Milton J; Johnson, Randy L
2018-01-01
The mammalian liver has a remarkable capacity for repair following injury. Removal of up to two-third of liver mass results in a series of events that include extracellular matrix remodeling, coordinated hepatic cell cycle re-entry, restoration of liver mass and tissue remodeling to return the damaged liver to its normal state. Although there has been considerable advancement of our knowledge concerning the regenerative capacity of the mammalian liver, many outstanding questions remaining, such as: how does the regenerating liver stop proliferating when appropriate mass is restored and how do these mechanisms relate to normal regulation of organ size during development? Hippo pathway has been proposed to be central in mediating both events: organ size control during development and following regeneration. In this report, we examined the role of Yap and Taz, key components of the Hippo pathway in liver organ size regulation, both in the context of development and homeostasis. Our studies reveal that contrary to the current paradigms that Yap/Taz are not required for developmental regulation of liver size but are required for proper liver regeneration. In livers depleted of Yap and Taz, liver mass is elevated in neonates and adults. However, Yap/Taz-depleted livers exhibit profound defects in liver regeneration, including an inability to restore liver mass and to properly coordinate cell cycle entry. Taken together, our results highlight requirements for the Hippo pathway during liver regeneration and indicate that there are additional pathways that cooperate with Hippo signaling to control liver size during development and in the adult. PMID:29303509
Transition mechanism of Stone-Wales defect in armchair edge (5,5) carbon nanotube
NASA Astrophysics Data System (ADS)
Setiadi, Agung; Suprijadi
2015-04-01
We performed first principles calculations of Stone-Wales (SW) defects in armchair edge (5,5) carbon nanotube (CNT) by the density functional theory (DFT). Stone Wales (SW) defect is one kind of topological defect on the CNT. There are two kind of SW defect on the armchair edge (5,5) CNT, such as longitudinal and circumference SW defect. Barrier energy in the formation of SW defects is a good consideration to become one of parameter in controlling SW defects on the CNT. Our calculation results that a longitudinal SW defect is more stable than circumference SW defect. However, the barrier energy of circumference SW defect is lower than another one. We applied Climbing Image Nudge Elastic Band (CI-NEB) method to find minimum energy path (MEP) and barrier energy for SW defect transitions. We also found that in the case of circumference SW defect, armchair edge (5,5) CNT become semiconductor with the band gap of 0.0544 eV.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Wu, Chien-Jang; Chang, Shoou-Jinn
2014-11-01
In this work, we theoretically investigate the properties of defect modes in a defective photonic crystal containing a semiconductor metamaterial defect. We consider the structure, (LH)N/DP/(LH)N, where N and P are respectively the stack numbers, L is SiO2, H is InP, and defect layer D is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO. It is found that, within the photonic band gap, the number of defect modes (transmission peaks) will decrease as the defect thickness increases, in sharp contrast to the case of using usual dielectric defect. The peak height and position can be changed by the variation in the thickness of defect layer. In the angle-dependent defect mode, its position is shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. The analysis of defect mode provides useful information for the design of tunable transmission filter in semiconductor optoelectronics.
Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi
2014-05-05
Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less
Simulation based mask defect repair verification and disposition
NASA Astrophysics Data System (ADS)
Guo, Eric; Zhao, Shirley; Zhang, Skin; Qian, Sandy; Cheng, Guojie; Vikram, Abhishek; Li, Ling; Chen, Ye; Hsiang, Chingyun; Zhang, Gary; Su, Bo
2009-10-01
As the industry moves towards sub-65nm technology nodes, the mask inspection, with increased sensitivity and shrinking critical defect size, catches more and more nuisance and false defects. Increased defect counts pose great challenges in the post inspection defect classification and disposition: which defect is real defect, and among the real defects, which defect should be repaired and how to verify the post-repair defects. In this paper, we address the challenges in mask defect verification and disposition, in particular, in post repair defect verification by an efficient methodology, using SEM mask defect images, and optical inspection mask defects images (only for verification of phase and transmission related defects). We will demonstrate the flow using programmed mask defects in sub-65nm technology node design. In total 20 types of defects were designed including defects found in typical real circuit environments with 30 different sizes designed for each type. The SEM image was taken for each programmed defect after the test mask was made. Selected defects were repaired and SEM images from the test mask were taken again. Wafers were printed with the test mask before and after repair as defect printability references. A software tool SMDD-Simulation based Mask Defect Disposition-has been used in this study. The software is used to extract edges from the mask SEM images and convert them into polygons to save in GDSII format. Then, the converted polygons from the SEM images were filled with the correct tone to form mask patterns and were merged back into the original GDSII design file. This merge is for the purpose of contour simulation-since normally the SEM images cover only small area (~1 μm) and accurate simulation requires including larger area of optical proximity effect. With lithography process model, the resist contour of area of interest (AOI-the area surrounding a mask defect) can be simulated. If such complicated model is not available, a simple optical model can be used to get simulated aerial image intensity in the AOI. With built-in contour analysis functions, the SMDD software can easily compare the contour (or intensity) differences between defect pattern and normal pattern. With user provided judging criteria, this software can be easily disposition the defect based on contour comparison. In addition, process sensitivity properties, like MEEF and NILS, can be readily obtained in the AOI with a lithography model, which will make mask defect disposition criteria more intelligent.
7 CFR 42.106 - Classifying and recording defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are defects...
7 CFR 42.106 - Classifying and recording defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... container is scored only once for these two defects since the rust condition can be attributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are defects...
7 CFR 42.106 - Classifying and recording defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are defects...
7 CFR 42.106 - Classifying and recording defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are defects...
7 CFR 42.106 - Classifying and recording defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are defects...
Defect reaction network in Si-doped InAs. Numerical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulkmore » InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank« less
The study of develop optimization to control various resist defect in Photomask fabrication
NASA Astrophysics Data System (ADS)
Lim, JongHoon; Kim, ByungJu; Son, JaeSik; Park, EuiSang; Kim, SangPyo; Yim, DongGyu
2015-07-01
To reduce the pattern size in photomask is an inevitable trend because of the minimization of chip size. So it makes a big challenge to control defects in photomask industry. Defects below a certain size that had not been any problem in previous technology node are becoming an issue as the patterns are smaller. Therefore, the acceptable tolerance levels for current defect size and quantity are dramatically reduced. Because these defects on photomask can be the sources of the repeating defects on wafer, small size defects smaller than 200nm should not be ignored any more. Generally, almost defects are generated during develop process and etch process. Especially it is difficult to find the root cause of defects formed during the develop process because of their various types and very small size. In this paper, we studied how these small defects can be eliminated by analyzing the defects and tuning the develop process. There are 3 types of resist defects which are named as follows. The first type is `Popcorn' defect which is mainly occurred in negative resist and exists on the dark features. The second type is `Frog eggs' defect which is occurred in 2nd process of HTPSM and exists on the wide space area. The last type is `Spot' defect which also exists on the wide space area. These defects are generally appeared on the entire area of a plate and the number of these defects is about several hundred. It is thought that the original source is the surface's hydrophilic state before develop process or the incongruity between resist and developer. This study shows that the optimizing the develop process can be a good solution for some resist defects.
Automatic classification of blank substrate defects
NASA Astrophysics Data System (ADS)
Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati
2014-10-01
Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.
Birth defect - omphalocele; Abdominal wall defect - infant; Abdominal wall defect - neonate; Abdominal wall defect - newborn ... Omphalocele is considered an abdominal wall defect (a hole in the abdominal wall). The child's intestines usually ...
Procedures for Testing Color Vision,
1981-01-01
Chromatic Discriminative Ability, 8 Congenital Sex-Linked Color Vision Defects, 8 Anomalous Trichromats, 9 Dichromats, 10 Autosomal Dominant Tritan Defect...anomalous trichromats (see Chapter 3). AUTOSOMAL DOMINANT TRITAN DEFECT In addition to the X-chromosomal-linked color defects, there are some very rare... hereditary color defects. The tritan defect is one of these rare defects (minimum frequency estimated to be between 1/13,000 and 1/65,000 [Kalmus
Mean Glenoid Defect Size and Location Associated With Anterior Shoulder Instability
Gottschalk, Lionel J.; Bois, Aaron J.; Shelby, Marcus A.; Miniaci, Anthony; Jones, Morgan H.
2017-01-01
Background: There is a strong correlation between glenoid defect size and recurrent anterior shoulder instability. A better understanding of glenoid defects could lead to improved treatments and outcomes. Purpose: To (1) determine the rate of reporting numeric measurements for glenoid defect size, (2) determine the consistency of glenoid defect size and location reported within the literature, (3) define the typical size and location of glenoid defects, and (4) determine whether a correlation exists between defect size and treatment outcome. Study Design: Systematic review; Level of evidence, 4. Methods: PubMed, Ovid, and Cochrane databases were searched for clinical studies measuring glenoid defect size or location. We excluded studies with defect size requirements or pathology other than anterior instability and studies that included patients with known prior surgery. Our search produced 83 studies; 38 studies provided numeric measurements for glenoid defect size and 2 for defect location. Results: From 1981 to 2000, a total of 5.6% (1 of 18) of the studies reported numeric measurements for glenoid defect size; from 2001 to 2014, the rate of reporting glenoid defects increased to 58.7% (37 of 63). Fourteen studies (n = 1363 shoulders) reported defect size ranges for percentage loss of glenoid width, and 9 studies (n = 570 shoulders) reported defect size ranges for percentage loss of glenoid surface area. According to 2 studies, the mean glenoid defect orientation was pointing toward the 3:01 and 3:20 positions on the glenoid clock face. Conclusion: Since 2001, the rate of reporting numeric measurements for glenoid defect size was only 58.7%. Among studies reporting the percentage loss of glenoid width, 23.6% of shoulders had a defect between 10% and 25%, and among studies reporting the percentage loss of glenoid surface area, 44.7% of shoulders had a defect between 5% and 20%. There is significant variability in the way glenoid bone loss is measured, calculated, and reported. PMID:28203591
Tourlakis, Marina E; Zhong, Jian; Gandhi, Rikesh; Zhang, Siyi; Chen, Lingling; Durie, Peter R; Rommens, Johanna M
2012-08-01
Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Purcaro, Giorgia; Cordero, Chiara; Liberto, Erica; Bicchi, Carlo; Conte, Lanfranco S
2014-03-21
This study investigates the applicability of an iterative approach aimed at defining a chemical blueprint of virgin olive oil volatiles to be correlated to the product sensory quality. The investigation strategy proposed allows to fully exploit the informative content of a comprehensive multidimensional gas chromatography (GC×GC) coupled to a mass spectrometry (MS) data set. Olive oil samples (19), including 5 reference standards, obtained from the International Olive Oil Council, and commercial samples, were submitted to a sensory evaluation by a Panel test, before being analyzed in two laboratories using different instrumentation, column set, and software elaboration packages in view of a cross-validation of the entire methodology. A first classification of samples based on untargeted peak features information, was obtained on raw data from two different column combinations (apolar×polar and polar×apolar) by applying unsupervised multivariate analysis (i.e., principal component analysis-PCA). However, to improve effectiveness and specificity of this classification, peak features were reliably identified (261 compounds), on the basis of the MS spectrum and linear retention index matching, and subjected to successive pair-wise comparisons based on 2D patterns, which revealed peculiar distribution of chemicals correlated with samples sensory classification. The most informative compounds were thus identified and collected in a "blueprint" of specific defects (or combination of defects) successively adopted to discriminate Extra Virgin from defected oils (i.e., lampante oil) with the aid of a supervised approach, i.e., partial least squares-discriminant analysis (PLS-DA). In this last step, the principles of sensomics, which assigns higher information potential to analytes with lower odor threshold proved to be successful, and a much more powerful discrimination of samples was obtained in view of a sensory quality assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Kexin; van der Spoel, Aarnoud; Castiglioni, Claudia; Gale, Sarah; Fujiwara, Hideji; Ory, Daniel S; Ridgway, Neale D
2018-06-01
Microdeletions in 19q12q13.12 cause a rare and complex haploinsufficiency syndrome characterized by intellectual deficiency, developmental delays, and neurological movement disorders. Variability in the size and interval of the deletions makes it difficult to attribute the complex clinical phenotype of this syndrome to an underlying gene(s). As an alternate approach, we examined the biochemical and metabolic features of fibroblasts from an affected individual to derive clues as to the molecular basis for the syndrome. Immunofluorescence and electron microscopy of affected fibroblasts revealed an abnormal endo-lysosomal compartment that was characterized by rapid accumulation of lysosomotropic dyes, elevated LAMP1 and LAMP2 expression and vacuoles containing membrane whorls, common features of lysosomal lipid storage disorders. The late endosomes-lysosomes (LE/LY) of affected fibroblasts accumulated low-density lipoprotein cholesterol, and displayed reduced cholesterol esterification and increased de novo cholesterol synthesis, indicative of defective cholesterol transport to the endoplasmic reticulum. Affected fibroblasts also had increased ceramide and sphingolipid mass, altered glycosphingolipid species and accumulation of a fluorescent lactosylceramide probe in LE/LY. Autophagosomes also accumulated in affected fibroblasts because of decreased fusion with autolysosomes, a defect associated with other lysosomal storage diseases. Attempts to correct the cholesterol/sphingolipid storage defect in fibroblasts with cyclodextrin, sphingolipid synthesis inhibitors or by altering ion transport were unsuccessful. Our data show that 19q13.12 deletion fibroblasts have abnormal accumulation of cholesterol and sphingolipids in the endo-lysosomal system that compromises organelle function and could be an underlying cause of the clinical features of the syndrome. Copyright © 2018 Elsevier B.V. All rights reserved.
van Eekeren, Inge C M; Reilingh, Mikel L; van Dijk, C Niek
2012-10-01
An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of arthroscopic debridement and bone marrow stimulation. This article delineates levels of activity, determines times for return to activity and reviews the factors that affect rehabilitation after arthroscopic debridement and bone marrow stimulation of a talar OD. Articles for review were obtained from a search of the MEDLINE database up to January 2012 using the search headings 'osteochondral defects', 'bone marrow stimulation', 'sports/activity', 'rehabilitation', various other related factors and 'talus'. English-, Dutch- and German-language studies were evaluated.The review revealed that there is no consensus in the existing literature about rehabilitation times or return-to-sports activity times, after treatment with bone marrow stimulation of ODs in the talus. Furthermore, scant research has been conducted on these issues. The literature also showed that potential factors that aid rehabilitation could include youth, lower body mass index, smaller OD size, mobilization and treatment with growth factors, platelet-rich plasma, biphosphonates, hyaluronic acid and pulse electromagnetic fields. However, most studies have been conducted in vitro or on animals. We propose a scheme, whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to non-contact sports (running without swerving) and return to contact sports (running with swerving and collision). We also recommend that research, conducted on actual sportsmen, of recovery times after treatment of talar ODs is warranted.
NASA Astrophysics Data System (ADS)
Dupré, C.; Ernst, T.; Hartmann, J.-M.; Andrieu, F.; Barnes, J.-P.; Rivallin, P.; Faynot, O.; Deleonibus, S.; Fazzini, P. F.; Claverie, A.; Cristoloveanu, S.; Ghibaudo, G.; Cristiano, F.
2007-11-01
Based on electrical measurements and transmission electron microscopy (TEM) imaging, we propose an explanation for the electron and hole mobility degradation with gate length reduction in metal-oxide-semiconductor field effect transistors (MOSFETs). We demonstrate that ion implantation, normally used for source/drain doping, is responsible for transport degradation for short-channel devices. Implantation impact on electrons and holes mobility was investigated both on silicon-on-insulator (SOI) and tensile strained silicon-on-insulator (sSOI) substrates. Wafers with ultrathin Si films (from 8 to 35 nm) were Ge implanted at 3 keV and various concentrations (from 5×1014 to 2×1015 atoms cm-2), then annealed at 600 °C for 1 h. Secondary ion mass spectrometry enabled us to quantify the Ge-implanted atoms concentrations. The end-of-range defects impact on mobility was investigated with the pseudo-MOSFET technique. Measurements showed a mobility decrease as the implantation dose increased. We demonstrated that sSOI mobility is more sensitive to implantation than SOI mobility, without any implantation-induced strain relaxation in sSOI (checked using the ultraviolet Raman technique). A 36% (25%) holes (electrons) mobility degradation was measured for sSOI, while SOI presented a 21% mobility degradation for holes and 5% for electrons. Finally, the electrical results were compared with morphological studies. Plan-view TEM showed the presence of interstitial defects formed during ion implantation and annealing. The defect density was estimated to be two times higher in sSOI than in SOI, which is in full agreement with electrical results mentioned before. The results are relevant for the optimization of the source and drain regions of advanced nanoscale SOI and sSOI transistors.