Asteroid mass estimation using Markov-chain Monte Carlo
NASA Astrophysics Data System (ADS)
Siltala, Lauri; Granvik, Mikael
2017-11-01
Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to an inverse problem in at least 13 dimensions where the aim is to derive the mass of the perturbing asteroid(s) and six orbital elements for both the perturbing asteroid(s) and the test asteroid(s) based on astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations: the very rough 'marching' approximation, in which the asteroids' orbital elements are not fitted, thereby reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-chain Monte Carlo (MCMC) approach. We describe each of these algorithms with particular focus on the MCMC algorithm, and present example results using both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans.
Asteroid mass estimation using Markov-Chain Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Siltala, Lauri; Granvik, Mikael
2016-10-01
Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid using astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations into the OpenOrb asteroid-orbit-computation software: the very rough 'marching' approximation, in which the asteroid orbits are fixed at a given epoch, reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-Chain Monte Carlo (MCMC) approach. We will introduce each of these algorithms with particular focus on the MCMC algorithm, and present example results for both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans, particularly in connection with ESA's Gaia mission.
Detecting Anomalies in Process Control Networks
NASA Astrophysics Data System (ADS)
Rrushi, Julian; Kang, Kyoung-Don
This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.
NASA Technical Reports Server (NTRS)
Wolf, Michael
2012-01-01
A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.
Simultaneous Mass Determination for Gravitationally Coupled Asteroids
NASA Astrophysics Data System (ADS)
Baer, James; Chesley, Steven R.
2017-08-01
The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.
Simultaneous Mass Determination for Gravitationally Coupled Asteroids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, James; Chesley, Steven R., E-mail: jimbaer1@earthlink.net
The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51more » Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.« less
Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Roessner, Ute; Halgamuge, Saman K
2015-01-01
Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net.
2015-01-01
Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net. PMID:26680279
Asteroid mass estimation with Markov-chain Monte Carlo
NASA Astrophysics Data System (ADS)
Siltala, L.; Granvik, M.
2017-09-01
We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
Parameter estimates in binary black hole collisions using neural networks
NASA Astrophysics Data System (ADS)
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
2016-10-01
We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.
Personalized recommendation based on unbiased consistence
NASA Astrophysics Data System (ADS)
Zhu, Xuzhen; Tian, Hui; Zhang, Ping; Hu, Zheng; Zhou, Tao
2015-08-01
Recently, in physical dynamics, mass-diffusion-based recommendation algorithms on bipartite network provide an efficient solution by automatically pushing possible relevant items to users according to their past preferences. However, traditional mass-diffusion-based algorithms just focus on unidirectional mass diffusion from objects having been collected to those which should be recommended, resulting in a biased causal similarity estimation and not-so-good performance. In this letter, we argue that in many cases, a user's interests are stable, and thus bidirectional mass diffusion abilities, no matter originated from objects having been collected or from those which should be recommended, should be consistently powerful, showing unbiased consistence. We further propose a consistence-based mass diffusion algorithm via bidirectional diffusion against biased causality, outperforming the state-of-the-art recommendation algorithms in disparate real data sets, including Netflix, MovieLens, Amazon and Rate Your Music.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, B.; Misra, A.; Fricke, B.A.
1997-12-31
A computer algorithm was developed that estimates the latent and sensible heat loads due to the bulk refrigeration of fruits and vegetables. The algorithm also predicts the commodity moisture loss and temperature distribution which occurs during refrigeration. Part 1 focused upon the thermophysical properties of commodities and the flowfield parameters which govern the heat and mass transfer from fresh fruits and vegetables. This paper, Part 2, discusses the modeling methodology utilized in the current computer algorithm and describes the development of the heat and mass transfer models. Part 2 also compares the results of the computer algorithm to experimental datamore » taken from the literature and describes a parametric study which was performed with the algorithm. In addition, this paper also reviews existing numerical models for determining the heat and mass transfer in bulk loads of fruits and vegetables.« less
Lidars for smoke and dust cloud diagnostics
NASA Astrophysics Data System (ADS)
Fujimura, S. F.; Warren, R. E.; Lutomirski, R. F.
1980-11-01
An algorithm that integrates a time-resolved lidar signature for use in estimating transmittance, extinction coefficient, mass concentration, and CL values generated under battlefield conditions is applied to lidar signatures measured during the DIRT-I tests. Estimates are given for the dependence of the inferred transmittance and extinction coefficient on uncertainties in parameters such as the obscurant backscatter-to-extinction ratio. The enhanced reliability in estimating transmittance through use of a target behind the obscurant cloud is discussed. It is found that the inversion algorithm can produce reliable estimates of smoke or dust transmittance and extinction from all points within the cloud for which a resolvable signal can be detected, and that a single point calibration measurement can convert the extinction values to mass concentration for each resolvable signal point.
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.
2018-01-01
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.
Towards Unmanned Systems for Dismounted Operations in the Canadian Forces
2011-01-01
LIDAR , and RADAR) and lower power/mass, passive imaging techniques such as structure from motion and simultaneous localisation and mapping ( SLAM ...sensors and learning algorithms. 5.1.2 Simultaneous localisation and mapping SLAM algorithms concurrently estimate a robot pose and a map of unique...locations and vehicle pose are part of the SLAM state vector and are estimated in each update step. AISS developed a monocular camera-based SLAM
Real time lobster posture estimation for behavior research
NASA Astrophysics Data System (ADS)
Yan, Sheng; Alfredsen, Jo Arve
2017-02-01
In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu
2015-03-31
We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less
GridMass: a fast two-dimensional feature detection method for LC/MS.
Treviño, Victor; Yañez-Garza, Irma-Luz; Rodriguez-López, Carlos E; Urrea-López, Rafael; Garza-Rodriguez, Maria-Lourdes; Barrera-Saldaña, Hugo-Alberto; Tamez-Peña, José G; Winkler, Robert; Díaz de-la-Garza, Rocío-Isabel
2015-01-01
One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two-dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one-dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://www.bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris
2015-04-01
Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.
Brassey, Charlotte A.; Gardiner, James D.
2015-01-01
Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r2=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons. PMID:26361559
An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft
NASA Technical Reports Server (NTRS)
Bauer, Jeffrey E.; Teets, Edward
1997-01-01
An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.
A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry
NASA Technical Reports Server (NTRS)
Davis, Curt H.
1992-01-01
An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.
Geisler, Corinna; Pourhassan, Maryam; Braun, Wiebke; Schweitzer, Lisa; Müller, Manfred J
2017-03-01
Dual-energy X-ray (DXA) is an alternative to magnetic resonance imaging (MRI) to measure skeletal muscle mass. DXA assesses lean body mass (LBM), and MRI measures skeletal muscle mass (SMM). Kim et al. (Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655) developed MRI-based algorithms to estimate whole-body SMM by DXA. These algorithms were based on an ethnically mixed study population (Kim et al., Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655). It is unclear whether Kim's algorithms are accurate in an exclusive Caucasian population. The aim of our study was to validate Kim's equation in a Caucasian population of 346 subjects. SMM MRI was assessed using MRI, and LBM and BMC DXA were measured by DXA and fat mass (FM ADP ) by air-displacement plethysmographie (ADP). SMM MRI and predicted SMM were highly correlated (r = 0·944; P<0·05). The standard error of estimate of the regression equation was 2·4 kg. However, Bland-Altman plots showed a significant (P<0·001) systematic bias between SMM MRI (median 25·1 kg; IQ 20·2-31·1 kg) and predicted SMM (median 26·3 kg; IQ 22·6-33·0 kg), overestimating SMM by 9·8%. Multiple regression analyses showed that weight explained 4·4% of the variance in the differences between SMM MRI and predicted SMM with the major part unexplained. Kim's algorithm has a systematic unexplained bias and is not recommended in Caucasians. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Bayesian inference on EMRI signals using low frequency approximations
NASA Astrophysics Data System (ADS)
Ali, Asad; Christensen, Nelson; Meyer, Renate; Röver, Christian
2012-07-01
Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.
Nonlinear convergence active vibration absorber for single and multiple frequency vibration control
NASA Astrophysics Data System (ADS)
Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang
2017-12-01
This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.
A genetic algorithm approach to estimate glacier mass variations from GRACE data
NASA Astrophysics Data System (ADS)
Reimond, Stefan; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten
2017-04-01
The application of a genetic algorithm (GA) to the inference of glacier mass variations with a point-mass modeling method is described. GRACE K-band ranging data (available since April 2002) processed at the Graz University of Technology serve as input for this study. The reformulation of the point-mass inversion method in terms of an optimization problem is motivated by two reasons: first, an improved choice of the positions of the modeled point-masses (with a particular focus on the depth parameter) is expected to increase the signal-to-noise ratio. Considering these coordinates as additional unknown parameters (besides from the mass change magnitudes) results in a highly non-linear optimization problem. The second reason is that the mass inversion from satellite tracking data is an ill-posed problem, and hence regularization becomes necessary. The main task in this context is the determination of the regularization parameter, which is typically done by means of heuristic selection rules like, e.g., the L-curve criterion. In this study, however, the challenge of selecting a suitable balancing parameter (or even a matrix) is tackled by introducing regularization to the overall optimization problem. Based on this novel approach, estimations of ice-mass changes in various alpine glacier systems (e.g. Svalbard) are presented and compared to existing results and alternative inversion methods.
Benndorf, Matthias; Burnside, Elizabeth S; Herda, Christoph; Langer, Mathias; Kotter, Elmar
2015-08-01
Lesions detected at mammography are described with a highly standardized terminology: the breast imaging-reporting and data system (BI-RADS) lexicon. Up to now, no validated semantic computer assisted classification algorithm exists to interactively link combinations of morphological descriptors from the lexicon to a probabilistic risk estimate of malignancy. The authors therefore aim at the external validation of the mammographic mass diagnosis (MMassDx) algorithm. A classification algorithm like MMassDx must perform well in a variety of clinical circumstances and in datasets that were not used to generate the algorithm in order to ultimately become accepted in clinical routine. The MMassDx algorithm uses a naïve Bayes network and calculates post-test probabilities of malignancy based on two distinct sets of variables, (a) BI-RADS descriptors and age ("descriptor model") and (b) BI-RADS descriptors, age, and BI-RADS assessment categories ("inclusive model"). The authors evaluate both the MMassDx (descriptor) and MMassDx (inclusive) models using two large publicly available datasets of mammographic mass lesions: the digital database for screening mammography (DDSM) dataset, which contains two subsets from the same examinations-a medio-lateral oblique (MLO) view and cranio-caudal (CC) view dataset-and the mammographic mass (MM) dataset. The DDSM contains 1220 mass lesions and the MM dataset contains 961 mass lesions. The authors evaluate discriminative performance using area under the receiver-operating-characteristic curve (AUC) and compare this to the BI-RADS assessment categories alone (i.e., the clinical performance) using the DeLong method. The authors also evaluate whether assigned probabilistic risk estimates reflect the lesions' true risk of malignancy using calibration curves. The authors demonstrate that the MMassDx algorithms show good discriminatory performance. AUC for the MMassDx (descriptor) model in the DDSM data is 0.876/0.895 (MLO/CC view) and AUC for the MMassDx (inclusive) model in the DDSM data is 0.891/0.900 (MLO/CC view). AUC for the MMassDx (descriptor) model in the MM data is 0.862 and AUC for the MMassDx (inclusive) model in the MM data is 0.900. In all scenarios, MMassDx performs significantly better than clinical performance, P < 0.05 each. The authors furthermore demonstrate that the MMassDx algorithm systematically underestimates the risk of malignancy in the DDSM and MM datasets, especially when low probabilities of malignancy are assigned. The authors' results reveal that the MMassDx algorithms have good discriminatory performance but less accurate calibration when tested on two independent validation datasets. Improvement in calibration and testing in a prospective clinical population will be important steps in the pursuit of translation of these algorithms to the clinic.
Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C
2013-03-01
To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.
Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J
2015-03-03
Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error.
Mass imbalances in EPANET water-quality simulations
NASA Astrophysics Data System (ADS)
Davis, Michael J.; Janke, Robert; Taxon, Thomas N.
2018-04-01
EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.
Mass and Volume Optimization of Space Flight Medical Kits
NASA Technical Reports Server (NTRS)
Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry
2014-01-01
Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J; Tian, X; Segars, P
2016-06-15
Purpose: To develop an automated technique for estimating patient-specific regional imparted energy and dose from tube current modulated (TCM) computed tomography (CT) exams across a diverse set of head and body protocols. Methods: A library of 58 adult computational anthropomorphic extended cardiac-torso (XCAT) phantoms were used to model a patient population. A validated Monte Carlo program was used to simulate TCM CT exams on the entire library of phantoms for three head and 10 body protocols. The net imparted energy to the phantoms, normalized by dose length product (DLP), and the net tissue mass in each of the scan regionsmore » were computed. A knowledgebase containing relationships between normalized imparted energy and scanned mass was established. An automated computer algorithm was written to estimate the scanned mass from actual clinical CT exams. The scanned mass estimate, DLP of the exam, and knowledgebase were used to estimate the imparted energy to the patient. The algorithm was tested on 20 chest and 20 abdominopelvic TCM CT exams. Results: The normalized imparted energy increased with increasing kV for all protocols. However, the normalized imparted energy was relatively unaffected by the strength of the TCM. The average imparted energy was 681 ± 376 mJ for abdominopelvic exams and 274 ± 141 mJ for chest exams. Overall, the method was successful in providing patientspecific estimates of imparted energy for 98% of the cases tested. Conclusion: Imparted energy normalized by DLP increased with increasing tube potential. However, the strength of the TCM did not have a significant effect on the net amount of energy deposited to tissue. The automated program can be implemented into the clinical workflow to provide estimates of regional imparted energy and dose across a diverse set of clinical protocols.« less
Baca, A
1996-04-01
A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.
NASA Astrophysics Data System (ADS)
Duarte, Manuel; Mamon, Gary A.
2014-05-01
The specific star formation rates of galaxies are influenced both by their mass and by their environment. Moreover, the mass function of groups and clusters serves as a powerful cosmological tool. It is thus important to quantify the accuracy to which group properties are extracted from redshift surveys. We test here the Friends-of-Friends (FoF) grouping algorithm, which depends on two linking lengths (LLs), plane-of-sky and line-of-sight (LOS), normalized to the mean nearest neighbour separation of field galaxies. We argue, on theoretical grounds, that LLs should be b⊥ ≃ 0.11, and b∥ ≈ 1.3 to recover 95 per cent of all galaxies with projected radii within the virial radius r200 and 95 per cent of the galaxies along the LOS. We then predict that 80 to 90 per cent of the galaxies in FoF groups should lie within their parent real-space groups (RSGs), defined within their virial spheres. We test the FoF extraction for 16 × 16 pairs of LLs, using subsamples of galaxies, doubly complete in distance and luminosity, of a flux-limited mock Sloan Digital Sky Survey (SDSS) galaxy catalogue. We find that massive RSGs are more prone to fragmentation, while the fragments typically have low estimated mass, with typically 30 per cent of groups of low and intermediate estimated mass being fragments. Group merging rises drastically with estimated mass. For groups of three or more galaxies, galaxy completeness and reliability are both typically better than 80 per cent (after discarding the fragments). Estimated masses of extracted groups are biased low, by up to a factor 4 at low richness, while the inefficiency of mass estimation improves from 0.85 dex to 0.2 dex when moving from low to high multiplicity groups. The optimal LLs depend on the scientific goal for the group catalogue. We propose b⊥ ≃ 0.07, with b∥ ≃ 1.1 for studies of environmental effects, b∥ ≃ 2.5 for cosmographic studies and b∥ ≃ 5 for followups of individual groups.
Personalized recommendation based on preferential bidirectional mass diffusion
NASA Astrophysics Data System (ADS)
Chen, Guilin; Gao, Tianrun; Zhu, Xuzhen; Tian, Hui; Yang, Zhao
2017-03-01
Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.
Plechawska, Małgorzata; Polańska, Joanna
2009-01-01
This article presents the method of the processing of mass spectrometry data. Mass spectra are modelled with Gaussian Mixture Models. Every peak of the spectrum is represented by a single Gaussian. Its parameters describe the location, height and width of the corresponding peak of the spectrum. An authorial version of the Expectation Maximisation Algorithm was used to perform all calculations. Errors were estimated with a virtual mass spectrometer. The discussed tool was originally designed to generate a set of spectra within defined parameters.
Satellite measurement of aerosol mass over land
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.; Mahoney, R. L.
1984-01-01
The estimation of aerosol optical thickness and mass from satellite observations over land is demonstrated using data from the GOES Visible/IR Spin-Scan Radiometer for the eastern U.S. The post-launch calibration technique is described; the algorithm used to derive optical thickness from the radiance of scattered sunlight (by means of a radiative-transfer model in which the optical characteristics of the aerosol are assumed) is presented; and data on aerosol S for July 31, 1980 are analyzed. The results are presented in a series of graphs and maps and compared with ground-based data. The errors in the optical thickness and columnar mass are estimated as 15 and 40 percent, respectively, and the need for independent-data-set validation of satellite-based mass, transport, and divergence values is indicated.
Dräger, Andreas; Kronfeld, Marcel; Ziller, Michael J; Supper, Jochen; Planatscher, Hannes; Magnus, Jørgen B; Oldiges, Marco; Kohlbacher, Oliver; Zell, Andreas
2009-01-01
Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1) experimental measurement of participating molecules, (2) assignment of rate laws to each reaction, and (3) parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1) coarse-grained comparison of the algorithms on all models and (2) fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics model. A Langevin model is advisable to take stochastic effects into account. To estimate the model parameters, three algorithms are particularly useful: For first attempts the settings-free Tribes algorithm yields valuable results. Particle swarm optimization and differential evolution provide significantly better results with appropriate settings. PMID:19144170
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
Experimental evaluation of a neural-oscillator-driven active mass damper system
NASA Astrophysics Data System (ADS)
Iba, Daisuke; Hongu, Junichi
2014-03-01
This paper proposes a new active dynamic absorber control system for high-rise buildings using a neural oscillator and a map, which estimates the amplitude level of the oscillator, and shows some experimental results by using an apparatus, which realizes the proposed control algorithm. The proposed system decides the travel distance and direction of the auxiliary mass of the dynamic absorber using the output of oscillator, which is the filtering result of structure acceleration responses by the property of the oscillator, and Amplitude-Phase map (AP-map) for estimation of the structural response in specific frequency between synchronization region, and then, transfer the auxiliary mass to the predetermined location by using a position controller. In addition, the developed active dynamic absorber system is mounted on the top of the experimental single degree of freedom structure, which represents high-rise buildings, and consists of the auxiliary mass, a DC motor, a ball screw, a microcomputer, a laser displacement sensor, and an acceleration sensor. The proposed AP-map and the algorithm to determine the travel direction of the mass using the oscillator output are embedded in the microcomputer. This paper starts by illuminating the relation among subsystems of the proposed system with reference to a block diagram, and then, shows experimental responses of the whole system excited by earthquakes to confirm the validity of the proposed system.
NASA Astrophysics Data System (ADS)
do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo
2018-01-01
This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.
Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets
NASA Astrophysics Data System (ADS)
Goel, Amit; Montgomery, Michele
2015-08-01
Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.
Asteroid mass estimation with Markov-chain Monte Carlo
NASA Astrophysics Data System (ADS)
Siltala, Lauri; Granvik, Mikael
2017-10-01
Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem at minimum where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid by fitting their trajectories to their observed positions. The fitting has typically been carried out with linearized methods such as the least-squares method. These methods need to make certain assumptions regarding the shape of the probability distributions of the model parameters. This is problematic as these assumptions have not been validated. We have developed a new Markov-chain Monte Carlo method for mass estimation which does not require an assumption regarding the shape of the parameter distribution. Recently, we have implemented several upgrades to our MCMC method including improved schemes for handling observational errors and outlier data alongside the option to consider multiple perturbers and/or test asteroids simultaneously. These upgrades promise significantly improved results: based on two separate results for (19) Fortuna with different test asteroids we previously hypothesized that simultaneous use of both test asteroids would lead to an improved result similar to the average literature value for (19) Fortuna with substantially reduced uncertainties. Our upgraded algorithm indeed finds a result essentially equal to the literature value for this asteroid, confirming our previous hypothesis. Here we show these new results for (19) Fortuna and other example cases, and compare our results to previous estimates. Finally, we discuss our plans to improve our algorithm further, particularly in connection with Gaia.
2015-03-26
pendulum [15] to estimate the MOI. The benefit to this methodology is that instead of a direct comparison to Euler’s equations when using an on-board ACS...the equations of motion of pendulum motion are evaluated to estimate the resistance to angular acceleration. Instead of attempting to compare noisy...sensor data instantaneously when using on-board ACS data, the pendulum oscillation frequency is estimated, which can be globally smoothed for highly
NASA Astrophysics Data System (ADS)
Diakogiannis, Foivos I.; Lewis, Geraint F.; Ibata, Rodrigo A.; Guglielmo, Magda; Kafle, Prajwal R.; Wilkinson, Mark I.; Power, Chris
2017-09-01
Dwarf galaxies, among the most dark matter dominated structures of our Universe, are excellent test-beds for dark matter theories. Unfortunately, mass modelling of these systems suffers from the well-documented mass-velocity anisotropy degeneracy. For the case of spherically symmetric systems, we describe a method for non-parametric modelling of the radial and tangential velocity moments. The method is a numerical velocity anisotropy 'inversion', with parametric mass models, where the radial velocity dispersion profile, σrr2, is modelled as a B-spline, and the optimization is a three-step process that consists of (I) an evolutionary modelling to determine the mass model form and the best B-spline basis to represent σrr2; (II) an optimization of the smoothing parameters and (III) a Markov chain Monte Carlo analysis to determine the physical parameters. The mass-anisotropy degeneracy is reduced into mass model inference, irrespective of kinematics. We test our method using synthetic data. Our algorithm constructs the best kinematic profile and discriminates between competing dark matter models. We apply our method to the Fornax dwarf spheroidal galaxy. Using a King brightness profile and testing various dark matter mass models, our model inference favours a simple mass-follows-light system. We find that the anisotropy profile of Fornax is tangential (β(r) < 0) and we estimate a total mass of M_{tot} = 1.613^{+0.050}_{-0.075} × 10^8 M_{⊙}, and a mass-to-light ratio of Υ_V = 8.93 ^{+0.32}_{-0.47} (M_{⊙}/L_{⊙}). The algorithm we present is a robust and computationally inexpensive method for non-parametric modelling of spherical clusters independent of the mass-anisotropy degeneracy.
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Gray, A.
2014-04-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Astronomy Data Centre, Canadian
2014-01-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Towards de novo identification of metabolites by analyzing tandem mass spectra.
Böcker, Sebastian; Rasche, Florian
2008-08-15
Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms
Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy
2011-01-01
Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.
NASA Astrophysics Data System (ADS)
Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman
2016-09-01
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2011-01-01
This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.
NASA Astrophysics Data System (ADS)
Wright, Jonathan W.
Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.
An assessment of a new settling velocity parameterisation for cohesive sediment transport modeling
NASA Astrophysics Data System (ADS)
Baugh, John V.; Manning, Andrew J.
2007-07-01
An important element within the Defra funded Estuary Process Research project "EstProc" was the implementation of the new or refined algorithms, produced under EstProc, into cohesive sediment numerical models. The implementation stage was important as any extension in the understanding of estuarine processes from EstProc was required to be suitable for dissemination into the wider research community with a level of robustness for general applications demonstrated. This report describes work undertaken to implement the new Manning Floc Settling Velocity Model, developed during EstProc. All Manning component algorithms could be combined to provide estimates of mass settling flux. The algorithms are initially assessed in a number of 1-D scenarios, where the Manning model output is compared against both real observations and the output from alternative settling parameterisations. The Manning model is then implemented into a fully 3-D computational model (TELEMAC3D) of estuarine hydraulics and sediment transport of the Lower Thames estuary. The 3-D model results with the Manning algorithm included were compared to runs with a constant settling velocity of 0.5 mm s -1 and settling velocity based on a simple linear multiplier of concentration and with the above mentioned observations of suspended concentration. The findings of the 1-D case studies found the Manning empirical settling model could reproduce 93% of the total mass settling flux observed over a spring tidal cycle. The floc model fit was even better within the turbidity maximum (TM) zone. A constant 0.5 mm s -1 only estimated 15% of the TM mass flux, whereas the fixed 5 mm s -1 settling rate over-predicted the TM mass flux by 47%. Both settling velocity as a simple linear function of concentration, and van Leussen's method, did not fare much better estimating less than half the observed flux during the various tidal and sub-tidal cycle periods. When the Manning-settling model was applied to a layer with suspended concentrations approaching 6 g l -1, it calculated 96% of the observed mass flux. The main conclusions of the implementation exercise were that it was feasible to implement a complex relationship between settling velocity and concentration in a 3-D computational model of estuarine hydraulics, without producing any significant increase in model run times or reducing model stability. The use of the Manning algorithm greatly improved the reproduction of the observed distribution of suspended concentration both in the vertical and horizontal directions compared to the other simulations. During the 1-D assessments, the Manning-settling model demonstrated flexibility in adapting to a wide range of estuarine environmental conditions (i.e. shear stress and concentration), specifically for applied modelling purposes.
Computer vision system: a tool for evaluating the quality of wheat in a grain tank
NASA Astrophysics Data System (ADS)
Minkin, Uryi Igorevish; Panchenko, Aleksei Vladimirovich; Shkanaev, Aleksandr Yurievich; Konovalenko, Ivan Andreevich; Putintsev, Dmitry Nikolaevich; Sadekov, Rinat Nailevish
2018-04-01
The paper describes a technology that allows for automatizing the process of evaluating the grain quality in a grain tank of a combine harvester. Special recognition algorithm analyzes photographic images taken by the camera, and that provides automatic estimates of the total mass fraction of broken grains and the presence of non-grains. The paper also presents the operating details of the tank prototype as well as it defines the accuracy of the algorithms designed.
Robust Bayesian Algorithm for Targeted Compound Screening in Forensic Toxicology.
Woldegebriel, Michael; Gonsalves, John; van Asten, Arian; Vivó-Truyols, Gabriel
2016-02-16
As part of forensic toxicological investigation of cases involving unexpected death of an individual, targeted or untargeted xenobiotic screening of post-mortem samples is normally conducted. To this end, liquid chromatography (LC) coupled to high-resolution mass spectrometry (MS) is typically employed. For data analysis, almost all commonly applied algorithms are threshold-based (frequentist). These algorithms examine the value of a certain measurement (e.g., peak height) to decide whether a certain xenobiotic of interest (XOI) is present/absent, yielding a binary output. Frequentist methods pose a problem when several sources of information [e.g., shape of the chromatographic peak, isotopic distribution, estimated mass-to-charge ratio (m/z), adduct, etc.] need to be combined, requiring the approach to make arbitrary decisions at substep levels of data analysis. We hereby introduce a novel Bayesian probabilistic algorithm for toxicological screening. The method tackles the problem with a different strategy. It is not aimed at reaching a final conclusion regarding the presence of the XOI, but it estimates its probability. The algorithm effectively and efficiently combines all possible pieces of evidence from the chromatogram and calculates the posterior probability of the presence/absence of XOI features. This way, the model can accommodate more information by updating the probability if extra evidence is acquired. The final probabilistic result assists the end user to make a final decision with respect to the presence/absence of the xenobiotic. The Bayesian method was validated and found to perform better (in terms of false positives and false negatives) than the vendor-supplied software package.
Lunar PMAD technology assessment
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.
1992-01-01
This report documents an initial set of power conditioning models created to generate 'ballpark' power management and distribution (PMAD) component mass and size estimates. It contains converter, rectifier, inverter, transformer, remote bus isolator (RBI), and remote power controller (RPC) models. These models allow certain studies to be performed; however, additional models are required to assess a full range of PMAD alternatives. The intent is to eventually form a library of PMAD models that will allow system designers to evaluate various power system architectures and distribution techniques quickly and consistently. The models in this report are designed primarily for space exploration initiative (SEI) missions requiring continuous power and supporting manned operations. The mass estimates were developed by identifying the stages in a component and obtaining mass breakdowns for these stages from near term electronic hardware elements. Technology advances were then incorporated to generate hardware masses consistent with the 2000 to 2010 time period. The mass of a complete component is computed by algorithms that calculate the masses of the component stages, control and monitoring, enclosure, and thermal management subsystem.
Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Bin; Chen, Luoping; Hu, Xiaozhe
2016-03-05
In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigatemore » the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.« less
Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization
NASA Astrophysics Data System (ADS)
Dean, Garrett James
Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of four minutes to seven hours. The algorithm described is capable of determining the cooling time and fluence the sample was exposed to within 10% as well as roughly estimating the relative concentrations of nuclides present in the original composition.
NASA Technical Reports Server (NTRS)
Foster, J. L.; Chang, A. T. C.; Hall, D. K.
1997-01-01
While it is recognized that no single snow algorithm is capable of producing accurate global estimates of snow depth, for research purposes it is useful to test an algorithm's performance in different climatic areas in order to see how it responds to a variety of snow conditions. This study is one of the first to develop separate passive microwave snow algorithms for North America and Eurasia by including parameters that consider the effects of variations in forest cover and crystal size on microwave brightness temperature. A new algorithm (GSFC 1996) is compared to a prototype algorithm (Chang et al., 1987) and to a snow depth climatology (SDC), which for this study is considered to be a standard reference or baseline. It is shown that the GSFC 1996 algorithm compares much more favorably to the SDC than does the Chang et al. (1987) algorithm. For example, in North America in February there is a 15% difference between the GSFC 198-96 Algorithm and the SDC, but with the Chang et al. (1987) algorithm the difference is greater than 50%. In Eurasia, also in February, there is only a 1.3% difference between the GSFC 1996 algorithm and the SDC, whereas with the Chang et al. (1987) algorithm the difference is about 20%. As expected, differences tend to be less when the snow cover extent is greater, particularly for Eurasia. The GSFC 1996 algorithm performs better in North America in each month than dose the Chang et al. (1987) algorithm. This is also the case in Eurasia, except in April and May when the Chang et al.(1987) algorithms is in closer accord to the SDC than is GSFC 1996 algorithm.
Estimators of wheel slip for electric vehicles using torque and encoder measurements
NASA Astrophysics Data System (ADS)
Boisvert, M.; Micheau, P.
2016-08-01
For the purpose of regenerative braking control in hybrid and electrical vehicles, recent studies have suggested controlling the slip ratio of the electric-powered wheel. A slip tracking controller requires an accurate slip estimation in the overall range of the slip ratio (from 0 to 1), contrary to the conventional slip limiter (ABS) which calls for an accurate slip estimation in the critical slip area, estimated at around 0.15 in several applications. Considering that it is not possible to directly measure the slip ratio of a wheel, the problem is to estimate the latter from available online data. To estimate the slip of a wheel, both wheel speed and vehicle speed must be known. Several studies provide algorithms that allow obtaining a good estimation of vehicle speed. On the other hand, there is no proposed algorithm for the conditioning of the wheel speed measurement. Indeed, the noise included in the wheel speed measurement reduces the accuracy of the slip estimation, a disturbance increasingly significant at low speed and low torque. Herein, two different extended Kalman observers of slip ratio were developed. The first calculates the slip ratio with data provided by an observer of vehicle speed and of propeller wheel speed. The second observer uses an original nonlinear model of the slip ratio as a function of the electric motor. A sinus tracking algorithm is included in the two observers, in order to reject harmonic disturbances of wheel speed measurement. Moreover, mass and road uncertainties can be compensated with a coefficient adapted online by an RLS. The algorithms were implemented and tested with a three-wheel recreational hybrid vehicle. Experimental results show the efficiency of both methods.
Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry
2010-01-01
We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695
Required experimental accuracy to select between supersymmetrical models
NASA Astrophysics Data System (ADS)
Grellscheid, David
2004-03-01
We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. This talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).
Lera, Lydia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea; Albala, Cecilia
2014-09-28
To estimate and validate cut-off points of skeletal muscle mass index (SMI) in Chilean population, for using in an algorithm for a diagnosis of sarcopenia developed by European Working Group on Sarcopenia in Older People (EWGSOP). Secondary analysis of Cross-sectional data in 440 Chilean older subjects to estimate cut-off points of SMI determined by DEXA and predicted by an anthropometric equation. Afterward a cross-sectional validation in a sample of 164 older people was performed. Anthropometric measures, self-reported health status, physical performance tests and DEXA were carried out. Decreased muscle strength was defined as handgrip strength <15 kg in women and <27 kg in male. Cut-off points of SMI were defined as values under 20th percentile for DEXA measures and estimated through ROC curves for the anthropometric model. Biological validity of the algorithm was tested by contrasting the diagnosis with physical performance tests and functionality. Cut-off points of SMI obtained by DEXA were 7.19 kg/m² in men and 5.77 kg/m² in women and 7.45 kg/ m² and 5.88 kg/m², respectively for the predicted by the model. Sensibility and specificity of estimations vs DEXA measures were 80% and 92% in men and 77% and 89% in women. We obtained cut-off points of SMI for DEXA and for a prediction equation for older adults Chilean, with good sensibility and specificity for the measurement by DEXA. It will allow to apply the EWGSOP algorithm to the early diagnosis of sarcopenia and to develop programs for prevention, delay or reversion this syndrome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Stereovision-based pose and inertia estimation of unknown and uncooperative space objects
NASA Astrophysics Data System (ADS)
Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo
2017-01-01
Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.
NASA Astrophysics Data System (ADS)
Colone, L.; Hovgaard, M. K.; Glavind, L.; Brincker, R.
2018-07-01
A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.
NASA Astrophysics Data System (ADS)
Beckmann, R. S.; Slyz, A.; Devriendt, J.
2018-07-01
Whilst in galaxy-size simulations, supermassive black holes (SMBHs) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion on to a point mass, and the related estimate of the drag force exerted on to a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply-limited accretion scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force, it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates on to the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.
NASA Astrophysics Data System (ADS)
Beckmann, R. S.; Slyz, A.; Devriendt, J.
2018-04-01
Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Tal-Or, L.; Mazeh, T.
We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} andmore » 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect short-period planets and brown dwarfs.« less
Testing the accuracy of redshift-space group-finding algorithms
NASA Astrophysics Data System (ADS)
Frederic, James J.
1995-04-01
Using simulated redshift surveys generated from a high-resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimenisons. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra & Geller (1982) uses a generous linking length designed to find 'fingers of god,' while that of Nolthenius & White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depends on the purpose for which groups are to be studied. The Huchra & Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius & White algorithm misses high velocity dispersion groups and members but is less likely to include interlopers in its group assignments. Adjusting the parameters of either algorithm results in a trade-off between group accuracy and completeness. In a companion paper we investigate the accuracy of virial mass estimates and clustering properties of groups identified using these algorithms.
Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R
2012-01-01
SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.
Frequency Response Function Based Damage Identification for Aerospace Structures
NASA Astrophysics Data System (ADS)
Oliver, Joseph Acton
Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite sandwich plate model. Chapter 6 presents the final extension to experimental systems-including methods for initial baseline correlation and data reduction-and validates the algorithm on an experimental composite plate with impact damage. The final chapter deviates from development and validation of the primary algorithm to discuss development of an experimental scaled-wing test bed as part of a collaborative effort for developing structural health monitoring and prognosis technology. The dissertation concludes with an overview of technical conclusions and recommendations for future work.
Numerical algorithm for rigid body position estimation using the quaternion approach
NASA Astrophysics Data System (ADS)
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).
A 2D eye gaze estimation system with low-resolution webcam images
NASA Astrophysics Data System (ADS)
Ince, Ibrahim Furkan; Kim, Jin Woo
2011-12-01
In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI) algorithm. Deformable template-based 2D gaze estimation (DTBGE) algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.
Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, U. J.; Supple, J. R.; Franich, R. D.
2013-10-15
Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L.more » Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less
NASA Astrophysics Data System (ADS)
Mascio, J.; Mace, G. G.
2015-12-01
CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.
Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.
2018-05-01
We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0]. For larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ˜20 %, due to inaccurate modelling of the cosmological and redshift dependence of the splashback radius. For changes in cosmology allowed by current data, the residuals decrease to ≲ 2 % up to scales twice the virial radius. We illustrate the usefulness of the method by estimating the mean halo mass of a mock galaxy group sample. We find that the algorithm's accuracy is sufficient for current data. Improvements in the algorithm, particularly in the modelling of baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.
Parsimonious Charge Deconvolution for Native Mass Spectrometry
2018-01-01
Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659
Velocity Estimate Following Air Data System Failure
2008-03-01
39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters
NASA Astrophysics Data System (ADS)
Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.
2017-12-01
An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2
Weak constrained localized ensemble transform Kalman filter for radar data assimilation
NASA Astrophysics Data System (ADS)
Janjic, Tijana; Lange, Heiner
2015-04-01
The applications on convective scales require data assimilation with a numerical model with single digit horizontal resolution in km and time evolving error covariances. The ensemble Kalman filter (EnKF) algorithm incorporates these two requirements. However, some challenges for the convective scale applications remain unresolved when using the EnKF approach. These include a need on convective scale to estimate fields that are nonnegative (as rain, graupel, snow) and use of data sets as radar reflectivity or cloud products that have the same property. What underlines these examples are errors that are non-Gaussian in nature causing a problem with EnKF, which uses Gaussian error assumptions to produce the estimates from the previous forecast and the incoming data. Since the proper estimates of hydrometeors are crucial for prediction on convective scales, question arises whether EnKF method can be modified to improve these estimates and whether there is a way of optimizing use of radar observations to initialize NWP models due to importance of this data set for prediction of connective storms. In order to deal with non-Gaussian errors different approaches can be taken in the EnKF framework. For example, variables can be transformed by assuming the relevant state variables follow an appropriate pre-specified non-Gaussian distribution, such as the lognormal and truncated Gaussian distribution or, more generally, by carrying out a parameterized change of state variables known as Gaussian anamorphosis. In a recent work by Janjic et al. 2014, it was shown on a simple example how conservation of mass could be beneficial for assimilation of positive variables. The method developed in the paper outperformed the EnKF as well as the EnKF with the lognormal change of variables. As argued in the paper the reason for this, is that each of these methods preserves mass (EnKF) or positivity (lognormal EnKF) but not both. Only once both positivity and mass were preserved in a new algorithm, the good estimates of the fields were obtained. The alternative to strong constraint formulation in Janjic et al. 2014 is to modify LETKF algorithm to take into the account physical properties only approximately. In this work we will include the weak constraints in the LETKF algorithm for estimation of hydrometers. The benefit on prediction is illustrated in an idealized setup (Lange and Craig, 2013). This setup uses the non hydrostatic COSMO model with a 2 km horizontal resolution, and the LETKF as implemented in KENDA (Km-scale Ensemble Data Assimilation) system of German Weather Service (Reich et al. 2011). Due to the Gaussian assumptions that underline the LETKF algorithm, the analyses of water species will become negative in some grid points of the COSMO model. These values are set to zero currently in KENDA after the LETKF analysis step. The tests done within this setup show that such a procedure introduces a bias in the analysis ensemble with respect to the true, that increases in time due to the cycled data assimilation. The benefits of including the constraints in LETKF are illustrated on the bias values during assimilation and the prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, James; Chesley, Steven R.; Matson, Robert D., E-mail: jimbaer1@earthlink.net, E-mail: steve.chesley@jpl.nasa.gov
As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroidsmore » tend to have significantly higher macroporosity than S-group asteroids.« less
NASA Astrophysics Data System (ADS)
Hagemann, M. W.; Gleason, C. J.; Durand, M. T.
2017-11-01
The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.
Optimal and robust control of transition
NASA Technical Reports Server (NTRS)
Bewley, T. R.; Agarwal, R.
1996-01-01
Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.
Computation of mass-density images from x-ray refraction-angle images.
Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong
2006-04-07
In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2018-03-01
The hypersonic aircraft permeable surfaces heat and mass transfer effective control mathematical modeling problems are considered. The analysis of the control (the blowing) constructive and gasdynamical restrictions is carried out for the porous and perforated surfaces. The functions classes allowing realize the controls taking into account the arising types of restrictions are suggested. Estimates of the computational complexity of the W. G. Horner scheme application in the case of using the C. Hermite interpolation polynomial are given.
NASA Astrophysics Data System (ADS)
Gao, Shuang; Yang, Wen; Zhang, Hui; Sun, Yanling; Mao, Jian; Ma, Zhenxing; Cong, Zhiyuan; Zhang, Xian; Tian, Shasha; Azzi, Merched; Chen, Li; Bai, Zhipeng
2018-02-01
The determination of background concentration of PM2.5 is important to understand the contribution of local emission sources to total PM2.5 concentration. The purpose of this study was to exam the performance of baseline separation techniques to estimate PM2.5 background concentration. Five separation methods, which included recursive digital filters (Lyne-Hollick, one-parameter algorithm, and Boughton two-parameter algorithm), sliding interval and smoothed minima, were applied to one-year PM2.5 time-series data in two heavily polluted cities, Tianjin and Jinan. To obtain the proper filter parameters and recession constants for the separation techniques, we conducted regression analysis at a background site during the emission reduction period enforced by the Government for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting in Beijing. Background concentrations in Tianjin and Jinan were then estimated by applying the determined filter parameters and recession constants. The chemical mass balance (CMB) model was also applied to ascertain the effectiveness of the new approach. Our results showed that the contribution of background PM concentration to ambient pollution was at a comparable level to the contribution obtained from the previous study. The best performance was achieved using the Boughton two-parameter algorithm. The background concentrations were estimated at (27 ± 2) μg/m3 for the whole year, (34 ± 4) μg/m3 for the heating period (winter), (21 ± 2) μg/m3 for the non-heating period (summer), and (25 ± 2) μg/m3 for the sandstorm period in Tianjin. The corresponding values in Jinan were (30 ± 3) μg/m3, (40 ± 4) μg/m3, (24 ± 5) μg/m3, and (26 ± 2) μg/m3, respectively. The study revealed that these baseline separation techniques are valid for estimating levels of PM2.5 air pollution, and that our proposed method has great potential for estimating the background level of other air pollutants.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
Blind beam-hardening correction from Poisson measurements
NASA Astrophysics Data System (ADS)
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
Zuniga, Jorge M; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O
2014-09-01
The purpose of this study was to examine the effect of ramp and step incremental cycle ergometer tests on the assessment of the anaerobic threshold (AT) using 3 different computerized regression-based algorithms. Thirteen healthy adults (mean age and body mass [SD] = 23.4 [3.3] years and body mass = 71.7 [11.1] kg) visited the laboratory on separate occasions. Two-way repeated measures analyses of variance with appropriate follow-up procedures were used to analyze the data. The step protocol resulted in greater mean values across algorithms than the ramp protocol for the V[Combining Dot Above]O2 (step = 1.7 [0.6] L·min and ramp = 1.5 [0.4] L·min) and heart rate (HR) (step = 133 [21] b·min and ramp = 124 [15] b·min) at the AT. There were no significant mean differences, however, in power outputs at the AT between the step (115.2 [44.3] W) and the ramp (112.2 [31.2] W) protocols. Furthermore, there were no significant mean differences for V[Combining Dot Above]O2, HR, or power output across protocols among the 3 computerized regression-based algorithms used to estimate the AT. The current findings suggested that the protocol selection, but not the regression-based algorithms can affect the assessment of the V[Combining Dot Above]O2 and HR at the AT.
NASA Astrophysics Data System (ADS)
Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas
2014-06-01
Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.
Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas
2014-06-01
Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.
2+1 flavor lattice QCD toward the physical point
NASA Astrophysics Data System (ADS)
Aoki, S.; Ishikawa, K.-I.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshié, T.
2009-02-01
We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at β=1.9, corresponding to the lattice spacing of a=0.0907(13)fm, on a 323×64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants lmacr 3 and lmacr 4 are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing mπ, mK and mΩ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of fπ, fK and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain mudM Smacr and msM Smacr extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.
A simple Lagrangian forecast system with aviation forecast potential
NASA Technical Reports Server (NTRS)
Petersen, R. A.; Homan, J. H.
1983-01-01
A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.
NASA Technical Reports Server (NTRS)
Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian
2011-01-01
Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.
Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode
NASA Astrophysics Data System (ADS)
Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus
2013-12-01
Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.
Costs, effectiveness, and workload impact of management strategies for women with an adnexal mass.
Havrilesky, Laura J; Dinan, Michaela; Sfakianos, Gregory P; Curtis, Lesley H; Barnett, Jason C; Van Gorp, Toon; Myers, Evan R
2015-01-01
We compared the estimated clinical outcomes, costs, and physician workload resulting from available strategies for deciding which women with an adnexal mass should be referred to a gynecologic oncologist. We used a microsimulation model to compare five referral strategies: 1) American Congress of Obstetricians and Gynecologists (ACOG) guidelines, 2) Multivariate Index Assay (MIA) algorithm, 3) Risk of Malignancy Algorithm (ROMA), 4) CA125 alone with lowered cutoff values to prioritize test sensitivity over specificity, 5) referral of all women (Refer All). Test characteristics and relative survival were obtained from the literature and data from a biomarker validation study. Medical costs were estimated using Medicare reimbursements. Travel costs were estimated using discharge data from Surveillance, Epidemiology and End Results-Medicare and State Inpatient Databases. Analyses were performed separately for pre- and postmenopausal women (60 000 "subjects" in each), repeated 10 000 times. Refer All was cost-effective compared with less expensive strategies in both postmenopausal (incremental cost-effectiveness ratio [ICER] $9423/year of life saved (LYS) compared with CA125) and premenopausal women (ICER $10 644/YLS compared with CA125), but would result in an additional 73 cases/year/subspecialist. MIA was more expensive and less effective than Refer All in pre- and postmenopausal women. If Refer All is not a viable option, CA125 is an optimal strategy in postmenopausal women. Referral of all women to a subspecialist is an efficient strategy for managing women with adnexal masses requiring surgery, assuming sufficient capacity for additional surgical volume. If a test-based triage strategy is needed, CA125 with lowered cutoff values is a cost-effective strategy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kariuki, Jacob K; Gona, Philimon; Leveille, Suzanne G; Stuart-Shor, Eileen M; Hayman, Laura L; Cromwell, Jerry
2018-06-01
The non-lab Framingham algorithm, which substitute body mass index for lipids in the laboratory based (lab-based) Framingham algorithm, has been validated among African Americans (AAs). However, its cost-effectiveness and economic tradeoffs have not been evaluated. This study examines the incremental cost-effectiveness ratio (ICER) of two cardiovascular disease (CVD) prevention programs guided by the non-lab versus lab-based Framingham algorithm. We simulated the World Health Organization CVD prevention guidelines on a cohort of 2690 AA participants in the Atherosclerosis Risk in Communities (ARIC) cohort. Costs were estimated using Medicare fee schedules (diagnostic tests, drugs & visits), Bureau of Labor Statistics (RN wages), and estimates for managing incident CVD events. Outcomes were assumed to be true positive cases detected at a data driven treatment threshold. Both algorithms had the best balance of sensitivity/specificity at the moderate risk threshold (>10% risk). Over 12years, 82% and 77% of 401 incident CVD events were accurately predicted via the non-lab and lab-based Framingham algorithms, respectively. There were 20 fewer false negative cases in the non-lab approach translating into over $900,000 in savings over 12years. The ICER was -$57,153 for every extra CVD event prevented when using the non-lab algorithm. The approach guided by the non-lab Framingham strategy dominated the lab-based approach with respect to both costs and predictive ability. Consequently, the non-lab Framingham algorithm could potentially provide a highly effective screening tool at lower cost to address the high burden of CVD especially among AA and in resource-constrained settings where lab tests are unavailable. Copyright © 2017 Elsevier Inc. All rights reserved.
A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.; Deutschmann, J.; Galal, K.
1995-01-01
This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements.
Kontopantelis, Evangelos; Parisi, Rosa; Springate, David A; Reeves, David
2017-01-13
In modern health care systems, the computerization of all aspects of clinical care has led to the development of large data repositories. For example, in the UK, large primary care databases hold millions of electronic medical records, with detailed information on diagnoses, treatments, outcomes and consultations. Careful analyses of these observational datasets of routinely collected data can complement evidence from clinical trials or even answer research questions that cannot been addressed in an experimental setting. However, 'missingness' is a common problem for routinely collected data, especially for biological parameters over time. Absence of complete data for the whole of a individual's study period is a potential bias risk and standard complete-case approaches may lead to biased estimates. However, the structure of the data values makes standard cross-sectional multiple-imputation approaches unsuitable. In this paper we propose and evaluate mibmi, a new command for cleaning and imputing longitudinal body mass index data. The regression-based data cleaning aspects of the algorithm can be useful when researchers analyze messy longitudinal data. Although the multiple imputation algorithm is computationally expensive, it performed similarly or even better to existing alternatives, when interpolating observations. The mibmi algorithm can be a useful tool for analyzing longitudinal body mass index data, or other longitudinal data with very low individual-level variability.
Power Management and Distribution (PMAD) Model Development: Final Report
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.
2011-01-01
Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.
Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo
2014-05-01
To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (p<0.05). Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update
NASA Technical Reports Server (NTRS)
Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.
2009-01-01
The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.
Optical rangefinding applications using communications modulation technique
NASA Astrophysics Data System (ADS)
Caplan, William D.; Morcom, Christopher John
2010-10-01
A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen
2013-01-01
We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107
Data preprocessing method for liquid chromatography-mass spectrometry based metabolomics.
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-09-18
A set of data preprocessing algorithms for peak detection and peak list alignment are reported for analysis of liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data. For spectrum deconvolution, peak picking is achieved at the selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into the z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers demonstrates that the developed data preprocessing method performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS(2), for peak picking, peak list alignment, and quantification.
NASA Astrophysics Data System (ADS)
Han, Shin-Chan; Razeghi, S. Mahdiyeh
2017-11-01
We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine the surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and/or ocean. We develop an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. The same approach is applied to determine global mass changes from "global" geopotential change data of Gravity Recovery and Climate Experiment (GRACE). We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS-inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and interannual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins than two different GRACE solutions. The submonthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, it is suggested to integrate GPS and GRACE data to draw a comprehensive picture of daily mass changes on different continents.
NASA Astrophysics Data System (ADS)
Ribeiro, J. B.; Silva, C.; Mendes, R.
2010-10-01
A real coded genetic algorithm methodology that has been developed for the estimation of the parameters of the reaction rate equation of the Lee-Tarver reactive flow model is described in detail. This methodology allows, in a single optimization procedure, using only one experimental result and, without the need of any starting solution, to seek the 15 parameters of the reaction rate equation that fit the numerical to the experimental results. Mass averaging and the plate-gap model have been used for the determination of the shock data used in the unreacted explosive JWL equation of state (EOS) assessment and the thermochemical code THOR retrieved the data used in the detonation products' JWL EOS assessments. The developed methodology was applied for the estimation of the referred parameters for an ammonium nitrate-based emulsion explosive using poly(methyl methacrylate) (PMMA)-embedded manganin gauge pressure-time data. The obtained parameters allow a reasonably good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.
Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
Pathak, Biswajit; Boruah, Bosanta R
2017-12-01
Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.
Sea Ice Mass Reconciliation Exercise (SIMRE) for altimetry derived sea ice thickness data sets
NASA Astrophysics Data System (ADS)
Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.
2017-12-01
Satellite altimetry is the primary remote sensing data source for retrieval of Arctic sea-ice thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The Sea Ice Mass Reconciliation Exercise (SIMRE) is a project by the sea-ice radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic sea ice mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent ice thickness estimates. Three regions representative of first-year ice, multiyear ice and mixed ice conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of sea ice thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.
Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...
2015-01-05
Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O 3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 10 11 to 9.7 × 10 11 molec s cm −3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. Furthermore, while acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less
Optimizing Medical Kits for Spaceflight
NASA Technical Reports Server (NTRS)
Keenan, A. B,; Foy, Millennia; Myers, G.
2014-01-01
The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.
NASA Astrophysics Data System (ADS)
Hayati, M.; Rashidi, A. M.; Rezaei, A.
2012-10-01
In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.
Stanford, Tyman E; Bagley, Christopher J; Solomon, Patty J
2016-01-01
Proteomic matrix-assisted laser desorption/ionisation (MALDI) linear time-of-flight (TOF) mass spectrometry (MS) may be used to produce protein profiles from biological samples with the aim of discovering biomarkers for disease. However, the raw protein profiles suffer from several sources of bias or systematic variation which need to be removed via pre-processing before meaningful downstream analysis of the data can be undertaken. Baseline subtraction, an early pre-processing step that removes the non-peptide signal from the spectra, is complicated by the following: (i) each spectrum has, on average, wider peaks for peptides with higher mass-to-charge ratios ( m / z ), and (ii) the time-consuming and error-prone trial-and-error process for optimising the baseline subtraction input arguments. With reference to the aforementioned complications, we present an automated pipeline that includes (i) a novel 'continuous' line segment algorithm that efficiently operates over data with a transformed m / z -axis to remove the relationship between peptide mass and peak width, and (ii) an input-free algorithm to estimate peak widths on the transformed m / z scale. The automated baseline subtraction method was deployed on six publicly available proteomic MS datasets using six different m/z-axis transformations. Optimality of the automated baseline subtraction pipeline was assessed quantitatively using the mean absolute scaled error (MASE) when compared to a gold-standard baseline subtracted signal. Several of the transformations investigated were able to reduce, if not entirely remove, the peak width and peak location relationship resulting in near-optimal baseline subtraction using the automated pipeline. The proposed novel 'continuous' line segment algorithm is shown to far outperform naive sliding window algorithms with regard to the computational time required. The improvement in computational time was at least four-fold on real MALDI TOF-MS data and at least an order of magnitude on many simulated datasets. The advantages of the proposed pipeline include informed and data specific input arguments for baseline subtraction methods, the avoidance of time-intensive and subjective piecewise baseline subtraction, and the ability to automate baseline subtraction completely. Moreover, individual steps can be adopted as stand-alone routines.
NASA Astrophysics Data System (ADS)
Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam
2017-08-01
It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.
Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.
2013-01-01
The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.
Development of a novel constellation based landmark detection algorithm
NASA Astrophysics Data System (ADS)
Ghayoor, Ali; Vaidya, Jatin G.; Johnson, Hans J.
2013-03-01
Anatomical landmarks such as the anterior commissure (AC) and posterior commissure (PC) are commonly used by researchers for co-registration of images. In this paper, we present a novel, automated approach for landmark detection that combines morphometric constraining and statistical shape models to provide accurate estimation of landmark points. This method is made robust to large rotations in initial head orientation by extracting extra information of the eye centers using a radial Hough transform and exploiting the centroid of head mass (CM) using a novel estimation approach. To evaluate the effectiveness of this method, the algorithm is trained on a set of 20 images with manually selected landmarks, and a test dataset is used to compare the automatically detected against the manually detected landmark locations of the AC, PC, midbrain-pons junction (MPJ), and fourth ventricle notch (VN4). The results show that the proposed method is accurate as the average error between the automatically and manually labeled landmark points is less than 1 mm. Also, the algorithm is highly robust as it was successfully run on a large dataset that included different kinds of images with various orientation, spacing, and origin.
Milky Way mass and potential recovery using tidal streams in a realistic halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.
2014-11-01
We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less
Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru
The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.
Bianchi, Lara; Abete, Pasquale; Bellelli, Giuseppe; Bo, Mario; Cherubini, Antonio; Corica, Francesco; Di Bari, Mauro; Maggio, Marcello; Manca, Giovanna Maria; Rizzo, Maria Rosaria; Rossi, Andrea P; Landi, Francesco; Volpato, Stefano
2017-10-12
Prevalence of sarcopenia is substantial in most geriatrics settings, but estimates vary greatly across studies because of difference in population characteristics, diagnostic criteria, and methods used to assess muscle mass, muscle strength, and physical performance. We investigated the feasibility of the European Working Group on Sarcopenia in Older People (EWGSOP) algorithm assessment in hospitalized older adults and analyzed prevalence and clinical correlates of sarcopenia. Cross-sectional analysis of 655 participants enrolled in a multicenter observational study of older adults admitted to 12 acute hospital wards in Italy. Sarcopenia was assessed as low skeletal mass index (kg/m2) plus either low handgrip strength or low walking speed (EWGSOP criteria). Skeletal muscle mass was estimated using bioimpedance analysis. Of the 655 patients (age 81.0 ± 6.8 years; women 51.9%) enrolled in the study, 275 (40.2%) were not able to perform the 4-m walking test because of medical problems. The overall prevalence of sarcopenia on hospital admission was 34.7% (95% confidence interval 28-37) and it steeply increased with aging (p < .001). In multivariable analysis, patients with sarcopenia on hospital admission were older and were more likely to be male and to have congestive heart failure, cerebrovascular disease, and severe basic activities of daily living disability. The prevalence of sarcopenia was inversely correlated with body mass index. Based on EWGSOP criteria, prevalence of sarcopenia is extremely high among older adults on admission to acute hospital wards. Older age, male gender, congestive heart failure, cerebrovascular disease, severe activities of daily living disability, and body mass index were the clinical variables significantly associated with the presence of sarcopenia. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery
NASA Astrophysics Data System (ADS)
Si, Qian
Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.
Novel angle estimation for bistatic MIMO radar using an improved MUSIC
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Xiaofei; Chen, Han
2014-09-01
In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.
Glimpse: Sparsity based weak lensing mass-mapping tool
NASA Astrophysics Data System (ADS)
Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.
2018-02-01
Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.
Application of fault factor method to fault detection and diagnosis for space shuttle main engine
NASA Astrophysics Data System (ADS)
Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye
2016-09-01
This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.
NASA Astrophysics Data System (ADS)
Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong
2016-10-01
To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.
Task Performance with List-Mode Data
NASA Astrophysics Data System (ADS)
Caucci, Luca
This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.
A comparison of kinematic algorithms to estimate gait events during overground running.
Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher
2015-01-01
The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.
Orientation estimation algorithm applied to high-spin projectiles
NASA Astrophysics Data System (ADS)
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
A weak lensing analysis of the PLCK G100.2-30.4 cluster
NASA Astrophysics Data System (ADS)
Radovich, M.; Formicola, I.; Meneghetti, M.; Bartalucci, I.; Bourdin, H.; Mazzotta, P.; Moscardini, L.; Ettori, S.; Arnaud, M.; Pratt, G. W.; Aghanim, N.; Dahle, H.; Douspis, M.; Pointecouteau, E.; Grado, A.
2015-07-01
We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4, derived from a weak lensing analysis of deep Subaru griz images. We perform a careful selection of the background galaxies using the multi-band imaging data, and undertake the weak lensing analysis on the deep (1 h) r -band image. The shape measurement is based on the Kaiser-Squires-Broadhurst algorithm; we adopt the PSFex software to model the point spread function (PSF) across the field and correct for this in the shape measurement. The weak lensing analysis is validated through extensive image simulations. We compare the resulting weak lensing mass profile and total mass estimate to those obtained from our re-analysis of XMM-Newton observations, derived under the hypothesis of hydrostatic equilibrium. The total integrated mass profiles agree remarkably well, within 1σ across their common radial range. A mass M500 ~ 7 × 1014M⊙ is derived for the cluster from our weak lensing analysis. Comparing this value to that obtained from our reanalysis of XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 ± 0.1. This is compatible within 1σ with the value of (1-b) obtained in Planck 2015 from the calibration of the bias factor using newly available weak lensing reconstructed masses. Based on data collected at Subaru Telescope (University of Tokyo).
NASA Astrophysics Data System (ADS)
Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery
2016-10-01
This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
Mass preserving registration for heart MR images.
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2005-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.
Mass Preserving Registration for Heart MR Images
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2013-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954
NASA Astrophysics Data System (ADS)
Pankow, C.; Brady, P.; Ochsner, E.; O'Shaughnessy, R.
2015-07-01
We introduce a highly parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g., masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g., distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of parameter space to emphasize in our sampling. As proof of concept and verification of the result, we have implemented this algorithm using standard time-domain waveforms, processing each event in less than one hour on recent computing hardware. For most events we evaluate the marginalized likelihood (evidence) with statistical errors of ≲5 %, and even smaller in many cases. With a bounded runtime independent of the waveform model starting frequency, a nearly unchanged strategy could estimate neutron star (NS)-NS parameters in the 2018 advanced LIGO era. Our algorithm is usable with any noise curve and existing time-domain model at any mass, including some waveforms which are computationally costly to evolve.
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna
2015-01-01
Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717
State Estimation for Tensegrity Robots
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas
2016-01-01
Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.
UniNovo: a universal tool for de novo peptide sequencing.
Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A
2013-08-15
Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.
System-of-Systems Technology-Portfolio-Analysis Tool
NASA Technical Reports Server (NTRS)
O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne
2012-01-01
Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.
Confidence level estimation in multi-target classification problems
NASA Astrophysics Data System (ADS)
Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia
2018-04-01
This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.
Urban, Jan; Hrouzek, Pavel; Stys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations.
Hrouzek, Pavel; Štys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations. PMID:23586036
NASA Astrophysics Data System (ADS)
Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong
2018-04-01
Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.
Woldegebriel, Michael; Derks, Eduard
2017-01-17
In this work, a novel probabilistic untargeted feature detection algorithm for liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) using artificial neural network (ANN) is presented. The feature detection process is approached as a pattern recognition problem, and thus, ANN was utilized as an efficient feature recognition tool. Unlike most existing feature detection algorithms, with this approach, any suspected chromatographic profile (i.e., shape of a peak) can easily be incorporated by training the network, avoiding the need to perform computationally expensive regression methods with specific mathematical models. In addition, with this method, we have shown that the high-resolution raw data can be fully utilized without applying any arbitrary thresholds or data reduction, therefore improving the sensitivity of the method for compound identification purposes. Furthermore, opposed to existing deterministic (binary) approaches, this method rather estimates the probability of a feature being present/absent at a given point of interest, thus giving chance for all data points to be propagated down the data analysis pipeline, weighed with their probability. The algorithm was tested with data sets generated from spiked samples in forensic and food safety context and has shown promising results by detecting features for all compounds in a computationally reasonable time.
Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H
2007-11-01
Establishing a comparison standard in neuropsychological assessment is crucial to determining change in function. There is no available method to estimate premorbid intellectual functioning for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The WISC-IV provided normative data for both American and Canadian children aged 6 to 16 years old. This study developed regression algorithms as a proposed method to estimate full-scale intelligence quotient (FSIQ) for the Canadian WISC-IV. Participants were the Canadian WISC-IV standardization sample (n = 1,100). The sample was randomly divided into two groups (development and validation groups). The development group was used to generate regression algorithms; 1 algorithm only included demographics, and 11 combined demographic variables with WISC-IV subtest raw scores. The algorithms accounted for 18% to 70% of the variance in FSIQ (standard error of estimate, SEE = 8.6 to 14.2). Estimated FSIQ significantly correlated with actual FSIQ (r = .30 to .80), and the majority of individual FSIQ estimates were within +/-10 points of actual FSIQ. The demographic-only algorithm was less accurate than algorithms combining demographic variables with subtest raw scores. The current algorithms yielded accurate estimates of current FSIQ for Canadian individuals aged 6-16 years old. The potential application of the algorithms to estimate premorbid FSIQ is reviewed. While promising, clinical validation of the algorithms in a sample of children and/or adolescents with known neurological dysfunction is needed to establish these algorithms as a premorbid estimation procedure.
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2016-01-01
This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.
Manifold absolute pressure estimation using neural network with hybrid training algorithm
Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.
2018-05-01
Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
NASA Astrophysics Data System (ADS)
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
NASA Astrophysics Data System (ADS)
Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.
2007-06-01
Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
Costagli, Mauro; Waggoner, R Allen; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang
2009-04-15
In functional magnetic resonance imaging (fMRI), even subvoxel motion dramatically corrupts the blood oxygenation level-dependent (BOLD) signal, invalidating the assumption that intensity variation in time is primarily due to neuronal activity. Thus, correction of the subject's head movements is a fundamental step to be performed prior to data analysis. Most motion correction techniques register a series of volumes assuming that rigid body motion, characterized by rotational and translational parameters, occurs. Unlike the most widely used applications for fMRI data processing, which correct motion in the image domain by numerically estimating rotational and translational components simultaneously, the algorithm presented here operates in a three-dimensional k-space, to decouple and correct rotations and translations independently, offering new ways and more flexible procedures to estimate the parameters of interest. We developed an implementation of this method in MATLAB, and tested it on both simulated and experimental data. Its performance was quantified in terms of square differences and center of mass stability across time. Our data show that the algorithm proposed here successfully corrects for rigid-body motion, and its employment in future fMRI studies is feasible and promising.
NASA Technical Reports Server (NTRS)
Antreasian, Peter G.
1988-01-01
Two orbit simulations, one representing the actual Geopotential Research Mission (GRM) orbit and the other representing the orbit estimated from orbit determination techniques, are presented. A computer algorithm was created to simulate GRM's drag compensation mechanism so the fuel expenditure and proof mass trajectories relative to the spacecraft centroid could be calculated for the mission. The results of the GRM DISCOS simulation demonstrated that the spacecraft can essentially be drag-free. The results showed that the centroid of the spacecraft can be controlled so that it will not deviate more than 1.0 mm in any direction from the centroid of the proof mass.
Mass imbalances in EPANET water-quality simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert; Taxon, Thomas N.
EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less
Mojra, A; Najarian, S; Kashani, S M Towliat; Panahi, F
2012-01-01
This paper presents a novel robotic sensory system 'Robo-Tac-BMI', which manipulates an indentation probe for the detection and three-dimensional localization of an abnormal mass embedded in the breast tissue. The Robo-Tac-BMI is designed based on artificial tactile sensing technology which is a new non-invasive method for mimicking the surgeon's palpation quantitatively. The intelligent processor of the device provides an overall stiffness map of the scanned areas. The extracted stiffness parameters provide a decisive factor for certifying the mass existence. Results are validated by 'gold standard' tests. Following the mass detection, its 3D localization is of essential importance in the treatment procedures. The planar 2D coordinate is readily available for all points on the tissue surface. Mass depth estimation is achieved by a comprehensive model utilizing the logistic regression algorithm and a Receiver Operating Characteristic (ROC) Curve for the highest accuracy. Statistical analysis is performed over 27 cases with 346 scanned areas. Copyright © 2012 Informa UK, Ltd.
NASA Technical Reports Server (NTRS)
West, Harry; Papadopoulos, Evangelos; Dubowsky, Steven; Cheah, Hanson
1989-01-01
Emulating on earth the weightlessness of a manipulator floating in space requires knowledge of the manipulator's mass properties. A method for calculating these properties by measuring the reaction forces and moments at the base of the manipulator is described. A manipulator is mounted on a 6-DOF sensor, and the reaction forces and moments at its base are measured for different positions of the links as well as for different orientations of its base. A procedure is developed to calculate from these measurements some combinations of the mass properties. The mass properties identified are not sufficiently complete for computed torque and other dynamic control techniques, but do allow compensation for the gravitational load on the links, and for simulation of weightless conditions on a space emulator. The algorithm has been experimentally demonstrated on a PUMA 260 and used to measure the independent combinations of the 16 mass parameters of the base and three proximal links.
NASA Astrophysics Data System (ADS)
Han, S. C.; Tangdamrongsub, N.; Razeghi, S. M.
2017-12-01
We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and ocean. The identical assumption is made when global geopotential change data from Gravity Recovery And Climate Experiment (GRACE) are used to determine surface mass changes. We developed an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS-only inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and inter-annual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins of Australia than two different GRACE solutions. The sub-monthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, we integrate GPS data from different continents with GRACE in the least-square normal equations and solve for the global surface mass changes by jointly inverting GPS and GRACE data. We present the results of surface mass changes from the GPS-only inversion and from the joint GPS-GRACE inversion.
NASA Astrophysics Data System (ADS)
Pishravian, Arash; Aghabozorgi Sahaf, Masoud Reza
2012-12-01
In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time
Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.
2014-01-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269
Improved Passive Microwave Algorithms for North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, James; Chang, Alfred; Hall, Dorothy
1997-01-01
Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav
2013-01-01
Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http://edwardslab.bmcb.georgetown.edu/GPS. PMID:23829323
Reducing false-positive detections by combining two stage-1 computer-aided mass detection algorithms
NASA Astrophysics Data System (ADS)
Bedard, Noah D.; Sampat, Mehul P.; Stokes, Patrick A.; Markey, Mia K.
2006-03-01
In this paper we present a strategy for reducing the number of false-positives in computer-aided mass detection. Our approach is to only mark "consensus" detections from among the suspicious sites identified by different "stage-1" detection algorithms. By "stage-1" we mean that each of the Computer-aided Detection (CADe) algorithms is designed to operate with high sensitivity, allowing for a large number of false positives. In this study, two mass detection methods were used: (1) Heath and Bowyer's algorithm based on the average fraction under the minimum filter (AFUM) and (2) a low-threshold bi-lateral subtraction algorithm. The two methods were applied separately to a set of images from the Digital Database for Screening Mammography (DDSM) to obtain paired sets of mass candidates. The consensus mass candidates for each image were identified by a logical "and" operation of the two CADe algorithms so as to eliminate regions of suspicion that were not independently identified by both techniques. It was shown that by combining the evidence from the AFUM filter method with that obtained from bi-lateral subtraction, the same sensitivity could be reached with fewer false-positives per image relative to using the AFUM filter alone.
NASA Astrophysics Data System (ADS)
Walker, Joel W.
2014-08-01
The M T2, or "s-transverse mass", statistic was developed to associate a parent mass scale to a missing transverse energy signature, given that escaping particles are generally expected in pairs, while collider experiments are sensitive to just a single transverse momentum vector sum. This document focuses on the generalized extension of that statistic to asymmetric one- and two-step decay chains, with arbitrary child particle masses and upstream missing transverse momentum. It provides a unified theoretical formulation, complete solution classification, taxonomy of critical points, and technical algorithmic prescription for treatment of the event scale. An implementation of the described algorithm is available for download, and is also a deployable component of the author's selection cut software package AEAC uS (Algorithmic Event Arbiter and C ut Selector). appendices address combinatoric event assembly, algorithm validation, and a complete pseudocode.
Zomer, Ella; Osborn, David; Nazareth, Irwin; Blackburn, Ruth; Burton, Alexandra; Hardoon, Sarah; Holt, Richard Ian Gregory; King, Michael; Marston, Louise; Morris, Stephen; Omar, Rumana; Petersen, Irene; Walters, Kate; Hunter, Rachael Maree
2017-09-05
To determine the cost-effectiveness of two bespoke severe mental illness (SMI)-specific risk algorithms compared with standard risk algorithms for primary cardiovascular disease (CVD) prevention in those with SMI. Primary care setting in the UK. The analysis was from the National Health Service perspective. 1000 individuals with SMI from The Health Improvement Network Database, aged 30-74 years and without existing CVD, populated the model. Four cardiovascular risk algorithms were assessed: (1) general population lipid, (2) general population body mass index (BMI), (3) SMI-specific lipid and (4) SMI-specific BMI, compared against no algorithm. At baseline, each cardiovascular risk algorithm was applied and those considered high risk ( > 10%) were assumed to be prescribed statin therapy while others received usual care. Quality-adjusted life years (QALYs) and costs were accrued for each algorithm including no algorithm, and cost-effectiveness was calculated using the net monetary benefit (NMB) approach. Deterministic and probabilistic sensitivity analyses were performed to test assumptions made and uncertainty around parameter estimates. The SMI-specific BMI algorithm had the highest NMB resulting in 15 additional QALYs and a cost saving of approximately £53 000 per 1000 patients with SMI over 10 years, followed by the general population lipid algorithm (13 additional QALYs and a cost saving of £46 000). The general population lipid and SMI-specific BMI algorithms performed equally well. The ease and acceptability of use of an SMI-specific BMI algorithm (blood tests not required) makes it an attractive algorithm to implement in clinical settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.
2011-12-15
We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude tomore » estimate the planet's minimum mass, which results in M{sub p} sin i = 9.2 {+-} 1.1 M{sub J} (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.« less
Estimating contact rates at a mass gathering by using video analysis: a proof-of-concept project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainey, Jeanette J.; Cheriyadat, Anil; Radke, Richard J.
Current approaches for estimating social mixing patterns and infectious disease transmission at mass gatherings have been limited by various constraints, including low participation rates for volunteer-based research projects and challenges in quantifying spatially and temporally accurate person-to-person interactions. We developed a proof-of-concept project to assess the use of automated video analysis for estimating contact rates of attendees of the GameFest 2013 event at Rensselaer Polytechnic Institute (RPI) in Troy, New York. Video tracking and analysis algorithms were used to estimate the number and duration of contacts for 5 attendees during a 3-minute clip from the RPI video. Attendees were consideredmore » to have a contact event if the distance between them and another person was ≤1 meter. Contact duration was estimated in seconds. We also simulated 50 attendees assuming random mixing using a geospatially accurate representation of the same GameFest location. The 5 attendees had an overall median of 2 contact events during the 3-minute video clip (range: 0 6). Contact events varied from less than 5 seconds to the full duration of the 3- minute clip. The random mixing simulation was visualized and presented as a contrasting example. We were able to estimate the number and duration of contacts for five GameFest attendees from a 3-minute video clip that can be compared to a random mixing simulation model at the same location. In conclusion, the next phase will involve scaling the system for simultaneous analysis of mixing patterns from hours-long videos and comparing our results with other approaches for collecting contact data from mass gathering attendees.« less
Estimating contact rates at a mass gathering by using video analysis: a proof-of-concept project
Rainey, Jeanette J.; Cheriyadat, Anil; Radke, Richard J.; ...
2014-10-24
Current approaches for estimating social mixing patterns and infectious disease transmission at mass gatherings have been limited by various constraints, including low participation rates for volunteer-based research projects and challenges in quantifying spatially and temporally accurate person-to-person interactions. We developed a proof-of-concept project to assess the use of automated video analysis for estimating contact rates of attendees of the GameFest 2013 event at Rensselaer Polytechnic Institute (RPI) in Troy, New York. Video tracking and analysis algorithms were used to estimate the number and duration of contacts for 5 attendees during a 3-minute clip from the RPI video. Attendees were consideredmore » to have a contact event if the distance between them and another person was ≤1 meter. Contact duration was estimated in seconds. We also simulated 50 attendees assuming random mixing using a geospatially accurate representation of the same GameFest location. The 5 attendees had an overall median of 2 contact events during the 3-minute video clip (range: 0 6). Contact events varied from less than 5 seconds to the full duration of the 3- minute clip. The random mixing simulation was visualized and presented as a contrasting example. We were able to estimate the number and duration of contacts for five GameFest attendees from a 3-minute video clip that can be compared to a random mixing simulation model at the same location. In conclusion, the next phase will involve scaling the system for simultaneous analysis of mixing patterns from hours-long videos and comparing our results with other approaches for collecting contact data from mass gathering attendees.« less
HMC algorithm with multiple time scale integration and mass preconditioning
NASA Astrophysics Data System (ADS)
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
Algorithms for Brownian first-passage-time estimation
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2009-09-01
A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.
Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho
2015-01-01
This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.
A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components
NASA Astrophysics Data System (ADS)
Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa
2016-10-01
Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.
An Efficient Distributed Compressed Sensing Algorithm for Decentralized Sensor Network.
Liu, Jing; Huang, Kaiyu; Zhang, Guoxian
2017-04-20
We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.
ERIC Educational Resources Information Center
Martin-Fernandez, Manuel; Revuelta, Javier
2017-01-01
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2015-01-01
This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
Direction of Arrival Estimation Using a Reconfigurable Array
2005-05-06
civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm
NASA Astrophysics Data System (ADS)
Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin
2017-04-01
Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.
Analysis of estimation algorithms for CDTI and CAS applications
NASA Technical Reports Server (NTRS)
Goka, T.
1985-01-01
Estimation algorithms for Cockpit Display of Traffic Information (CDTI) and Collision Avoidance System (CAS) applications were analyzed and/or developed. The algorithms are based on actual or projected operational and performance characteristics of an Enhanced TCAS II traffic sensor developed by Bendix and the Federal Aviation Administration. Three algorithm areas are examined and discussed. These are horizontal x and y, range and altitude estimation algorithms. Raw estimation errors are quantified using Monte Carlo simulations developed for each application; the raw errors are then used to infer impacts on the CDTI and CAS applications. Applications of smoothing algorithms to CDTI problems are also discussed briefly. Technical conclusions are summarized based on the analysis of simulation results.
Wynant, Willy; Abrahamowicz, Michal
2016-11-01
Standard optimization algorithms for maximizing likelihood may not be applicable to the estimation of those flexible multivariable models that are nonlinear in their parameters. For applications where the model's structure permits separating estimation of mutually exclusive subsets of parameters into distinct steps, we propose the alternating conditional estimation (ACE) algorithm. We validate the algorithm, in simulations, for estimation of two flexible extensions of Cox's proportional hazards model where the standard maximum partial likelihood estimation does not apply, with simultaneous modeling of (1) nonlinear and time-dependent effects of continuous covariates on the hazard, and (2) nonlinear interaction and main effects of the same variable. We also apply the algorithm in real-life analyses to estimate nonlinear and time-dependent effects of prognostic factors for mortality in colon cancer. Analyses of both simulated and real-life data illustrate good statistical properties of the ACE algorithm and its ability to yield new potentially useful insights about the data structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Phinney, D. E. (Principal Investigator)
1980-01-01
An algorithm for estimating spectral crop calendar shifts of spring small grains was applied to 1978 spring wheat fields. The algorithm provides estimates of the date of peak spectral response by maximizing the cross correlation between a reference profile and the observed multitemporal pattern of Kauth-Thomas greenness for a field. A methodology was developed for estimation of crop development stage from the date of peak spectral response. Evaluation studies showed that the algorithm provided stable estimates with no geographical bias. Crop development stage estimates had a root mean square error near 10 days. The algorithm was recommended for comparative testing against other models which are candidates for use in AgRISTARS experiments.
Formulations and algorithms for problems on rock mass and support deformation during mining
NASA Astrophysics Data System (ADS)
Seryakov, VM
2018-03-01
The analysis of problem formulations to calculate stress-strain state of mine support and surrounding rocks mass in rock mechanics shows that such formulations incompletely describe the mechanical features of joint deformation in the rock mass–support system. The present paper proposes an algorithm to take into account the actual conditions of rock mass and support interaction and the algorithm implementation method to ensure efficient calculation of stresses in rocks and support.
Polarimetric Remote Sensing of Atmospheric Particulate Pollutants
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Hong, J.
2018-04-01
Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
The Gaia On-Board Scientific Data Handling
NASA Astrophysics Data System (ADS)
Arenou, F.; Babusiaux, C.; Chéreau, F.; Mignot, S.
2005-01-01
Because Gaia will perform a continuous all-sky survey at a medium (Spectro) or very high (Astro) angular resolution, the on-board processing needs to cope with a high variety of objects and densities which calls for generic and adaptive algorithms at the detection level, but not only. Consequently, the Pyxis scientific algorithms developed for the on-board data handling cover a large range of application: detection and confirmation of astronomical objects, background sky estimation, classification of detected objects, Near-Earth Objects onboard detection, and window selection and positioning. Very dense fields, where the real-time computing requirements should remain within fixed bounds, are particularly challenging. Another constraint stems from the limited telemetry bandwidth and an additional compromise has to be found between scientific requirements and constraints in terms of the mass, volume and power budgets of the satellite. The rationale for the on-board data handling procedure is described here, together with the developed algorithms, the main issues and the expected scientific performances in the Astro and Spectro instruments.
A trace map comparison algorithm for the discrete fracture network models of rock masses
NASA Astrophysics Data System (ADS)
Han, Shuai; Wang, Gang; Li, Mingchao
2018-06-01
Discrete fracture networks (DFN) are widely used to build refined geological models. However, validating whether a refined model can match to reality is a crucial problem, concerning whether the model can be used for analysis. The current validation methods include numerical validation and graphical validation. However, the graphical validation, aiming at estimating the similarity between a simulated trace map and the real trace map by visual observation, is subjective. In this paper, an algorithm for the graphical validation of DFN is set up. Four main indicators, including total gray, gray grade curve, characteristic direction and gray density distribution curve, are presented to assess the similarity between two trace maps. A modified Radon transform and loop cosine similarity are presented based on Radon transform and cosine similarity respectively. Besides, how to use Bézier curve to reduce the edge effect is described. Finally, a case study shows that the new algorithm can effectively distinguish which simulated trace map is more similar to the real trace map.
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
Automated and real-time segmentation of suspicious breast masses using convolutional neural network
Gregory, Adriana; Denis, Max; Meixner, Duane D.; Bayat, Mahdi; Whaley, Dana H.; Fatemi, Mostafa; Alizad, Azra
2018-01-01
In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13–55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. PMID:29768415
Performance in population models for count data, part II: a new SAEM algorithm
Savic, Radojka; Lavielle, Marc
2009-01-01
Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795
Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.
Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.
Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.
2017-01-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W
2017-04-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.
3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer
NASA Technical Reports Server (NTRS)
Lane, John
2012-01-01
Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has also been modified to read standardized disdrometer data format (Joss-Waldvogel format). Other modifications to the software involve accounting for vertical ambient wind motion, as well as evaporation of the raindrop during its flight time.
Model implementation for dynamic computation of system cost
NASA Astrophysics Data System (ADS)
Levri, J.; Vaccari, D.
The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.
Power flow prediction in vibrating systems via model reduction
NASA Astrophysics Data System (ADS)
Li, Xianhui
This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.
Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong
2014-09-01
A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds
NASA Astrophysics Data System (ADS)
Mitchell, D. L.
2013-12-01
Ice particle mass- and area-dimensional power law (henceforth m-D and A-D) relationships are building-blocks for formulating microphysical processes and optical properties in cloud and climate models, and they are critical for ice cloud remote sensing algorithms, affecting the retrieval accuracy. They can be estimated by (1) directly measuring the sizes, masses and areas of individual ice particles at ground-level and (2) using aircraft probes to simultaneously measure the ice water content (IWC) and ice particle size distribution. A third indirect method is to use observations from method 1 to develop an m-A relationship representing mean conditions in ice clouds. Owing to a tighter correlation (relative to m-D data), this m-A relationship can be used to estimate m from aircraft probe measurements of A. This has the advantage of estimating m at small sizes, down to 10 μm using the 2D-Sterio probe. In this way, 2D-S measurements of maximum dimension D can be related to corresponding estimates of m to develop ice cloud type and temperature dependent m-D expressions. However, these expressions are no longer linear in log-log space, but are slowly varying curves covering most of the size range of natural ice particles. This work compares all three of the above methods and demonstrates close agreement between them. Regarding (1), 4869 ice particles and corresponding melted hemispheres were measured during a field campaign to obtain D and m. Selecting only those unrimed habits that formed between -20°C and -40°C, the mean mass values for selected size intervals are within 35% of the corresponding masses predicted by the Method 3 curve based on a similar temperature range. Moreover, the most recent m-D expression based on Method 2 differs by no more than 50% with the m-D curve from Method 3. Method 3 appears to be the most accurate over the observed ice particle size range (10-4000 μm). An m-D/A-D scheme was developed by which self-consistent m-D and A-D power laws are extracted from Method 3 for a given ice particle number concentration N and IWC, appropriate for the relevant size range inferred from N and IWC. The resulting m-D/A-D power laws are based on the same data set comprised of 24 flights in ice clouds during a 6-month field campaign. Standard deviations for these power law constants are determined, which are much needed for cloud property remote sensing algorithms. Comparison of Method 3 (curve fit) with Method 1 (red std. deviations from measurements of ice particles found in cirrus clouds) and Method 2 (Cotton et al. and Heymsfield et al.).
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
NASA Astrophysics Data System (ADS)
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Development of advanced techniques for rotorcraft state estimation and parameter identification
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.
1980-01-01
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.
Robust image modeling techniques with an image restoration application
NASA Astrophysics Data System (ADS)
Kashyap, Rangasami L.; Eom, Kie-Bum
1988-08-01
A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.
ERIC Educational Resources Information Center
Yang, Ji Seung; Cai, Li
2014-01-01
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
NASA Astrophysics Data System (ADS)
Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.
2007-09-01
When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Real-time optical flow estimation on a GPU for a skied-steered mobile robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2016-04-01
Accurate egomotion estimation is required for mobile robot navigation. Often the egomotion is estimated using optical flow algorithms. For an accurate estimation of optical flow most of modern algorithms require high memory resources and processor speed. However simple single-board computers that control the motion of the robot usually do not provide such resources. On the other hand, most of modern single-board computers are equipped with an embedded GPU that could be used in parallel with a CPU to improve the performance of the optical flow estimation algorithm. This paper presents a new Z-flow algorithm for efficient computation of an optical flow using an embedded GPU. The algorithm is based on the phase correlation optical flow estimation and provide a real-time performance on a low cost embedded GPU. The layered optical flow model is used. Layer segmentation is performed using graph-cut algorithm with a time derivative based energy function. Such approach makes the algorithm both fast and robust in low light and low texture conditions. The algorithm implementation for a Raspberry Pi Model B computer is discussed. For evaluation of the algorithm the computer was mounted on a Hercules mobile skied-steered robot equipped with a monocular camera. The evaluation was performed using a hardware-in-the-loop simulation and experiments with Hercules mobile robot. Also the algorithm was evaluated using KITTY Optical Flow 2015 dataset. The resulting endpoint error of the optical flow calculated with the developed algorithm was low enough for navigation of the robot along the desired trajectory.
Efficient algorithms for single-axis attitude estimation
NASA Technical Reports Server (NTRS)
Shuster, M. D.
1981-01-01
The computationally efficient algorithms determine attitude from the measurement of art lengths and dihedral angles. The dependence of these algorithms on the solution of trigonometric equations was reduced. Both single time and batch estimators are presented along with the covariance analysis of each algorithm.
NASA Astrophysics Data System (ADS)
Arason, P.; Barsotti, S.; De'Michieli Vitturi, M.; Jónsson, S.; Arngrímsson, H.; Bergsson, B.; Pfeffer, M. A.; Petersen, G. N.; Bjornsson, H.
2016-12-01
Plume height and mass eruption rate are the principal scale parameters of explosive volcanic eruptions. Weather radars are important instruments in estimating plume height, due to their independence of daylight, weather and visibility. The Icelandic Meteorological Office (IMO) operates two fixed position C-band weather radars and two mobile X-band radars. All volcanoes in Iceland can be monitored by IMO's radar network, and during initial phases of an eruption all available radars will be set to a more detailed volcano scan. When the radar volume data is retrived at IMO-headquarters in Reykjavík, an automatic analysis is performed on the radar data above the proximity of the volcano. The plume height is automatically estimated taking into account the radar scanning strategy, beam width, and a likely reflectivity gradient at the plume top. This analysis provides a distribution of the likely plume height. The automatically determined plume height estimates from the radar data are used as input to a numerical suite that calculates the eruptive source parameters through an inversion algorithm. This is done by using the coupled system DAKOTA-PlumeMoM which solves the 1D plume model equations iteratively by varying the input values of vent radius and vertical velocity. The model accounts for the effect of wind on the plume dynamics, using atmospheric vertical profiles extracted from the ECMWF numerical weather prediction model. Finally, the resulting estimates of mass eruption rate are used to initialize the dispersal model VOL-CALPUFF to assess hazard due to tephra fallout, and communicated to London VAAC to support their modelling activity for aviation safety purposes.
Contour-based object orientation estimation
NASA Astrophysics Data System (ADS)
Alpatov, Boris; Babayan, Pavel
2016-04-01
Real-time object orientation estimation is an actual problem of computer vision nowadays. In this paper we propose an approach to estimate an orientation of objects lacking axial symmetry. Proposed algorithm is intended to estimate orientation of a specific known 3D object, so 3D model is required for learning. The proposed orientation estimation algorithm consists of 2 stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. It minimizes the training image set. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy (mean error value less than 6°) in all case studies. The real-time performance of the algorithm was also demonstrated.
NASA Astrophysics Data System (ADS)
Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing
2018-02-01
The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.
Mass-casualty triage: time for an evidence-based approach.
Jenkins, Jennifer Lee; McCarthy, Melissa L; Sauer, Lauren M; Green, Gary B; Stuart, Stephanie; Thomas, Tamara L; Hsu, Edbert B
2008-01-01
Mass-casualty triage has developed from a wartime necessity to a civilian tool to ensure that constrained medical resources are directed at achieving the greatest good for the most number of people. Several primary and secondary triage tools have been developed, including Simple Treatment and Rapid Transport (START), JumpSTART, Care Flight Triage, Triage Sieve, Sacco Triage Method, Secondary Assessment of Victim Endpoint (SAVE), and Pediatric Triage Tape. Evidence to support the use of one triage algorithm over another is limited, and the development of effective triage protocols is an important research priority. The most widely recognized mass-casualty triage algorithms in use today are not evidence-based, and no studies directly address these issues in the mass-casualty setting. Furthermore, no studies have evaluated existing mass-casualty triage algorithms regarding ease of use, reliability, and validity when biological, chemical, or radiological agents are introduced. Currently, the lack of a standardized mass-casualty triage system that is well validated, reliable, and uniformly accepted, remains an important gap. Future research directed at triage is recognized as a necessity, and the development of a practical, universal, triage algorithm that incorporates requirements for decontamination or special precautions for infectious agents would facilitate a more organized mass-casualty medical response.
Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.
2012-01-01
This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288
Assessment of remotely sensed chlorophyll-a concentration in Guanabara Bay, Brazil
NASA Astrophysics Data System (ADS)
Oliveira, Eduardo N.; Fernandes, Alexandre M.; Kampel, Milton; Cordeiro, Renato C.; Brandini, Nilva; Vinzon, Susana B.; Grassi, Renata M.; Pinto, Fernando N.; Fillipo, Alessandro M.; Paranhos, Rodolfo
2016-04-01
The Guanabara Bay (GB) is an estuarine system in the metropolitan region of Rio de Janeiro (Brazil), with a surface area of ˜346 km2 threatened by anthropogenic pressure. Remote sensing can provide frequent data for studies and monitoring of water quality parameters, such as chlorophyll-a concentration (Chl-a). Different combination of Medium Resolution Imaging Spectrometer (MERIS) remote sensing reflectance band ratios were used to estimate Chl-a. Standard algorithms such as Ocean Color 3-band, Ocean Color-4 band, fluorescence line height, and maximum chlorophyll index were also tested. The MERIS Chl-a estimates were statistically compared with a dataset of in situ Chl-a (2002 to 2012). Good correlations were obtained with the use of green, red, and near-infrared bands. The best performing algorithm was based on the red (665 nm) and green (560 nm) band ratio, named "RG3" algorithm (r2=0.71, chl-a=62,565*x1.6118). The RG3 was applied to a time series of MERIS images (2003- to 2012). The GB has a high temporal and spatial variability of Chl-a, with highest values found in the wet season (October to March) and in some of the most internal regions of the estuary. Lowest concentrations are found in the central circulation channel due to the flushing of ocean water masses promoted by pumping tide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagie, Matthew J.; Lanterman, Aaron D.
2017-12-01
This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.
NASA Astrophysics Data System (ADS)
Mazonakis, Michalis; Grinias, Elias; Pagonidis, Konstantin; Tziritas, George; Damilakis, John
2010-02-01
The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 ± 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r >= 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 ± 7.2 ml, 3.0 ± 5.2 ml, -0.6 ± 4.3% and -6.2 ± 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.
Optimal placement of tuning masses on truss structures by genetic algorithms
NASA Technical Reports Server (NTRS)
Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.
1993-01-01
Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.
Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei
2014-11-01
A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.
Retrieval of volcanic SO2 from HIRS/2 using optimal estimation
NASA Astrophysics Data System (ADS)
Miles, Georgina M.; Siddans, Richard; Grainger, Roy G.; Prata, Alfred J.; Fisher, Bradford; Krotkov, Nickolay
2017-07-01
We present an optimal-estimation (OE) retrieval scheme for stratospheric sulfur dioxide from the High-Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences, which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal-estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979 to 1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this method presents the opportunity to produce a comprehensive and consistent volcanic SO2 time series spanning over 40 years.
NASA Astrophysics Data System (ADS)
Polack, J. K.; Flaska, M.; Enqvist, A.; Sosa, C. S.; Lawrence, C. C.; Pozzi, S. A.
2015-09-01
Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
Oscillometric Blood Pressure Estimation: Past, Present, and Future.
Forouzanfar, Mohamad; Dajani, Hilmi R; Groza, Voicu Z; Bolic, Miodrag; Rajan, Sreeraman; Batkin, Izmail
2015-01-01
The use of automated blood pressure (BP) monitoring is growing as it does not require much expertise and can be performed by patients several times a day at home. Oscillometry is one of the most common measurement methods used in automated BP monitors. A review of the literature shows that a large variety of oscillometric algorithms have been developed for accurate estimation of BP but these algorithms are scattered in many different publications or patents. Moreover, considering that oscillometric devices dominate the home BP monitoring market, little effort has been made to survey the underlying algorithms that are used to estimate BP. In this review, a comprehensive survey of the existing oscillometric BP estimation algorithms is presented. The survey covers a broad spectrum of algorithms including the conventional maximum amplitude and derivative oscillometry as well as the recently proposed learning algorithms, model-based algorithms, and algorithms that are based on analysis of pulse morphology and pulse transit time. The aim is to classify the diverse underlying algorithms, describe each algorithm briefly, and discuss their advantages and disadvantages. This paper will also review the artifact removal techniques in oscillometry and the current standards for the automated BP monitors.
Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300
NASA Astrophysics Data System (ADS)
Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.
2018-05-01
Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A81Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Chang, Yaping; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Zhang, Shiqiang
2018-06-01
The long-term change of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates, such as the Tibetan Plateau (TP). This study proposed a modified algorithm for estimating ET based on the MOD16 algorithm on a global scale over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraints for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was adopted to reduce the uncertainty in soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons were made between the ET observed using the Eddy Covariance (EC) and estimated using both the original and modified algorithms. The results revealed that the modified algorithm performed better than the original MOD16 algorithm with the coefficient of determination (R2) increasing from 0.26 to 0.68, and root mean square error (RMSE) decreasing from 1.56 to 0.78 mm d-1. The modified algorithm performed slightly better with a higher R2 (0.70) and lower RMSE (0.61 mm d-1) for after-precipitation days than for non-precipitation days at Suli site. Contrarily, better results were obtained for non-precipitation days than for after-precipitation days at Arou, Tanggula, and Hulugou sites, indicating that the modified algorithm may be more suitable for estimating ET for non-precipitation days with higher accuracy than for after-precipitation days, which had large observation errors. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the alpine meadow sites on the TP.
NASA Astrophysics Data System (ADS)
Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.
2014-12-01
The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.
SDR input power estimation algorithms
NASA Astrophysics Data System (ADS)
Briones, J. C.; Nappier, J. M.
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
SDR Input Power Estimation Algorithms
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Briones, Janette C.
2013-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
NASA Astrophysics Data System (ADS)
Bieringer, Paul E.; Rodriguez, Luna M.; Vandenberghe, Francois; Hurst, Jonathan G.; Bieberbach, George; Sykes, Ian; Hannan, John R.; Zaragoza, Jake; Fry, Richard N.
2015-12-01
Accurate simulations of the atmospheric transport and dispersion (AT&D) of hazardous airborne materials rely heavily on the source term parameters necessary to characterize the initial release and meteorological conditions that drive the downwind dispersion. In many cases the source parameters are not known and consequently based on rudimentary assumptions. This is particularly true of accidental releases and the intentional releases associated with terrorist incidents. When available, meteorological observations are often not representative of the conditions at the location of the release and the use of these non-representative meteorological conditions can result in significant errors in the hazard assessments downwind of the sensors, even when the other source parameters are accurately characterized. Here, we describe a computationally efficient methodology to characterize both the release source parameters and the low-level winds (eg. winds near the surface) required to produce a refined downwind hazard. This methodology, known as the Variational Iterative Refinement Source Term Estimation (STE) Algorithm (VIRSA), consists of a combination of modeling systems. These systems include a back-trajectory based source inversion method, a forward Gaussian puff dispersion model, a variational refinement algorithm that uses both a simple forward AT&D model that is a surrogate for the more complex Gaussian puff model and a formal adjoint of this surrogate model. The back-trajectory based method is used to calculate a ;first guess; source estimate based on the available observations of the airborne contaminant plume and atmospheric conditions. The variational refinement algorithm is then used to iteratively refine the first guess STE parameters and meteorological variables. The algorithm has been evaluated across a wide range of scenarios of varying complexity. It has been shown to improve the source parameters for location by several hundred percent (normalized by the distance from source to the closest sampler), and improve mass estimates by several orders of magnitude. Furthermore, it also has the ability to operate in scenarios with inconsistencies between the wind and airborne contaminant sensor observations and adjust the wind to provide a better match between the hazard prediction and the observations.
Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J
2016-04-01
Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of -5.6 to 5.2 bpm and a bias of -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.
Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J
2016-01-01
Abstract Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of −4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and −5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of −5.6 to 5.2 bpm and a bias of −0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available. PMID:27027672
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
NASA Technical Reports Server (NTRS)
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China
NASA Astrophysics Data System (ADS)
Xiong, Jun; Wu, Bingfang; Yan, Nana; Hu, Minggang
2007-11-01
Evapotranspiration (ET, or latent heat flux) is the most essential and uncertain factor in water resource management. Remote sensing is a promising tool for estimation of spatial distribution of ET at regional scale with limited ground observations. We developed an algorithm for estimating regional evapotranspiration from MODIS 1b data and ancillary meteorological data. The algorithm is an integration of Penman-Monteith equation and SEBS (Surface Energy Balance System) model. The former is a combination of the energy balance theory and the mass transfer method to compute the evaporation from cropped surfaces from standard climatological records of sunshine, temperature, humidity and wind speed by introducing resistance factors, and the latter determines the spatio-temporal variability of regional evaporative condition. First, we characterized key land surface parameters on satellite over passing days, including fractional vegetation cover (fc), roughness height for momentum (z0m), net radiation (Rn) and soil heat flux (G0); Second, SEBS was applied to partition the sensible heat (H) from latent heat (LE) in combination with Planetary Boundary Layer (PBL) information from seven meteorological stations. A parameterization of surface roughness was applied at mountainous area considering topographic influence; third, we chose available surface resistance (RS) as the temporal-scaling factor. With bulk surface resistance is properly defined, P-M methods is valid for both soil and vegetation canopy. We validated ET from this algorithm with limited actual observations of ET including 2 eddy covariance system dataset and 1 lysimeter sites. Water balance equation is used as a trend-analysis tool to show the consistency between rainfall and ET on four drainage area. As a result, the prototype products showed different accuracy and applicability on different underlying and time scale, which demonstrates the potential of this approach for estimating ET from 1-km to regional spatial scale in North China Plain.
Novel cooperative neural fusion algorithms for image restoration and image fusion.
Xia, Youshen; Kamel, Mohamed S
2007-02-01
To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.
Analysis of the Command and Control Segment (CCS) attitude estimation algorithm
NASA Technical Reports Server (NTRS)
Stockwell, Catherine
1993-01-01
This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2004-01-01
Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
NASA Astrophysics Data System (ADS)
Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.
2017-12-01
In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.
Parameter expansion for estimation of reduced rank covariance matrices (Open Access publication)
Meyer, Karin
2008-01-01
Parameter expanded and standard expectation maximisation algorithms are described for reduced rank estimation of covariance matrices by restricted maximum likelihood, fitting the leading principal components only. Convergence behaviour of these algorithms is examined for several examples and contrasted to that of the average information algorithm, and implications for practical analyses are discussed. It is shown that expectation maximisation type algorithms are readily adapted to reduced rank estimation and converge reliably. However, as is well known for the full rank case, the convergence is linear and thus slow. Hence, these algorithms are most useful in combination with the quadratically convergent average information algorithm, in particular in the initial stages of an iterative solution scheme. PMID:18096112
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
NASA Astrophysics Data System (ADS)
Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis
2005-01-01
Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Rigby, Robert A; Stasinopoulos, D Mikis
2004-10-15
The Box-Cox power exponential (BCPE) distribution, developed in this paper, provides a model for a dependent variable Y exhibiting both skewness and kurtosis (leptokurtosis or platykurtosis). The distribution is defined by a power transformation Y(nu) having a shifted and scaled (truncated) standard power exponential distribution with parameter tau. The distribution has four parameters and is denoted BCPE (mu,sigma,nu,tau). The parameters, mu, sigma, nu and tau, may be interpreted as relating to location (median), scale (approximate coefficient of variation), skewness (transformation to symmetry) and kurtosis (power exponential parameter), respectively. Smooth centile curves are obtained by modelling each of the four parameters of the distribution as a smooth non-parametric function of an explanatory variable. A Fisher scoring algorithm is used to fit the non-parametric model by maximizing a penalized likelihood. The first and expected second and cross derivatives of the likelihood, with respect to mu, sigma, nu and tau, required for the algorithm, are provided. The centiles of the BCPE distribution are easy to calculate, so it is highly suited to centile estimation. This application of the BCPE distribution to smooth centile estimation provides a generalization of the LMS method of the centile estimation to data exhibiting kurtosis (as well as skewness) different from that of a normal distribution and is named here the LMSP method of centile estimation. The LMSP method of centile estimation is applied to modelling the body mass index of Dutch males against age. 2004 John Wiley & Sons, Ltd.
A Bayesian approach to the modelling of α Cen A
NASA Astrophysics Data System (ADS)
Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J.
2012-12-01
Determining the physical characteristics of a star is an inverse problem consisting of estimating the parameters of models for the stellar structure and evolution, and knowing certain observable quantities. We use a Bayesian approach to solve this problem for α Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition, etc. We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, using either two free parameters or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in α Cen A. When using core-sensitive seismic observational constraints, these can rise above ˜40 per cent. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
Estimating the Turn-around Radii of Six Isolated Galaxy Groups in the Local Universe
NASA Astrophysics Data System (ADS)
Lee, Jounghun
2018-03-01
Estimates of the turn-around radii of six isolated galaxy groups in the nearby universe are presented. From the Tenth Data Release of the Sloan Digital Sky Survey, we first select those isolated galaxy groups at redshifts z ≤ 0.05 in the mass range [0.3–1] × {10}14 {h}-1 {M}ȯ whose nearest-neighbor groups are located at distances larger than 15 times their virial radii. Then, we search for a gravitationally interacting web-like structure around each isolated group, which appears as an inclined streak pattern in the anisotropic spatial distribution of the neighboring field galaxies. Out of 59 isolated groups, only seven are found to possess such web-like structures in their neighbor zones, but one of them turns out to be NGC 5353/4, whose turn-around radius was already measured in a previous work and was thus excluded from our analysis. Applying the Turn-around Radius Estimator algorithm devised by Lee et al. to the identified web-like structures of the remaining six target groups, we determine their turn-around radii and show that three out of the six targets have larger turn-around radii than the spherical bound limit predicted by Planck cosmology. We discuss possible sources of the apparent violations of the three groups, including the underestimated spherical bound limit due to the approximation of the turn-around mass by the virial mass.
Energy expenditure estimation during daily military routine with body-fixed sensors.
Wyss, Thomas; Mäder, Urs
2011-05-01
The purpose of this study was to develop and validate an algorithm for estimating energy expenditure during the daily military routine on the basis of data collected using body-fixed sensors. First, 8 volunteers completed isolated physical activities according to an established protocol, and the resulting data were used to develop activity-class-specific multiple linear regressions for physical activity energy expenditure on the basis of hip acceleration, heart rate, and body mass as independent variables. Second, the validity of these linear regressions was tested during the daily military routine using indirect calorimetry (n = 12). Volunteers' mean estimated energy expenditure did not significantly differ from the energy expenditure measured with indirect calorimetry (p = 0.898, 95% confidence interval = -1.97 to 1.75 kJ/min). We conclude that the developed activity-class-specific multiple linear regressions applied to the acceleration and heart rate data allow estimation of energy expenditure in 1-minute intervals during daily military routine, with accuracy equal to indirect calorimetry.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
Estimating the chance of success in IVF treatment using a ranking algorithm.
Güvenir, H Altay; Misirli, Gizem; Dilbaz, Serdar; Ozdegirmenci, Ozlem; Demir, Berfu; Dilbaz, Berna
2015-09-01
In medicine, estimating the chance of success for treatment is important in deciding whether to begin the treatment or not. This paper focuses on the domain of in vitro fertilization (IVF), where estimating the outcome of a treatment is very crucial in the decision to proceed with treatment for both the clinicians and the infertile couples. IVF treatment is a stressful and costly process. It is very stressful for couples who want to have a baby. If an initial evaluation indicates a low pregnancy rate, decision of the couple may change not to start the IVF treatment. The aim of this study is twofold, firstly, to develop a technique that can be used to estimate the chance of success for a couple who wants to have a baby and secondly, to determine the attributes and their particular values affecting the outcome in IVF treatment. We propose a new technique, called success estimation using a ranking algorithm (SERA), for estimating the success of a treatment using a ranking-based algorithm. The particular ranking algorithm used here is RIMARC. The performance of the new algorithm is compared with two well-known algorithms that assign class probabilities to query instances. The algorithms used in the comparison are Naïve Bayes Classifier and Random Forest. The comparison is done in terms of area under the ROC curve, accuracy and execution time, using tenfold stratified cross-validation. The results indicate that the proposed SERA algorithm has a potential to be used successfully to estimate the probability of success in medical treatment.
Quantum algorithms for Gibbs sampling and hitting-time estimation
Chowdhury, Anirban Narayan; Somma, Rolando D.
2017-02-01
In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less
NASA Astrophysics Data System (ADS)
Flores-Marquez, L.; Suriñach-Cornet, E., Sr.
2017-12-01
Seismic signals generated by snow avalanches and other mass movements are analyzed in their spectrogram representation. Spectrogram displays the evolution in time of the frequency content of the signals. The spectrogram of a seismic signal of a station to which a sliding mass, such as a snow avalanche, approaches, exhibits a triangular time / frequency signature. This increase in its higher frequency content over time is a consequence of the attenuation of the waves propagating in a media. Recognition of characteristic footprints in a spectrogram could help to identify and characterize diverse mass movement events such as landslides or snow avalanches. In order to recognize spectrogram features of seismic signals of Alpine snow avalanches, we propose an algorithm based on the Hough transform. The proposed algorithm is applied on an edge representation image of the seismic spectrogram obtained after fixing a threshold filter to the spectrogram, which enhances the most interesting frequencies of the seismogram that appear over time. This enables us to identify parameters (slopes) that correspond to the speeds associated with the type of snow avalanches, such as, powder, dense or transitional snow avalanches. The data analyzed in this work correspond to twenty different seismic signals generated by snow avalanches artificially released in the experimental site of Vallée de la Sionne (VDLS, SLF, Switzerland). The shape of the signal spectrograms are linked to the flow regimes previously identified. Our findings show that some ranges of speeds are inherent to the type of avalanche.
Multimodality imaging of ovarian cystic lesions: Review with an imaging based algorithmic approach
Wasnik, Ashish P; Menias, Christine O; Platt, Joel F; Lalchandani, Usha R; Bedi, Deepak G; Elsayes, Khaled M
2013-01-01
Ovarian cystic masses include a spectrum of benign, borderline and high grade malignant neoplasms. Imaging plays a crucial role in characterization and pretreatment planning of incidentally detected or suspected adnexal masses, as diagnosis of ovarian malignancy at an early stage is correlated with a better prognosis. Knowledge of differential diagnosis, imaging features, management trends and an algorithmic approach of such lesions is important for optimal clinical management. This article illustrates a multi-modality approach in the diagnosis of a spectrum of ovarian cystic masses and also proposes an algorithmic approach for the diagnosis of these lesions. PMID:23671748
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
NASA Astrophysics Data System (ADS)
Mascio, Jeana; Mace, Gerald G.
2017-02-01
Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.
Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu
2016-01-01
Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127
An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites
NASA Astrophysics Data System (ADS)
Söken, Halil Ersin
2018-04-01
We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5{°} and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm's performance in case of a time-variance in the magnetometer errors.
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
NASA Astrophysics Data System (ADS)
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Parameter estimation for chaotic systems using improved bird swarm algorithm
NASA Astrophysics Data System (ADS)
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers
NASA Astrophysics Data System (ADS)
Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair
We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.
NASA Astrophysics Data System (ADS)
Loboda, I. P.; Bogachev, S. A.
2015-07-01
We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304Å line taken close to the solar minimum of 2008-2009 and mainly focus on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25×25 to 150×500 Mm2 in size and obtain distributions of many of their spatial characteristics, such as latitudinal position, height, size, and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to rarely exceed 3 km/s. In addition, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to estimate the total mass and gravitational energy of all simultaneously existing prominences (1012 - 1014 kg and 1029 - 1031 erg). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1 ± 0.2.
Feature Based Retention Time Alignment for Improved HDX MS Analysis
NASA Astrophysics Data System (ADS)
Venable, John D.; Scuba, William; Brock, Ansgar
2013-04-01
An algorithm for retention time alignment of mass shifted hydrogen-deuterium exchange (HDX) data based on an iterative distance minimization procedure is described. The algorithm performs pairwise comparisons in an iterative fashion between a list of features from a reference file and a file to be time aligned to calculate a retention time mapping function. Features are characterized by their charge, retention time and mass of the monoisotopic peak. The algorithm is able to align datasets with mass shifted features, which is a prerequisite for aligning hydrogen-deuterium exchange mass spectrometry datasets. Confidence assignments from the fully automated processing of a commercial HDX software package are shown to benefit significantly from retention time alignment prior to extraction of deuterium incorporation values.
Humayun, Md Tanim; Divan, Ralu; Stan, Liliana; ...
2016-06-16
This paper presents a highly sensitive, energy efficient and low-cost distributed methane (CH 4) sensor system (DMSS) for continuous monitoring, detection, and localization of CH 4 leaks in natural gas infrastructure, such as transmission and distribution pipelines, wells, and production pads. The CH 4 sensing element, a key component of the DMSS, consists of a metal oxide nanocrystal (MONC) functionalized multi-walled carbon nanotube (MWCNT) mesh which, in comparison to existing literature, shows stronger relative resistance change while interacting with lower parts per million (ppm) concentration of CH 4. A Gaussian plume triangulation algorithm has been developed for the DMSS. Givenmore » a geometric model of the surrounding environment the algorithm can precisely detect and localize a CH 4 leak as well as estimate its mass emission rate. A UV-based surface recovery technique making the sensor recover 10 times faster than the reported ones is presented for the DMSS. In conclusion, a control algorithm based on the UV-accelerated recovery is developed which facilitates faster leak detection.« less
A new range-free localisation in wireless sensor networks using support vector machine
NASA Astrophysics Data System (ADS)
Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing
2018-02-01
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.
Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin
2013-01-01
Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.
USDA-ARS?s Scientific Manuscript database
Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...
A Parametric k-Means Algorithm
Tarpey, Thaddeus
2007-01-01
Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
The impact of drought on ozone dry deposition over eastern Texas
NASA Astrophysics Data System (ADS)
Huang, Ling; McDonald-Buller, Elena C.; McGaughey, Gary; Kimura, Yosuke; Allen, David T.
2016-02-01
Dry deposition represents a critical pathway through which ground-level ozone is removed from the atmosphere. Understanding the effects of drought on ozone dry deposition is essential for air quality modeling and management in regions of the world with recurring droughts. This work applied the widely used Zhang dry deposition algorithm to examine seasonal and interannual changes in estimated ozone dry deposition velocities and component resistances/conductances over eastern Texas during years with drought (2006 and 2011) as well as a year with slightly cooler temperatures and above average rainfall (2007). Simulated area-averaged daytime ozone dry deposition velocities ranged between 0.26 and 0.47 cm/s. Seasonal patterns reflected the combined seasonal variations in non-stomatal and stomatal deposition pathways. Daytime ozone dry deposition velocities during the growing season were consistently larger during 2007 compared to 2006 and 2011. These differences were associated with differences in stomatal conductances and were most pronounced in forested areas. Reductions in stomatal conductances under drought conditions were highly sensitive to increases in vapor pressure deficit and warmer temperatures in Zhang's algorithm. Reductions in daytime ozone deposition velocities and deposition mass during drought years were associated with estimates of higher surface ozone concentrations.
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
Birkegård, Anna Camilla; Andersen, Vibe Dalhoff; Halasa, Tariq; Jensen, Vibeke Frøkjær; Toft, Nils; Vigre, Håkan
2017-10-01
Accurate and detailed data on antimicrobial exposure in pig production are essential when studying the association between antimicrobial exposure and antimicrobial resistance. Due to difficulties in obtaining primary data on antimicrobial exposure in a large number of farms, there is a need for a robust and valid method to estimate the exposure using register data. An approach that estimates the antimicrobial exposure in every rearing period during the lifetime of a pig using register data was developed into a computational algorithm. In this approach data from national registers on antimicrobial purchases, movements of pigs and farm demographics registered at farm level are used. The algorithm traces batches of pigs retrospectively from slaughter to the farm(s) that housed the pigs during their finisher, weaner, and piglet period. Subsequently, the algorithm estimates the antimicrobial exposure as the number of Animal Defined Daily Doses for treatment of one kg pig in each of the rearing periods. Thus, the antimicrobial purchase data at farm level are translated into antimicrobial exposure estimates at batch level. A batch of pigs is defined here as pigs sent to slaughter at the same day from the same farm. In this study we present, validate, and optimise a computational algorithm that calculate the lifetime exposure of antimicrobials for slaughter pigs. The algorithm was evaluated by comparing the computed estimates to data on antimicrobial usage from farm records in 15 farm units. We found a good positive correlation between the two estimates. The algorithm was run for Danish slaughter pigs sent to slaughter in January to March 2015 from farms with more than 200 finishers to estimate the proportion of farms that it was applicable for. In the final process, the algorithm was successfully run for batches of pigs originating from 3026 farms with finisher units (77% of the initial population). This number can be increased if more accurate register data can be obtained. The algorithm provides a systematic and repeatable approach to estimating the antimicrobial exposure throughout the rearing period, independent of rearing site for finisher batches, as a lifetime exposure measurement. Copyright © 2017 Elsevier B.V. All rights reserved.
Calculating the True and Observed Rates of Complex Heterogeneous Catalytic Reactions
NASA Astrophysics Data System (ADS)
Avetisov, A. K.; Zyskin, A. G.
2018-06-01
Equations of the theory of steady-state complex reactions are considered in matrix form. A set of stage stationarity equations is given, and an algorithm is described for deriving the canonic set of stationarity equations with appropriate corrections for the existence of fast stages in a mechanism. A formula for calculating the number of key compounds is presented. The applicability of the Gibbs rule to estimating the number of independent compounds in a complex reaction is analyzed. Some matrix equations relating the rates of dependent and key substances are derived. They are used as a basis to determine the general diffusion stoichiometry relationships between temperature, the concentrations of dependent reaction participants, and the concentrations of key reaction participants in a catalyst grain. An algorithm is described for calculating heat and mass transfer in a catalyst grain with respect to arbitrary complex heterogeneous catalytic reactions.
MAST Propellant and Delivery System Design Methods
NASA Technical Reports Server (NTRS)
Nadeem, Uzair; Mc Cleskey, Carey M.
2015-01-01
A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.
NASA Astrophysics Data System (ADS)
Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.
2016-09-01
We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.
An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang
2015-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
NASA Astrophysics Data System (ADS)
Colgan, M.; Asner, G. P.; Swemmer, A. M.
2011-12-01
The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-06-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models.
Two-pass imputation algorithm for missing value estimation in gene expression time series.
Tsiporkova, Elena; Boeva, Veselka
2007-10-01
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.
A rate-constrained fast full-search algorithm based on block sum pyramid.
Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom
2005-03-01
This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.
Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, M. Y.
1986-01-01
This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews
2015-03-01
This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data.
Saeed, Fahad; Pisitkun, Trairak; Hoffert, Jason D; Rashidian, Sara; Wang, Guanghui; Gucek, Marjan; Knepper, Mark A
2013-11-07
Phosphorylation site assignment of high throughput tandem mass spectrometry (LC-MS/MS) data is one of the most common and critical aspects of phosphoproteomics. Correctly assigning phosphorylated residues helps us understand their biological significance. The design of common search algorithms (such as Sequest, Mascot etc.) do not incorporate site assignment; therefore additional algorithms are essential to assign phosphorylation sites for mass spectrometry data. The main contribution of this study is the design and implementation of a linear time and space dynamic programming strategy for phosphorylation site assignment referred to as PhosSA. The proposed algorithm uses summation of peak intensities associated with theoretical spectra as an objective function. Quality control of the assigned sites is achieved using a post-processing redundancy criteria that indicates the signal-to-noise ratio properties of the fragmented spectra. The quality assessment of the algorithm was determined using experimentally generated data sets using synthetic peptides for which phosphorylation sites were known. We report that PhosSA was able to achieve a high degree of accuracy and sensitivity with all the experimentally generated mass spectrometry data sets. The implemented algorithm is shown to be extremely fast and scalable with increasing number of spectra (we report up to 0.5 million spectra/hour on a moderate workstation). The algorithm is designed to accept results from both Sequest and Mascot search engines. An executable is freely available at http://helixweb.nih.gov/ESBL/PhosSA/ for academic research purposes.
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
NASA Astrophysics Data System (ADS)
Rashid, Ahmar; Khambampati, Anil Kumar; Kim, Bong Seok; Liu, Dong; Kim, Sin; Kim, Kyung Youn
EIT image reconstruction is an ill-posed problem, the spatial resolution of the estimated conductivity distribution is usually poor and the external voltage measurements are subject to variable noise. Therefore, EIT conductivity estimation cannot be used in the raw form to correctly estimate the shape and size of complex shaped regional anomalies. An efficient algorithm employing a shape based estimation scheme is needed. The performance of traditional inverse algorithms, such as the Newton Raphson method, used for this purpose is below par and depends upon the initial guess and the gradient of the cost functional. This paper presents the application of differential evolution (DE) algorithm to estimate complex shaped region boundaries, expressed as coefficients of truncated Fourier series, using EIT. DE is a simple yet powerful population-based, heuristic algorithm with the desired features to solve global optimization problems under realistic conditions. The performance of the algorithm has been tested through numerical simulations, comparing its results with that of the traditional modified Newton Raphson (mNR) method.
Inertial sensor-based smoother for gait analysis.
Suh, Young Soo
2014-12-17
An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).
An Improved Aerial Target Localization Method with a Single Vector Sensor
Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin
2017-01-01
This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956
DOA estimation of noncircular signals for coprime linear array via locally reduced-dimensional Capon
NASA Astrophysics Data System (ADS)
Zhai, Hui; Zhang, Xiaofei; Zheng, Wang
2018-05-01
We investigate the issue of direction of arrival (DOA) estimation of noncircular signals for coprime linear array (CLA). The noncircular property enhances the degree of freedom and improves angle estimation performance, but it leads to a more complex angle ambiguity problem. To eliminate ambiguity, we theoretically prove that the actual DOAs of noncircular signals can be uniquely estimated by finding the coincide results from the two decomposed subarrays based on the coprimeness. We propose a locally reduced-dimensional (RD) Capon algorithm for DOA estimation of noncircular signals for CLA. The RD processing is used in the proposed algorithm to avoid two dimensional (2D) spectral peak search, and coprimeness is employed to avoid the global spectral peak search. The proposed algorithm requires one-dimensional locally spectral peak search, and it has very low computational complexity. Furthermore, the proposed algorithm needs no prior knowledge of the number of sources. We also derive the Crámer-Rao bound of DOA estimation of noncircular signals in CLA. Numerical simulation results demonstrate the effectiveness and superiority of the algorithm.
Genetic algorithm-based improved DOA estimation using fourth-order cumulants
NASA Astrophysics Data System (ADS)
Ahmed, Ammar; Tufail, Muhammad
2017-05-01
Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.
Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor
NASA Astrophysics Data System (ADS)
Bae, Eun-Hyon; Lee, Kyun-Kyung
A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.
NASA Astrophysics Data System (ADS)
Khambampati, A. K.; Rashid, A.; Kim, B. S.; Liu, Dong; Kim, S.; Kim, K. Y.
2010-04-01
EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set and control the air volume and pressure delivered to the patients during artificial ventilation. In this paper, the expectation-maximization (EM) algorithm is used as an inverse algorithm to estimate the non-stationary lung boundary. The uncertainties caused in Kalman-type filters due to inaccurate selection of model parameters are overcome using EM algorithm. Numerical experiments using chest shaped geometry are carried out with proposed method and the performance is compared with extended Kalman filter (EKF). Results show superior performance of EM in estimation of the lung boundary.
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
Clinical validation of the General Ability Index--Estimate (GAI-E): estimating premorbid GAI.
Schoenberg, Mike R; Lange, Rael T; Iverson, Grant L; Chelune, Gordon J; Scott, James G; Adams, Russell L
2006-09-01
The clinical utility of the General Ability Index--Estimate (GAI-E; Lange, Schoenberg, Chelune, Scott, & Adams, 2005) for estimating premorbid GAI scores was investigated using the WAIS-III standardization clinical trials sample (The Psychological Corporation, 1997). The GAI-E algorithms combine Vocabulary, Information, Matrix Reasoning, and Picture Completion subtest raw scores with demographic variables to predict GAI. Ten GAI-E algorithms were developed combining demographic variables with single subtest scaled scores and with two subtests. Estimated GAI are presented for participants diagnosed with dementia (n = 50), traumatic brain injury (n = 20), Huntington's disease (n = 15), Korsakoff's disease (n = 12), chronic alcohol abuse (n = 32), temporal lobectomy (n = 17), and schizophrenia (n = 44). In addition, a small sample of participants without dementia and diagnosed with depression (n = 32) was used as a clinical comparison group. The GAI-E algorithms provided estimates of GAI that closely approximated scores expected for a healthy adult population. The greatest differences between estimated GAI and obtained GAI were observed for the single subtest GAI-E algorithms using the Vocabulary, Information, and Matrix Reasoning subtests. Based on these data, recommendations for the use of the GAI-E algorithms are presented.
Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2015-01-01
The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.
NASA Astrophysics Data System (ADS)
Mohyud Din, S. T.; Zubair, T.; Usman, M.; Hamid, M.; Rafiq, M.; Mohsin, S.
2018-04-01
This study is devoted to analyze the influence of variable diffusion coefficient and variable thermal conductivity on heat and mass transfer in Casson fluid flow. The behavior of concentration and temperature profiles in the presence of Joule heating and viscous dissipation is also studied. The dimensionless conversation laws with suitable BCs are solved via Modified Gegenbauer Wavelets Method (MGWM). It has been observed that increase in Casson fluid parameter (β ) and parameter ɛ enhances the Nusselt number. Moreover, Nusselt number of Newtonian fluid is less than that of the Casson fluid. The phenomenon of mass transport can be increased by solute of variable diffusion coefficient rather than solute of constant diffusion coefficient. A detailed analysis of results is appropriately highlighted. The obtained results, error estimates, and convergence analysis reconfirm the credibility of proposed algorithm. It is concluded that MGWM is an appropriate tool to tackle nonlinear physical models and hence may be extended to some other nonlinear problems of diversified physical nature also.
A HST/WFC3 Search for Substellar Companions in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Strampelli, Giovanni Maria; Aguilar, Jonathan; Aparicio, Antonio; Piotto, Giampaolo; Pueyo, Laurent; Robberto, Massimo
2018-01-01
We present new results relative to the population of substellar binaries in the Orion Nebula Cluster. We reprocessed HST/WFC3 data using an analysis technique developed to detect close companions in the wings of the stellar PSFs, based on the PyKLIP implementation of the KLIP PSF subtraction algorithm. Starting from a sample of ~1200 stars selected over the range J=11-15 mag, we were able to uncover ~80 candidate companions in the magnitude range J=16-23 mag. We use the presence of the 1.4 micron H2O absorption feature in the companion photosphere to discriminate 32 bona-fide substellar candidates from a population of reddened background objects. We derive an estimate of the companion mass assuming a 2Myr isochrone and the reddening of their primary. With 8 stellar companions, 19 brown dwarfs and 5 planetary mass objects, our study provide us with an unbiased sample of companions at the low-mass end of the IMF, probing the transition from binary to planetary systems.
The MAP Spacecraft Angular State Estimation After Sensor Failure
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2003-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, the conclusions have a far reaching consequence.
The Effect of Sensor Failure on the Attitude and Rate Estimation of MAP Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2003-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, its conclusions are more general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis
2012-05-15
Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipidsmore » from a subset of lipid classes shows both high sensitivity and specificity.« less
Linearized motion estimation for articulated planes.
Datta, Ankur; Sheikh, Yaser; Kanade, Takeo
2011-04-01
In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.
Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds
NASA Astrophysics Data System (ADS)
Murzionak, Aliaksandr
A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.
Sensor failure detection for jet engines
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.
1983-01-01
Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.
NASA Astrophysics Data System (ADS)
MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.
2017-01-01
This paper presents a brief synthesis and useful performance analysis of different attitude filtering algorithms (attitude determination algorithms, attitude estimation algorithms, and nonlinear observers) applied to Low Earth Orbit Satellite in terms of accuracy, convergence time, amount of memory, and computation time. This latter is calculated in two ways, using a personal computer and also using On-board computer 750 (OBC 750) that is being used in many SSTL Earth observation missions. The use of this comparative study could be an aided design tool to the designer to choose from an attitude determination or attitude estimation or attitude observer algorithms. The simulation results clearly indicate that the nonlinear Observer is the more logical choice.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu
2016-05-07
Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.
Development of Parallel Architectures for Sensor Array Processing. Volume 1
1993-08-01
required for the DOA estimation [ 1-7]. The Multiple Signal Classification ( MUSIC ) [ 1] and the Estimation of Signal Parameters by Rotational...manifold and the estimated subspace. Although MUSIC is a high resolution algorithm, it has several drawbacks including the fact that complete knowledge of...thoroughly, MUSIC algorithm was selected to develop special purpose hardware for real time computation. Summary of the MUSIC algorithm is as follows
Extended reactance domain algorithms for DoA estimation onto an ESPAR antennas
NASA Astrophysics Data System (ADS)
Harabi, F.; Akkar, S.; Gharsallah, A.
2016-07-01
Based on an extended reactance domain (RD) covariance matrix, this article proposes new alternatives for directions of arrival (DoAs) estimation of narrowband sources through an electronically steerable parasitic array radiator (ESPAR) antennas. Because of the centro symmetry of the classic ESPAR antennas, an unitary transformation is applied to the collected data that allow an important reduction in both computational cost and processing time and, also, an enhancement of the resolution capabilities of the proposed algorithms. Moreover, this article proposes a new approach for eigenvalues estimation through only some linear operations. The developed DoAs estimation algorithms based on this new approach has illustrated a good behaviour with less calculation cost and processing time as compared to other schemes based on the classic eigenvalues approach. The conducted simulations demonstrate that high-precision and high-resolution DoAs estimation can be reached especially in very closely sources situation and low sources power as compared to the RD-MUSIC algorithm and the RD-PM algorithm. The asymptotic behaviours of the proposed DoAs estimators are analysed in various scenarios and compared with the Cramer-Rao bound (CRB). The conducted simulations testify the high-resolution of the developed algorithms and prove the efficiently of the proposed approach.
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-01-01
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431
An open source framework for tracking and state estimation ('Stone Soup')
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger
2017-05-01
The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-04-27
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.
NASA Astrophysics Data System (ADS)
Yuan, Chunhua; Wang, Jiang; Yi, Guosheng
2017-03-01
Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.
An axisymmetric PFEM formulation for bottle forming simulation
NASA Astrophysics Data System (ADS)
Ryzhakov, Pavel B.
2017-01-01
A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.
A versatile computer package for mechanism analysis, part 2: Dynamics and balance
NASA Astrophysics Data System (ADS)
Davies, T.
The algorithms required for the shaking force components, the shaking moment about the crankshaft axis, and the input torque and bearing load components are discussed using the textile machine as a focus for the discussion. The example is also used to provide illustrations of the output for options on the hodograph of the shaking force vector. This provides estimates of the optimum contrarotating masses and their locations for a generalized primary Lanchester balancer. The suitability of generalized Lanchester balancers particularly for textile machinery, and the overall strategy used during the development of the package are outlined.
Koay, Cheng Guan; Chang, Lin-Ching; Carew, John D; Pierpaoli, Carlo; Basser, Peter J
2006-09-01
A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
Particle analysis using laser ablation mass spectroscopy
Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.
2003-09-09
The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.
NASA Astrophysics Data System (ADS)
Hanus, Josef; Viikinkoski, Matti; Marchis, Franck; Durech, Josef
2015-11-01
A reliable bulk density of an asteroid can be determined from the knowledge of its volume and mass. This quantity provides hints on the internal structure of asteroids and their origin. We compute volume of several asteroids by scaling sizes of their 3D shape models to fit the disk-resolved images, which are available in the Keck Observatory Archive (KOA) and the Virtual Observatory Binary Asteroids Database (VOBAD). The size of an asteroid is optimized together with its shape by the All-Data Asteroid Modelling inversion algorithm (ADAM, Viikinkoski et al., 2015, A&A, 576, A8), while the spin state of the original convex shape model from the DAMIT database is only used as an initial guess for the modeling. Updated sets of optical lightcurves are usually employed. Thereafter, we combine obtained volume with mass estimates available in the literature and derive bulk densities for tens of asteroids with a typical accuracy of 20-50%.On top of that, we also provide a list of asteroids, for which (i) there are already mass estimates with reported uncertainties better than 20% or their masses will be most likely determined in the future from Gaia astrometric observations, and (ii) their 3D shape models are currently unknown. Additional optical lightcurves are necessary in order to determine convex shape models of these asteroids. Our web page (https://asteroid-obs.oca.eu/foswiki/bin/view/Main/Photometry) contains additional information about this observation campaign.
NASA Technical Reports Server (NTRS)
Lin, S. S.; Tiong, I. Y.; Asher, C. R.; Murphy, M. T.; Thomas, J. D.; Griffin, B. P.
2000-01-01
Identification of thrombus-related mechanical prosthetic valve dysfunction (MPVD) has important therapeutic implications. We sought to develop an algorithm, combining clinical and echocardiographic parameters, for prediction of thrombus-related MPVD in a series of 53 patients (24 men, age 52 +/- 16 years) who had intraoperative diagnosis of thrombus or pannus from 1992 to 1997. Clinical and echocardiographic parameters were analyzed to identify predictors of thrombus and pannus. Prevalence of thrombus and diagnostic yields relative to the number of predictors were determined. There were 22 patients with thrombus, 19 patients with pannus, and 12 patients with both. Forty-two of 53 masses were visualized using transesophageal echocardiography (TEE), including 29 of 34 thrombi or both thrombi and panni and 13 of 19 isolated panni. Predictors of thrombus or mixed presentation include mobile mass (p = 0.009), attachment to occluder (p = 0.02), elevated gradients (p = 0.04), and an international normalized ratio of < or = 2.5 (p = 0.03). All 34 patients with thrombus or mixed presentation had > or = 1 predictor. The prevalence of thrombus in the presence of < or = 1, 2, and > or = 3 predictors is 14%, 69%, and 91%, respectively. Thus, TEE is sensitive in the identification of abnormal mass in the setting of MPVD. An algorithm based on clinical and transesophageal echocardiographic predictors may be useful to estimate the likelihood of thrombus in the setting of MPVD. In the presence of > or = 3 predictors, the probability of thrombus is high.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.
Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An
2008-01-01
An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.
Load flow and state estimation algorithms for three-phase unbalanced power distribution systems
NASA Astrophysics Data System (ADS)
Madvesh, Chiranjeevi
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
Algorithm Estimates Microwave Water-Vapor Delay
NASA Technical Reports Server (NTRS)
Robinson, Steven E.
1989-01-01
Accuracy equals or exceeds conventional linear algorithms. "Profile" algorithm improved algorithm using water-vapor-radiometer data to produce estimates of microwave delays caused by water vapor in troposphere. Does not require site-specific and weather-dependent empirical parameters other than standard meteorological data, latitude, and altitude for use in conjunction with published standard atmospheric data. Basic premise of profile algorithm, wet-path delay approximated closely by solution to simplified version of nonlinear delay problem and generated numerically from each radiometer observation and simultaneous meteorological data.
Kalman Filters for Time Delay of Arrival-Based Source Localization
NASA Astrophysics Data System (ADS)
Klee, Ulrich; Gehrig, Tobias; McDonough, John
2006-12-01
In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin; Yang, Liuqing; Florita, Anthony
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin; Yang, Liuqing; Florita, Anthony
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Metabolic flux estimation using particle swarm optimization with penalty function.
Long, Hai-Xia; Xu, Wen-Bo; Sun, Jun
2009-01-01
Metabolic flux estimation through 13C trace experiment is crucial for quantifying the intracellular metabolic fluxes. In fact, it corresponds to a constrained optimization problem that minimizes a weighted distance between measured and simulated results. In this paper, we propose particle swarm optimization (PSO) with penalty function to solve 13C-based metabolic flux estimation problem. The stoichiometric constraints are transformed to an unconstrained one, by penalizing the constraints and building a single objective function, which in turn is minimized using PSO algorithm for flux quantification. The proposed algorithm is applied to estimate the central metabolic fluxes of Corynebacterium glutamicum. From simulation results, it is shown that the proposed algorithm has superior performance and fast convergence ability when compared to other existing algorithms.
Parallel, stochastic measurement of molecular surface area.
Juba, Derek; Varshney, Amitabh
2008-08-01
Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.
Channel estimation based on quantized MMP for FDD massive MIMO downlink
NASA Astrophysics Data System (ADS)
Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie
2016-10-01
In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.
NASA Astrophysics Data System (ADS)
Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S.
2009-04-01
The Virtual Seismologist (VS) algorithm is a Bayesian approach to regional, network-based earthquake early warning (EEW). Bayes' theorem as applied in the VS algorithm states that the most probable source estimates at any given time is a combination of contributions from relatively static prior information that does not change over the timescale of earthquake rupture and a likelihood function that evolves with time to take into account incoming pick and amplitude observations from the on-going earthquake. Potentially useful types of prior information include network topology or station health status, regional hazard maps, earthquake forecasts, and the Gutenberg-Richter magnitude-frequency relationship. The VS codes provide magnitude and location estimates once picks are available at 4 stations; these source estimates are subsequently updated each second. The algorithm predicts the geographical distribution of peak ground acceleration and velocity using the estimated magnitude and location and appropriate ground motion prediction equations; the peak ground motion estimates are also updated each second. Implementation of the VS algorithm in California and Switzerland is funded by the Seismic Early Warning for Europe (SAFER) project. The VS method is one of three EEW algorithms whose real-time performance is being evaluated and tested by the California Integrated Seismic Network (CISN) EEW project. A crucial component of operational EEW algorithms is the ability to distinguish between noise and earthquake-related signals in real-time. We discuss various empirical approaches that allow the VS algorithm to operate in the presence of noise. Real-time operation of the VS codes at the Southern California Seismic Network (SCSN) began in July 2008. On average, the VS algorithm provides initial magnitude, location, origin time, and ground motion distribution estimates within 17 seconds of the earthquake origin time. These initial estimate times are dominated by the time for 4 acceptable picks to be available, and thus are heavily influenced by the station density in a given region; these initial estimate times also include the effects of telemetry delay, which ranges between 6 and 15 seconds at the SCSN, and processing time (~1 second). Other relevant performance statistics include: 95% of initial real-time location estimates are within 20 km of the actual epicenter, 97% of initial real-time magnitude estimates are within one magnitude unit of the network magnitude. Extension of real-time VS operations to networks in Northern California is an on-going effort. In Switzerland, the VS codes have been run on offline waveform data from over 125 earthquakes recorded by the Swiss Digital Seismic Network (SDSN) and the Swiss Strong Motion Network (SSMS). We discuss the performance of the VS algorithm on these datasets in terms of magnitude, location, and ground motion estimation.
Thompson, Frances E; Midthune, Douglas; Kahle, Lisa; Dodd, Kevin W
2017-06-01
Background: Methods for improving the utility of short dietary assessment instruments are needed. Objective: We sought to describe the development of the NHANES Dietary Screener Questionnaire (DSQ) and its scoring algorithms and performance. Methods: The 19-item DSQ assesses intakes of fruits and vegetables, whole grains, added sugars, dairy, fiber, and calcium. Two nonconsecutive 24-h dietary recalls and the DSQ were administered in NHANES 2009-2010 to respondents aged 2-69 y ( n = 7588). The DSQ frequency responses, coupled with sex- and age-specific portion size information, were regressed on intake from 24-h recalls by using the National Cancer Institute usual intake method to obtain scoring algorithms to estimate mean and prevalences of reaching 2 a priori threshold levels. The resulting scoring algorithms were applied to the DSQ and compared with intakes estimated with the 24-h recall data only. The stability of the derived scoring algorithms was evaluated in repeated sampling. Finally, scoring algorithms were applied to screener data, and these estimates were compared with those from multiple 24-h recalls in 3 external studies. Results: The DSQ and its scoring algorithms produced estimates of mean intake and prevalence that agreed closely with those from multiple 24-h recalls. The scoring algorithms were stable in repeated sampling. Differences in the means were <2%; differences in prevalence were <16%. In other studies, agreement between screener and 24-h recall estimates in fruit and vegetable intake varied. For example, among men in 2 studies, estimates from the screener were significantly lower than the 24-h recall estimates (3.2 compared with 3.8 and 3.2 compared with 4.1). In the third study, agreement between the screener and 24-h recall estimates were close among both men (3.2 compared with 3.1) and women (2.6 compared with 2.5). Conclusions: This approach to developing scoring algorithms is an advance in the use of screeners. However, because these algorithms may not be generalizable to all studies, a pilot study in the proposed study population is advisable. Although more precise instruments such as 24-h dietary recalls are recommended in most research, the NHANES DSQ provides a less burdensome alternative when time and resources are constrained and interest is in a limited set of dietary factors. © 2017 American Society for Nutrition.
Jung, Jaehoon; Yoon, Inhye; Paik, Joonki
2016-01-01
This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978
A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding
NASA Astrophysics Data System (ADS)
Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae
2017-12-01
High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.
An algorithmic approach to crustal deformation analysis
NASA Technical Reports Server (NTRS)
Iz, Huseyin Baki
1987-01-01
In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-01-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474
NASA Astrophysics Data System (ADS)
Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.
2017-12-01
In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.
Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kilgour, David P. A.; Hughes, Sam; Kilgour, Samantha L.; Mackay, C. Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K.; Clarke, David J.; Goodlett, David R.
2017-02-01
We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.
Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.
Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R
2017-02-01
We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.
2017-04-01
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.
Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca
2017-01-01
Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.
Sensitivity of NTCP parameter values against a change of dose calculation algorithm.
Brink, Carsten; Berg, Martin; Nielsen, Morten
2007-09-01
Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.
Sensitivity of NTCP parameter values against a change of dose calculation algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Carsten; Berg, Martin; Nielsen, Morten
2007-09-15
Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis withmore » those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.« less
NASA Astrophysics Data System (ADS)
Blanke, Bruno; Speich, Sabrina; Rusciano, Emanuela
2015-01-01
We use the tracer and velocity fields of a climatological ocean model to investigate the ability of Argo-like data to estimate accurately water mass movements and transformations, in the style of analyses commonly applied to the output of ocean general circulation model. To this end, we introduce an algorithm for the reconstruction of a fully non-divergent three-dimensional velocity field from the simple knowledge of the model vertical density profiles and 1000-m horizontal velocity components. The validation of the technique consists in comparing the resulting pathways for Antarctic Intermediate Water in the South Atlantic Ocean to equivalent reference results based on the full model information available for velocity and tracers. We show that the inclusion of a wind-induced Ekman pumping and of a well-thought-out expression for vertical velocity at the level of the intermediate waters is essential for the reliable reproduction of quantitative Lagrangian analyses. Neglecting the seasonal variability of the velocity and tracer fields is not a significant source of errors, at least well below the permanent thermocline. These results give us confidence in the success of the adaptation of the algorithm to true gridded Argo data for investigating the dynamics of flows in the ocean interior.
CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila
2015-03-10
We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less
Kunenkov, Erast V; Kononikhin, Alexey S; Perminova, Irina V; Hertkorn, Norbert; Gaspar, Andras; Schmitt-Kopplin, Philippe; Popov, Igor A; Garmash, Andrew V; Nikolaev, Evgeniy N
2009-12-15
The ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrum of natural organic matter (NOM) contains several thousand peaks with dozens of molecules matching the same nominal mass. Such a complexity poses a significant challenge for automatic data interpretation, in which the most difficult task is molecular formula assignment, especially in the case of heavy and/or multielement ions. In this study, a new universal algorithm for automatic treatment of FTICR mass spectra of NOM and humic substances based on total mass difference statistics (TMDS) has been developed and implemented. The algorithm enables a blind search for unknown building blocks (instead of a priori known ones) by revealing repetitive patterns present in spectra. In this respect, it differs from all previously developed approaches. This algorithm was implemented in designing FIRAN-software for fully automated analysis of mass data with high peak density. The specific feature of FIRAN is its ability to assign formulas to heavy and/or multielement molecules using "virtual elements" approach. To verify the approach, it was used for processing mass spectra of sodium polystyrene sulfonate (PSS, M(w) = 2200 Da) and polymethacrylate (PMA, M(w) = 3290 Da) which produce heavy multielement and multiply-charged ions. Application of TMDS identified unambiguously monomers present in the polymers consistent with their structure: C(8)H(7)SO(3)Na for PSS and C(4)H(6)O(2) for PMA. It also allowed unambiguous formula assignment to all multiply-charged peaks including the heaviest peak in PMA spectrum at mass 4025.6625 with charge state 6- (mass bias -0.33 ppm). Application of the TMDS-algorithm to processing data on the Suwannee River FA has proven its unique capacities in analysis of spectra with high peak density: it has not only identified the known small building blocks in the structure of FA such as CH(2), H(2), C(2)H(2)O, O but the heavier unit at 154.027 amu. The latter was identified for the first time and assigned a formula C(7)H(6)O(4) consistent with the structure of dihydroxyl-benzoic acids. The presence of these compounds in the structure of FA has so far been numerically suggested but never proven directly. It was concluded that application of the TMDS-algorithm opens new horizons in unfolding molecular complexity of NOM and other natural products.
NASA Astrophysics Data System (ADS)
Asgari, Shadnaz; Ali, Andreas M.; Collier, Travis C.; Yao, Yuan; Hudson, Ralph E.; Yao, Kung; Taylor, Charles E.
2007-09-01
The focus of most direction-of-arrival (DOA) estimation problems has been based mainly on a two-dimensional (2D) scenario where we only need to estimate the azimuth angle. But in various practical situations we have to deal with a three-dimensional scenario. The importance of being able to estimate both azimuth and elevation angles with high accuracy and low complexity is of interest. We present the theoretical and the practical issues of DOA estimation using the Approximate-Maximum-Likelihood (AML) algorithm in a 3D scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. Various numerical results are presented. We use two acoustic arrays each consisting of 8 microphones to do some field measurements. The processing of the measured data from the acoustic arrays for different azimuth and elevation angles confirms the effectiveness of the proposed methods.
IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.
Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho
2016-02-05
Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.
Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H; Suarez, Mariann; Brickell, Tracey A
2008-12-01
Determination of neuropsychological impairment involves contrasting obtained performances with a comparison standard, which is often an estimate of premorbid IQ. M. R. Schoenberg, R. T. Lange, T. A. Brickell, and D. H. Saklofske (2007) proposed the Child Premorbid Intelligence Estimate (CPIE) to predict premorbid Full Scale IQ (FSIQ) using the Wechsler Intelligence Scale for Children-4th Edition (WISC-IV; Wechsler, 2003). The CPIE includes 12 algorithms to predict FSIQ, 1 using demographic variables and 11 algorithms combining WISC-IV subtest raw scores with demographic variables. The CPIE was applied to a sample of children with acquired traumatic brain injury (TBI sample; n = 40) and a healthy demographically matched sample (n = 40). Paired-samples t tests found estimated premorbid FSIQ differed from obtained FSIQ when applied to the TBI sample (ps
Experimental verification of an interpolation algorithm for improved estimates of animal position
NASA Astrophysics Data System (ADS)
Schell, Chad; Jaffe, Jules S.
2004-07-01
This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-01-01
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:26985896
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-03-12
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
A hybrid method of estimating pulsating flow parameters in the space-time domain
NASA Astrophysics Data System (ADS)
Pałczyński, Tomasz
2017-05-01
This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.
Quasar microlensing models with constraints on the Quasar light curves
NASA Astrophysics Data System (ADS)
Tie, S. S.; Kochanek, C. S.
2018-01-01
Quasar microlensing analyses implicitly generate a model of the variability of the source quasar. The implied source variability may be unrealistic yet its likelihood is generally not evaluated. We used the damped random walk (DRW) model for quasar variability to evaluate the likelihood of the source variability and applied the revized algorithm to a microlensing analysis of the lensed quasar RX J1131-1231. We compared estimates of the size of the quasar disc and the average stellar mass of the lens galaxy with and without applying the DRW likelihoods for the source variability model and found no significant effect on the estimated physical parameters. The most likely explanation is that unreliastic source light-curve models are generally associated with poor microlensing fits that already make a negligible contribution to the probability distributions of the derived parameters.
NASA Astrophysics Data System (ADS)
Ben Salem, N.; Salizzoni, P.; Soulhac, L.
2017-01-01
We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of pollutant, whose position is known, from concentration signals registered at receptors placed downwind of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a dispersion process within a dense urban canopy, at the district scale, and a street network model, SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries. Results allow us to discuss the reliability of the inverse model as an operational tool for crisis management and the risk assessments related to the accidental release of toxic and flammable substances.
NASA Astrophysics Data System (ADS)
Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid
2017-10-01
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Revised motion estimation algorithm for PROPELLER MRI.
Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R
2014-08-01
To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
Sparse array angle estimation using reduced-dimension ESPRIT-MUSIC in MIMO radar.
Zhang, Chaozhu; Pang, Yucai
2013-01-01
Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.
USDA-ARS?s Scientific Manuscript database
Several bio-optical algorithms were developed to estimate the chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying the influence of the algorithm parameters and wavelength bands on output variables and searching optimal parameter values. The opt...
A Direction of Arrival Estimation Algorithm Based on Orthogonal Matching Pursuit
NASA Astrophysics Data System (ADS)
Tang, Junyao; Cao, Fei; Liu, Lipeng
2018-02-01
The results show that the modified DSM is able to predict local buckling capacity of hot-rolled RHS and SHS accurately. In order to solve the problem of the weak ability of anti-radiation missile against active decoy in modern electronic warfare, a direction of arrival estimation algorithm based on orthogonal matching pursuit is proposed in this paper. The algorithm adopts the compression sensing technology. This paper uses array antennas to receive signals, gets the sparse representation of signals, and then designs the corresponding perception matrix. The signal is reconstructed by orthogonal matching pursuit algorithm to estimate the optimal solution. At the same time, the error of the whole measurement system is analyzed and simulated, and the validity of this algorithm is verified. The algorithm greatly reduces the measurement time, the quantity of equipment and the total amount of the calculation, and accurately estimates the angle and strength of the incoming signal. This technology can effectively improve the angle resolution of the missile, which is of reference significance to the research of anti-active decoy.
Tan, Jun; Nie, Zaiping
2018-05-12
Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.
Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data
NASA Astrophysics Data System (ADS)
Veerakachen, Watcharee; Raksapatcharawong, Mongkol
2015-09-01
Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.
AATSR Based Volcanic Ash Plume Top Height Estimation
NASA Astrophysics Data System (ADS)
Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit
2015-11-01
The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.
Worldwide Ocean Optics Database (WOOD)
2002-09-30
attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading
An interactive system for computer-aided diagnosis of breast masses.
Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin
2012-10-01
Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.
Recursive dynamics for flexible multibody systems using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1990-01-01
Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.
Mass detection with digitized screening mammograms by using Gabor features
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Agyepong, Kwabena
2007-03-01
Breast cancer is the leading cancer among American women. The current lifetime risk of developing breast cancer is 13.4% (one in seven). Mammography is the most effective technology presently available for breast cancer screening. With digital mammograms computer-aided detection (CAD) has proven to be a useful tool for radiologists. In this paper, we focus on mass detection that is a common category of breast cancers relative to calcification and architecture distortion. We propose a new mass detection algorithm utilizing Gabor filters, termed as "Gabor Mass Detection" (GMD). There are three steps in the GMD algorithm, (1) preprocessing, (2) generating alarms and (3) classification (reducing false alarms). Down-sampling, quantization, denoising and enhancement are done in the preprocessing step. Then a total of 30 Gabor filtered images (along 6 bands by 5 orientations) are produced. Alarm segments are generated by thresholding four Gabor images of full orientations (Stage-I classification) with image-dependent thresholds computed via histogram analysis. Next a set of edge histogram descriptors (EHD) are extracted from 24 Gabor images (6 by 4) that will be used for Stage-II classification. After clustering EHD features with fuzzy C-means clustering method, a k-nearest neighbor classifier is used to reduce the number of false alarms. We initially analyzed 431 digitized mammograms (159 normal images vs. 272 cancerous images, from the DDSM project, University of South Florida) with the proposed GMD algorithm. And a ten-fold cross validation was used for testing the GMD algorithm upon the available data. The GMD performance is as follows: sensitivity (true positive rate) = 0.88 at false positives per image (FPI) = 1.25, and the area under the ROC curve = 0.83. The overall performance of the GMD algorithm is satisfactory and the accuracy of locating masses (highlighting the boundaries of suspicious areas) is relatively high. Furthermore, the GMD algorithm can successfully detect early-stage (with small values of Assessment & low Subtlety) malignant masses. In addition, Gabor filtered images are used in both stages of classifications, which greatly simplifies the GMD algorithm.
Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A
2015-01-23
In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.
High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis
Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.
2016-09-23
High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less
RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy
NASA Astrophysics Data System (ADS)
Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.
2016-02-01
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
An efficient quantum algorithm for spectral estimation
NASA Astrophysics Data System (ADS)
Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth
2017-03-01
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry.
Claesen, Jürgen; Burzykowski, Tomasz
2017-09-01
Hydrogen/Deuterium exchange (HDX) has been applied, since the 1930s, as an analytical tool to study the structure and dynamics of (small) biomolecules. The popularity of using HDX to study proteins increased drastically in the last two decades due to the successful combination with mass spectrometry (MS). Together with this growth in popularity, several technological advances have been made, such as improved quenching and fragmentation. As a consequence of these experimental improvements and the increased use of protein-HDXMS, large amounts of complex data are generated, which require appropriate analysis. Computational analysis of HDXMS requires several steps. A typical workflow for proteins consists of identification of (non-)deuterated peptides or fragments of the protein under study (local analysis), or identification of the deuterated protein as a whole (global analysis); determination of the deuteration level; estimation of the protection extent or exchange rates of the labile backbone amide hydrogen atoms; and a statistically sound interpretation of the estimated protection extent or exchange rates. Several algorithms, specifically designed for HDX analysis, have been proposed. They range from procedures that focus on one specific step in the analysis of HDX data to complete HDX workflow analysis tools. In this review, we provide an overview of the computational methods and discuss outstanding challenges. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:649-667, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Asgari, Shadnaz
Recent developments in the integrated circuits and wireless communications not only open up many possibilities but also introduce challenging issues for the collaborative processing of signals for source localization and beamforming in an energy-constrained distributed sensor network. In signal processing, various sensor array processing algorithms and concepts have been adopted, but must be further tailored to match the communication and computational constraints. Sometimes the constraints are such that none of the existing algorithms would be an efficient option for the defined problem and as the result; the necessity of developing a new algorithm becomes undeniable. In this dissertation, we present the theoretical and the practical issues of Direction-Of-Arrival (DOA) estimation and source localization using the Approximate-Maximum-Likelihood (AML) algorithm for different scenarios. We first investigate a robust algorithm design for coherent source DOA estimation in a limited reverberant environment. Then, we provide a least-square (LS) solution for source localization based on our newly proposed virtual array model. In another scenario, we consider the determination of the location of a disturbance source which emits both wideband acoustic and seismic signals. We devise an enhanced AML algorithm to process the data collected at the acoustic sensors. For processing the seismic signals, two distinct algorithms are investigated to determine the DOAs. Then, we consider a basic algorithm for fusion of the results yielded by the acoustic and seismic arrays. We also investigate the theoretical and practical issues of DOA estimation in a three-dimensional (3D) scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. In this dissertation, for each scenario, efficient numerical implementations of the corresponding AML algorithm are derived and applied into a real-time sensor network testbed. Extensive simulations as well as experimental results are presented to verify the effectiveness of the proposed algorithms.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
Advanced Mathematical Tools in Metrology III
NASA Astrophysics Data System (ADS)
Ciarlini, P.
The Table of Contents for the book is as follows: * Foreword * Invited Papers * The ISO Guide to the Expression of Uncertainty in Measurement: A Bridge between Statistics and Metrology * Bootstrap Algorithms and Applications * The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing & Inspection * Graded Reference Data Sets and Performance Profiles for Testing Software Used in Metrology * Uncertainty in Chemical Measurement * Mathematical Methods for Data Analysis in Medical Applications * High-Dimensional Empirical Linear Prediction * Wavelet Methods in Signal Processing * Software Problems in Calibration Services: A Case Study * Robust Alternatives to Least Squares * Gaining Information from Biomagnetic Measurements * Full Papers * Increase of Information in the Course of Measurement * A Framework for Model Validation and Software Testing in Regression * Certification of Algorithms for Determination of Signal Extreme Values during Measurement * A Method for Evaluating Trends in Ozone-Concentration Data and Its Application to Data from the UK Rural Ozone Monitoring Network * Identification of Signal Components by Stochastic Modelling in Measurements of Evoked Magnetic Fields from Peripheral Nerves * High Precision 3D-Calibration of Cylindrical Standards * Magnetic Dipole Estimations for MCG-Data * Transfer Functions of Discrete Spline Filters * An Approximation Method for the Linearization of Tridimensional Metrology Problems * Regularization Algorithms for Image Reconstruction from Projections * Quality of Experimental Data in Hydrodynamic Research * Stochastic Drift Models for the Determination of Calibration Intervals * Short Communications * Projection Method for Lidar Measurement * Photon Flux Measurements by Regularised Solution of Integral Equations * Correct Solutions of Fit Problems in Different Experimental Situations * An Algorithm for the Nonlinear TLS Problem in Polynomial Fitting * Designing Axially Symmetric Electromechanical Systems of Superconducting Magnetic Levitation in Matlab Environment * Data Flow Evaluation in Metrology * A Generalized Data Model for Integrating Clinical Data and Biosignal Records of Patients * Assessment of Three-Dimensional Structures in Clinical Dentistry * Maximum Entropy and Bayesian Approaches to Parameter Estimation in Mass Metrology * Amplitude and Phase Determination of Sinusoidal Vibration in the Nanometer Range using Quadrature Signals * A Class of Symmetric Compactly Supported Wavelets and Associated Dual Bases * Analysis of Surface Topography by Maximum Entropy Power Spectrum Estimation * Influence of Different Kinds of Errors on Imaging Results in Optical Tomography * Application of the Laser Interferometry for Automatic Calibration of Height Setting Micrometer * Author Index
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S
2013-01-01
Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.
NASA Astrophysics Data System (ADS)
Trifonov, A. P.; Korchagin, Yu. E.; Korol'kov, S. V.
2018-05-01
We synthesize the quasi-likelihood, maximum-likelihood, and quasioptimal algorithms for estimating the arrival time and duration of a radio signal with unknown amplitude and initial phase. The discrepancies between the hardware and software realizations of the estimation algorithm are shown. The characteristics of the synthesized-algorithm operation efficiency are obtained. Asymptotic expressions for the biases, variances, and the correlation coefficient of the arrival-time and duration estimates, which hold true for large signal-to-noise ratios, are derived. The accuracy losses of the estimates of the radio-signal arrival time and duration because of the a priori ignorance of the amplitude and initial phase are determined.
Rainfall Estimates from the TMI and the SSM/I
NASA Technical Reports Server (NTRS)
Hong, Ye; Kummerow, Christian D.; Olson, William S.; Viltard, Nicolas
1999-01-01
The Tropical Rainfall Measuring Mission (TRMM), which is a joint Japan-U.S. Earth observing satellite, has been successfully launched from Japan on November 27, 1997. The main purpose of the TRMM is to measure quantitatively rainfall over the tropics for the research of climate and weather. One of three rainfall measuring instruments abroad the TRMM is the high resolution TRMM Microwave Imager (TMI). The TMI instrument is essentially the copy of the SSM/I with a dual-polarized pair of 10.7 GHz channels added to increase the dynamic range of rainfall estimates. In addition, the 21.3 GHz water vapor absorption channel is designed in the TMI as opposed to the 22.235 GHz in the SSM/I to avoid saturation in the tropics. This paper will present instantaneous rain rates estimated from the coincident TMI and SSM/I observations. The algorithm for estimating instantaneous rainfall rates from both sensors is the Goddard Profiling algorithm (Gprof). The Gprof algorithm is a physically based, multichannel rainfall retrieval algorithm, The algorithm is very portable and can be used for various sensors with different channels and resolutions. The comparison of rain rates estimated from TMI and SSM/I on the same rain regions will be performed. The results from the comparison and the insight of tile retrieval algorithm will be given.
A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.
2003-01-01
Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.
A weighted belief-propagation algorithm for estimating volume-related properties of random polytopes
NASA Astrophysics Data System (ADS)
Font-Clos, Francesc; Massucci, Francesco Alessandro; Pérez Castillo, Isaac
2012-11-01
In this work we introduce a novel weighted message-passing algorithm based on the cavity method for estimating volume-related properties of random polytopes, properties which are relevant in various research fields ranging from metabolic networks, to neural networks, to compressed sensing. We propose, as opposed to adopting the usual approach consisting in approximating the real-valued cavity marginal distributions by a few parameters, using an algorithm to faithfully represent the entire marginal distribution. We explain various alternatives for implementing the algorithm and benchmarking the theoretical findings by showing concrete applications to random polytopes. The results obtained with our approach are found to be in very good agreement with the estimates produced by the Hit-and-Run algorithm, known to produce uniform sampling.
Keohane, Bernie M; Mason, Steve M; Baguley, David M
2004-02-01
A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
Automated mammographic breast density estimation using a fully convolutional network.
Lee, Juhun; Nishikawa, Robert M
2018-03-01
The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.
Estimating Fluctuating Pressures From Distorted Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Leondes, Cornelius T.
1994-01-01
Two algorithms extract estimates of time-dependent input (upstream) pressures from outputs of pressure sensors located at downstream ends of pneumatic tubes. Effect deconvolutions that account for distoring effects of tube upon pressure signal. Distortion of pressure measurements by pneumatic tubes also discussed in "Distortion of Pressure Signals in Pneumatic Tubes," (ARC-12868). Varying input pressure estimated from measured time-varying output pressure by one of two deconvolution algorithms that take account of measurement noise. Algorithms based on minimum-covariance (Kalman filtering) theory.
Randall, Deborah A; Lujic, Sanja; Leyland, Alastair H; Jorm, Louisa R
2013-10-01
To investigate under-recording of Aboriginal people in hospital data from New South Wales (NSW), Australia, define algorithms for enhanced reporting, and examine the impact of these algorithms on estimated disparities in cardiovascular and injury outcomes. NSW Admitted Patient Data were linked with NSW mortality data (2001-2007). Associations with recording of Aboriginal status were investigated using multilevel logistic regression. The number of admissions reported as Aboriginal according to six algorithms was compared with the original (unenhanced) Aboriginal status variable. Age-standardised admission, and 30- and 365-day mortality ratios were estimated for cardiovascular disease and injury. Sixty per cent of the variation in recording of Aboriginal status was due to the hospital of admission, with poorer recording in private and major city hospitals. All enhancement algorithms increased the number of admissions reported as Aboriginal, from between 4.1% and 37.8%. Admission and mortality ratios varied markedly between algorithms, with less strict algorithms resulting in higher admission rate ratios, but generally lower mortality rate ratios, particularly for cardiovascular disease. The choice of enhancement algorithm has an impact on the number of people reported as Aboriginal and on estimated outcome ratios. The influence of the hospital on recording of Aboriginal status highlights the importance of continued efforts to improve data collection. Estimates of Aboriginal health disparity can change depending on how Aboriginal status is reported. Sensitivity analyses using a number of algorithms are recommended. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.
Carrier-to-noise power estimation for the Block 5 Receiver
NASA Technical Reports Server (NTRS)
Monk, A. M.
1991-01-01
Two possible algorithms for the carrier to noise power (P sub c/N sub 0) estimation in the Block V Receiver are analyzed and their performances compared. The expected value and the variance of each estimator algorithm are derived. The two algorithms examined are known as the I arm estimator, which relies on samples from only the in-phase arm of the digital phase lock loop, and the IQ arm estimator, which uses both in-phase and quadrature-phase arm signals. The IQ arm algorithm is currently implemented in the Advanced Receiver II (ARX II). Both estimators are biased. The performance degradation due to phase jitter in the carrier tracking loop is taken into account. Curves of the expected value and the signal to noise ratio of the P sub c/N sub 0 estimators vs. actual P sub c/N sub 0 are shown. From this, it is clear that the I arm estimator performs better than the IQ arm estimator when the data to noise power ratio (P sub d/N sub 0) is high, i.e., at high P sub c/N sub 0 values and a significant modulation index. When P sub d/N sub 0 is low, the two estimators have essentially the same performance.
Hippisley-Cox, Julia; Coupland, Carol
2015-01-01
Objective To derive and validate a set of clinical risk prediction algorithm to estimate the 10-year risk of 11 common cancers. Design Prospective open cohort study using routinely collected data from 753 QResearch general practices in England. We used 565 practices to develop the scores and 188 for validation. Subjects 4.96 million patients aged 25–84 years in the derivation cohort; 1.64 million in the validation cohort. Patients were free of the relevant cancer at baseline. Methods Cox proportional hazards models in the derivation cohort to derive 10-year risk algorithms. Risk factors considered included age, ethnicity, deprivation, body mass index, smoking, alcohol, previous cancer diagnoses, family history of cancer, relevant comorbidities and medication. Measures of calibration and discrimination in the validation cohort. Outcomes Incident cases of blood, breast, bowel, gastro-oesophageal, lung, oral, ovarian, pancreas, prostate, renal tract and uterine cancers. Cancers were recorded on any one of four linked data sources (general practitioner (GP), mortality, hospital or cancer records). Results We identified 228 241 incident cases during follow-up of the 11 types of cancer. Of these 25 444 were blood; 41 315 breast; 32 626 bowel, 12 808 gastro-oesophageal; 32 187 lung; 4811 oral; 6635 ovarian; 7119 pancreatic; 35 256 prostate; 23 091 renal tract; 6949 uterine cancers. The lung cancer algorithm had the best performance with an R2 of 64.2%; D statistic of 2.74; receiver operating characteristic curve statistic of 0.91 in women. The sensitivity for the top 10% of women at highest risk of lung cancer was 67%. Performance of the algorithms in men was very similar to that for women. Conclusions We have developed and validated a prediction models to quantify absolute risk of 11 common cancers. They can be used to identify patients at high risk of cancers for prevention or further assessment. The algorithms could be integrated into clinical computer systems and used to identify high-risk patients. Web calculator: There is a simple web calculator to implement the Qcancer 10 year risk algorithm together with the open source software for download (available at http://qcancer.org/10yr/). PMID:25783428
Mass Conservation and Inference of Metabolic Networks from High-Throughput Mass Spectrometry Data
Bandaru, Pradeep; Bansal, Mukesh
2011-01-01
Abstract We present a step towards the metabolome-wide computational inference of cellular metabolic reaction networks from metabolic profiling data, such as mass spectrometry. The reconstruction is based on identification of irreducible statistical interactions among the metabolite activities using the ARACNE reverse-engineering algorithm and on constraining possible metabolic transformations to satisfy the conservation of mass. The resulting algorithms are validated on synthetic data from an abridged computational model of Escherichia coli metabolism. Precision rates upwards of 50% are routinely observed for identification of full metabolic reactions, and recalls upwards of 20% are also seen. PMID:21314454
Preliminary Orbit and Differential Photometry of the Nearby Flare Star CR Dra
NASA Astrophysics Data System (ADS)
Tamazian, Vakhtang S.; Docobo, José A.; Balega, Yuri Y.; Melikian, Norair D.; Maximov, Alexander F.; Malogolovets, Evgeny V.
2008-09-01
New speckle measurements with the 6 m telescope of the Special Astrophysical Observatory (Russia) and the first preliminary orbit of the nearby flare star CR Dra (=Gl 616.2; WDS 16171+5516; BLA 3) with a period of 4.04 yr and a semimajor axis of 0farcs148 are reported. The Hipparcos parallax of 48.36 ± 1.16 mas (distance 20.7 pc) leads to an unusually large total mass of 1.8 M sun for a couple of red dwarfs. Meanwhile, the application of the Baize-Romani algorithm resulted in a mass sum of 1.00 M sun and a dynamical parallax of 58.43 mas (17.4 pc), which sensibly differs from that of Hipparcos. For the first time, we measured the photometric magnitude difference between the components (1.8 mag and 1.4 mag in the V and R bands, respectively) and obtained individual brightness estimates for each of them. Independently of the adopted parallax type, standard mass-luminosity relationships applied to individual components yield a total mass less than 1.2 M sun. This lends support to the use of a dynamical parallax, which is a more reliable distance estimate until a third body is discovered and/or our reported preliminary orbit is sensibly changed. CR Dra belongs to a handful of resolved short-period flare binaries, representing an excellent target to calculate a very accurate (or even definitive) orbit and a dynamical mass on a short time span. The available photometric data reveal no plausible correlation between flaring activity of CR Dra and linear distance between the components on the orbital path. Follow-up observations are needed for more detailed study of a possible relationship between dynamical and astrophysical properties of CR Dra and other similar systems.
NASA Astrophysics Data System (ADS)
Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien
2015-04-01
The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.
ICPD-a new peak detection algorithm for LC/MS.
Zhang, Jianqiu; Haskins, William
2010-12-01
The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.
Idris A, Elbakri; Fessler, Jeffrey A
2003-08-07
This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.
Local Estimators for Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Nabi, Marzieh
2011-01-01
A formation estimation architecture for formation flying builds upon the local information exchange among multiple local estimators. Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are needed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms should rely on a local information-exchange network, relaxing the assumptions on existing algorithms. In this research, it was shown that only local observability is required to design a formation estimator and control law. The approach relies on breaking up the overall information-exchange network into sequence of local subnetworks, and invoking an agreement-type filter to reach consensus among local estimators within each local network. State estimates were obtained by a set of local measurements that were passed through a set of communicating Kalman filters to reach an overall state estimation for the formation. An optimization approach was also presented by means of which diffused estimates over the network can be incorporated in the local estimates obtained by each estimator via local measurements. This approach compares favorably with that obtained by a centralized Kalman filter, which requires complete knowledge of the raw measurement available to each estimator.
Airborne Tomographic Swath Ice Sounding Processing System
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken
2013-01-01
Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.
NASA Astrophysics Data System (ADS)
Schoepp, Juergen
The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.
Annealed Importance Sampling for Neural Mass Models
Penny, Will; Sengupta, Biswa
2016-01-01
Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To date, however, Bayesian methods have been largely restricted to the Variational Laplace (VL) algorithm which assumes that the posterior distribution is Gaussian and finds model parameters that are only locally optimal. This paper explores the use of Annealed Importance Sampling (AIS) to address these restrictions. We implement AIS using proposals derived from Langevin Monte Carlo (LMC) which uses local gradient and curvature information for efficient exploration of parameter space. In terms of the estimation of Bayes factors, VL and AIS agree about which model is best but report different degrees of belief. Additionally, AIS finds better model parameters and we find evidence of non-Gaussianity in their posterior distribution. PMID:26942606
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
Reweighting anthropometric data using a nearest neighbour approach.
Kumar, Kannan Anil; Parkinson, Matthew B
2018-07-01
When designing products and environments, detailed data on body size and shape are seldom available for the specific user population. One way to mitigate this issue is to reweight available data such that they provide an accurate estimate of the target population of interest. This is done by assigning a statistical weight to each individual in the reference data, increasing or decreasing their influence on statistical models of the whole. This paper presents a new approach to reweighting these data. Instead of stratified sampling, the proposed method uses a clustering algorithm to identify relationships between the detailed and reference populations using their height, mass, and body mass index (BMI). The newly weighted data are shown to provide more accurate estimates than traditional approaches. The improved accuracy that accompanies this method provides designers with an alternative to data synthesis techniques as they seek appropriate data to guide their design practice.Practitioner Summary: Design practice is best guided by data on body size and shape that accurately represents the target user population. This research presents an alternative to data synthesis (e.g. regression or proportionality constants) for adapting data from one population for use in modelling another.
A new approach to the convective parameterization of the regional atmospheric model BRAMS
NASA Astrophysics Data System (ADS)
Dos Santos, A. F.; Freitas, S. R.; de Campos Velho, H. F.; Luz, E. F.; Gan, M. A.; de Mattos, J. Z.; Grell, G. A.
2013-05-01
The summer characteristics of January 2010 was performed using the atmospheric model Brazilian developments on the Regional Atmospheric Modeling System (BRAMS). The convective parameterization scheme of Grell and Dévényi was used to represent clouds and their interaction with the large scale environment. As a result, the precipitation forecasts can be combined in several ways, generating a numerical representation of precipitation and atmospheric heating and moistening rates. The purpose of this study was to generate a set of weights to compute a best combination of the hypothesis of the convective scheme. It is an inverse problem of parameter estimation and the problem is solved as an optimization problem. To minimize the difference between observed data and forecasted precipitation, the objective function was computed with the quadratic difference between five simulated precipitation fields and observation. The precipitation field estimated by the Tropical Rainfall Measuring Mission satellite was used as observed data. Weights were obtained using the firefly algorithm and the mass fluxes of each closure of the convective scheme were weighted generating a new set of mass fluxes. The results indicated the better skill of the model with the new methodology compared with the old ensemble mean calculation.
Akkas, Oguz; Lee, Cheng Hsien; Hu, Yu Hen; Harris Adamson, Carisa; Rempel, David; Radwin, Robert G
2017-12-01
Two computer vision algorithms were developed to automatically estimate exertion time, duty cycle (DC) and hand activity level (HAL) from videos of workers performing 50 industrial tasks. The average DC difference between manual frame-by-frame analysis and the computer vision DC was -5.8% for the Decision Tree (DT) algorithm, and 1.4% for the Feature Vector Training (FVT) algorithm. The average HAL difference was 0.5 for the DT algorithm and 0.3 for the FVT algorithm. A sensitivity analysis, conducted to examine the influence that deviations in DC have on HAL, found it remained unaffected when DC error was less than 5%. Thus, a DC error less than 10% will impact HAL less than 0.5 HAL, which is negligible. Automatic computer vision HAL estimates were therefore comparable to manual frame-by-frame estimates. Practitioner Summary: Computer vision was used to automatically estimate exertion time, duty cycle and hand activity level from videos of workers performing industrial tasks.
ERIC Educational Resources Information Center
Monroe, Scott; Cai, Li
2013-01-01
In Ramsay curve item response theory (RC-IRT, Woods & Thissen, 2006) modeling, the shape of the latent trait distribution is estimated simultaneously with the item parameters. In its original implementation, RC-IRT is estimated via Bock and Aitkin's (1981) EM algorithm, which yields maximum marginal likelihood estimates. This method, however,…
ERIC Educational Resources Information Center
Monroe, Scott; Cai, Li
2014-01-01
In Ramsay curve item response theory (RC-IRT) modeling, the shape of the latent trait distribution is estimated simultaneously with the item parameters. In its original implementation, RC-IRT is estimated via Bock and Aitkin's EM algorithm, which yields maximum marginal likelihood estimates. This method, however, does not produce the…
ERIC Educational Resources Information Center
Kelderman, Henk
1992-01-01
Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…
D.J. Nicolsky; V.E. Romanovsky; G.G. Panteleev
2008-01-01
A variational data assimilation algorithm is developed to reconstruct thermal properties, porosity, and parametrization of the unfrozen water content for fully saturated soils. The algorithm is tested with simulated synthetic temperatures. The simulations are performed to determine the robustness and sensitivity of algorithm to estimate soil properties from in-situ...
Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.
Petrotchenko, Evgeniy V; Borchers, Christoph H
2014-09-01
Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Updated Algorithm for Estimation of Pesticide Exposure Intensity in the Agricultural Health Study
An algorithm developed to estimate pesticide exposure intensity for use in epidemiologic analyses was revised based on data from two exposure monitoring studies. In the first study, we estimated relative exposure intensity based on the results of measurements taken during the app...
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
The bilinear complexity and practical algorithms for matrix multiplication
NASA Astrophysics Data System (ADS)
Smirnov, A. V.
2013-12-01
A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O( n 2.7743).
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
Nam, Kanghyun
2015-11-11
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.
Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.
Yang, Chao; He, Zengyou; Yu, Weichuan
2009-01-06
In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.
Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal
2017-12-01
Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Weighted Entropy to Rank Chemicals in Quantitative High Throughput Screening Experiments
Shockley, Keith R.
2014-01-01
Quantitative high throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen in order to identify candidate hits for secondary screening, validation studies or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a pre-specified model structure or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity. PMID:24056003
A Data Pre-processing Method for Liquid Chromatography Mass Spectrometry-based Metabolomics
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S.; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-01-01
A set of data pre-processing algorithms for peak detection and peak list alignment are reported for analysis of LC-MS based metabolomics data. For spectrum deconvolution, peak picking is achieved at selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers, demonstrates that the developed data pre-processing methods performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS2, for peak picking, peak list alignment and quantification. PMID:22931487
Investigation of Convection and Pressure Treatment with Splitting Techniques
NASA Technical Reports Server (NTRS)
Thakur, Siddharth; Shyy, Wei; Liou, Meng-Sing
1995-01-01
Treatment of convective and pressure fluxes in the Euler and Navier-Stokes equations using splitting formulas for convective velocity and pressure is investigated. Two schemes - controlled variation scheme (CVS) and advection upstream splitting method (AUSM) - are explored for their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as well as a one-dimensional combusting flow with a strong heat release source term. For two-dimensional compressible flow computations, these two schemes are implemented in one of the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes in the pressure correction equation (which is derived from the momentum and continuity equations) of the present algorithm, both first- and second-order (with minmod limiter) flux estimations are employed. Some issues resulting from the conventional use in pressure-based methods of a staggered grid, for the location of velocity components and pressure, are also addressed. Using the second-order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the combination of upwinding and splitting for the convective and pressure fluxes separately exhibits robust performance for a variety of flows and is particularly amenable for adoption in pressure-based methods.
NASA Astrophysics Data System (ADS)
Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed
2017-02-01
A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.
Friesen, Melissa C.
2013-01-01
Objectives: Algorithm-based exposure assessments based on patterns in questionnaire responses and professional judgment can readily apply transparent exposure decision rules to thousands of jobs quickly. However, we need to better understand how algorithms compare to a one-by-one job review by an exposure assessor. We compared algorithm-based estimates of diesel exhaust exposure to those of three independent raters within the New England Bladder Cancer Study, a population-based case–control study, and identified conditions under which disparities occurred in the assessments of the algorithm and the raters. Methods: Occupational diesel exhaust exposure was assessed previously using an algorithm and a single rater for all 14 983 jobs reported by 2631 study participants during personal interviews conducted from 2001 to 2004. Two additional raters independently assessed a random subset of 324 jobs that were selected based on strata defined by the cross-tabulations of the algorithm and the first rater’s probability assessments for each job, oversampling their disagreements. The algorithm and each rater assessed the probability, intensity and frequency of occupational diesel exhaust exposure, as well as a confidence rating for each metric. Agreement among the raters, their aggregate rating (average of the three raters’ ratings) and the algorithm were evaluated using proportion of agreement, kappa and weighted kappa (κw). Agreement analyses on the subset used inverse probability weighting to extrapolate the subset to estimate agreement for all jobs. Classification and Regression Tree (CART) models were used to identify patterns in questionnaire responses that predicted disparities in exposure status (i.e., unexposed versus exposed) between the first rater and the algorithm-based estimates. Results: For the probability, intensity and frequency exposure metrics, moderate to moderately high agreement was observed among raters (κw = 0.50–0.76) and between the algorithm and the individual raters (κw = 0.58–0.81). For these metrics, the algorithm estimates had consistently higher agreement with the aggregate rating (κw = 0.82) than with the individual raters. For all metrics, the agreement between the algorithm and the aggregate ratings was highest for the unexposed category (90–93%) and was poor to moderate for the exposed categories (9–64%). Lower agreement was observed for jobs with a start year <1965 versus ≥1965. For the confidence metrics, the agreement was poor to moderate among raters (κw = 0.17–0.45) and between the algorithm and the individual raters (κw = 0.24–0.61). CART models identified patterns in the questionnaire responses that predicted a fair-to-moderate (33–89%) proportion of the disagreements between the raters’ and the algorithm estimates. Discussion: The agreement between any two raters was similar to the agreement between an algorithm-based approach and individual raters, providing additional support for using the more efficient and transparent algorithm-based approach. CART models identified some patterns in disagreements between the first rater and the algorithm. Given the absence of a gold standard for estimating exposure, these patterns can be reviewed by a team of exposure assessors to determine whether the algorithm should be revised for future studies. PMID:23184256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Carl; Rahman, Mahmudur; Johnson, Ann
2013-07-01
The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposedmore » alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of contaminated soil will remove the contaminant source zone and significantly reduce contaminant concentrations in groundwater. To test this assumption, a mass balance evaluation was performed to estimate the amount of dissolved uranium that would remain in the groundwater after completion of soil excavation. As part of this evaluation, average groundwater concentrations for the pre-excavation and post-excavation aquifer plume area were calculated to determine the percentage of plume removed during excavation activities. In addition, the volume of the plume removed during excavation dewatering was estimated. The results of the evaluation show that approximately 98% of the aqueous uranium would be removed during the excavation phase. The USACE expects that residual levels of contamination will remain in groundwater after excavation of soil but at levels well suited for the selection of excavation combined with monitored natural attenuation as a preferred alternative. (authors)« less
Unsupervised quantification of abdominal fat from CT images using Greedy Snakes
NASA Astrophysics Data System (ADS)
Agarwal, Chirag; Dallal, Ahmed H.; Arbabshirani, Mohammad R.; Patel, Aalpen; Moore, Gregory
2017-02-01
Adipose tissue has been associated with adverse consequences of obesity. Total adipose tissue (TAT) is divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). Intra-abdominal fat (VAT), located inside the abdominal cavity, is a major factor for the classic obesity related pathologies. Since direct measurement of visceral and subcutaneous fat is not trivial, substitute metrics like waist circumference (WC) and body mass index (BMI) are used in clinical settings to quantify obesity. Abdominal fat can be assessed effectively using CT or MRI, but manual fat segmentation is rather subjective and time-consuming. Hence, an automatic and accurate quantification tool for abdominal fat is needed. The goal of this study is to extract TAT, VAT and SAT fat from abdominal CT in a fully automated unsupervised fashion using energy minimization techniques. We applied a four step framework consisting of 1) initial body contour estimation, 2) approximation of the body contour, 3) estimation of inner abdominal contour using Greedy Snakes algorithm, and 4) voting, to segment the subcutaneous and visceral fat. We validated our algorithm on 952 clinical abdominal CT images (from 476 patients with a very wide BMI range) collected from various radiology departments of Geisinger Health System. To our knowledge, this is the first study of its kind on such a large and diverse clinical dataset. Our algorithm obtained a 3.4% error for VAT segmentation compared to manual segmentation. These personalized and accurate measurements of fat can complement traditional population health driven obesity metrics such as BMI and WC.
Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
Temko, Andriy
2017-09-01
The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with two existing algorithms. The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The MATLAB implementation of the algorithm is provided online.
NASA Astrophysics Data System (ADS)
Wen, Fang-Qing; Zhang, Gong; Ben, De
2015-11-01
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple-output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes compressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to accurately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61071163, 61271327, and 61471191), the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics, China (Grant No. BCXJ14-08), the Funding of Innovation Program for Graduate Education of Jiangsu Province, China (Grant No. KYLX 0277), the Fundamental Research Funds for the Central Universities, China (Grant No. 3082015NP2015504), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PADA), China.
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
Samanipour, Saer; Reid, Malcolm J; Bæk, Kine; Thomas, Kevin V
2018-04-17
Nontarget analysis is considered one of the most comprehensive tools for the identification of unknown compounds in a complex sample analyzed via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Due to the complexity of the data generated via LC-HRMS, the data-dependent acquisition mode, which produces the MS 2 spectra of a limited number of the precursor ions, has been one of the most common approaches used during nontarget screening. However, data-independent acquisition mode produces highly complex spectra that require proper deconvolution and library search algorithms. We have developed a deconvolution algorithm and a universal library search algorithm (ULSA) for the analysis of complex spectra generated via data-independent acquisition. These algorithms were validated and tested using both semisynthetic and real environmental data. A total of 6000 randomly selected spectra from MassBank were introduced across the total ion chromatograms of 15 sludge extracts at three levels of background complexity for the validation of the algorithms via semisynthetic data. The deconvolution algorithm successfully extracted more than 60% of the added ions in the analytical signal for 95% of processed spectra (i.e., 3 complexity levels multiplied by 6000 spectra). The ULSA ranked the correct spectra among the top three for more than 95% of cases. We further tested the algorithms with 5 wastewater effluent extracts for 59 artificial unknown analytes (i.e., their presence or absence was confirmed via target analysis). These algorithms did not produce any cases of false identifications while correctly identifying ∼70% of the total inquiries. The implications, capabilities, and the limitations of both algorithms are further discussed.
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-01-01
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment. PMID:27128917
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-04-26
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.
Joint estimation of 2D-DOA and frequency based on space-time matrix and conformal array.
Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi
2013-01-01
Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.
The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19
NASA Astrophysics Data System (ADS)
Murphy, David N. A.
2015-02-01
We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.
Project resource reallocation algorithm
NASA Technical Reports Server (NTRS)
Myers, J. E.
1981-01-01
A methodology for adjusting baseline cost estimates according to project schedule changes is described. An algorithm which performs a linear expansion or contraction of the baseline project resource distribution in proportion to the project schedule expansion or contraction is presented. Input to the algorithm consists of the deck of cards (PACE input data) prepared for the baseline project schedule as well as a specification of the nature of the baseline schedule change. Output of the algorithm is a new deck of cards with all work breakdown structure block and element of cost estimates redistributed for the new project schedule. This new deck can be processed through PACE to produce a detailed cost estimate for the new schedule.
HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey
NASA Astrophysics Data System (ADS)
Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team
2018-01-01
The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.
Abril Hernández, José-María
2016-01-01
Unsupported (210)Pb ((210)Pbexc) vs. mass depth profiles do not contain enough information as to extract a unique chronology when both, (210)Pbexc fluxes and mass sediment accumulation rates (SAR) independently vary with time. Restrictive assumptions are needed to develop a suitable dating tool. A statistical correlation between fluxes and SAR seems to be a quite general rule. This paper builds up a new (210)Pb-based dating tool by using such a statistical correlation. It operates with SAR and initial activities that closely follow normal distributions, what leads to the expected correlation between fluxes and SAR. An intelligent algorithm solves their best arrangement downcore to fit the experimental (210)Pbexc vs. mass depth profile, generating then solutions for the chronological line, and for the histories of SAR and fluxes. Parametric maps of a χ-function serve to find out the solution and to support error estimates. Optionally, the model's answers can be better constrained through the use of time markers. The performance of the model is illustrated with a synthetic core, and with real cases using published data for varved sediment cores. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of Mass Averaged Tissue Doses in CAM, CAF, MAX, and FAX
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Qualls, Garry D.; Clowdsley, Martha S.; Blattnig, Steve R.; Simonsen, Lisa C.; Walker, Steven A.; Singleterry, Robert C.
2009-01-01
To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.
Application of square-root filtering for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Schmidt, S. F.; Goka, T.
1978-01-01
Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO
Zhang, Chaozhu; Han, Jinan; Li, Ke
2014-01-01
The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
NASA Astrophysics Data System (ADS)
Lyu, Heng; Wang, Yannan; Jin, Qi; Shi, Lei; Li, Yunmei; Wang, Qiao
2017-10-01
Particulate organic carbon (POC) plays an important role in the carbon cycle in water due to its biological pump process. In the open ocean, algorithms can accurately estimate the surface POC concentration. However, no suitable POC-estimation algorithm based on MERIS bands is available for inland turbid eutrophic water. A total of 228 field samples were collected from Lake Taihu in different seasons between 2013 and 2015. At each site, the optical parameters and water quality were analyzed. Using in situ data, it was found that POC-estimation algorithms developed for the open ocean and coastal waters using remote sensing reflectance were not suitable for inland turbid eutrophic water. The organic suspended matter (OSM) concentration was found to be the best indicator of the POC concentration, and POC has an exponential relationship with the OSM concentration. Through an analysis of the POC concentration and optical parameters, it was found that the absorption peak of total suspended matter (TSM) at 665 nm was the optimum parameter to estimate POC. As a result, MERIS band 7, MERIS band 10 and MERIS band 12 were used to derive the absorption coefficient of TSM at 665 nm, and then, a semi-analytical algorithm was used to estimate the POC concentration for inland turbid eutrophic water. An accuracy assessment showed that the developed semi-analytical algorithm could be successfully applied with a MAPE of 31.82% and RMSE of 2.68 mg/L. The developed algorithm was successfully applied to a MERIS image, and two full-resolution MERIS images, acquired on August 13, 2010, and December 7, 2010, were used to map the POC spatial distribution in Lake Taihu in summer and winter.
Robust Control Algorithm for a Two Cart System and an Inverted Pendulum
NASA Technical Reports Server (NTRS)
Wilson, Chris L.; Capo-Lugo, Pedro
2011-01-01
The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
Localization algorithms for micro-channel x-ray telescope on board SVOM space mission
NASA Astrophysics Data System (ADS)
Gosset, L.; Götz, D.; Osborne, J.; Willingale, R.
2016-07-01
SVOM is a French-Chinese space mission to be launched in 2021, whose goal is the study of Gamma-Ray Bursts, the most powerful stellar explosions in the Universe. The Micro-channel X-ray Telescope (MXT) is an X-ray focusing telescope, on board SVOM, with a field of view of 1 degree (working in the 0.2-10 keV energy band), dedicated to the rapid follow-up of the Gamma-Ray Bursts counterparts and to their precise localization (smaller than 2 arc minutes). In order to reduce the optics mass and to have an angular resolution of few arc minutes, a "lobster-Eye" configuration has been chosen. Using a numerical model of the MXT Point Spread Function (PSF) we simulated MXT observations of point sources in order to develop and test different localization algorithms to be implemented on board MXT. We included preliminary estimations of the instrumental and sky background. The algorithms on board have to be a combination of speed and precision (the brightest sources are expected to be localized at a precision better than 10 arc seconds in the MXT reference frame). We present the comparison between different methods such as barycentre, PSF fitting in one or two dimensions. The temporal performance of the algorithms is being tested using the X-ray afterglow data base of the XRT telescope on board the NASA Swift satellite.
Caffo, Brian; Diener-West, Marie; Punjabi, Naresh M.; Samet, Jonathan
2010-01-01
This manuscript considers a data-mining approach for the prediction of mild obstructive sleep disordered breathing, defined as an elevated respiratory disturbance index (RDI), in 5,530 participants in a community-based study, the Sleep Heart Health Study. The prediction algorithm was built using modern ensemble learning algorithms, boosting in specific, which allowed for assessing potential high-dimensional interactions between predictor variables or classifiers. To evaluate the performance of the algorithm, the data were split into training and validation sets for varying thresholds for predicting the probability of a high RDI (≥ 7 events per hour in the given results). Based on a moderate classification threshold from the boosting algorithm, the estimated post-test odds of a high RDI were 2.20 times higher than the pre-test odds given a positive test, while the corresponding post-test odds were decreased by 52% given a negative test (sensitivity and specificity of 0.66 and 0.70, respectively). In rank order, the following variables had the largest impact on prediction performance: neck circumference, body mass index, age, snoring frequency, waist circumference, and snoring loudness. Citation: Caffo B; Diener-West M; Punjabi NM; Samet J. A novel approach to prediction of mild obstructive sleep disordered breathing in a population-based sample: the Sleep Heart Health Study. SLEEP 2010;33(12):1641-1648. PMID:21120126
Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.
Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G
2017-03-10
Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
NASA Astrophysics Data System (ADS)
Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua
2018-03-01
Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
Yunyun Feng; Dengsheng Lu; Qi Chen; Michael Keller; Emilio Moran; Maiza Nara dos-Santos; Edson Luis Bolfe; Mateus Batistella
2017-01-01
Previous research has explored the potential to integrate lidar and optical data in aboveground biomass (AGB) estimation, but how different data sources, vegetation types, and modeling algorithms influence AGB estimation is poorly understood. This research conducts a comparative analysis of different data sources and modeling approaches in improving AGB estimation....
Jayaraman, Chandrasekaran; Mummidisetty, Chaithanya Krishna; Mannix-Slobig, Alannah; McGee Koch, Lori; Jayaraman, Arun
2018-03-13
Monitoring physical activity and leveraging wearable sensor technologies to facilitate active living in individuals with neurological impairment has been shown to yield benefits in terms of health and quality of living. In this context, accurate measurement of physical activity estimates from these sensors are vital. However, wearable sensor manufacturers generally only provide standard proprietary algorithms based off of healthy individuals to estimate physical activity metrics which may lead to inaccurate estimates in population with neurological impairment like stroke and incomplete spinal cord injury (iSCI). The main objective of this cross-sectional investigation was to evaluate the validity of physical activity estimates provided by standard proprietary algorithms for individuals with stroke and iSCI. Two research grade wearable sensors used in clinical settings were chosen and the outcome metrics estimated using standard proprietary algorithms were validated against designated golden standard measures (Cosmed K4B2 for energy expenditure and metabolic equivalent and manual tallying for step counts). The influence of sensor location, sensor type and activity characteristics were also studied. 28 participants (Healthy (n = 10); incomplete SCI (n = 8); stroke (n = 10)) performed a spectrum of activities in a laboratory setting using two wearable sensors (ActiGraph and Metria-IH1) at different body locations. Manufacturer provided standard proprietary algorithms estimated the step count, energy expenditure (EE) and metabolic equivalent (MET). These estimates were compared with the estimates from gold standard measures. For verifying validity, a series of Kruskal Wallis ANOVA tests (Games-Howell multiple comparison for post-hoc analyses) were conducted to compare the mean rank and absolute agreement of outcome metrics estimated by each of the devices in comparison with the designated gold standard measurements. The sensor type, sensor location, activity characteristics and the population specific condition influences the validity of estimation of physical activity metrics using standard proprietary algorithms. Implementing population specific customized algorithms accounting for the influences of sensor location, type and activity characteristics for estimating physical activity metrics in individuals with stroke and iSCI could be beneficial.
Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data
Belchansky, Gennady I.; Douglas, David C.
2002-01-01
The Special Sensor Microwave Imager (SSM/I) microwave satellite radiometer and its predecessor SMMR are primary sources of information for global sea ice and climate studies. However, comparisons of SSM/I, Landsat, AVHRR, and ERS-1 synthetic aperture radar (SAR) have shown substantial seasonal and regional differences in their estimates of sea ice concentration. To evaluate these differences, we compared SSM/I estimates of sea ice coverage derived with the NASA Team and Bootstrap algorithms to estimates made using RADARSAT, and OKEAN-01 satellite sensor data. The study area included the Barents Sea, Kara Sea, Laptev Sea, and adjacent parts of the Arctic Ocean, during October 1995 through October 1999. Ice concentration estimates from spatially and temporally near-coincident imagery were calculated using independent algorithms for each sensor type. The OKEAN algorithm implemented the satellite's two-channel active (radar) and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter. The RADARSAT algorithm utilized a segmentation approach of the measured radar backscatter, and the SSM/I ice concentrations were derived at National Snow and Ice Data Center (NSIDC) using the NASA Team and Bootstrap algorithms. Seasonal and monthly differences between SSM/I, OKEAN, and RADARSAT ice concentrations were calculated and compared. Overall, total sea ice concentration estimates derived independently from near-coincident RADARSAT, OKEAN-01, and SSM/I satellite imagery demonstrated mean differences of less than 5.5% (S.D.<9.5%) during the winter period. Differences between the SSM/I NASA Team and the SSM/I Bootstrap concentrations were no more than 3.1% (S.D.<5.4%) during this period. RADARSAT and OKEAN-01 data both yielded higher total ice concentrations than the NASA Team and the Bootstrap algorithms. The Bootstrap algorithm yielded higher total ice concentrations than the NASA Team algorithm. Total ice concentrations derived from OKEAN-01 and SSM/I satellite imagery were highly correlated during winter, spring, and fall, with mean differences of less than 8.1% (S.D.<15%) for the NASA Team algorithm, and less than 2.8% (S.D.<13.8%) for the Bootstrap algorithm. Respective differences between SSM/I NASA Team and SSM/I Bootstrap total concentrations were less than 5.3% (S.D.<6.9%). Monthly mean differences between SSM/I and OKEAN differed annually by less than 6%, with smaller differences primarily in winter. The NASA Team and Bootstrap algorithms underestimated the total sea ice concentrations relative to the RADARSAT ScanSAR no more than 3.0% (S.D.<9%) and 1.2% (S.D.<7.5%) during cold months, and no more than 12% and 7% during summer, respectively. ScanSAR tended to estimate higher ice concentrations for ice concentrations greater than 50%, when compared to SSM/I during all months. ScanSAR underestimated total sea ice concentration by 2% compared to the OKEAN-01 algorithm during cold months, and gave an overestimation by 2% during spring and summer months. Total NASA Team and Bootstrap sea ice concentration estimates derived from coincident SSM/I and OKEAN-01 data demonstrated mean differences of no more than 5.3% (S.D.<7%), 3.1% (S.D.<5.5%), 2.0% (S.D.<5.5%), and 7.3% (S.D.<10%) for fall, winter, spring, and summer periods, respectively. Large disagreements were observed between the OKEAN and NASA Team results in spring and summer for estimates of the first-year (FY) and multiyear (MY) age classes. The OKEAN-01 algorithm and data tended to estimate, on average, lower concentrations of young or FY ice and higher concentrations of total and MY ice for all months and seasons. Our results contribute to the growing body of documentation about the levels of disparity obtained when seasonal sea ice concentrations are estimated using various types of satellite data and algorithms.
Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu
2013-01-04
Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .
A physics-based algorithm for the estimation of bearing spall width using vibrations
NASA Astrophysics Data System (ADS)
Kogan, G.; Klein, R.; Bortman, J.
2018-05-01
Evaluation of the damage severity in a mechanical system is required for the assessment of its remaining useful life. In rotating machines, bearings are crucial components. Hence, the estimation of the size of spalls in bearings is important for prognostics of the remaining useful life. Recently, this topic has been extensively studied and many of the methods used for the estimation of spall size are based on the analysis of vibrations. A new tool is proposed in the current study for the estimation of the spall width on the outer ring raceway of a rolling element bearing. The understanding and analysis of the dynamics of the rolling element-spall interaction enabled the development of a generic and autonomous algorithm. The algorithm is generic in the sense that it does not require any human interference to make adjustments for each case. All of the algorithm's parameters are defined by analytical expressions describing the dynamics of the system. The required conditions, such as sampling rate, spall width and depth, defining the feasible region of such algorithms, are analyzed in the paper. The algorithm performance was demonstrated with experimental data for different spall widths.
NASA Astrophysics Data System (ADS)
Qiu, Zhaoyang; Wang, Pei; Zhu, Jun; Tang, Bin
2016-12-01
Nyquist folding receiver (NYFR) is a novel ultra-wideband receiver architecture which can realize wideband receiving with a small amount of equipment. Linear frequency modulated/binary phase shift keying (LFM/BPSK) hybrid modulated signal is a novel kind of low probability interception signal with wide bandwidth. The NYFR is an effective architecture to intercept the LFM/BPSK signal and the LFM/BPSK signal intercepted by the NYFR will add the local oscillator modulation. A parameter estimation algorithm for the NYFR output signal is proposed. According to the NYFR prior information, the chirp singular value ratio spectrum is proposed to estimate the chirp rate. Then, based on the output self-characteristic, matching component function is designed to estimate Nyquist zone (NZ) index. Finally, matching code and subspace method are employed to estimate the phase change points and code length. Compared with the existing methods, the proposed algorithm has a better performance. It also has no need to construct a multi-channel structure, which means the computational complexity for the NZ index estimation is small. The simulation results demonstrate the efficacy of the proposed algorithm.
The algorithm of motion blur image restoration based on PSF half-blind estimation
NASA Astrophysics Data System (ADS)
Chen, Da-Ke; Lin, Zhe
2011-08-01
A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Review of Peak Detection Algorithms in Liquid-Chromatography-Mass Spectrometry
Zhang, Jianqiu; Gonzalez, Elias; Hestilow, Travis; Haskins, William; Huang, Yufei
2009-01-01
In this review, we will discuss peak detection in Liquid-Chromatography-Mass Spectrometry (LC/MS) from a signal processing perspective. A brief introduction to LC/MS is followed by a description of the major processing steps in LC/MS. Specifically, the problem of peak detection is formulated and various peak detection algorithms are described and compared. PMID:20190954
Automated selected reaction monitoring software for accurate label-free protein quantification.
Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik
2012-07-06
Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.
TAPAS: tools to assist the targeted protein quantification of human alternative splice variants.
Yang, Jae-Seong; Sabidó, Eduard; Serrano, Luis; Kiel, Christina
2014-10-15
In proteomes of higher eukaryotes, many alternative splice variants can only be detected by their shared peptides. This makes it highly challenging to use peptide-centric mass spectrometry to distinguish and to quantify protein isoforms resulting from alternative splicing events. We have developed two complementary algorithms based on linear mathematical models to efficiently compute a minimal set of shared and unique peptides needed to quantify a set of isoforms and splice variants. Further, we developed a statistical method to estimate the splice variant abundances based on stable isotope labeled peptide quantities. The algorithms and databases are integrated in a web-based tool, and we have experimentally tested the limits of our quantification method using spiked proteins and cell extracts. The TAPAS server is available at URL http://davinci.crg.es/tapas/. luis.serrano@crg.eu or christina.kiel@crg.eu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ghaedi, M; Azad, F Nasiri; Dashtian, K; Hajati, S; Goudarzi, A; Soylak, M
2016-10-05
Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20mgg(-1)) is sufficient for the rapid removal of high amount of MG dye in short time (3.99min). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.
2016-10-01
Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).
NASA Astrophysics Data System (ADS)
Ramji, Sarah Ann
Improved understanding of turbulence-flame interactions in premixed combustion can be achieved using fully 3D time-resolved multi-kHz multi-scalar experimental measurements. These interactions may be represented by the evolution of various Lagrangian quantities described by theoretical Lagrangian Fluid Elements (LFEs). The data used in this work came from two experimental campaigns that used simultaneous T-PIV and OH/CH2O PLIF, at Sandia National Labs and the Air Force Research Lab at Wright-Patterson. In this thesis, an algorithm to accurately track LFEs through this 4D experimental space has been developed and verified by cross-correlation with the T-PIV seed particle fields. A novel method to measure the local instantaneous displacement speed in 3D has been developed, using this algorithm to track control masses of fluid that interact with the flame front. Statistics of the displacement speed have been presented, and the effects of local turbulence and flame topological properties on the displacement speed have been studied.
Data-Rate Estimation for Autonomous Receiver Operation
NASA Technical Reports Server (NTRS)
Tkacenko, A.; Simon, M. K.
2005-01-01
In this article, we present a series of algorithms for estimating the data rate of a signal whose admissible data rates are integer base, integer powered multiples of a known basic data rate. These algorithms can be applied to the Electra radio currently used in the Deep Space Network (DSN), which employs data rates having the above relationship. The estimation is carried out in an autonomous setting in which very little a priori information is assumed. It is done by exploiting an elegant property of the split symbol moments estimator (SSME), which is traditionally used to estimate the signal-to-noise ratio (SNR) of the received signal. By quantizing the assumed symbol-timing error or jitter, we present an all-digital implementation of the SSME which can be used to jointly estimate the data rate, SNR, and jitter. Simulation results presented show that these joint estimation algorithms perform well, even in the low SNR regions typically encountered in the DSN.
Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles
Nam, Kanghyun
2015-01-01
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246