Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China.
Cheng, Zhen; Ma, Xin; He, Yujie; Jiang, Jingkun; Wang, Xiaoliang; Wang, Yungang; Sheng, Li; Hu, Jiangkai; Yan, Naiqiang
2017-07-01
The ambient PM 2.5 pollution problem in China has drawn substantial international attentions. The mass extinction efficiency (MEE) and hygroscopicity factor (f(RH)) of PM 2.5 can be readily applied to study the impacts on atmospheric visibility and climate. The few previous investigations in China only reported results from pilot studies and are lack of spatial representativeness. In this study, hourly average ambient PM 2.5 mass concentration, relative humidity, and atmospheric visibility data from China national air quality and meteorological monitoring networks were retrieved and analyzed. It includes 24 major Chinese cities from nine city-clusters with the period of October 2013 to September 2014. Annual average extinction coefficient in urban China was 759.3±258.3Mm -1 , mainly caused by dry PM 2.5 (305.8.2±131.0Mm -1 ) and its hygroscopicity (414.6±188.1Mm -1 ). High extinction coefficient values were resulted from both high ambient PM 2.5 concentration (68.5±21.7µg/m 3 ) and high relative humidity (69.7±8.6%). The PM 2.5 mass extinction efficiency varied from 2.87 to 6.64m 2 /g with an average of 4.40±0.84m 2 /g. The average extinction hygroscopic factor f(RH=80%) was 2.63±0.45. The levels of PM 2.5 mass extinction efficiency and hygroscopic factor in China were in comparable range with those found in developed countries in spite of the significant diversities among all 24 cities. Our findings help to establish quantitative relationship between ambient extinction coefficient (visual range) and PM 2.5 & relative humidity. It will reduce the uncertainty of extinction coefficient estimation of ambient PM 2.5 in urban China which is essential for the research of haze pollution and climate radiative forcing. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun
2014-02-01
Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.
Lidars for smoke and dust cloud diagnostics
NASA Astrophysics Data System (ADS)
Fujimura, S. F.; Warren, R. E.; Lutomirski, R. F.
1980-11-01
An algorithm that integrates a time-resolved lidar signature for use in estimating transmittance, extinction coefficient, mass concentration, and CL values generated under battlefield conditions is applied to lidar signatures measured during the DIRT-I tests. Estimates are given for the dependence of the inferred transmittance and extinction coefficient on uncertainties in parameters such as the obscurant backscatter-to-extinction ratio. The enhanced reliability in estimating transmittance through use of a target behind the obscurant cloud is discussed. It is found that the inversion algorithm can produce reliable estimates of smoke or dust transmittance and extinction from all points within the cloud for which a resolvable signal can be detected, and that a single point calibration measurement can convert the extinction values to mass concentration for each resolvable signal point.
Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji
2012-01-01
Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.
Series cell light extinction monitor
Novick, Vincent J.
1990-01-01
A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.
Investigation of shortcomings in simulated aerosol vertical profiles
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.
2017-12-01
The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.
NASA Astrophysics Data System (ADS)
Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.
2010-12-01
A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).
Interpreting spectral unmixing coefficients: From spectral weights to mass fractions
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian
2018-01-01
It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.
Measurement of aerosol optical properties by cw cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
NASA Astrophysics Data System (ADS)
Lv, Lihui; Liu, Wenqing; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Fan, Guangqiang; Xiang, Yan; Yao, Yawei; Yang, Nan; Chu, Baolin; Teng, Man; Shu, Xiaowen
2017-09-01
Fine particle with diameter <2.5 μm (PM2.5) have important direct and indirect effects on human life and activities. However, the studies of fine particle were limited by the lack of monitoring data obtained with multiple fixed site sampling strategies. Mobile monitoring has provided a means for broad measurement of fine particles. In this research, the potential use of mobile lidar to map the distribution and transport of fine particles was discussed. The spatial and temporal distributions of particle extinction, PM2.5 mass concentration and regional transport flux of fine particle in the planetary boundary layer were investigated with the use of vehicle-based mobile lidar and wind field data from north China. Case studies under different pollution levels in Beijing were presented to evaluate the contribution of regional transport. A vehicle-based mobile lidar system was used to obtain the spatial and temporal distributions of particle extinction in the measurement route. Fixed point lidar and a particulate matter sampler were operated next to each other at the University of Chinese Academy of Science (UCAS) in Beijing to determine the relationship between the particle extinction coefficient and PM2.5 mass concentration. The correlation coefficient (R2) between the particle extinction coefficient and PM2.5 mass concentration was found to be over 0.8 when relative humidity (RH) was less than 90%. A mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used to obtain profiles of the horizontal wind speed, wind direction and relative humidity. A vehicle-based mobile lidar technique was applied to estimate transport flux based on the PM2.5 profile and vertical profile of wind data. This method was applicable when hygroscopic growth can be neglected (relatively humidity<90%). Southwest was found to be the main pathway of Beijing during the experiments.
Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J
2016-01-01
This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.
Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)
NASA Technical Reports Server (NTRS)
Severs, R. K.
1974-01-01
The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.
Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band
NASA Astrophysics Data System (ADS)
Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying
2015-10-01
Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.
The empirical Gaia G-band extinction coefficient
NASA Astrophysics Data System (ADS)
Danielski, C.; Babusiaux, C.; Ruiz-Dern, L.; Sartoretti, P.; Arenou, F.
2018-06-01
Context. The first Gaia data release unlocked the access to photometric information for 1.1 billion sources in the G-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia G-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. Aims: The purpose of this manuscript is to provide the empirical estimation of the Gaia G-band extinction coefficient kG for both the red giants and main sequence stars in order to be able to exploit the first data release DR1. Methods: We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high-quality photometry in the G-, J- and KS-bands. These samples were complemented by temperature and metallicity information retrieved from APOGEE DR13 and LAMOST DR2 surveys, respectively. We implemented a Markov chain Monte Carlo method where we used (G - KS)0 versus Teff and (J - KS)0 versus (G - KS)0, calibration relations to estimate the extinction coefficient kG and we quantify its corresponding confidence interval via bootstrap resampling. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. Results: We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community with a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour (G - KS)0, and absorption.
Electromagnetic Attenuation Characteristics of Microbial Materials in the Infrared Band.
Wang, Peng; Liu, Hongxia; Zhao, Yizheng; Gu, Youlin; Chen, Wei; Wang, Li; Li, Le; Zhao, Xinying; Lei, Wuhu; Hu, Yihua; Zheng, Zhiming
2016-09-01
In this study, seven microbial materials (entomogenous fungi Bb3088 mycelia, entomogenous fungi Bb3088 spores, entomogenous fungi Ma2677 mycelia, entomogenous fungi Ma2677 spores, Bacillus subtilis 8204, Staphylococcus aureus 6725, and Saccharomyces cerevisiae 1025) were used to measure electromagnetic (EM) signal extinction. They were subjected to light absorption and reflection measurements in the range of 4000-400 cm(-1) (2.5-25 µm) using Fourier transform infrared spectroscopy. The specular reflection spectrum method was used to calculate the real (n) and imaginary (k) parts of the complex refractive index. The complex refractive index with real part n and imaginary part k in the infrared band satisfies the following conditions n ≥ 1 and k ≥ 0. The mass extinction coefficient was calculated based on Mie theory. Entomogenous fungi Ma2677 spores and entomogenous fungi Bb3088 spores were selected as EM signal extinction materials in the smoke box test. The transmittances of entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores were 11.63% and 5.42%, and the mass extinction coefficients were 1.8337 m(2)/g and 1.227 m(2)/g. These results showed that entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores have higher extinction characteristics than other microbial materials. © The Author(s) 2016.
Source apportionment of PM2.5 light extinction in an urban atmosphere in China.
Lan, Zijuan; Zhang, Bin; Huang, Xiaofeng; Zhu, Qiao; Yuan, Jinfeng; Zeng, Liwu; Hu, Min; He, Lingyan
2018-01-01
Haze in China is primarily caused by high pollution of atmospheric fine particulates (PM 2.5 ). However, the detailed source structures of PM 2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor (PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit (R 2 =0.953). The results show that the contribution rates of ammonium sulphate, ammonium nitrate, biomass burning organic aerosol (BBOA), secondary organic aerosol (SOA) and black carbon (BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols (79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected. Copyright © 2017. Published by Elsevier B.V.
Indices of refraction for the HITRAN compilation
NASA Technical Reports Server (NTRS)
Massie, S. T.
1994-01-01
Indices of refraction of sulfuric acid solutions, water, and ice, which will become part of the HITRAN database, are discussed. Representative calculations are presented for the sulfate aerosol, to illustrate the broadband spectral features of i.r. aerosol extinction spectra. Values of the sulfuric acid mass density are used in an application of the Lorentz-Lorenz equation, which is used to estimate the sensitivity of extinction coefficients to temperature dependent refractive indices.
NASA Astrophysics Data System (ADS)
Kokkalis, Panos; Papayannis, Alex; Tsaknakis, George; Mamouri, RodElise; Argyrouli, Athina
2013-04-01
Aerosols play an important role in earth's atmospheric radiation balance, which is enhanced in areas where dust is mostly present (e.g. the Mediterranean region), as in the case of the city of Athens. The focus of this paper is to provide a comprehensive analysis of the seasonal variability of optical and geometrical properties, as well as the mass concentration of Saharan dust over the city of Athens, Greece, for a 10-years time period: 2002-2012 based on the laser remote sensing (lidar) technique. More specifically, the aerosol optical properties concern the extinction and the backscatter coefficient, as well as the lidar ratio, while the geometrical properties concern the dust layer thickness and center of mass. The calculations of the aerosol extinction coefficient and of the so-called lidar ratio (defined as the ratio of the aerosol extinction coefficient over the aerosol backscatter coefficient) are made by using the Raman lidar technique, only under cloud-free conditions. The calculation of the dust mass concentration was retrieved by a applying a conversion factor (the so-called dust extinction cross section; mean value of the order of 0.64 m2g-1) and by combining sun photometric measurements and modeled dust loading values. Our data analysis was based on monthly-mean values, and only in time periods under cloud-free conditions and for lidar signals with signal to noise ratios (SNR) greater than 1.5 under dusty conditions. The mean value of the lidar ratio at 355 nm was found to be 62±20sr, while the mean dust mass concentration was of the order of 240 μgm-3. The data analyzed were obtained by systematic aerosol lidar measurements performed by the EOLE Raman lidar system of the National Technical University of Athens (NTUA), in the frame of the European Aerosol Research Lidar network (EARLINET). EOLE is able to provide the vertical profiles of the aerosol backscatter (at 355, 532, 1064 nm) and extinction coefficients (at 355 and 532 nm), as well as the water vapor mixing ratio, from about 700 m up to 10000 m, with high temporal (< 5 min.) and spatial (7.5 m) resolution. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II - Investing in knowledge society through the European Social Fund. This research was also financially supported by ITARS (www.itars.net), European Union Seventh Framework Programme (FP7/2007-2013): People, ITN Marie Curie Actions Programme (2012-2016) under grant agreement no 289923.
Impacts of PM concentrations on visibility impairment
NASA Astrophysics Data System (ADS)
Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu
2016-11-01
In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).
NASA Astrophysics Data System (ADS)
Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele
2017-02-01
Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.
NASA Astrophysics Data System (ADS)
Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.
2015-12-01
Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
2016-11-01
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.
Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng
2012-10-21
A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.
Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W
2017-01-01
Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.
Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor
NASA Astrophysics Data System (ADS)
Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew
2016-04-01
We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.
NASA Astrophysics Data System (ADS)
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, A; Shashkov, A; Barker, H
This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it mustmore » ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.« less
NASA Astrophysics Data System (ADS)
Kim, Young J.; Kim, Kyung W.; Kim, Shin D.; Lee, Bo K.; Han, Jin S.
In order to investigate the causes of visibility degradation in the metropolitan area of Seoul, extensive chemical and optical monitoring of aerosol was conducted at two urban sites; Junnong, Seoul and Yonghyun, Incheon during several seasonal intensive monitoring periods between August 2002 and August 2004. Light extinction, scattering, and absorption coefficients were measured simultaneously with a transmissometer, a nephelometer, and an aethalometer, respectively. Continuous aerosol chemical measurement was also made with Sunset elemental carbon/organic carbon (EC/OC) analyzers and on-line ion monitors. The mean light extinction budget for five major aerosol components; ammonium sulfate, ammonium nitrate, fine carbonaceous particles (EC and OC), fine soil, and coarse particle was estimated based on the measurement results. Investigation of the haze level revealed that PM 2.5 mass concentrations at Junnong and Yonghyun measured under the Worst20% condition were approximately twice those of the Best20% condition. The worst visibility condition was well correlated with increases in mass concentrations of sulfate and nitrate, and EC particles. The mass concentration of aerosol components for the Worst20% was measured to be approximately two- to four-fold higher than those for the Best20%. Degree of visibility degradation was also analyzed based on the air mass pathway information obtained using the HYSPLIT model. Average light extinction coefficients under continental air flow condition at the Junnong and Yonghyun sites were the highest values of 704±414 and 773±546 Mm -1, respectively due to increased loading of fine particles. Visibility was greatly improved at both sites when atmosphere was impacted by air mass originated from Pacific Ocean.
Study on laser and infrared attenuation performance of carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng
2014-11-01
In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time and smoke particles concentrations, even in the same testing waveband. With the time going the mass extinction coefficients will increase gradually. Based on the above results, theoretical calculations are also carried out for further exploitations. In general, CNTs smoke behaves excellent attenuation ability toward laser and IR under the experimental conditions. Therefore, they have great potentials to develop new smoke obscurant materials which could effectively interfere with broadband IR radiation including 1.06μm, 10.6μm, 3-5μm and 8-12μm IR waveband.
NASA Astrophysics Data System (ADS)
Zhu, Junjie
2017-02-01
Localized surface plasmon resonances arising from the free carriers in copper-deficient copper chalcogenides nanocrystals (Cu2-xE, E=S,Se) enables them with high extinction coefficient in the near-infrared range, which was superior for photothermal related purpose. Although Cu2-xE nanocrystals with different compositions (0< x≪1) all possess NIR absorption, their extinction coefficients were significantly different due to their distinct valence band free carrier concentration. Herein, by optimizing the synthetic conditions, we were able to obtain pure covellite phase CuS nanoparticles with maximized free carrier concentration (x=1), which provides extremely high mass extinction coefficient (up to 60 Lg-1cm-1 at 980 nm and 32.4 Lg-1cm-1 at 800 nm). To the best of our knowledge, these values was maximal among all inorganic nanomaterials. High quality Cu2-xSe can also be obtained with a similar approach. In order to introduce CuS nanocrystals for biomedical applications, we further transferred these nanocrystals into aqueous solution with an amphiphilic polymer and colvalently linked with beta-cyclodextrin. Using host-guest interaction, adamantine-modified RGD peptide can be further anchored on the nanoparticles for the recognition of integrin-positive cancer cells. Together with the high extinction coefficient and outstand photothermal conversion efficiency (determined to be higher than 40%), these CuS nanocrystals were applied for photothermal therapy of cancer cells and photoacoustic imaging. In addition, anticancer drug doxorubicin can also be loading onto the nanoparticles through either hydrophobic or electrostatic interaction for chemotherapy.
The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction
NASA Astrophysics Data System (ADS)
Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.
2018-01-01
The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.
Haussener, Sophia; Steinfeld, Aldo
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039
NASA Astrophysics Data System (ADS)
Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele
2015-12-01
We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result, the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.
Sabetghadam, Samaneh; Ahmadi-Givi, Farhang
2014-01-01
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.
NASA Astrophysics Data System (ADS)
Ma, Yanjun; Zhao, Hujia; Dong, Yunsheng; Che, Huizheng; Li, Xiaoxiao; Hong, Ye; Li, Xiaolan; Yang, Hongbin; Liu, Yuche; Wang, Yangfeng; Liu, Ningwei; Sun, Cuiyan
2018-04-01
This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19-22 (E1) and 25-26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016-January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka
Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less
NASA Technical Reports Server (NTRS)
Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.;
2006-01-01
The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.
NASA Technical Reports Server (NTRS)
Hoge, F. E.
1982-01-01
A conceptual method is developed to deduce rapidly the spectral extinction coefficient of fluorescent, highly absorbing liquids, such as crude or refined petroleum oils. The technique offers the advantage of only requiring one laser wavelength and a single experimental assembly and execution for any specific fluorescent liquid. The liquid is inserted into an extremely thin wedge-shaped cavity for stimulation by a laser from one side and flurescence measurement on the other side by a monochromator system. For each arbitrarily selected extinction wavelength, the wedge is driven slowly to increasing thicknesses until the fluorescence extinguishes. The fluorescence as a function of wedge thickness permits a determination of the extinction coefficient using an included theoretical model. When the monochromator is set to the laser emission wavelength, the extinction coefficient is determined using the usual on-wavelength signal extinction procedure.
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2012 CFR
2012-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2014 CFR
2014-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
Code of Federal Regulations, 2011 CFR
2011-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2010 CFR
2010-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2013 CFR
2013-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Aerosol profiling using the ceilometer network of the German Meteorological Service
NASA Astrophysics Data System (ADS)
Flentje, H.; Heese, B.; Reichardt, J.; Thomas, W.
2010-08-01
The German Meteorological Service (DWD) operates about 52 lidar ceilometers within its synoptic observations network, covering Germany. These affordable low-power lidar systems provide spatially and temporally high resolved aerosol backscatter profiles which can operationally provide quasi 3-D distributions of particle backscatter intensity. Intentionally designed for cloud height detection, recent significant improvements allow following the development of the boundary layer and to detect denser particle plumes in the free tropospere like volcanic ash, Saharan dust or fire smoke. Thus the network builds a powerful aerosol plume alerting and tracking system. If auxiliary aerosol information is available, the particle backscatter coefficient, the extinction coefficient and even particle mass concentrations may be estimated, with however large uncertainties. Therefore, large synergistic benefit is achieved if the ceilometers are linked to existing lidar networks like EARLINET or integrated into WMO's envisioined Global Aerosol Lidar Observation Network GALION. To this end, we demonstrate the potential and limitations of ceilometer networks by means of three representative aerosol episodes over Europe, namely Sahara dust, Mediterranean fire smoke and, more detailed, the Icelandic Eyjafjoll volcano eruption from mid April 2010 onwards. The DWD (Jenoptik CHM15k) lidar ceilometer network tracked the Eyjafjoll ash layers over Germany and roughly estimated peak extinction coefficients and mass concentrations on 17 April of 4-6(± 2) 10-4 m-1 and 500-750(± 300) μg/m-3, respectively, based on co-located aerosol optical depth, nephelometer (scattering coefficient) and particle mass concentration measurements. Though large, the uncertainties are small enough to let the network suit for example as aviation advisory tool, indicating whether the legal flight ban threshold of presently 2 mg/m3 is imminent to be exceeded.
Code of Federal Regulations, 2014 CFR
2014-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means any of the...
NASA Technical Reports Server (NTRS)
Dobson, C. C.; Eskridge, R. H.; Lee, M. H.
2000-01-01
A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location approximately equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal 0.7 microgram/cc, and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal 2,200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.
NASA Technical Reports Server (NTRS)
Dobson, C. C.; Eskridge, R. H.; Lee, M. H.
2000-01-01
A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.
NASA Technical Reports Server (NTRS)
Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.
2004-01-01
During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.
[Determination of the error of aerosol extinction coefficient measured by DOAS].
Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi
2006-10-01
The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.
2004-01-01
Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was characterized by fresh automobile and diesel exhaust. Measurements from Cadenza and from an aethalometer are presented. The aethalometer is a filter-based photometer and the infrared channel is calibrated to produce a measure of BC mass loading.
Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings
NASA Astrophysics Data System (ADS)
Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy
2015-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.
Energy dependence of radiation interaction parameters of some organic compounds
NASA Astrophysics Data System (ADS)
Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan
2018-04-01
Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using WinXcom software package, and are found in good agreement.
The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong
2018-03-19
In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.
NASA Astrophysics Data System (ADS)
Kim, J. G.; Liu, H.
2007-10-01
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.
NASA Astrophysics Data System (ADS)
Awasarmol, V. V.; Gaikwad, D. K.; Raut, S. D.; Pawar, P. P.
The mass attenuation coefficients (μm) for organic nonlinear optical materials measured at 122-1330 keV photon energies were investigated on the basis of mixture rule and compared with obtained values of WinXCOM program. It is observed that there is a good agreement between theoretical and experimental values of the samples. All samples were irradiated with six radioactive sources such as 57Co, 133Ba, 22Na, 137Cs, 54Mn and 60Co using transmission arrangement. Effective atomic and electron numbers or electron densities (Zeff and Neff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa,en) were determined experimentally and theoretically using the obtained μm values for investigated samples and graphs have been plotted. The graph shows that the variation of all samples decreases with increasing photon energy.
NASA Technical Reports Server (NTRS)
Mitchell, David L.; Arnott, W. Patrick
1994-01-01
This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.
Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy
2015-02-05
The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shan, Huihui; Zhang, Hui; Liu, Junjian; Wang, Shenhao; Ma, Xiaomin; Zhang, Lianqing; Liu, Dong; Xie, Chenbo; Tao, Zongming
2018-02-01
Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. But it is difficult to get the full aerosol extinction profile from the ground to the tropopause especially in near ground precisely using backscattering lidar. A combined measurement of side-scattering, backscattering and Raman-scattering lidar is proposed to retrieve the aerosol extinction coefficient profile from the surface to the tropopause which covered a dynamic range of 5 orders. The side-scattering technique solves the dead zone and the overlap problem caused by the traditional lidar in the near range. Using the Raman-scattering the aerosol lidar ratio (extinction to backscatter ratio) can be obtained. The cases studies in this paper show the proposed method is reasonable and feasible.
NASA Technical Reports Server (NTRS)
Collom, Christopher J.
1988-01-01
Traditional mass extinction research has predominently concentrated on statistically demonstrating that mass extinction intervals are significantly above background levels of familial and generic extinction in terms of extinction percentage, extinction rate, and per-taxon extinction rate; mass extinction intervals occur on a set periodicity throughout geologic time, which is estimated to be some 30 MYR in duration. The published literature has given little emphasis to equally important considerations and metrics such as origination rate, standing diversity, and rate of generation of new taxa DURING mass extinction intervals. The extent to which a mass extinction affects the regional or global biota, must ultimately be gauged by taking into consideration both the number of taxa which become extinct at or near the event (stage) boundary, and the number of taxa which are either not affected at all by the extinction or actually evolved during or shortly before/after the extinction interval. These effects can be seen in Cretaceous Ammonoidea (at the genus level), and their combined usage allow better insight into paleobiological dynamics and responses to mass extinction and its affect on this dominant Molluscan organism.
Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE
NASA Astrophysics Data System (ADS)
Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.
2003-10-01
Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.
Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds
NASA Technical Reports Server (NTRS)
Sztankay, Z. G.
1986-01-01
Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.
NASA Astrophysics Data System (ADS)
Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.
2013-07-01
Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.
NASA Astrophysics Data System (ADS)
Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.
2013-11-01
Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.
Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui
2016-10-06
Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous all-optical determination of molecular concentration and extinction coefficient.
Cho, Byungmoon; Tiwari, Vivek; Jonas, David M
2013-06-04
Absolute molecular number concentration and extinction coefficient are simultaneously determined from linear and nonlinear spectroscopic measurements. This method is based on measurements of absolute femtosecond pump-probe signals. Accounting for pulse propagation, we present a closed form expression for molecular number concentration in terms of absorbance, fluorescence, absolute pump-probe signal, and laser pulse parameters (pulse energy, spectrum, and spatial intensity profile); all quantities are measured optically. As in gravimetric and coulometric determinations of concentration, no standard samples are needed for calibration. The extinction coefficient can then be determined from the absorbance spectrum and the concentration. For fluorescein in basic methanol, the optically determined molar concentrations and extinction coefficients match gravimetric determinations to within 10% for concentrations from 0.032 to 0.540 mM, corresponding to absorbance from 0.06 to 1. In principle, this photonumeric method is extensible to transient chemical species for which other methods are not available.
The biology of mass extinction: a palaeontological view
NASA Technical Reports Server (NTRS)
Jablonski, D.; Raup, D. M. (Principal Investigator)
1989-01-01
Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
The wavelength dependent model of extinction in fog and haze for free space optical communication.
Grabner, Martin; Kvicera, Vaclav
2011-02-14
The wavelength dependence of the extinction coefficient in fog and haze is investigated using Mie single scattering theory. It is shown that the effective radius of drop size distribution determines the slope of the log-log dependence of the extinction on wavelengths in the interval between 0.2 and 2 microns. The relation between the atmospheric visibility and the effective radius is derived from the empirical relationship of liquid water content and extinction. Based on these results, the model of the relationship between visibility and the extinction coefficient with different effective radii for fog and for haze conditions is proposed.
NASA Technical Reports Server (NTRS)
Popp, B. N.; Hayes, J. M.; Boreham, C. J.
1993-01-01
Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.
Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data
NASA Astrophysics Data System (ADS)
Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina
2015-04-01
Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE
Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa
2012-08-07
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.
NASA Astrophysics Data System (ADS)
Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng
2016-03-01
Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.
MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso
2017-04-01
We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.
Extinction and the fossil record
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)
1994-01-01
The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.
Longwave radiative effects of Saharan dust during the ICE-D campaign
NASA Astrophysics Data System (ADS)
Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie
2017-04-01
The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2/g) at 355 nm. In general the comparison between the lidar retrieval of aerosol extinction coefficients and in-situ measurements show a good agreement. The root mean square of the brightness temperature residuals in the window region for observations (ARIES) minus model simulations for i) clear-sky, ii) HT-FRTC 'line-by-line' scattering and, iii) HT-FRTC fast scattering are calculated. For the ICE-D case studies mineral dust impacts on the brightness temperature of the background on the order of 1 - 1.5 K.
Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed
2018-03-15
Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP concentration toward environmentally relevant concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.
2017-12-01
Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean
sea ice (at a wavelength of 500 nm).
NASA Astrophysics Data System (ADS)
Kim, Y.; Jung, H.; Kim, M.; Lee, B.; Kim, S.; Park, J.; Lee, D.; Lee, B.; Han, J.; Lee, S.; Kim, K.
2004-12-01
In order to investigate the causes for fine particulate pollution and visibility impairment in the Seoul metropolitan area, extensive aerosol chemical and optical monitoring had been conducted at two urban sites, Junnong, Seoul and Younghyun, Incheon during six seasonal intensive monitoring periods (IMP); 5-26 August and 20-28 October 2002, 10-24 January and 6-14 June 2003, and 6-15 January and 13-22 April 2004. Light extinction and scattering coefficient were measured simultaneously with a transmissometer and a nephelometer, respectively. Average light extinction coefficient and visual range were measured to be 569ør"ú338Mm-1 and 6.9ør"ú5.4km at Junnong, Seoul and 614ør"ú409Mm-1 and 6.4ør"ú4.7km at Younghyun, Incheon, respectively. Light extinction budget for six major aerosol components; ammonium sulfate (NHSO), ammonium nitrate (NHNO), elemental carbon (EC) and organic carbon (OC) particles, fine soil (FS), and coarse particles (CM) was estimated based on the measured aerosol chemistry data. When the visibility was degraded from the worst 20% to the best 20% condition, percent increased contribution by each aerosol component was estimated to be 28.9% (NHSO), 16.8% (NHNO), 7.4% (OC), 22.4%(EC), 1.2% (FS), and 23.3% (CM), respectively at Junnong, Seoul. Contributions by ammonium sulfate and ammonium nitrate included the effects of relative humidity increase, which accounted for 47.4% and 59.5% of them, respectively. Impact of air mass characteristics on the visibility condition over the Seoul metropolitan area was also analyzed based on the air mass pathway information obtained using the HYSPLIT model.
Mass Extinctions Past and Present.
ERIC Educational Resources Information Center
Allmon, Warren Douglas
1987-01-01
Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.
In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less
Vladimir A Kovalev; Wei Min Hao; Cyle Wold
2007-01-01
A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...
PM2.5 mass, chemical composition, and light extinction before and during the 2008 Beijing Olympics
NASA Astrophysics Data System (ADS)
Li, Xinghua; He, Kebin; Li, Chengcai; Yang, Fumo; Zhao, Qing; Ma, Yongliang; Cheng, Yuan; Ouyang, Wenjuan; Chen, Gangcai
2013-11-01
contrast of air quality and visibility before and during the 2008 Beijing Olympic Games provides a rare opportunity to investigate the links between PM2.5 mass, chemical composition, and light extinction in this megacity. Twenty-four hour integrated PM2.5 samples were collected, and light scattering coefficients and the concentrations of black carbon were measured at urban Beijing for this purpose during a measurement campaign from 1 July to 20 September 2008, which was classed into four stages according to the levels of emission control measures. Daily PM2.5 concentrations ranged from 15.9 to 156.7 µg m-3 with an average of 66.0 ± 35.1 µg m-3. The average PM2.5 mass during the Olympics decreased by 49% from the second stage (20 July to 7 August), mainly due to the reduction of secondary inorganic aerosols (i.e., sulfate, nitrate, and ammonium (SNA)). The counterintuitive increase of PM2.5 mass (by 27% on average) during the second stage with two most serious haze episodes, although more rigorous emission control measures were in place, compared to the first stage (1-19 July), was mainly explained by the unfavorable meteorology and input of sulfate aerosols. A daily PM2.5 mass threshold of 50 µg m-3 was extracted for frequent haze occurrence. The extinction fractions of SNA and organic material were each approximately 30% during the 20% best visibility days but changed to 81.7% and 8.4%, respectively, during the 20% worst visibility days. The results indicated that the role of SNA was magnified in haze formation during the 2008 summer in Beijing.
2017-11-01
inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height
Geography of cretaceous extinctions: Data base development
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
Data bases built from the source literature are plagued by problems of data quality. Unless the data acquisition is done by experts, working slowly, the data base may contain so much garbage that true signals and patterns cannot be detected. On the other hand, high quality data bases develop so slowly that satisfactory statistical analysis may never be possible due to the small sample sizes. Results of a test are presented of the opposite strategy: rapid data acquisition by non-experts with minimal control on data quality. A published list of 186 species and genera of fossil invertibrates of the latest Cretaceous Age (Maestrichtian) were located through a random search of the paleobiological and geological literature. The geographic location for each faunal list was then transformed electronically to Maestrichtian latitude and longitude and the lists were further digested to identify the genera occurring in each ten-degree, latitude-longitude block. The geographical lists were clustered using the Otsuka similarity coefficient and a standard unweight-pair-group method. The resulting clusters are remarkably consistent geographically, indicating that a strong biogeographic signal is visible despite low-quality data. A further test evaluated the geographic pattern of end-Cretaceaous extinctions. All genera in the data base were compared with Sepkoski's compendium of time ranges of genera to determine which of the reported genera survived the Cretaceous mass extinction. In turn, extinction rates for the ten-degree, latitude-longitude blocks were mapped. The resulting distribution is readily interpretable as a robust pattern of the geography of the mass extinction. The study demonstrates that a low-quality data base, built rapidly, can provide a basis for meaningful analysis of past biotic events.
Accelerated modern human-induced species losses: Entering the sixth mass extinction.
Ceballos, Gerardo; Ehrlich, Paul R; Barnosky, Anthony D; García, Andrés; Pringle, Robert M; Palmer, Todd M
2015-06-01
The oft-repeated claim that Earth's biota is entering a sixth "mass extinction" depends on clearly demonstrating that current extinction rates are far above the "background" rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.
Post-Extinction Ecological Recovery of Marine Life Modes
NASA Astrophysics Data System (ADS)
Park, C.; de la Torre, N. G.; Heim, N.; Payne, J.
2016-12-01
A mass extinction is defined by a substantial increase in extinction rates, resulting in a loss of taxonomic and ecological diversity. Bush et al. (2007) defined ecological life modes as the feeding, motility, and tiering habits and organized them in a six-by-six "eco-cube" in which each section represented a life mode. In our research, we analyzed the ecological recovery of each life mode after the five mass extinctions. Using a fossil marine genera database, we compiled five heat maps that depict the recovery of the life modes by plotting the diversity of genera in each life mode two intervals before and five intervals after each mass extinction interval. New life modes seem to appear either immediately following or three or more intervals after a mass extinction, which indicates that ecological recovery is not a gradual process, but rather occurs in a punctuated manner. Furthermore, the "filling order" of new life modes differ in each extinction. However, some seem to have defined patterns, such as the Ordovician, where earlier post-extinction intervals experienced an increase in the diversity of erect (tiering) ecospaces, followed by that of surficial and shallow infaunal life modes. The Devonian mass extinction followed a similar pattern as the end Ordovician where erect organisms came first followed by surficial, deep-infaunal, and pelagic life modes. Conversely, intervals following the end-Permian mass extinction experienced a recovery in pelagic, freely-moving life modes, followed by a recovery in infaunal organisms and an explosion in semi-infaunal, erect, surficial, and pelagic ecospaces in the Ladinian. New life modes in the Triassic and Cretaceous mass extinctions did not seem to generate in a distinct pattern. Overall, we conclude that recovery patterns are unique depending on the cause of each mass extinction, and that any general tendency in post-extinction ecological recovery was most likely overridden by the environmental condition of the recovery intervals.
NASA Astrophysics Data System (ADS)
Mukhtubayev, Azamat B.; Aksarin, Stanislav M.; Strigalev, Vladimir E.
2017-11-01
A study of the orthogonal polarization modes crosstalk changes in the point of different mechanical actions (pressure force) in the polarization-maintaining fiber with straining elliptical cladding is presented. It was found that by increasing of the pressure force the polarization extinction ratio increases nonlinearly. Also revealed the dependence of the extinction coefficient and the angle between vector of the mechanical action and polarization axes of the test fiber, which leads to change the extinction coefficient variable from -57 dB to -25 dB under the pressure force of 0.7 N. Also it was found that the cross angle of the fiber axes doesn't influence on the extinction ratio value of the mechanical induced polarization crosstalk.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Kincaid, J. S.
1980-01-01
A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.
USDA-ARS?s Scientific Manuscript database
Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...
NASA Technical Reports Server (NTRS)
Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.
2005-01-01
This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.
NASA Technical Reports Server (NTRS)
Thomason, L. W.
2012-01-01
Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.
Accelerated modern human–induced species losses: Entering the sixth mass extinction
Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M.
2015-01-01
The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. PMID:26601195
Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV
NASA Astrophysics Data System (ADS)
Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.
2017-01-01
In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.
NASA Astrophysics Data System (ADS)
Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki
2015-03-01
Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.
NASA Astrophysics Data System (ADS)
Wang, Zhaoyong; Hu, Xing; Yao, Ning
2015-03-01
At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.
Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.
1981-01-01
Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.
Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction
Long, Virginia A.; Fanselow, Michael S.
2014-01-01
Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467
Variation in crown light utilization characteristics among tropical canopy trees.
Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph
2005-02-01
Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.
Determination of extinction coefficients of human hemoglobin in various redox states
Meng, Fantao; Alayash, Abdu I.
2017-01-01
The role of hemoglobin (Hb) redox forms in tissue and organ toxicities remain ambiguous despite the well-documented contribution of Hb redox reactivity to cellular and subcellular oxidative changes. Moreover, several recent studies, in which Hb toxicity were investigated, have shown conflicting outcomes. Uncertainties over the potential role of these species may in part be due to the protein preparation method of choice, the use of published extinction coefficients and the lack of suitable controls for Hb oxidation and heme loss. Highly purified and well characterized redox forms of human Hb were used in this study and the extinction coefficients of each Hb species (ferrous/oxy, ferric/met and ferryl) were determined. A new set of equations were established to improve accuracy in determining the transient ferryl Hb species. Additionally, heme concentrations in solutions and in human plasma were determined using a novel reversed phase HPLC method in conjugation with our photometric measurements. The use of more accurate redox-specific extinction coefficients and method calculations will be an invaluable tool for both in vitro and in vivo experiments aimed at determining the role of Hb-mediated vascular pathology in hemolytic anemias and when Hb is used as oxygen therapeutics. PMID:28069451
Estimates of the magnitudes of major marine mass extinctions in earth history
2016-01-01
Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor–Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90–96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed. PMID:27698119
Estimates of the magnitudes of major marine mass extinctions in earth history
NASA Astrophysics Data System (ADS)
Stanley, Steven M.
2016-10-01
Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ˜81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.
Yang, Guan-Dong; Agapow, Paul-Michael
2017-01-01
The kind and duration of phylogenetic topological “signatures” left in the wake of macroevolutionary events remain poorly understood. To this end, we examined a broad range of simulated phylogenies generated using trait-biased, heritable speciation probabilities and mass extinction that could be either random or selective on trait value, but also using background extinction and diversity-dependence to constrain clade sizes. In keeping with prior results, random mass extinction increased imbalance of clades that recovered to pre-extinction size, but was a relatively weak effect. Mass extinction that was selective on trait values tended to produce clades of similar or greater balance compared to random extinction or controls. Allowing evolution to continue past the point of clade-size recovery resulted in erosion and eventual erasure of this signal, with all treatments converging on similar values of imbalance, except for very intense extinction regimes targeted at taxa with high speciation rates. Return to a more balanced state with extended post-extinction evolution was also associated with loss of the previous phylogenetic root in most treatments. These results further demonstrate that while a mass extinction event can produce a recognizable phylogenetic signal, its effects become increasingly obscured the further an evolving clade gets from that event, with any sharp imbalance due to unrelated evolutionary factors. PMID:28644846
Estimates of the magnitudes of major marine mass extinctions in earth history.
Stanley, Steven M
2016-10-18
Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.
Yao, Le; Aretz, Markus; Chen, Jitao; Webb, Gregory E.; Wang, Xiangdong
2016-01-01
Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the ‘Big Five’ extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and ‘Big Five’ extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions. PMID:28009013
Rapid recovery from the Late Ordovician mass extinction
NASA Technical Reports Server (NTRS)
Krug, A. Z.; Patzkowsky, M. E.
2004-01-01
Understanding the evolutionary role of mass extinctions requires detailed knowledge of postextinction recoveries. However, most models of recovery hinge on a direct reading of the fossil record, and several recent studies have suggested that the fossil record is especially incomplete for recovery intervals immediately after mass extinctions. Here, we analyze a database of genus occurrences for the paleocontinent of Laurentia to determine the effects of regional processes on recovery and the effects of variations in preservation and sampling intensity on perceived diversity trends and taxonomic rates during the Late Ordovician mass extinction and Early Silurian recovery. After accounting for variation in sampling intensity, we find that marine benthic diversity in Laurentia recovered to preextinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations. The rapid turnover in Laurentia suggests that processes such as immigration may have been particularly important in the recovery of regional ecosystems from environmental perturbations. However, additional regional studies and a global analysis of the Late Ordovician mass extinction that accounts for variations in sampling intensity are necessary to confirm this pattern. Because the record of Phanerozoic mass extinctions and postextinction recoveries may be compromised by variations in preservation and sampling intensity, all should be reevaluated with sampling-standardized analyses if the evolutionary role of mass extinctions is to be fully understood.
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea.
Button, David J; Lloyd, Graeme T; Ezcurra, Martín D; Butler, Richard J
2017-10-10
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian-Triassic and Triassic-Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous 'disaster faunas'. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems.Mass extinctions are thought to produce 'disaster faunas', communities dominated by a small number of widespread species. Here, Button et al. develop a phylogenetic network approach to test this hypothesis and find that mass extinctions did increase faunal cosmopolitanism across Pangaea during the late Palaeozoic and early Mesozoic.
Extinction from a paleontological perspective
NASA Technical Reports Server (NTRS)
Raup, D. M.
1993-01-01
Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.
NASA Astrophysics Data System (ADS)
Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai
2018-02-01
Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.
NASA Technical Reports Server (NTRS)
Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.
2011-01-01
The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).
Lidar extinction measurement in the mid infrared
NASA Astrophysics Data System (ADS)
Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.
2014-11-01
We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.
VizieR Online Data Catalog: Coefficients for passband extinctions (Sale+, 2015)
NASA Astrophysics Data System (ADS)
Sale, S. E.; Magorrian, J.
2017-11-01
We have considered how one should measure the distance and extinction to individual stars for use in constructing extinction maps of the whole Galaxy. We advocate the use of monochromatic extinctions, since, unlike bandpass measures such as AV and E(B-V), monochromatic extinctions are linear functions of the dust column density and are independent of the source SED. In particular we suggest the use of A4000, the monochromatic extinction at 4000Å because of its insensitivity to the dust grain size distribution. Files for converting from A_4000 to passband extinctions at 35 RV extinction law value and for 11 photometric systems. (2 data files).
Graptolite community responses to global climate change and the Late Ordovician mass extinction.
Sheets, H David; Mitchell, Charles E; Melchin, Michael J; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L; Hawkins, Andrew D
2016-07-26
Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.
Graptolite community responses to global climate change and the Late Ordovician mass extinction
NASA Astrophysics Data System (ADS)
Sheets, H. David; Mitchell, Charles E.; Melchin, Michael J.; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L.; Hawkins, Andrew D.
2016-07-01
Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (˜447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1994-01-01
The theory that large-body impacts are the primary cause of mass extinctions of life on the Earth now has a sound theoretical and observational foundation. A convergence of evidence suggests that the biosphere may be a sensitive detector of large impact events, which result in the recorded global mass extinction pulses. The astronomically observed flux of asteroids and comets in the neighborhood of the Earth, and the threshold impact size calculated to produce a global environment catastrophe, can be used to predict a time history of large impact events and related mass extinctions of life that agrees well with the record of approx. 24 extinction events in the last 540 m.y.
NASA Astrophysics Data System (ADS)
Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.
2017-09-01
Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.
Ecological selectivity of the emerging mass extinction in the oceans.
Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J
2016-09-16
To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events. Copyright © 2016, American Association for the Advancement of Science.
Effect of climate-related mass extinctions on escalation in molluscs
NASA Astrophysics Data System (ADS)
Hansen, Thor A.; Kelley, Patricia H.; Melland, Vicky D.; Graham, Scott E.
1999-12-01
We test the hypothesis that escalated species (e.g., those with antipredatory adaptations such as heavy armor) are more vulnerable to extinctions caused by changes in climate. If this hypothesis is valid, recovery faunas after climate-related extinctions should include significantly fewer species with escalated shell characteristics, and escalated species should undergo greater rates of extinction than nonescalated species. This hypothesis is tested for the Cretaceous-Paleocene, Eocene-Oligocene, middle Miocene, and Pliocene-Pleistocene mass extinctions. Gastropod and bivalve molluscs from the U.S. coastal plain were evaluated for 10 shell characters that confer resistance to predators. Of 40 tests, one supported the hypothesis; highly ornamented gastropods underwent greater levels of Pliocene-Pleistocene extinction than did nonescalated species. All remaining tests were nonsignificant. The hypothesis that escalated species are more vulnerable to climate-related mass extinctions is not supported.
In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent
2016-11-01
has over 15 years of experience investigating signaling in the prostate, and is well versed in both cell culture and animal models for prostate cancer...as Hb generate relatively weak photoacoustic signals (due to a small absorptivity factor or extinction coefficient) and lack cancer specificity...oxyhemoglobin (dHb) and oxyhemoglobin (HbO2) have two limitations: i) their small absorptivity factor ( extinction coefficient) leads to weak PA signals
ERIC Educational Resources Information Center
Sims, Paul A.
2012-01-01
A brief history of the development of the empirical equation that is used by prominent, Internet-based programs to estimate (or calculate) the extinction coefficients of proteins is presented. In addition, an overview of a series of related assignments designed to help students understand the origin of the empirical equation is provided. The…
NASA Astrophysics Data System (ADS)
Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2017-09-01
In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.
Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.
Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M
2011-09-15
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.
Nanofluid optical property characterization: towards efficient direct absorption solar collectors.
Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi
2011-03-15
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
2011-01-01
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750
Kim, Dong-Kwan; Hwang, Yoon Jo; Yoon, Cheolho; Yoon, Hye-On; Chang, Ki Soo; Lee, Gaehang; Lee, Seungwoo; Yi, Gi-Ra
2015-08-28
The theoretical extinction coefficients of gold nanoparticles (AuNPs) have been mainly verified by the analytical solving of the Maxwell equation for an ideal sphere, which was firstly founded by Mie (generally referred to as Mie theory). However, in principle, it has not been directly feasible with experimental verification especially for relatively large AuNPs (i.e., >40 nm), as conventionally proposed synthetic methods have inevitably resulted in a polygonal shaped, non-ideal Au nanosphere. Here, mono-crystalline, ultra-smooth, and highly spherical AuNPs of 40-100 nm were prepared by the procedure reported in our recent work (ACS Nano, 2013, 7, 11064). The extinction coefficients of the ideally spherical AuNPs of 40-100 nm were empirically extracted using the Beer-Lambert law, and were then compared with the theoretical limits obtained by the analytical and numerical methods. The obtained extinction coefficients of the ideally spherical AuNPs herein agree much more closely with the theoretical limits, compared with those of the faceted or polygonal shaped AuNPs. In addition, in order to further elucidate the importance of being spherical, we systematically compared our ideally spherical AuNPs with the polygonal counterparts; effectively addressing the role of the surface morphology on the spectral responses in both theoretical and experimental manners.
Life in the Aftermath of Mass Extinctions.
Hull, Pincelli
2015-10-05
The vast majority of species that have ever lived went extinct sometime other than during one of the great mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolutionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the aftermaths of mass extinctions might contribute to the evolutionary importance of such events. Following the mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolutionary driver - earth system succession. Earth system succession occurs when global environmental or biotic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium. As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles - and in turn, species and ecosystems - over timescales typical of the geosphere, often many thousands to millions of years. Earth system succession provides a general explanation for the pattern and timing of ecological and evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the pace of global biotic change after massive disturbance - a limit set by geosphere-biosphere interactions. For mass extinctions, earth system succession may drive the ever-changing ecological stage on which species evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Sixth Great Mass Extinction
ERIC Educational Resources Information Center
Wagler, Ron
2012-01-01
Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…
Body Size Preference of Marine Animals in Relation to Extinction Selectivity
NASA Astrophysics Data System (ADS)
Sriram, A.; Idgunji, S.; Heim, N. A.; Payne, J.
2014-12-01
Our project encompasses an extremely specific aspect in relation to the five mass extinctions in geologic history. We asked ourselves whether larger or smaller body sizes would be better suited for surviving a mass extinction. To conduct research for our project, we used the body sizes of 17,172 marine animal genera as our primary data. These animals include echinoderms, arthropods, chordates, mollusks, and brachiopods. These creatures are perfect model organisms in terms of finding data on them because they have an excellent fossil record, and are well documented. We focused on the mean body size of these animals before and after each of the five mass extinctions (end-Ordovician, Late Devonian, end-Permian, end-Triassic, and end-Cretaceous). Our hypothesis was that the average biovolume of animals increased after each of the extinctions, with the mean size being greater after than it was before. Our size data is from the Ellis & Messina Catalogue of Ostracoda and the Treatise on Invertebrate Paleontology. We obtained stratigraphic range data The Treatise and Sepkoski (2002). In our analyses, we compared the mean size of the different animal genera before and after each extinction event. We further partitioned size change across mass extinction boundaries into three categories: the surviving genera, the extinct genera, and the newly originating genera that came about after the extinction. According to our analyses, the mean sizes did not change significantly from the genera living during the stages before the extinctions and after the extinctions. From our results, we can assume that there were not enough major increases in the overall volume of the organisms to warrant a definite conclusion that extinctions lead to larger body sizes. Further support for our findings came from the T-tests in our R code. Only the Cretaceous period showed true evidence for size changing because of the extinction; in this case, the mean size decreased. T-tests for the Cretaceous comparisons showed that mean size decreased across the extinction boundary. This was due to the fact that new originating genera were smaller than the genera that survived. Our results show that there is variability in the relationship between body size and extinction selectivity in various mass extinctions.
Optical characteristics of fine and coarse particulates at Grand Canyon, Arizona
NASA Astrophysics Data System (ADS)
Malm, William C.; Johnson, Christopher E.
The relationship between airborne particulate matter and atmospheric light extinction was examined using the multivariate techniques of principal component analysis and multiple linear regression on data gathered at the Grand Canyon, Arizona, from December 1979 to November 1981. Results showed that, on the average, fine sulfates were most strongly associated with light attenuation in the atmosphere. Other fine mass (nitrates, organics, soot and carbonaceous material) and coarse mass (primarily windblown dust) were much less associated with atmospheric extinction. Fine sulfate mass at the Grand Canyon was responsible for 63% of atmospheric light extinction while other fine mass and coarse mass were responsible for 17 and 20% of atmospheric extinction, respectively.
Has the Earth's sixth mass extinction already arrived?
Barnosky, Anthony D; Matzke, Nicholas; Tomiya, Susumu; Wogan, Guinevere O U; Swartz, Brian; Quental, Tiago B; Marshall, Charles; McGuire, Jenny L; Lindsey, Emily L; Maguire, Kaitlin C; Mersey, Ben; Ferrer, Elizabeth A
2011-03-03
Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.
Deccan Volcanism, Chicxulub Impact, Climate Change and the end-Cretaceous Mass Extinction
NASA Astrophysics Data System (ADS)
Keller, Gerta; Punekar, Jahnavi; Mateo, Paula; Adatte, Thierry; Spangenberg, Jorge
2015-04-01
Age control for Deccan volcanism, associated global climate changes, high-stress conditions and the KTB mass extinction is excellent based on biostratigraphy and corroborated by new U-Pb dating providing new evidence for a complex mass extinction scenario. The massive Deccan eruptions of phase-2 began in the latest Maastrichtian C29r and ended at or near the Cretaceous-Tertiary boundary (KTB) depositing ~3000 m of stacked lava flows or 80% of the total Deccan eruptions over a period of just 250 ky. The onset of phase-2 eruptions coincided with rapid global warming on land (8°C) and oceans (4°C) and increasingly high-stress environments evident by dwarfed species and decreased diversity preceding the mass extinction in planktic foraminiferal zones CF2-CF1. Deep cores in the Krishna-Godavari Basin, SE India, document the rapid mass extinction of planktic foraminifera in intertrappean sediments between four major volcanic eruptions known as the longest lava flows on Earth. Maximum stress is observed globally approaching the end of the Maastrichtian with faunal assemblages dominated (~90%) by the disaster opportunist Guembelitria cretacea. This interval correlates with the massive eruptions of the world's longest lava flows, renewed rapid global warming and ocean acidification during the last ~50 ky of the Maastrichtian. The Chicxulub impact occurred during the global warming near the base of zone CF1 preceding the mass extinction by <100 ky (depending on the time scale used). This age estimate is based on the stratigraphically oldest impact spherule layer in NE Mexico, Texas, and Yucatan crater core Yaxcopoil-1. In all other regions (e.g., North Atlantic, Caribbean, Belize, Guatemala, southern Mexico) impact spherules are reworked in early Danian sediments (zone P1a) at least 100 ky after the KTB due to Gulf Stream erosion and increased tectonic activity in the region. No species extinctions are associated with the Chicxulub impact. Any KTB mass extinction scenario must take into account both Deccan volcanism and the Chicxulub impact. The age of this impact is controversial though generally assumed to be precisely at the KTB and the sole cause of the mass extinction. This assumption is no longer valid given the short duration of massive Deccan eruptions, and the dramatic climatic and environmental effects over just 250 ky ending with the mass extinction. The pre-KTB age of the Chicxulub impact rules out a direct role in the mass extinction, although the additional CO2 and SO2 emissions likely exacerbated the ongoing Deccan climate warming. The KTB kill mechanism was likely ocean acidification resulting in the carbonate crisis commonly considered the primary cause for four of the five Phanerozoic mass extinctions.
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj
2017-11-01
Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.
The Effect of Size and Ecology on Extinction Susceptibility
NASA Astrophysics Data System (ADS)
Huynh, C.; Yuan, A.; Heim, N.; Payne, J.
2015-12-01
Although life on Earth first emerged as prokaryotic organisms, it eventually evolved into billions of different species. However, extinctions on Earth, especially the five mass extinctions, have decimated species. So what leads to a species survival or demise during a mass extinction? Are certain species more susceptible to extinctions based on their size and ecology? For this project, we focused on the data of marine animals. To examine the impact of size and ecology on a species's likelihood of survival, we compared the sizes and ecologies of the survivors and victims of the five mass extinctions. The ecology, or life mode, of a genus consists of the combination of tiering, motility, and feeding mechanism. Tiering refers to the animal's typical location in the water column and sediments, motility refers to its ability to move, and feeding mechanism describes the way the organism eats; together, they describe the animal's behavior. We analyzed the effect of ecology on survival using logistic regression, which compares life mode to the success or failure of a genus during each mass extinction interval. For organism size, we found the extinct organisms' mean size (both volume and length) and compared it with the average size of survivors on a graph. Our results show that while surviving genera of mass extinctions tended to be slightly larger than those that went extinct, there was no significant difference. Even though the Permian (Changhsingian) and Triassic (Rhaetian) extinctions had larger surviving species, likewise the difference was small. Ecology had a more obvious impact on the likelihood of survival; fast-moving, predatory pelagic organisms were the most likely to go extinct, while sedentary, infaunal suspension feeders had the greatest chances of survival. Overall, ecology played a greater role than size in determining the survival of a species. With this information, we can use ecology to predict which species would survive future extinctions.
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1988-01-01
This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.
EARTH SCIENCE: Did Volcanoes Drive Ancient Extinctions?
Kerr, R A
2000-08-18
With the publication in recent weeks of two papers on a mass extinction 183 million years ago, researchers can add five suggestive cases to the list of extinctions with known causes. These extinctions coincide with massive outpourings of lava, accompanied by signs that global warming threw the ocean-atmosphere system out of whack. Although no one can yet pin any of these mass extinctions with certainty on the volcanic eruptions, scientists say it's unlikely that they're all coincidences.
NASA Technical Reports Server (NTRS)
Raup, D. M.
1987-01-01
Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.
Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai
2018-02-15
Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Dunhill, Alexander M; Wills, Matthew A
2015-08-11
Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.
Selectivity of end-Cretaceous marine bivalve extinctions
NASA Technical Reports Server (NTRS)
Jablonski, D.; Raup, D. M.
1995-01-01
Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.
End-Triassic mass extinction started by intrusive CAMP activity.
Davies, J H F L; Marzoli, A; Bertrand, H; Youbi, N; Ernesto, M; Schaltegger, U
2017-05-31
The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ∼100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.
End-Triassic mass extinction started by intrusive CAMP activity
NASA Astrophysics Data System (ADS)
Davies, J. H. F. L.; Marzoli, A.; Bertrand, H.; Youbi, N.; Ernesto, M.; Schaltegger, U.
2017-05-01
The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ~100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.
FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers
NASA Astrophysics Data System (ADS)
Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.
1993-08-01
The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).
Community stability and selective extinction during the Permian-Triassic mass extinction
NASA Astrophysics Data System (ADS)
Roopnarine, Peter D.; Angielczyk, Kenneth D.
2015-10-01
The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.
Shipboard Visibility Measurement System Definition Study.
1982-01-01
Aerosol Extinction (AAE) Coef- ficients Derived from NRL Long - Path Transmission Measurements at CCAFS...determined. Occasionally long - path extinction measurements for many laser lines were collected (as many as 80 CO2 laser lines on some days and repeated...EXPERIMENT DAY FIGURE 22. PLOT OF APPARENT AEROSOL EXTINCTION (AAE) COEFFICIENTS DERIVED FROM NRL LONG - PATH TRANSMISSION MEASUREMENTS AT CCAFS MINUS
NASA Technical Reports Server (NTRS)
Klinger, L. F.
1988-01-01
The study of mass extinction events has largely focused on defining an environmental factor or factors that might account for specific patterns of faunal demise. Several hypotheses elaborate on how a given environmental factor might affect fauna directly, but differentially, causing extinction in certain taxa but not others. Yet few studies have considered specific habitat changes that might result from natural vegetation processes or from perturbations of vegetation. The role of large-scale habitat change induced by natural successional change from forest to bog (paludification) is examined and how large perturbations (e.g., volcanism, bolide impacts) might favor increased rates of paludification and consequent mass extinctions is considered. This hypothesis has an advantage over other hypotheses for mass extinctions in that modern day analogs of paludification are common throughout the world, thus allowing for considerable testing.
NASA Astrophysics Data System (ADS)
Barnosky, A. D.
2012-12-01
While the ultimate extinction driver now—Homo sapiens—is unique with respect to the drivers of past extinctions, comparison of parallel neontological and paleontological information helps calibrate how far the so-called Sixth Mass Extinction has progressed and whether it is inevitable. Such comparisons document that rates of extinction today are approaching or exceeding those that characterized the Big Five Mass Extinctions. Continuation of present extinction rates for vertebrates, for example, would result in 75% species loss—the minimum benchmark exhibited in the Big Five extinctions—within 3 to 22 centuries, assuming constant rates of loss and no threshold effects. Preceding and during each of the Big Five, the global ecosystem experienced major changes in climate, atmospheric chemisty, and ocean chemistry—not unlike what is being observed presently. Nevertheless, only 1-2% of well-assessed modern species have been lost over the past five centuries, still far below what characterized past mass extinctions in the strict paleontological sense. For mammals, adding in the end-Pleistocene species that died out would increase the species-loss percentage by some 5%. If threatened vertebrate species were to actually go extinct, losses would rise to between 14 and 40%, depending on the group. Such observations highlight that, although many species have already had their populations drastically reduced to near-critical levels, the Sixth Mass Extinction has not yet progressed to the point where it is unavoidable. Put another way, the vast majority of species that have occupied the world in concert with Homo sapiens are still alive and are possible to save. That task, however, will require slowing the abnormally high extinction rates that are now in progress, which in turn requires unified efforts to cap human population growth, decrease the average human footprint, reduce fossil fuel use while simultaneously increasing clean energy technologies, integrate valuation of natural capital into economic systems, and rescue species from impacts of inevitable climate change.
Late Eocene impact events recorded in deep-sea sediments
NASA Technical Reports Server (NTRS)
Glass, B. P.
1988-01-01
Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.
NASA Astrophysics Data System (ADS)
Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.
2015-12-01
Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value of 6.60 ±0.2 m2 g-1 was determined where the uncertainty refers to the precision of the measurement. The overall accuracy of the measurement, traceable to the properties of polystyrene latex particles, is estimated to be better than ±10%.
Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions
NASA Astrophysics Data System (ADS)
Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.
2016-12-01
Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns
Hoffmann, Andreas; Grassl, Kerstin; Gommert, Janine; Schlesak, Christian; Bepperling, Alexander
2018-04-17
The accurate determination of protein concentration is an important though non-trivial task during the development of a biopharmaceutical. The fundamental prerequisite for this is the availability of an accurate extinction coefficient. Common approaches for the determination of an extinction coefficient for a given protein are either based on the theoretical prediction utilizing the amino acid sequence or the photometric determination combined with a measurement of absolute protein concentration. Here, we report on an improved SV-AUC based method utilizing an analytical ultracentrifuge equipped with absorbance and Rayleigh interference optics. Global fitting of datasets helped to overcome some of the obstacles encountered with the traditional method employing synthetic boundary cells. Careful calculation of dn/dc values taking glycosylation and solvent composition into account allowed the determination of the extinction coefficients of monoclonal antibodies and an Fc-fusion protein under native as well as under denaturing conditions. An intra-assay precision of 0.9% and an accuracy of 1.8% compared to the theoretical value was achieved for monoclonal antibodies. Due to the large number of data points of a single dataset, no meaningful difference between the ProteomeLab XL-I and the new Optima AUC platform could be observed. Thus, the AUC-based approach offers a precise, convenient and versatile alternative to conventional methods like total amino acid analysis (AAA).
Wu, Xiaojun; Wang, Hongxing; Song, Bo
2015-02-10
Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.
Biological extinction in earth history
NASA Technical Reports Server (NTRS)
Raup, D. M.
1986-01-01
Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.
Biological Extinction in Earth History
NASA Astrophysics Data System (ADS)
Raup, David M.
1986-03-01
Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.
Mapping of the extinction in giant molecular clouds using optical star counts
NASA Astrophysics Data System (ADS)
Cambrésy, L.
1999-05-01
This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total individual masses M and their maximum of extinction. I show that the relation between the mass contained within an iso-extinction contour and the extinction is similar from cloud to cloud and allows the extrapolation of the maximum of extinction in the range 5.7 to 25.5 magnitudes. I found that about half of the mass is contained in regions where the visual extinction is smaller than 1 magnitude. The star count method used on large scale ( ~ 250 square degrees) is a powerful and relatively straightforward method to estimate the mass of molecular complexes. A systematic study of the all sky would lead to discover new clouds as I did in the Lupus complex for which I found a sixth cloud of about 10(4) M_⊙.
Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.
Su, Wenjing; Liu, Cheng; Hu, Qihou; Fan, Guangqiang; Xie, Zhouqing; Huang, Xin; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Ji, Xiangguang; Liu, Haoran; Wang, Zhuang; Liu, Jianguo
2017-12-12
Recently, atmospheric ozone pollution has demonstrated an aggravating tendency in China. To date, most research about atmospheric ozone has been confined near the surface, and an understanding of the vertical ozone structure is limited. During the 2016 G20 conference, strict emission control measures were implemented in Hangzhou, a megacity in the Yangtze River Delta, and its surrounding regions. Here, we monitored the vertical profiles of ozone concentration and aerosol extinction coefficients in the lower troposphere using an ozone lidar, in addition to the vertical column densities (VCDs) of ozone and its precursors in the troposphere through satellite-based remote sensing. The ozone concentrations reached a peak near the top of the boundary layer. During the control period, the aerosol extinction coefficients in the lower lidar layer decreased significantly; however, the ozone concentration fluctuated frequently with two pollution episodes and one clean episode. The sensitivity of ozone production was mostly within VOC-limited or transition regimes, but entered a NOx-limited regime due to a substantial decline of NOx during the clean episode. Temporary measures took no immediate effect on ozone pollution in the boundary layer; instead, meteorological conditions like air mass sources and solar radiation intensities dominated the variations in the ozone concentration.
Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E
2013-10-01
An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a valuable tool for probing enhanced absorption by soot at atmospherically relevant concentrations.
Burgess, Seth D.; Bowring, Samuel A.
2015-01-01
The end-Permian mass extinction was the most severe in the Phanerozoic, extinguishing more than 90% of marine and 75% of terrestrial species in a maximum of 61 ± 48 ky. Because of broad temporal coincidence between the biotic crisis and one of the most voluminous continental volcanic eruptions since the origin of animals, the Siberian Traps large igneous province (LIP), a causal connection has long been suggested. Magmatism is hypothesized to have caused rapid injection of massive amounts of greenhouse gases into the atmosphere, driving climate change and subsequent destabilization of the biosphere. Establishing a causal connection between magmatism and mass extinction is critically dependent on accurately and precisely knowing the relative timing of the two events and the flux of magma. New U/Pb dates on Siberian Traps LIP lava flows, sills, and explosively erupted rocks indicate that (i) about two-thirds of the total lava/pyroclastic volume was erupted over ~300 ky, before and concurrent with the end-Permian mass extinction; (ii) eruption of the balance of lavas continued for at least 500 ky after extinction cessation; and (iii) massive emplacement of sills into the shallow crust began concomitant with the mass extinction and continued for at least 500 ky into the early Triassic. This age model is consistent with Siberian Traps LIP magmatism as a trigger for the end-Permian mass extinction and suggests a role for magmatism in suppression of post-extinction biotic recovery. PMID:26601239
Chronology of magmatic and biological events during mass extinctions
NASA Astrophysics Data System (ADS)
Schaltegger, U.; Davies, J.; Baresel, B.; Bucher, H.
2016-12-01
For mass extinctions, high-precision geochronology is key to understanding: 1) the age and duration of mass extinction intervals, derived from palaeo-biodiversity or chemical proxies in marine sections, and 2) the age and duration of the magmatism responsible for injecting volatiles into the atmosphere. Using high-precision geochronology, here we investigate the sequence of events linked to the Triassic-Jurassic boundary (TJB) and the Permian-Triassic boundary (PTB) mass extinctions. At the TJB, the model of Guex et al. (2016) invokes degassing of early magmas produced by thermal erosion of cratonic lithosphere as a trigger of climate disturbance in the late Rhaetian. We provide geochronological evidence that such early intrusives from the CAMP (Central Atlantic Magmatic Province), predate the end-Triassic extinction event (Blackburn et al. 2013) by 100 kyr (Davies et al., subm.). We propose that these early intrusions and associated explosive volcanism (currently unidentified) initiate the extinction, followed by the younger basalt eruptions of the CAMP. We also provide accurate and precise calibration of the PTB in marine sections in S. China: The PTB and the extinction event coincide within 30 kyr in deep water settings; a hiatus followed by microbial limestone deposition in shallow water settings is of <100 kyr duration. The PTB extinction interval is preceded by up to 300 kyr by the onset of partly alkaline explosive, extrusive and intrusive rocks, which are suggested as the trigger of the mass extinction, rather than the subsequent basalt flows of the Siberian Traps (Burgess and Bowring 2015). From temporal constraints, the main inferences that can be made are: The duration of extinction events is in the x10 kyr range during the initial intrusive activity of a Large Igneous Province, and is postdated by the majority of basalt flows over several 100 kyr. For modeling climate change associated with mass extinctions, volatiles released from the basalt flows may thus not be relevant. Initial igneous activity must be explosive for producing sufficient volumes of volatiles over a sufficiently long time that could generate climatic change. Baresel et al., submitted; Blackburn et al. 2013, Science; Burgess and Bowring 2015, Sci Advances; Davies et al., submitted; Guex et al., 2016, Sci. Rep.
Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.
Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin
2016-10-01
Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Habibi, Maryam; Stolte, Andrea; Brandner, Wolfgang; Hussman, Benjamin
2013-07-01
The Galactic Center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic Center through the Galactic disk, knowledge of extinction is crucial to study this region. The Arches cluster is a young, massive starburst cluster near the Galactic Center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper-mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ∆AKs˜1 magnitude in acquired Ks-band extinction, while the present mass function slope changes by ˜0.17 dex. The present-day mass function slope derived assuming the Nishiyama et al. (2009) extinction law increases from a flat slope of α-Nishi = 1.50 ± 0.35 in the core (r<0.2 pc) to α-Nishi = 2.21±0.27 in the intermediate annulus (0.2
Measurements of the absorption coefficient of stratospheric aerosols
NASA Technical Reports Server (NTRS)
Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.
1981-01-01
The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.
NASA Astrophysics Data System (ADS)
Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan
2017-02-01
The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ˜85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.
Mass extinctions: Ecological selectivity and primary production
NASA Astrophysics Data System (ADS)
Rhodes, Melissa Clark; Thayer, Charles W.
1991-09-01
If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.
Climate change and the selective signature of the Late Ordovician mass extinction.
Finnegan, Seth; Heim, Noel A; Peters, Shanan E; Fischer, Woodward W
2012-05-01
Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia.
Mass Extinctions and Biosphere-Geosphere Stability
NASA Astrophysics Data System (ADS)
Rothman, Daniel; Bowring, Samuel
2015-04-01
Five times in the past 500 million years, mass extinctions have resulted in the loss of greater than three-fourths of living species. Each of these events is associated with significant environmental change recorded in the carbon-isotopic composition of sedimentary rocks. There are also many such environmental events in the geologic record that are not associated with mass extinctions. What makes them different? Two factors appear important: the size of the environmental perturbation, and the time scale over which it occurs. We show that the natural perturbations of Earth's carbon cycle during the past 500 million years exhibit a characteristic rate of change over two orders of magnitude in time scale. This characteristic rate is consistent with the maximum rate that limits quasistatic (i.e., near steady-state) evolution of the carbon cycle. We identify this rate with marginal stability, and show that mass extinctions occur on the fast, unstable side of the stability boundary. These results suggest that the great extinction events of the geologic past, and potentially a "sixth extinction" associated with modern environmental change, are characterized by common mechanisms of instability.
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.
2004-01-01
The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.
Rarity in mass extinctions and the future of ecosystems
NASA Astrophysics Data System (ADS)
Hull, Pincelli M.; Darroch, Simon A. F.; Erwin, Douglas H.
2015-12-01
The fossil record provides striking case studies of biodiversity loss and global ecosystem upheaval. Because of this, many studies have sought to assess the magnitude of the current biodiversity crisis relative to past crises—a task greatly complicated by the need to extrapolate extinction rates. Here we challenge this approach by showing that the rarity of previously abundant taxa may be more important than extinction in the cascade of events leading to global changes in the biosphere. Mass rarity may provide the most robust measure of our current biodiversity crisis relative to those past, and new insights into the dynamics of mass extinction.
Mata, S A; Bottjer, D J
2012-01-01
Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia. © 2011 Blackwell Publishing Ltd.
Adrenalectomy eliminates the extinction spike in autoshaping with rats.
Thomas, B L; Papini, M R
2001-03-01
Experiment 1, using rats, investigated the effect of adrenalectomy (ADX) on the invigoration of lever-contact performance that occurs in the autoshaping situation after a shift from acquisition to extinction (called the extinction spike). Groups of rats with ADX or sham operations were trained under spaced and massed conditions [average intertrial intervals (ITI) of either 15 or 90 s] for 10 sessions and then shifted to extinction. ADX did not affect acquisition training but it eliminated the extinction spike. Plasma corticosterone levels during acquisition were shown in Experiment 2 to be similar in rats trained under spaced or massed conditions. Adrenal participation in the emotional arousal induced by conditions of surprising nonreward (e.g., extinction) is discussed.
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.; Chow, J. C.; Holben, B. N.
2002-12-01
Chemically speciated PM2.5 and trace gases were measured at Fort Meade (FME: 39.10°N, 76.74°W; elevation 46 m MSL) during summer 2001 (6/30 through 8/3) as a continuous effort of the Maryland Aerosol Research and CHaracterization study. FME is suburban and within 30 km south of the urban Baltimore supersite. 24-hr PM2.5 mass ranged from 2.1 to 29.5 mg m-3. Major species, by average mass fraction, includes sulfate (37%), organic matter (27%), ammonium (13%), elemental carbon (6%), nitrate (3%), and crustal material (3%). Reconstructed PM2.5 mass, calculated by summing the major species, is generally less than the gravimetric mass but within 10% difference. Visible extinction coefficient (bext) was recorded by an Automated Surface Observing System at the Baltimore Washington International Airport and column aerosol optical depth (AOD) by sun radiometers at the Goddard Space Flight Center to evaluate the conditions of regional haze. Both detectors were located within 20 km from FME. The correlation (r2) between 24-hr bext and PM2.5 is low at 0.25 but increases to 0.51 when the aerosol water content, estimated using an aerosol thermodynamic modal ISORROPIA, is taken into account. Water contributed significantly on hazy days. This correlation suggests a mass extinction efficiency of ~ 9 m2 g-1. The hourly AOD at 500 nm was highly correlated with bext in the early morning and late afternoon (r2 ~ 0.9) but not during mid-day hours (r2 ~ 0.3) when bext is generally lower. This result, along with aircraft and ground lidar measurements, implies aloft fine aerosol mass in mid-day and a potentially stronger radiative forcing for the urban corridor.
Cumulative frequency distribution of past species extinctions
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45-60 percent.
What Caused the Mass Extinction?
ERIC Educational Resources Information Center
Alvarez, Walter; And Others
1990-01-01
Presented are the arguments of two different points of view on the mass extinction of the dinosaurs. Evidence of extraterrestrial impact theory and massive volcanic eruption theory are discussed. (CW)
Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong
2017-05-17
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).
Ji, Cheng; Huang, Jian-dong
2017-01-01
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. PMID:28515201
High-precision timeline for Earth’s most severe extinction
Burgess, Seth D.; Bowring, Samuel; Shen, Shu-zhong
2014-01-01
The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms. PMID:24516148
High-precision timeline for Earth's most severe extinction.
Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong
2014-03-04
The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.
Dynamics of origination and extinction in the marine fossil record
Alroy, John
2008-01-01
The discipline-wide effort to database the fossil record at the occurrence level has made it possible to estimate marine invertebrate extinction and origination rates with much greater accuracy. The new data show that two biotic mechanisms have hastened recoveries from mass extinctions and confined diversity to a relatively narrow range over the past 500 million years (Myr). First, a drop in diversity of any size correlates with low extinction rates immediately afterward, so much so that extinction would almost come to a halt if diversity dropped by 90%. Second, very high extinction rates are followed by equally high origination rates. The two relationships predict that the rebound from the current mass extinction will take at least 10 Myr, and perhaps 40 Myr if it rivals the Permo-Triassic catastrophe. Regardless, any large event will result in a dramatic ecological and taxonomic restructuring of the biosphere. The data also confirm that extinction and origination rates both declined through the Phanerozoic and that several extinctions in addition to the Permo-Triassic event were particularly severe. However, the trend may be driven by taxonomic biases and the rates vary in accord with a simple log normal distribution, so there is no sharp distinction between background and mass extinctions. Furthermore, the lack of any significant autocorrelation in the data is inconsistent with macroevolutionary theories of periodicity or self-organized criticality. PMID:18695240
Optical properties of size-resolved particles at a Hong Kong urban site during winter
NASA Astrophysics Data System (ADS)
Gao, Yuan; Lai, Senchao; Lee, Shun-Cheng; Yau, Pui Shan; Huang, Yu; Cheng, Yan; Wang, Tao; Xu, Zheng; Yuan, Chao; Zhang, Yingyi
2015-03-01
Visibility degradation in Hong Kong is related to the city's serious air pollution problems. To investigate the aerosols' optical properties and their relationship with the chemical composition and size distribution of the particles, a monitoring campaign was conducted at an urban site in the early winter period (from October to December, 2010). The particle light scattering coefficient (Bsp) and absorption coefficient (Bap) were measured. Two collocated Micro-Orifice Uniform Deposit Impactor samplers (MOUDI110, MSP, USA) with nominal 50% cut-off aerodynamic diameters of 18, 10, 5.6, 3.2, 1.8, 1, 0.56, 0.32, 0.18, 0.1, and 0.056 μm were used to collect size-resolved particle samples. The average Bsp and Bap were 201.96 ± 105.82 Mm- 1 and 39.91 ± 19.16 Mm- 1, with an average single scattering albedo (ωo) of 0.82 ± 0.07. The theoretical method of light extinction calculation was used to determine the extinction of the size-resolved particulate matters (PM). The reconstructed light scattering coefficient correlated well with the measured scattering value in the Hong Kong urban area. Droplet mode (0.56-1.8 μm) particles contributed most to the particle light extinction (~ 69%). Organic matter, ammonium sulphate and elemental carbon were the key components causing visibility degradation in the droplet (0.56-1.8 μm) and condensation (0.1-0.56 μm) size ranges. Five sources contributing to particle light extinction have been identified using positive matrix factorisation (PMF). Traffic/engine exhausts and secondary aerosols accounted for ~ 36% and ~ 32% of particle light extinction, respectively, followed by sea salt (15%). The remaining sources, soil/fugitive dust and tire dust, contributed by ~ 10% and 7%, respectively, to particle light extinction.
Limits to biodiversity cycles from a unified model of mass-extinction events
NASA Astrophysics Data System (ADS)
Feulner, Georg
2011-04-01
Episodes of species mass extinction dramatically affected the evolution of life on Earth, but their causes remain a source of debate. Even more controversy surrounds the hypothesis of periodicity in the fossil record, with conflicting views still being published in the scientific literature, often even based on the same state-of-the-art datasets. From an empirical point of view, limitations of the currently available data on extinctions and possible causes remain an important issue. From a theoretical point of view, it is likely that a focus on single extinction causes and strong periodic forcings has strongly contributed to this controversy. Here I show that if there is a periodic extinction signal at all, it is much more likely to result from a combination of a comparatively weak periodic cause and various random factors. Tests of this unified model of mass extinctions on the available data show that the model is formally better than a model with random extinction causes only. However, the contribution of the periodic component is small compared to factors such as impacts or volcanic eruptions.
Big cat, small cat: reconstructing body size evolution in living and extinct Felidae.
Cuff, A R; Randau, M; Head, J; Hutchinson, J R; Pierce, S E; Goswami, A
2015-08-01
The evolution of body mass is a fundamental topic in evolutionary biology, because it is closely linked to manifold life history and ecological traits and is readily estimable for many extinct taxa. In this study, we examine patterns of body mass evolution in Felidae (Placentalia, Carnivora) to assess the effects of phylogeny, mode of evolution, and the relationship between body mass and prey choice in this charismatic mammalian clade. Our data set includes 39 extant and 26 extinct taxa, with published body mass data supplemented by estimates based on condylobasal length. These data were run through 'SURFACE' and 'bayou' to test for patterns of body mass evolution and convergence between taxa. Body masses of felids are significantly different among prey choice groupings (small, mixed and large). We find that body mass evolution in cats is strongly influenced by phylogeny, but different patterns emerged depending on inclusion of extinct taxa and assumptions about branch lengths. A single Ornstein-Uhlenbeck optimum best explains the distribution of body masses when first-occurrence data were used for the fossil taxa. However, when mean occurrence dates or last known occurrence dates were used, two selective optima for felid body mass were recovered in most analyses: a small optimum around 5 kg and a large one around 100 kg. Across living and extinct cats, we infer repeated evolutionary convergences towards both of these optima, but, likely due to biased extinction of large taxa, our results shift to supporting a Brownian motion model when only extant taxa are included in analyses. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Impact as a general cause of extinction: A feasibility test
NASA Technical Reports Server (NTRS)
Raup, David M.
1988-01-01
Large body impact has been implicated as the possible cause of several extinction events. This is entirely plausible if one accepts two propositions: (1) that impacts of large comets and asteroids produce environmental effects severe enough to cause significant species extinctions and (2) that the estimates of comet and asteroid flux for the Phanerozoic are approximately correct. A resonable next step is to investigate the possibility that impact could be a significant factor in the broader Phanerozoic extinction record, not limited merely to a few events of mass extinction. Monte Carlo simulation experiments based on existing flux estimates and reasonable predictions of the relationship between bolide diameter and extinction are discussed. The simulation results raise the serious possibility that large body impact may be a more pervasive factor in extinction than has been assumed heretofore. At the very least, the experiments show that the comet and asteroid flux estimates combined with a reasonable kill curve produces a reasonable extinction record, complete with occasional mass extinctions and the irregular, lower intensity extinctions commonly called background extinction.
Soavi, Giancarlo; Tempra, Iacopo; Pantano, Maria F; Cattoni, Andrea; Collin, Stéphane; Biagioni, Paolo; Pugno, Nicola M; Cerullo, Giulio
2016-02-23
Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band. Broadband and high-sensitivity detection of the time-dependent extinction spectra enables one to develop a model that quantitatively describes the periodic variation of the plasmon extinction coefficient starting from the steady-state spectrum with only one additional free parameter. This model allows us to retrieve the time-dependent elongation of the nanorods with an ultrahigh sensitivity and to measure oscillation amplitudes of just a few picometers and plasmon energy shifts on the order of 10(-2) meV.
Huttenlocker, Adam K
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.
Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.
2003-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
Catastrophic Events and Mass Extinctions: Impacts and Beyond
NASA Technical Reports Server (NTRS)
2000-01-01
This volume contains extended abstracts that have been accepted for presentation at the conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, July 9-12, 2000, in Vienna, Austria.
In Situ Measurement of Aerosol Extinction
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)
2001-01-01
Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.
SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III
NASA Technical Reports Server (NTRS)
Thomason, L. W.; Poole, L. R.; Randall, C. E.
2007-01-01
The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.
A unified theory of impact crises and mass extinctions: quantitative tests.
Rampino, M R; Haggerty, B M; Pagano, T C
1997-05-30
Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing, large-scale environmental disasters, predict the impacts of objects > or = 5 km in diameter (> or = 10(7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of > or = 10 km in diameter (> or = 10(8) Mt events). Smaller impacts (approximately 10(6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities, and several well-dated large impact craters, also suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of approximately 100 km diameter, smaller impacts being capable of only relatively weak extinction pulses. Single impact craters less than approximately 60 km in diameter should not be associated with detectable global extinction pulses (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses seem to be associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high iridium, shocked minerals, microtektites), and/or large, dated impact craters. Other less well-studied crisis intervals show elevated iridium, but well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of approximately 30 Myr in mass extinctions and clusters of impacts is the pulselike modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement between paleontologic and astronomical data suggests an important underlying unification of the processes involved.
Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction
Thibodeau, Alyson M.; Ritterbush, Kathleen; Yager, Joyce A.; West, A. Joshua; Ibarra, Yadira; Bottjer, David J.; Berelson, William M.; Bergquist, Bridget A.; Corsetti, Frank A.
2016-01-01
The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic–Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased. PMID:27048776
Flood basalts and mass extinctions
NASA Technical Reports Server (NTRS)
Morgan, W. Jason
1988-01-01
There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.
An Investigation into the Effect of Hydrodynamic Cavitation on Diesel using Optical Extinction
NASA Astrophysics Data System (ADS)
Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.
2015-12-01
A conventional diesel and paraffinic-rich model diesel fuel were subjected to sustained cavitation in a custom-built high-pressure recirculation flow rig. Changes to the spectral extinction coefficient at 405 nm were measured using a simple optical arrangement. The spectral extinction coefficient at 405 nm for the conventional diesel sample was observed to increase to a maximum value and then asymptotically decrease to a steady-state value, while that for the paraffinic-rich model diesel was observed to progressively decrease. It is suggested that this is caused by the sonochemical pyrolysis of mono-aromatics to form primary soot-like carbonaceous particles, which then coagulate to form larger particles, which are then trapped by the filter, leading to a steady-state spectral absorbance.
Breeding Young as a Survival Strategy during Earth’s Greatest Mass Extinction
NASA Astrophysics Data System (ADS)
Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K.; Angielczyk, Kenneth D.; Ruta, Marcello
2016-04-01
Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises.
Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction.
Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K; Angielczyk, Kenneth D; Ruta, Marcello
2016-04-05
Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises.
Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton
2016-12-01
Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.
NASA Astrophysics Data System (ADS)
Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George
2017-04-01
Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the European Union's Seventh Framework Programme (FP7) project BACCHUS under grant agreement no. 603445, and the European Union's Horizon 2020 research and innovation programme ACTRIS-2 under grant agreement No 654109.
NASA Astrophysics Data System (ADS)
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.
1982-09-30
system . Atmospheric aerosol extinction coefficients at DF laser wavelengths obtained from the long - path transmission data show a wide range of variation...described in this report, it is recommended that addi- tional long - path field measurements of laser extinction and high-resolution transmission spectra be...independent long path laser extinction measurement . Column 7 of Table 3 lists the lime of the laser
Late Frasnian mass extinction: Conodont event stratigraphy, global changes, and possible causes
NASA Technical Reports Server (NTRS)
Sandberg, Charles A.; Ziegler, Willi; Dreesen, Roland; Butler, Jamie L.
1988-01-01
Several abrupt changes in conodont biofacies are documented to occur synchronously at six primary control sections across the Frasnian-Famennian boundary in Euramerica. These changes occurred within a time-span of only about 100,000 years near the end of the latest Frasnian linguiformis Zone, which is formally named to replace the Uppermost gigas Zone. The conodont-biofacies changes are interpreted to reflect a eustatic rise followed by an abrupt eustatic fall immediately preceding the late Frasnian mass extinction. Two new conodont species are named and described. Ancyrognathus ubiquitus n.sp. is recorded only just below and above the level of late Frasnian extinction and hence is a global marker for that event. Palmatolepispraetriangularis n.sp. is the long-sought Frasnian ancestor of the formerly cryptogenic species, Pa. triangularis, indicator of the earliest Famennian Lower triangularis Zone. The actual extinction event occurred entirely within the Frasnian and is interpreted to have been of brief duration-from as long as 20,000 years to as short as several days. The eustatic rise-and-fall couplet associated with the late Frasnian mass extinction is similar to eustatic couplets associated with the demise of most Frasnian (F2h) reefs worldwide about 1 m.y. earlier and with a latest Famennian mass extinction about 9.5 m.y. later. All these events may be directly or indirectly attributable to extraterrestrial triggering mechanisms. An impact of a small bolide or a near miss of a larger bolide may have caused the earlier demise of Frasnian reefs. An impact of possibly the same larger bolide in the Southern Hemisphere would explain the late Frasnian mass extinction. Global regression during the Famennian probably resulted from Southern-Hemisphere glaciation triggered by the latest Frasnian impact. Glaciation probably was the indirect cause of the latest Famennian mass extinction.
Extended period of K/T boundary mass extinction in the marine realm
NASA Technical Reports Server (NTRS)
Keller, G.
1988-01-01
The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.
A Cretaceous-Tertiary mass extinction? Were most of Earth's species killed off?
NASA Technical Reports Server (NTRS)
Briggs, J. C.
1991-01-01
For the past decade, the scientific and popular press have carried frequent articles about a catastrophic mass extinction that supposedly destroyed the majority of the earth's species, including the dinosaurs, approximately 65 million years ago. Since 1980, more than 2000 papers and books have dealt with some aspect of a mass extinction at the Cretaceous-Tertiary (K/T) boundary. One authoritative estimate of the severity of the extinctions is that 60-80% of all the living species became extinct at this boundary (Raup 1988). There appears to be a general acceptance of the fact that such a great catastrophe did occur. Most of the argument among scientists now is devoted to the determination of the cause. In this article, I argue that the species changes at the K/T boundary were neither sudden nor catastrophic. They were most likely caused by a regression of sea level that led to a decrease in primary production.
Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.
2016-01-01
Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371
Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer
NASA Astrophysics Data System (ADS)
Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.
2014-12-01
Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.
Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre
2015-07-01
Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Finnegan, Seth; Rasmussen, Christian M Ø; Harper, David A T
2016-04-27
The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician-Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse-icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. © 2016 The Author(s).
Finnegan, Seth; Rasmussen, Christian M. Ø.; Harper, David A. T.
2016-01-01
The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician–Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse–icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. PMID:27122567
Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.S.; Krishnan, S.K.; Faeth, G.M.
1996-11-01
Measurements of the optical properties of soot, emphasizing refractive indices, are reported for visible wavelengths. The experiments considered soot in the fuel-lean (overfire) region of buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and residence time. Flames fueled with acetylene, propylene, ethylene and propane burning in still air provided a range of soot physical and structure properties. Measurements included soot composition, density, structure, gravimetric volume fraction, scattering properties and absorption properties. These data were analyzed to find soot fractal dimensions, refractive indices and dimensionless extinction coefficients, assumingmore » Rayleigh-Debye-Gans scattering for polydisperse mass fractal aggregates (RDG-PFA theory). RDG-PFA theory was successfully evaluated, based on measured scattering patterns. Soot fractal dimensions were independent of both fuel type and wavelength, yielding a mean value of 1.77 with a standard deviation of 0.04. Refractive indices were independent of fuel type within experimental uncertainties and were in reasonably good agreement with earlier measurements for soot in the fuel-lean region of diffusion flames due to Dalzell and Sarofim (1969). Dimensionless extinction coefficients were independent of both fuel type and wavelength, yielding a mean value of 5.1 with a standard deviation of 0.5, which is lower than earlier measurements for reasons that still must be explained.« less
NASA Astrophysics Data System (ADS)
Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew
2016-09-01
Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.
Huttenlocker, Adam K.
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the ‘Lilliput effect,’ a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns. PMID:24498335
Photometry of occultation candidate stars. I - Uranus 1985 and Saturn 1985-1991
NASA Technical Reports Server (NTRS)
French, L. M.; Morales, G.; Dalton, A. S.; Klavetter, J. J.; Conner, S. R.
1985-01-01
Photometric observations of five stars to be occulted by the rings around Uranus are presented. The four stars to be occulted by Saturn or its rings during the period 1985-1991 were also observed. The observations were carried out with a CCD detector attached to the Kitt Peak McGraw-Hill 1.30-m telescope. Landolt standards of widely ranging V-I color indices were used to determine the extinction coefficients, transformation coefficients, and zero points of the stars. Mean extinction coefficients are given for each night of observation. K magnitudes for each star were estimated on the basis of the results of Johnson (1967). The complete photometric data set is given in a series of tables.
Interaction between photons and leaf canopies
NASA Technical Reports Server (NTRS)
Knyazikhin, Yuri V.; Marshak, Alexander L.; Myneni, Ranga B.
1991-01-01
The physics of neutral particle interaction for photons traveling in media consisting of finite-dimensional scattering centers that cross-shade mutually is investigated. A leaf canopy is a typical example of such media. The leaf canopy is idealized as a binary medium consisting of randomly distributed gaps (voids) and regions with phytoelements (turbid phytomedium). In this approach, the leaf canopy is represented by a combination of all possible open oriented spheres. The mathematical approach for characterizing the structure of the host medium is considered. The extinction coefficient at any phase-space location in a leaf canopy is the product of the extinction coefficient in the turbid phytomedium and the probability of absence gaps at that location. Using a similar approach, an expression for the differential scattering coefficient is derived.
Evolution and extinction in the marine realm: some constraints imposed by phytoplankton
NASA Technical Reports Server (NTRS)
Knoll, A. H.
1989-01-01
The organic and mineralized remains of planktonic algae provide a rich record of microplankton evolution extending over nearly half of the preserved geological record. In general, Phanerozoic patterns of phytoplankton radiation and extinction parallel those documented for skeletonized marine invertebrates, both augmenting and constraining thought about evolution in the oceans. Rapidly increasing knowledge of Proterozoic plankton is making possible the recognition of additional episodes of diversification and extinction that antedate the Ediacaran radiation of macroscopic animals. In contrast to earlier phytoplankton history, the late Mesozoic and Cainozoic record is documented in sufficient detail to constrain theories of mass extinction in more than a general way. Broad patterns of diversity change in planktonic algae show similarities across the Cretaceous-Tertiary and Eocene-Oligocene boundaries, but detailed comparisons of origination and extinction rates in calcareous nannoplankton, as well as other algae and skeletonized protozoans, suggest that the two episodes were quite distinct. Common causation appears unlikely, casting doubt on monolithic theories of mass extinction, whether periodic or not. Studies of mass extinction highlight a broader class of insights that paleontologists can contribute to evolutionary biology: the evaluation of evolutionary change in the context of evolving Earth-surface environments.
Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica.
Witts, James D; Whittle, Rowan J; Wignall, Paul B; Crame, J Alistair; Francis, Jane E; Newton, Robert J; Bowman, Vanessa C
2016-05-26
Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.
Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica
NASA Astrophysics Data System (ADS)
Witts, James D.; Whittle, Rowan J.; Wignall, Paul B.; Crame, J. Alistair; Francis, Jane E.; Newton, Robert J.; Bowman, Vanessa C.
2016-05-01
Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.
Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica
Witts, James D.; Whittle, Rowan J.; Wignall, Paul B.; Crame, J. Alistair; Francis, Jane E.; Newton, Robert J.; Bowman, Vanessa C.
2016-01-01
Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian. PMID:27226414
Are marine and nonmarine extinctions correlated?
NASA Astrophysics Data System (ADS)
Rampino, Michael R.
Recent papers in Eos have debated the possible relationships between marine mass extinctions, comet showers, and volcanism [Alvarez, 1986; Officer and Grieve, 1986], and ail three might be linked [Rampino, 1987]. Moreover, as Officer and Grieve [ 1986] point out, various other causes have been suggested for given extinction events, including changes in climate, ocean circulation, and sea level fluctuations, possibly related to plate tectonics and continental positions. Also under debate is the issue of whether mass extinctions were gradual, stepped, or geologically sudden events (see, for example, Hut et al. [1987]). A missing ingredient thus far in these debates has been the record of faunal diversity of nonmarine animals. Does this show any agreement with the marine extinction record?
Progress to extinction: increased specialisation causes the demise of animal clades.
Raia, P; Carotenuto, F; Mondanaro, A; Castiglione, S; Passaro, F; Saggese, F; Melchionna, M; Serio, C; Alessio, L; Silvestro, D; Fortelius, M
2016-08-10
Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.
Progress to extinction: increased specialisation causes the demise of animal clades
NASA Astrophysics Data System (ADS)
Raia, P.; Carotenuto, F.; Mondanaro, A.; Castiglione, S.; Passaro, F.; Saggese, F.; Melchionna, M.; Serio, C.; Alessio, L.; Silvestro, D.; Fortelius, M.
2016-08-01
Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.
Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm
NASA Astrophysics Data System (ADS)
Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng
2018-06-01
High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
HP2 survey. III. The California Molecular Cloud: A sleeping giant revisited
NASA Astrophysics Data System (ADS)
Lada, Charles J.; Lewis, John A.; Lombardi, Marco; Alves, João
2017-10-01
We present new high resolution and dynamic range dust column density and temperature maps of the California Molecular Cloud derived from a combination of Planck and Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. We used these data to determine the ratio of the 2.2 μm extinction coefficient to the 850 μm opacity and found the value to be close to that found in similar studies of the Orion B and Perseus clouds but higher than that characterizing the Orion A cloud, indicating that variations in the fundamental optical properties of dust may exist between local clouds. We show that over a wide range of extinction, the column density probability distribution function (pdf) of the cloud can be well described by a simple power law (I.e., PDFN ∝ AK -n) with an index (n = 4.0 ± 0.1) that represents a steeper decline with AK than found (n ≈ 3) in similar studies of the Orion and Perseus clouds. Using only the protostellar population of the cloud and our extinction maps we investigate the Schmidt relation, that is, the relation between the protostellar surface density, Σ∗, and extinction, AK, within the cloud. We show that Σ∗ is directly proportional to the ratio of the protostellar and cloud pdfs, I.e., PDF∗(AK)/PDFN(AK). We use the cumulative distribution of protostars to infer the functional forms for both Σ∗ and PDF∗. We find that Σ∗ is best described by two power-law functions. At extinctions AK ≲ 2.5 mag, Σ∗ ∝ AK β with β = 3.3 while at higher extinctions β = 2.5, both values steeper than those (≈2) found in other local giant molecular clouds (GMCs). We find that PDF∗ is a declining function of extinction also best described by two power-laws whose behavior mirrors that of Σ∗. Our observations suggest that variations both in the slope of the Schmidt relation and in the sizes of the protostellar populations between GMCs are largely driven by variations in the slope, n, of PDFN(AK). This confirms earlier studies suggesting that cloud structure plays a major role in setting the global star formation rates in GMCs HP2 (Herschel-Planck-2MASS) survey is a continuation of the series originally entitled "Herschel-Planck dust opacity and column density maps" (Lombardi et al. 2014, Zari et al. 2016).The reduced Herschel and Planck map and the column density and temperature maps are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A100
Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian
2015-01-09
The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions. Copyright © 2015, American Association for the Advancement of Science.
Structure and dating errors in the geologic time scale and periodicity in mass extinctions
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
1989-01-01
Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cheng, Z.; Lou, S.
2017-12-01
Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.
Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, P.A.; Kleinman, L.; Eichinger, W. E.
On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraftmore » made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 {mu}g/m{sup 3} and the base levels outside are of the order of 100 {mu}g/m{sup 3}. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 {mu}g/m{sup 3}. The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented.« less
Impact Crises, Mass Extinctions, and Galactic Dynamics: A Unified Theory
NASA Technical Reports Server (NTRS)
Rampino, M.R.
1997-01-01
A general hypothesis linking mass extinctions of life with impacts of large asteroids and comets is based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth, derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters predict that impacts of objects (sup 3)5 km in diameter ((sup 3)10(exp 7) Mt TNT equivalent) could be sufficient to explain the record of about 25 extinction pulses in the last 540 m.y., with the five recorded major mass extinctions related to the impacts of the largest objects of (sup 3)10 km in diameter ( (sup 3)10(exp 8) Mt events). Smaller impacts (about 10(exp 6)-10(exp 7) Mt), with significant regional and even global environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities and several well-dated large impact craters suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of -100 km diameter, with smaller impacts capable of only relatively weak extinction pulses. Single impact craters < about 60 km in diameter should not be associated with global extinction pulses detectable in the Sepkoski database (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses are associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high Ir, shocked minerals, microtektites), and/or large, dated impact craters. Other less-well-studied crisis intervals show elevated Ir, still well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or the sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of about 30 m.y. in mass extinctions and clusters of impacts is the modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement among paleontological, geological, and astronomical data suggests an important underlying unification of the processes involved.
Crampton, James S; Cooper, Roger A; Sadler, Peter M; Foote, Michael
2016-02-09
Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486-418 Ma). In conditions of "background" extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species ("background extinction mode"). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age ("high-extinction mode"). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed ("mass extinction mode"). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton.
Crampton, James S.; Cooper, Roger A.; Sadler, Peter M.; Foote, Michael
2016-01-01
Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486−418 Ma). In conditions of “background” extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species (“background extinction mode”). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age (“high-extinction mode”). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed (“mass extinction mode”). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton. PMID:26811471
Aerosol Optical Properties at the Ground Sites during the 2010 CARES Field Campaign
NASA Astrophysics Data System (ADS)
Atkinson, D. B.; Radney, J. G.; Harworth, J. W.
2010-12-01
Preliminary results from the ground sites at the 2010 CARES field campaign (T0 near Sacramento, CA and T1 near Cool, CA) will be presented. A number of aerosol optical properties were measured at high time resolution for the four week study period using custom instruments. The aerosol extinction coefficient was measured at T0 using a cavity ring-down transmissometer (CRDT) at two wavelengths (532 and 1064 nm) and the aerosol scattering coefficient was measured at 532 nm using a Radiance Research M903 nephelometer. At T1, a new CRDT instrument was deployed that measured the extinction coefficient at three wavelengths (355, 532, and 1064 nm) for sub-10 μm (nominal) and sub-2.5 μm aerosols at ambient, elevated, and reduced relative humidity. A new type of custom nephelometer that measures the aerosol scattering coefficient at 532 nm using an array detector was also deployed at T1.
The fossil record of evolution: Analysis of extinction
NASA Technical Reports Server (NTRS)
Raup, D. M.
1986-01-01
There is increasing evidence that events in space have had direct effects on Earth history and on the history of life on Earth. Nowhere is this more evident than in mass extinction. The biosphere has undergone repeated devastation caused by relatively short-lived environmental stress, with species kill rates up to 80 and 95%. For five of the mass extinctions, geochemical or other evidence was reported suggesting large body impact as the cause of the environmental stress producing the extinctions. It was argued on statistical ground that the major extinction events are uniformly periodic in geological time. If it is true that large body impact is a principal cause of mass extinctions and if the periodicity is real, than a cosmic driving mechanism is inescapable. Paleontological data sets were developed which detail the ranges in geological time of about 4,000 families and 25,000 genera of fossil marine organisms. Analyses to date have concentrated on the most recent 250 million years. Associated with these studies are analyses of other aspects of Earth history which may have signatures indicative of extraterrestrial effects.
NASA Astrophysics Data System (ADS)
Lam, G.; Wang, I. M.; Heim, N.; Payne, J.
2016-12-01
Extinction is a fundamental phenomenon that has been occurring for millions of years and is critical to the development of new organisms and niches. However, the current extinction rate is now one hundred to a thousand times the past background extinction rate due to human influences and rapidly changing environments. Research on geographic range and life history has been performed in extinction analyses, but rarely any on feeding type and trophic level. We compiled data from the IUCN Red List Database, Paleobiology database and diets from Pauly et al. (1998) to explore the possible correlation between various aspects of ecology and extinction threat. By doing so, we can better understand where to focus our conservation efforts, and what type of approach will reap the best results. We discovered that terrestrial carnivores are slightly less at risk than herbivores and omnivores, and that the feeding and tiering of marine mammals have minimal effect on their IUCN threat level. Body mass is the most influential factor on risk level, with larger adult body masses being most at risk.
Bacterial Luciferase: Determination of the Structure by X-Ray Diffraction
1994-05-20
absorbance at 280 nm, using an extinction coefficient mation of the active enzyme should show a concentration- of 0.94 (mg/ml-s *cm-’ (Gunsalus- Miguel et a...absorbance at 280 rm, using an extinction coefficient into the presumed assembly-incompetent form (Ziegler et aL, of 0.94 (mg/ml)- 1.cm-’ (Gunualus- Miguel et...Gunsalus- Miguel et aL (1972): E for a - 1.23 (mg/ml)-’.cm-’ and for 0 = 0.72 (mg/ml)’. cm . Refoldi’i of Luciferase and of Individual Subunits from 5 M
NASA Technical Reports Server (NTRS)
Jameson, A. R.
1990-01-01
The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
Impact-driven ocean acidification as a mechanism of the Cretaceous-Palaeogene mass extinction
NASA Astrophysics Data System (ADS)
Ohno, S.; Kadono, T.; Kurosawa, K.; Hamura, T.; Sakaiya, T.; Shigemori, K.; Hironaka, Y.; Sano, T.; Watari, T.; Otani, K.; Matsui, T.; Sugita, S.
2014-12-01
The Cretaceous-Paleogene (K-Pg) mass extinction event at 66 Ma triggered by a meteorite impact is one of the most drastic events in the history of life on the Earth. Many hypotheses have been proposed as killing mechanisms induced by the impact, including global darkness due to high concentrations of atmospheric silicate dust particles, global wildfires, greenhouse warming due to CO2 release, and global acid rain. However, the actual mechanism of extinction remains highly controversial. One of the most important clues for understanding the extinction mechanism is the marine plankton record, which indicates that plankton foraminifera, living in the near-surface ocean, suffered very severe extinction in contrast to the high survival ratio of benthic foraminifera. No proposed extinction mechanism can account for this globally observed marine extinction pattern. Here, we show that SO3-rich impact vapor was released in the K-Pg impact and resulted in the occurrence of global acid rain and sudden severe ocean acidification at the end of the Cretaceous, based on the new results of impact experiments at velocities much higher than previous works (> 10 km/s) and theoretical calculations on aerosol coagulation processes. Sudden severe ocean acidification can account for many of the features of various geologic records at the K?Pg boundary, including severe extinction of plankton foraminifera. This extinction mechanism requires impact degassing of SO3-rich vapor, which is not necessarily found at impact sites other than Chicxulub, suggesting that the degree of mass extinction was controlled greatly by target lithology.
NASA Astrophysics Data System (ADS)
Rampino, M. R.
2017-12-01
Correlations among impacts, flood-basalt episodes, extinctions and ocean anoxic events have been proposed. A closer look at the data, shows 13 documented extinction events over the last 260 Myr, 12 of which coincide, within errors, with the ages of flood-basalt eruptions (8 events) or large impacts (6 events) (Figure 1). The null hypothesis that this could occur by chance can be rejected with >99.99% confidence. Large impacts (craters >70 km in diameter) coincide with extinction events at 36 (two impacts), 66, 145, 168 (?) and 215 Myr ago. The ages of flood basalts coincide with extinctions at 66, 94, 118, 133 (?), 183, 201, 252, and 259 Myr ago (Figure 1). Only the age of the K-Pg boundary at 66 Myr is known to correlate with both a large impact and a flood-basalt province, which may help explain the severity of that mass extinction. The age of the North Atlantic Volcanic Province Basalts (56 Myr ago), while not marked by an extinction event, coincides with the PETM climatic episode. Furthermore, at least 7 periods with evidence of anoxia in the oceans in the last 260 Myr coincide with the ages of flood-basalt eruptions (with >99.99% confidence), and are also coeval with extinction events, suggesting a causal connection (Figure 1). These statistical relationships argue that most mass extinction events are related to environmental catastrophes produced by large-volume flood-basalt eruptions and large asteroid or comet impacts.
New theories about ancient extinctions
Spall, H.
1986-01-01
But all this may be changing. Mass extinctions have been very much in the news in the last few years, triggered in large part by the proposal that the extinction of the dinosaurs and marine animals was caused by a catastrophic collision between the Earth and an extra-terrestrial body (bolide). Recently an equally contentious suggestion has been made that mass extinctions have swept the Earth every 26 to 31 million years for at least the last 250 million years-caused by encounters with some kind of extra-terrestrial object such as one of the asteroids or the comets.
Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.
2010-01-01
A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590
NASA Astrophysics Data System (ADS)
Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin
2017-02-01
Microbial communities are known to expand as a result of environmental deterioration during mass extinctions, but differences in microbial community changes between extinction events and their underlying causes have received little study to date. Here, we present a systematic investigation of microbial lipid biomarkers spanning ∼20 Myr (Middle Permian to Early Triassic) at Shangsi, South China, to contrast microbial changes associated with the Guadalupian-Lopingian boundary (GLB) and Permian-Triassic boundary (PTB) mass extinctions. High-resolution analysis of the PTB crisis interval reveals a distinct succession of microbial communities based on secular variation in moretanes, 2-methylhopanes, aryl isoprenoids, steranes, n-alkyl cyclohexanes, and other biomarkers. The first episode of the PTB mass extinction (ME1) was associated with increases in red algae and nitrogen-fixing bacteria along with evidence for enhanced wildfires and elevated soil erosion, whereas the second episode was associated with expansions of green sulfur bacteria, nitrogen-fixing bacteria, and acritarchs coinciding with climatic hyperwarming, ocean stratification, and seawater acidification. This pattern of microbial community change suggests that marine environmental deterioration was greater during the second extinction episode (ME2). The GLB shows more limited changes in microbial community composition and more limited environmental deterioration than the PTB, consistent with differences in species-level extinction rates (∼71% vs. 90%, respectively). Microbial biomarker records have the potential to refine our understanding of the nature of these crises and to provide insights concerning possible outcomes of present-day anthropogenic stresses on Earth's ecosystems.
Galvanic Synthesis of Hollow Gold Nanoshells
2015-02-01
HAuNS of select diameter and shell thickness were synthesized and tunability of the extinction coefficient was demonstrated through control of the... extinction peak HAuNS ......................................................................................................... 4 Fig. 2 Histogram of...was supported in part by an appointment to the Research Participation Program at the US Army Research Laboratory (ARL) administered by the Oak Ridge
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
NASA Astrophysics Data System (ADS)
Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration
2015-12-01
Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005
Causes of the great mass extinction of marine organisms in the Late Devonian
NASA Astrophysics Data System (ADS)
Barash, M. S.
2016-11-01
The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70-82%. Major crises occurred at the Frasnian-Famennian and Devonian-Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.
De Vleeschouwer, David; Da Silva, Anne-Christine; Sinnesael, Matthias; Chen, Daizhao; Day, James E; Whalen, Michael T; Guo, Zenghui; Claeys, Philippe
2017-12-22
The Late Devonian envelops one of Earth's big five mass extinction events at the Frasnian-Famennian boundary (374 Ma). Environmental change across the extinction severely affected Devonian reef-builders, besides many other forms of marine life. Yet, cause-and-effect chains leading to the extinction remain poorly constrained as Late Devonian stratigraphy is poorly resolved, compared to younger cataclysmic intervals. In this study we present a global orbitally calibrated chronology across this momentous interval, applying cyclostratigraphic techniques. Our timescale stipulates that 600 kyr separate the lower and upper Kellwasser positive δ 13 C excursions. The latter excursion is paced by obliquity and is therein similar to Mesozoic intervals of environmental upheaval, like the Cretaceous Ocean-Anoxic-Event-2 (OAE-2). This obliquity signature implies coincidence with a minimum of the 2.4 Myr eccentricity cycle, during which obliquity prevails over precession, and highlights the decisive role of astronomically forced "Milankovitch" climate change in timing and pacing the Late Devonian mass extinction.
Earth System Stability Through Geologic Time
NASA Astrophysics Data System (ADS)
Rothman, D.; Bowring, S. A.
2015-12-01
Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.
Mass Extinctions and Supernova Explosions
NASA Astrophysics Data System (ADS)
Korschinek, Gunther
A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.
Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs
Toljagić, Olja; Butler, Richard J.
2013-01-01
Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic–Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems. PMID:23536443
NASA Astrophysics Data System (ADS)
Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.
2015-12-01
Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.
NASA Astrophysics Data System (ADS)
Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng
2018-03-01
In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.
NASA Technical Reports Server (NTRS)
Probine, M. C.; Suggate, R. P.; Mcgreevy, M. G.; Stirling, I. F. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Results of the atmospheric extinction measurements show clearly the greater opacity of the atmosphere in MSS band 4 which is due to Rayleigh scattering. Atmospheric water vapor absorbs strongly in a wide region between 900 nm and 1000 nm, and this results in a consistently higher extinction coefficient than would otherwise be expected in MSS band 7. The short term fluctuations tend to be greater in band 7 than in the other bands, and this effect is probably due to variations of water vapor concentration in the instrument line of sight. These high extinction coefficients and short term fluctuations in band 7 were observed at Menindee which is in a semi-desert region in western New South Wales.
The Extinction Toward the Galactic Bulge from RR Lyrae Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunder, A; Popowski, P; Cook, K
2007-11-07
The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3
Did a Gamma-Ray Burst Initiate the Late Ordovician Mass Extinction?
NASA Technical Reports Server (NTRS)
Melott, A. L.; Lieberman, B. S.; Laird, C. M.; Martin, L. D.; Medvedov, M. V.; Thomas, B. C.; Cannizzo, J. K.; Gehrels, N.; Jackman, C. H.
2004-01-01
Gamma-ray bursts (hereafter GRB) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur on average several times per billion years. At leastfive times in the history of lfe, the Earth experienced mass extinctions that eliminated a large percentage of the biota. Many possible causes have been documented, and GRB may also have contributed. The late Ordovician mass extinction approximately 440 million years ago may be at least partly the result of a GRB. Due to severe depletion of the ozone layer, intense solar ultraviolet radiation is expected to result from a nearby GRB, and some of the patterns of extinction and survivorship at this time may be attributable to elevated levels of UV radiation reaching the Earth. In addition a GRB could trigger the global cooling which occurs at the end of the Ordovician period that follows an interval of relatively warm climate. Intense rapid cooling and glaciation at that time, previously identijied as the probable cause of this mass extinction, may have resultedfiom a GRB.
Expected time-invariant effects of biological traits on mammal species duration.
Smits, Peter D
2015-10-20
Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species' vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss.
Severe environmental effects of Chicxulub impact imply key role in end-Cretaceous mass extinction
NASA Astrophysics Data System (ADS)
Brugger, Julia; Feulner, Georg; Petri, Stefan
2017-04-01
66 million years ago, during the most recent of the five severe mass extinctions in Earth's history, non-avian dinosaurs and many other organisms became extinct. The cause of this end-Cretaceous mass extinction is seen in either flood-basalt eruptions or an asteroid impact. Modeling the climatic changes after the Chicxulub asteroid impact allow to assess its contribution to the extinction event and to analyze the short-term and long-term response of the climate and the biosphere to the impact. Existing studies either investigated the effect of dust, which is now believed to play a minor role, or used one-dimensional, non-coupled models. In contrast, we use a coupled climate model to explore the longer lasting cooling due to sulfate aerosols. Based on data from geophysical impact modeling, we set up simulations with different stratospheric residence times for sulfate aerosols. Depending on this residence time, global surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. Vigorous ocean mixing, caused by the fast cooling of the surface ocean, might have perturbed marine ecosystems by the upwelling of nutrients. The dramatic climatic changes seen in our simulations imply severe environmental effects and therefore a significant contribution of the impact in the end-Cretaceous mass extinction.
Calcium isotope constraints on the end-Permian mass extinction
Payne, Jonathan L.; Turchyn, Alexandra V.; Paytan, Adina; DePaolo, Donald J.; Lehrmann, Daniel J.; Yu, Meiyi; Wei, Jiayong
2010-01-01
The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction. PMID:20421502
The end-Permian mass extinction: A complex, multicausal extinction
NASA Technical Reports Server (NTRS)
Erwin, D. H.
1994-01-01
The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.
NASA Astrophysics Data System (ADS)
Huang, C.; Hinnov, L. A.; Tong, J.; Chen, Z.
2011-12-01
The mass extinctions near the Permian-Triassic boundary (PTB) resulted in the greatest dying of life on Earth. The cause of this catastrophe remains enigmatic. High-resolution chronology is crucial to understanding the recorded pattern of biotic evolution and possible causes for the extinctions. Magnetic susceptibility (MS) data from Shangsi, South China shows evidence for astronomical forcing through the PTB interval, with strong 405-kyr cycling. This allows development of an astrochronology for the PTB interval based on the 405-kyr orbital eccentricity metronome that has been proposed for the Mesozoic timescale. Radioisotope dating combined with the 405-kyr tuned MS series from Shangsi shows that the 405-kyr-cycle predominates throughout the PTB interval. In the Permian segment, ~100-kyr cyclicity dominates, and the 100-kyr-scale MS maxima correlate with high-amplitude precession-scale MS variations. Minima in the ~1.5-Myr, 405-kyr and ~100-kyr cycles converge at 252.6 Ma, approximately 200 kyr before the onset of the main mass extinction near the PTB. In the Triassic aftermath, the recorded astronomical signal is different, with predominant 405-kyr cycles and loss of 100 kyr cyclicity, and appearance of ~33 kyr (obliquity scale) cyclicity; 100-kyr cyclicity strengthens again 2 Myr later. This pattern indicates a change in the response of the depositional environment (or magnetic susceptibility) to astronomical forcing before and after the mass extinction interval. The astrochronology interpolates the timescale between the radioisotopically determined absolute dates; this facilitates estimation of ages for specific events in the PTB crisis, including magnetic reversals, biozone boundaries, and the mass extinctions. An estimated ~700 kyr duration for the Mass Extinction Interval (MEI) at Shangsi based on the 405-kyr tuning is supported by eccentricity-tuned estimates of three other sections in China (Meishan, Huangzhishan, and Heping), and two Alpine sections (Gartnerkofel, Austria and Bulla, Italy) from the eastern and western margins of the Palaeo-Tethys Ocean during PTB time. This suggests that the PTB mass extinctions were not the result of a single catastrophic event. Siberian trap volcanism was largely synchronous with the MEI and appears to be the most likely cause of the mass extinctions; astronomically paced climate change may also have played a role.
Is Global Anoxia an Alternative Cause for the Hirnantian Mass Extinction?
NASA Astrophysics Data System (ADS)
De Weirdt, Julie; Vandenbroucke, Thijs; Emsbo, Poul; McLaughlin, Patrick; Delabroye, Aurélien; Munnecke, Axel; Desrochers, André
2017-04-01
Cooling and glacial episodes have long been considered the main driver of Late Ordovician-Silurian (mass) extinction events that coincide with δ13Ccarb excursions. However, emerging evidence for protracted cooling during most of the Ordovician and the misalignment between major regressions and faunal turnovers in the Upper Ordovician, suggests a more complex relation between glaciations and extinctions. Emsbo et al. (2010, GSA Abstracts with Programs) demonstrated dramatic enrichments in redox sensitive metals during the early Wenlock Ireviken extinction event and suggested ocean anoxia as an alternative kill-mechanism. Vandenbroucke et al. (2015, Nature Communications), built on this idea and recorded a similar increase of redox-sensitive metals at the onset of the mid-Pridoli extinction event, coinciding with peak abundances of malformed (teratological) fossil microplankton (acritarchs and chitinozoans). By analogy with metal-induced malformations in modern marine microplankton, teratology might serve as an independent proxy for monitoring changes in the metal concentration of the Palaeozoic ocean. These data from the Ireviken and Pridoli events are the foundation for the hypothesis that many, if not all, of these Late Ordovician-Silurian extinctions are caused by large-scale 'oceanic anoxic events'. Here, we are testing this hypothesis for the most devastating extinction event in this series, the Hirnantian mass extinction. Bulk rock samples spanning the Hirnantian strata of Anticosti Island were geochemically analysed. Our choice of sections is guided by the presence of teratological acritarchs (Delabroye et al., 2012, Rev. Pal. Pal.) that overlap the base of the extinction horizon. Revealing similar results as in our the previous studies, the new XRF data show distinct peaks in redox sensitive metals, supporting ocean anoxia and metal pollution as an important factor in the Hirnantian extinction, if not its fundamental cause.
Organic-Chemical Clues to the Theory of Impacts as a Cause of Mass Extinctions
NASA Astrophysics Data System (ADS)
Sack, N. J.
1988-11-01
The reasons for the mass extinctions, which occur from time to time in Earth's history-as, e.g., the dinosaur extinction at the Cretaceous/Tertiary boundary 65 myr ago - are still not satisfactorily cleared up. A possible reason might be the impact of one or several comets of several kilometers in diameter. In this paper the astrophysical background of this hypothesis and organic-chemical processes during an impact will be discussed. Quantitative estimations are given, which show that the amount of organic substances brought to the Earth may be of the same order of magnitude as the normal biological production of organic material. Investigations are proposed to examine the organic-chemical composition of profiles of the Cretaceous/Tertiary boundary and other boundaries, at which mass extinction had occurred, in order to find anomalies as consequences of impacts.
Climate modelling of mass-extinction events: a review
NASA Astrophysics Data System (ADS)
Feulner, Georg
2009-07-01
Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.
Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies using LEGUS
NASA Astrophysics Data System (ADS)
Kahre, Lauren; Walterbos, Rene; Kim, Hwihyun; Thilker, David; Lee, Janice; LEGUS Team
2018-01-01
Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping, and dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Work by Kahre et al. (in prep) uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012) to generate extinction maps for these more distant galaxies.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We generate extinction maps using photometry of massive stars from the Hubble Space Telescope for several of the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, expanding on our previous study of metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.
Mass extinctions in the deep sea
NASA Technical Reports Server (NTRS)
Thomas, E.
1988-01-01
The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.
Temporal Patterns in Diversity Change on Earth Over Time
NASA Astrophysics Data System (ADS)
Bambach, Richard
2007-05-01
Multi-celled animals and plants did not originate until about 600 million years ago. Since then the diversity of life has expanded greatly, but this has not been a monotonic increase. Diversity, as taxonomic variety or richness, is produced by the interaction of origination and extinction. Origination and extinction are almost equally balanced; it has taken 600 million years to accumulate 10 to 30 million living species. With most species life spans in the range of one to fifteen million years most species that have ever originated are extinct and global diversity has “turned over” many times. Paleontologists recognize about 18 short-term events of elevated extinction intensity and diversity loss of sufficient magnitude to warrant the term “mass extinction.” Interestingly, in only one instance, the end-Cretaceous extinction, is there a consensus for the triggering event, but the kill mechanism or mechanisms that caused the widespread death of lineages is not established. We know less about the cause-effect relationships for other events. Recently a 62 million-year periodicity in the fluctuation of diversity has been documented, expressed primarily in the variation of diversity of marine genera that survived 45 million years or less. Analysis of the pattern of diversity change at the finest temporal scale possible suggests that the short-term mass extinctions are superimposed on this regular pattern of diversity fluctuations, rather than causal of them. However, most mass extinctions (14 of 18) occurred during the intervals of general diversity loss. It remains to be seen how origination and extinction interact to produce the periodic fluctuation in diversity.
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities
Muscente, A. D.; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B.; Fox, Peter; Hazen, Robert M.; Knoll, Andrew H.
2018-01-01
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski’s Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian–Triassic, Cretaceous–Paleogene, Devonian, and Triassic–Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. PMID:29686079
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
Muscente, A D; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B; Fox, Peter; Hazen, Robert M; Knoll, Andrew H
2018-05-15
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski's Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian-Triassic, Cretaceous-Paleogene, Devonian, and Triassic-Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. Copyright © 2018 the Author(s). Published by PNAS.
Star counts and visual extinctions in dark nebulae
NASA Technical Reports Server (NTRS)
Dickman, R. L.
1978-01-01
Application of star count techniques to the determination of visual extinctions in compact, fairly high-extinction dark nebulae is discussed. Particular attention is devoted to the determination of visual extinctions for a cloud having a possibly anomalous ratio of total to selective extinction. The techniques discussed are illustrated in application at two colors to four well-known compact dust clouds or Bok globules: Barnard 92, B 133, B 134, and B 335. Minimum masses and lower limits to the central extinction of these objects are presented.
A stochastic model for the probability of malaria extinction by mass drug administration.
Pemberton-Ross, Peter; Chitnis, Nakul; Pothin, Emilie; Smith, Thomas A
2017-09-18
Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, R c . A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically. The results indicate that mass drug administration (Firstly, R c must be sustained at R c < 1.2 to avoid the rapid re-establishment of infections in the population. Secondly, the MDA must produce effective cure rates of >95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level. There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability.
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
Wu, Chieh-Lin; Wang, Chia-Chen; Lai, Yin-Hung; Lee, Hsun; Lin, Jia-Der; Lee, Yuan Tseh; Wang, Yi-Sheng
2013-04-16
Diamond nanoparticles (DNPs) were incorporated into matrix-assisted laser desorption/ionization (MALDI) samples to enhance the sensitivity of the mass spectrometer to carbohydrates. The DNPs optimize the MALDI sample morphology and thermalize the samples for thermally labile compounds because they have a high thermal conductivity, a low extinction coefficient in UV-vis spectral range, and stable chemical properties. The best enhancement effect was achieved when matrix, DNP, and carbohydrate solutions were deposited and vacuum-dried consecutively to form a trilayer sample morphology. It allows the direct identification of underivatized carbohydrates mixed with equal amount of proteins because no increase in the ion abundance of proteins was achieved. For dextran with an average molecular weight of 1500, the trilayer method typically improves the sensitivity by 79- and 7-fold in comparison to the conventional dried-droplet and thin-layer methods, respectively.
Rim Fire and its Radiative impact Simulated in CESM/CARMA
NASA Astrophysics Data System (ADS)
Yu, P.; Toon, O. B.; Bardeen, C.; Bucholtz, A.; Rosenlof, K. H.; Saide, P. E.; da Silva, A. M., Jr.; Ziemba, L. D.; Jimenez, J. L.; Schwarz, J. P.; Wagner, N. L.; Lack, D. A.; Mills, M. J.; Reid, J. S.
2015-12-01
The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by CESM1/CARMA. Modeled aerosol mass, number, effective radius, and extinction coefficient are within variability of data obtained from multiple airborne measurements and satellite measurements. Simulations suggest Rim Fire smoke may block 4-6% of sunlight reaching the surface, with a cooling efficiency around 120-150 W m-2 per unit aerosol optical depth. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution, though that resolution is still not sufficient to resolve the smoke peak near the source region.
Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; ...
2013-01-01
The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sourcesmore » are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less
Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia
2009-08-01
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.
NASA Technical Reports Server (NTRS)
Portscht, R.
1977-01-01
Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.
Mutation load and the extinction of large populations
NASA Astrophysics Data System (ADS)
Bernardes, A. T.
1996-02-01
In the time evolution of finite populations, the accumulation of harmful mutations in further generations might lead to a temporal decay in the mean fitness of the whole population that, after sufficient time, would reduce population size and so lead to extinction. This joint action of mutation load and population reduction is called Mutational Meltdown and is usually considered only to occur in small asexual or very small sexual populations. However, the problem of extinction cannot be discussed in a proper way if one previously assumes the existence of an equilibrium state, as initially discussed in this paper. By performing simulations in a genetically inspired model for time-changing populations, we show that mutational meltdown also occurs in large asexual populations and that the mean time to extinction is a nonmonotonic function of the selection coefficient. The stochasticity of the extinction process is also discussed. The extinction of small sexual N ∼ 700 populations is shown and our results confirm the assumption that the existence of recombination might be a powerful mechanism to avoid extinction.
Backscatter and extinction measurements in cloud and drizzle at CO2 laser wavelengths
NASA Technical Reports Server (NTRS)
Jennings, S. G.
1986-01-01
The backscatter and extinction of laboratory generated cloud and drizzle sized water drops were measured at carbon dioxide laser wavelengths (predominately at lambda = 10.591 micrometers). Two distinctly different drop size regimes were studied: one which covers the range normally encompassed by natural cloud droplets and the other representative of mist or drizzle sized drops. The derivation and verification of the relation between extinction and backscatter at carbon dioxide laser wavelengths should allow the determination of large cloud drop and drizzle extinction coefficient solely from a lidar return signal without requiring knowledge of the drop size distribution. This result will also apply to precipitation sized drops so long as they are spherical.
A Statistical Test of Correlations and Periodicities in the Geological Records
NASA Astrophysics Data System (ADS)
Yabushita, S.
1997-09-01
Matsumoto & Kubotani argued that there is a positive and statistically significant correlation between cratering and mass extinction. This argument is critically examined by adopting a method of Ertel used by Matsumoto & Kubotani but by applying it more directly to the extinction and cratering records. It is shown that on the null-hypothesis of random distribution of crater ages, the observed correlation has a probability of occurrence of 13%. However, when large craters are excluded whose ages agree with the times of peaks of extinction rate of marine fauna, one obtains a negative correlation. This result strongly indicates that mass extinction are not due to accumulation of impacts but due to isolated gigantic impacts.
1989-06-01
Force systems require a resolved information on the optical thorough understanding of the propaga- extinction coefficient. Measurements of tion path , the...Depolarization as Function of Snow Density. Measurement System ). (It correlated well with the ( Multi -scatter scale length information is usable to extinction ...data on the effect of optically thin cirrus clouds on long - path infrared transmit- tance. Future system designers will have access to this new
Four-wavelength lidar evaluation of particle characteristics and aerosol densities
NASA Astrophysics Data System (ADS)
Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.
1985-06-01
The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.
Larson, Derek W; Brown, Caleb M; Evans, David C
2016-05-23
The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Periodicity of extinction: A 1988 update
NASA Technical Reports Server (NTRS)
Sepkowski, J. John, Jr.
1988-01-01
The hypothesis that events of mass extinction recur periodically at approximately 26 my intervals is an empirical claim based on analysis of data from the fossil record. The hypothesis has become closely linked with catastrophism because several events in the periodic series are associated with evidence of extraterrestrial impacts, and terrestrial forcing mechanisms with long, periodic recurrences are not easily conceived. Astronomical mechanisms that have been hypothesized include undetected solar companions and solar oscillation about the galactic plane, which induce comet showers and result in impacts on Earth at regular intervals. Because these mechanisms are speculative, they have been the subject of considerable controversy, as has the hypothesis of periodicity of extinction. In response to criticisms and uncertainties, a data base was developed on times of extinction of marine animal genera. A time series is given and analyzed with 49 sample points for the per-genus extinction rate from the Late Permian to the Recent. An unexpected pattern in the data is the uniformity of magnitude of many of the periodic extinction events. Observations suggest that the sequence of extinction events might be the result of two sets of mechanisms: a periodic forcing that normally induces only moderate amounts of extinction, and independent incidents or catastrophes that, when coincident with the periodic forcing, amplify its signal and produce major-mass extinctions.
Adaptive radiation of multituberculate mammals before the extinction of dinosaurs.
Wilson, Gregory P; Evans, Alistair R; Corfe, Ian J; Smits, Peter D; Fortelius, Mikael; Jernvall, Jukka
2012-03-14
The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.
Geography of end-Cretaceous marine bivalve extinctions
NASA Technical Reports Server (NTRS)
Raup, David M.; Jablonski, David
1993-01-01
Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.
Evidence of constant diversification punctuated by a mass extinction in the African cycads
Yessoufou, Kowiyou; Bamigboye, Samuel O; Daru, Barnabas H; van der Bank, Michelle
2014-01-01
The recent evidence that extant cycads are not living fossils triggered a renewed search for a better understanding of their evolutionary history. In this study, we investigated the evolutionary diversification history of the genus Encephalartos, a monophyletic cycad endemic to Africa. We found an antisigmoidal pattern with a plateau and punctual explosive radiation. This pattern is typical of a constant radiation with mass extinction. The rate shift that we found may therefore be a result of a rapid recolonization of niches that have been emptied owing to mass extinction. Because the explosive radiation occurred during the transition Pliocene–Pleistocene, we argued that the processes might have been climatically mediated. PMID:24455160
NASA Astrophysics Data System (ADS)
Burgess, S. D.; Bowring, S. A.
2013-12-01
Interest in Large Igneous Provinces as agents for massive climatic and biological change is steadily increasing, though the temporal constraints on both are seldom precise enough to allow detailed testing of a causal relationship. The end-Permian mass extinction is one of the most biologically important and intensely studied events in Earth history and has been linked to many possible trigger mechanisms, from voluminous volcanism to bolide impact. Proposed kill mechanisms range from acidic and/or anoxic oceans to a cocktail of toxic gases, although the link between trigger and kill mechanisms is unconstrained due to the lack of a high-precision timeline. Critical to assessing the plausibility of different trigger and kill mechanisms is an accurate age model for the biotic crisis and the perturbations to the global carbon cycle and ocean chemistry. Recent work using the EARTHTIME U/Pb tracer solution has refined the timing of the onset and duration of the marine mass extinction event and the earliest Triassic recovery at the GSSP for the Permian-Triassic boundary in Meishan, China. This work constrains the mass extinction duration to less than 100 kyr and provides an accurate and precise time point for the onset of extinction, against which the timing of potential trigger mechanisms may be compared. For more than two decades, eruption and emplacement of the Siberian traps has been implicated as a potential trigger of the end-Permian extinction. In this scenario, magmatism drives the biotic crisis through mobilization of volatiles from the sedimentary rock with which intruding and erupting magmas interact. Massive volatile release is believed to trigger major changes in atmospheric chemistry and temperature, both of which have been proposed as kill mechanisms. Current temporal constrains on the timing and duration of the Siberian magmatism are an order of magnitude less precise than those for the mass extinction event and associated environmental perturbations, limiting detailed testing of a causal relationship. We present new high-precision U/Pb geochronology on zircon crystals isolated from a suite of shallowly intruded dolerites in the Noril'sk region and two welded tuffs in the Maymecha river-valley. These two sections are the most extensively studied in the magmatic province and although there are thick exposures of lava and volcaniclastic rock elsewhere, the Noril'sk and Maymecha-Kotuy sections are thought to be representative of the entire extrusive stratigraphy. Our dates suggest that intrusive and extrusive magmatism began within analytical uncertainty of the onset of mass extinction, permitting a causal connection with age precision at the ~ × 0.06 Ma level. The new dates also allow projection of the extinction interval and associated chemostratigraphy onto the Siberian trap stratigraphy, which suggests that ~300m of volcanicalstic rocks and ~1800m of lavas in the Maymecha-Kotuy section were erupted just prior to the onset of mass extinction. Comparison of a detailed eruption history to biological and chemical records over the extinction and recovery intervals allows for better evaluation of plausible kill mechanisms.
Irmis, Randall B.; Whiteside, Jessica H.
2012-01-01
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle. PMID:22031757
Extinction risk is most acute for the world’s largest and smallest vertebrates
Ripple, William J.; Wolf, Christopher; Newsome, Thomas M.; Hoffmann, Michael; Wirsing, Aaron J.; McCauley, Douglas J.
2017-01-01
Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world’s vertebrates, fundamentally reordering the structure of life on our planet. PMID:28923917
Extinction risk is most acute for the world's largest and smallest vertebrates.
Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J
2017-10-03
Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.
2011-12-01
encoded as a 64-bit integer number theta_2massd Distance in arcsec from the 2MASS source J 2MASS J-band magnitude JErr 2MASS J-band magnitude error H... 2MASS H-band magnitude HErr 2MASS H-band magnitude error K 2MASS K-band magnitude KErr 2MASS K-band magnitude error jh 2MASS J−H color (corrected for...extinction, j − h = (J − 0.327rExt) − (H − 0.209rExt)) hk 2MASS H−K color (corrected for extinction, h− k = (H − 0.209rExt) − (K − 0.133rExt)) jk
Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.
1989-01-01
The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay; Harris, Tequila
A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 {mu}m measurements can be recorded with less than {+-}5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4more » D/mm, with an average thickness error of 4.7%.« less
Adrenergic Transmission Facilitates Extinction of Conditional Fear in Mice
ERIC Educational Resources Information Center
Barad, Mark; Cain, Christopher K.; Blouin, Ashley M.
2004-01-01
Extinction of classically conditioned fear, like its acquisition, is active learning, but little is known about its molecular mechanisms. We recently reported that temporal massing of conditional stimulus (CS) presentations improves extinction memory acquisition, and suggested that temporal spacing was less effective because individual CS…
A sudden end-Permian mass extinction (Invited)
NASA Astrophysics Data System (ADS)
Shen, S.
2013-12-01
The end-Permian mass extinction is the largest of the Phanerozoic. In the immediate aftermath the marine ecosystem was dominated by microbial and communities with disaster taxa. Plausible kill mechanism includes an extremely rapid, explosive release of gases such as carbon dioxide, methane and hydrogen sulfide. Siberian flood volcanism has been suggested as the most possible mechanism to trigger the massive release of greenhouse gases from volcanic eruptions and interaction of magmas with carbon from thick organic-rich deposits or rapid venting of coal-derived methane or massive combustion of coal. A sharp δ13C isotopic excursion, rapid disappearance of carbonate benthic communities and δ18O data from conodont apatite suggest rapid global warming. The end-Permian mass extinction occurred in less than 200,000 years. This extinction interval is constrained by two ash beds (Beds 25 and 28) at the Meishan section. However, the extinction patterns remain controversial largely due to the condensed nature of the Meishan sections. Geochemical signals and their interpretations are also contentious. Thus, the level of achievable stratigraphic resolution becomes crucial to determine the nature of the event and a detailed study of the extinction interval is essential to unravel the extinction pattern, chemostratigraphy, and the causes. However, the extinction interval at Meishan is only 26 cm thick and contains distinct gaps at the Permian-Triassic boundary (PTB) and possibly the base of Bed 25. Thus, it is impossible to resolve a detailed extinction pattern. Studying expanded sections is crucial to understand the detailed events before, during and after the main extinction. In this report, we show a highly-expanded Permian-Triassic boundary section in Guangxi Province, South China. The last 4.5 m between beds 22 and 28 of the Meishan sections is represented by a sequence of ~560 m at the section and the extinction interval between beds 24e and 28 at Meishan is represented by an interval about ~95 m which contains abundant benthic fossils. This expanded section reveals a very sudden extinction in a transgressive sequence that is inferred to have occurred within a few thousands of years.
Glen, W.
1990-01-01
Out of a number of earlier attempts to explain mass extinctions, only the volcanism alternative to the impact hypothesis remains under serious consideration. The evidence for an impact is reviewed, and the mechanisms which might have brought about the apocalyptic series of extinctions at the Cretaceous-Tertiary (K-T) boundary are reviewed, referring to Alvarez's and other research teams working on the problem. As suggested by the patterns of extinctions and the periodicity of this and other mass extinctions, the "volcanist alternative' is introduced. This would produce a series of selective extinctions spread over a considerable length of time, and which is similar to what the fossil record shows, and could account for the iridium anomaly at the K-T boundary. More support for this theory comes from models put forward by volcanist exponents, but it is concluded that the debate is far from ended. -J.W.Cooper
The fossil record of evolution: Data on diversification and extinction
NASA Technical Reports Server (NTRS)
Sepkoski, J. J., Jr.
1986-01-01
Synoptic studies of the fossil record of complex life on Earth indicate increasingly that extinction, and especially mass extinction, were extremely important driving forces in the history of life. Analysis of a new compilation of geologic ranges for 25,000 genera of marine animals suggests that extinction events were much more frequent in occurrence and variable in magnitude than previously suspected. At least 30 well documented and potential mass extinctions were identified in the dataset. The most recent event, distributed over 260 to 0 ma. exhibit a stationary periodicity of 26.1 + or - 1 ma, implicating a cosmological forcing mechanism. Earlier events, especially in the 575 to 450 ma interval, are more frequent, possibly indicating either a breakdown of periodicity in the more distant past; and as yet undemonstrated diminution of the period length; or frequent aperiodic terrestrial perturbations of a less stable biota superimposed upon the cosmological periodicity.
NASA Astrophysics Data System (ADS)
Barash, M. S.
2016-02-01
In the interval of the Triassic-Jurassic boundary, 80% of the marine species became extinct. Four main hypotheses about the causes of this mass extinction are considered: volcanism, climatic oscillations, sea level variations accompanied by anoxia, and asteroid impact events. The extinction was triggered by an extensive flooding of basalts in the Central Atlantic Magmatic Province. Furthermore, a number of meteoritic craters have been found. Under the effect of cosmic causes, two main sequences of events developed on the Earth: terrestrial ones, leading to intensive volcanism, and cosmic ones (asteroid impacts). Their aftermaths, however, were similar in terms of the chemical compounds and aerosols released. As a consequence, the greenhouse effect, dimming of the atmosphere (impeding photosynthesis), ocean stagnation, and anoxia emerged. Then, biological productivity decreased and food chains were destroyed. Thus, the entire ecosystem was disturbed and a considerable part of the biota became extinct.
Calibrating the end-Permian mass extinction.
Shen, Shu-zhong; Crowley, James L; Wang, Yue; Bowring, Samuel A; Erwin, Douglas H; Sadler, Peter M; Cao, Chang-qun; Rothman, Daniel H; Henderson, Charles M; Ramezani, Jahandar; Zhang, Hua; Shen, Yanan; Wang, Xiang-dong; Wang, Wei; Mu, Lin; Li, Wen-zhong; Tang, Yue-gang; Liu, Xiao-lei; Liu, Lu-jun; Zeng, Yong; Jiang, Yao-fa; Jin, Yu-gan
2011-12-09
The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.
NASA Astrophysics Data System (ADS)
Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K.
2013-08-01
The Galactic center is the most active site of star formation in the Milky Way, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/CISCO J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ΔAKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of αNishi = -1.50 ± 0.35 in the core (r < 0.2 pc) to αNishi = -2.21 ± 0.27 in the intermediate annulus (0.2 < r < 0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to αNishi = -3.21 ± 0.30 in the outer annulus (0.4 < r < 1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster. Based on observations collected at the ESO/VLT under Program ID 081.D-0572(B) (PI: Brandner) and ID 71.C-0344(A) (PI: Eisenhauer, retrieved from the ESO archive). Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A26
A New GaAs Laser Radar for Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Brown, R. T.; Stoliar, A. P.
1973-01-01
A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.
NASA Technical Reports Server (NTRS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2004-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
NASA Astrophysics Data System (ADS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2003-12-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Mm-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
An analytical prediction of the oscillation and extinction thresholds of a clarinet
NASA Astrophysics Data System (ADS)
Dalmont, Jean-Pierre; Gilbert, Joël; Kergomard, Jean; Ollivier, Sébastien
2005-11-01
This paper investigates the dynamic range of the clarinet from the oscillation threshold to the extinction at high pressure level. The use of an elementary model for the reed-mouthpiece valve effect combined with a simplified model of the pipe assuming frequency independent losses (Raman's model) allows an analytical calculation of the oscillations and their stability analysis. The different thresholds are shown to depend on parameters related to embouchure parameters and to the absorption coefficient in the pipe. Their values determine the dynamic range of the fundamental oscillations and the bifurcation scheme at the extinction.
Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W
2002-03-27
Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter < or = 2.5 microm) have been performed at a mountaintop location adjacent to the White Mountain National Forest in northern NH, USA. A 1-month long sampling campaign was conducted at Cranmore Mountain during spring 2000. We report on the apportionment of light extinction by fine aerosols into its major chemical components, and relationships between variations in aerosol parameters and changes in air mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.
NASA Astrophysics Data System (ADS)
Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas
2018-01-01
This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. J.; Sanders, D. B.; Chu, J.
We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉})more » are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.« less
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.
1996-01-01
During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.
Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Carey, Sean J.
2014-07-01
We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
NASA Technical Reports Server (NTRS)
Yost, E. F. (Principal Investigator); Hollman, R.; Alexander, J.; Nuzzi, R.
1974-01-01
The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models.
A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests
NASA Technical Reports Server (NTRS)
Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.
1997-01-01
Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.
Repeated Carbon-Cycle Disturbances at the Permian-Triassic Boundary Separate two Mass Extinctions
NASA Astrophysics Data System (ADS)
Nicol, J. A.; Watson, L.; Claire, M.; Buick, R.; Catling, D. C.
2004-12-01
Non-marine organic matter in Permian-Triassic sediments from the Blue Mountains, eastern Australia shows seven negative δ13C excursions of up to 7%, terminating with a positive excursion of 4%. Fluctuations start at the late Permian Glossopteris floral extinction and continue until just above the palynological Permian-Triassic boundary, correlated with the peak of marine mass extinction. The isotopic fluctuations are not linked to changes in depositional setting, kerogen composition or plant community, so they evidently resulted from global perturbations in atmospheric δ13C and/or CO2. The pattern was not produced by a single catastrophe such as a meteorite impact, and carbon-cycle calculations indicate that gas release during flood-basalt volcanism was insufficient. Methane-hydrate melting can generate a single -7% shift, but cannot produce rapid multiple excursions without repeated reservoir regeneration and release. However, the data are consistent with repeated overturning of a stratified ocean, expelling toxic gases that promoted sequential mass extinctions in the terrestrial and marine realms.
NASA Astrophysics Data System (ADS)
Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing
2010-08-01
The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.
NASA Astrophysics Data System (ADS)
Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping
2016-11-01
A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.
Physical and Optical Properties of Falling Snow
1989-07-01
ments with those measured with a transmissometer .................................. 19 24. HSS forward-scatter meter used for measuring extinction in...snowfall conditions, the different ge- ometries of the transmission systems and discrep- | 2• a 2 n(a) da ancies in the snow precipitation rate measure ...J0 ments. Bet = Ms. (27) Table 3. Relationships between measured fn(a) mn(a) da extinction coefficient and snow precipita- ion rate . 091 This
NASA Technical Reports Server (NTRS)
Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.
2010-01-01
We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.
Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper
2018-03-01
Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.
Tsoulos, T. V.; Han, L.; Weir, J.; ...
2017-02-22
A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoulos, T. V.; Han, L.; Weir, J.
A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less
Research on the peculiarity of optical parameters of atmospheric aerosol in Guangzhou coastal areas
NASA Astrophysics Data System (ADS)
Li, Shasha; Li, Xuebin; Zhang, Wenzhong; Bai, Shiwei; Liu, Qing; Zhu, Wenyue; Weng, Ningquan
2018-02-01
The long-term measurement of atmospheric aerosol is constructed via such equipment as visibility meter, optical particle counter, solar radiometer, automatic weather station, aerosol laser radar and aerosol scattering absorption coefficient measurer and so on during the year of 2010 and 2017 in the coastal areas of Guangzhou, China to study the optical parameter characteristics of atmospheric aerosol and establish the aerosol optical parameter mode in such areas. The effects of temperature and humidity on aerosol concentration, extinction and absorption coefficient are analyzed and the statistical characteristics of atmospheric temperature and humidity, visibility, extinction profiles and other parameters in different months are tallied, preliminarily establishing the atmospheric aerosol optical parameter pattern in Guangzhou coastal areas.
Provincialization of terrestrial faunas following the end-Permian mass extinction.
Sidor, Christian A; Vilhena, Daril A; Angielczyk, Kenneth D; Huttenlocker, Adam K; Nesbitt, Sterling J; Peecook, Brandon R; Steyer, J Sébastien; Smith, Roger M H; Tsuji, Linda A
2013-05-14
In addition to their devastating effects on global biodiversity, mass extinctions have had a long-term influence on the history of life by eliminating dominant lineages that suppressed ecological change. Here, we test whether the end-Permian mass extinction (252.3 Ma) affected the distribution of tetrapod faunas within the southern hemisphere and apply quantitative methods to analyze four components of biogeographic structure: connectedness, clustering, range size, and endemism. For all four components, we detected increased provincialism between our Permian and Triassic datasets. In southern Pangea, a more homogeneous and broadly distributed fauna in the Late Permian (Wuchiapingian, ∼257 Ma) was replaced by a provincial and biogeographically fragmented fauna by Middle Triassic times (Anisian, ∼242 Ma). Importantly in the Triassic, lower latitude basins in Tanzania and Zambia included dinosaur predecessors and other archosaurs unknown elsewhere. The recognition of heterogeneous tetrapod communities in the Triassic implies that the end-Permian mass extinction afforded ecologically marginalized lineages the ecospace to diversify, and that biotic controls (i.e., evolutionary incumbency) were fundamentally reset. Archosaurs, which began diversifying in the Early Triassic, were likely beneficiaries of this ecological release and remained dominant for much of the later Mesozoic.
Provincialization of terrestrial faunas following the end-Permian mass extinction
Sidor, Christian A.; Vilhena, Daril A.; Angielczyk, Kenneth D.; Huttenlocker, Adam K.; Nesbitt, Sterling J.; Peecook, Brandon R.; Steyer, J. Sébastien; Smith, Roger M. H.; Tsuji, Linda A.
2013-01-01
In addition to their devastating effects on global biodiversity, mass extinctions have had a long-term influence on the history of life by eliminating dominant lineages that suppressed ecological change. Here, we test whether the end-Permian mass extinction (252.3 Ma) affected the distribution of tetrapod faunas within the southern hemisphere and apply quantitative methods to analyze four components of biogeographic structure: connectedness, clustering, range size, and endemism. For all four components, we detected increased provincialism between our Permian and Triassic datasets. In southern Pangea, a more homogeneous and broadly distributed fauna in the Late Permian (Wuchiapingian, ∼257 Ma) was replaced by a provincial and biogeographically fragmented fauna by Middle Triassic times (Anisian, ∼242 Ma). Importantly in the Triassic, lower latitude basins in Tanzania and Zambia included dinosaur predecessors and other archosaurs unknown elsewhere. The recognition of heterogeneous tetrapod communities in the Triassic implies that the end-Permian mass extinction afforded ecologically marginalized lineages the ecospace to diversify, and that biotic controls (i.e., evolutionary incumbency) were fundamentally reset. Archosaurs, which began diversifying in the Early Triassic, were likely beneficiaries of this ecological release and remained dominant for much of the later Mesozoic. PMID:23630295
Modeling bivalve diversification: the effect of interaction on a macroevolutionary system
NASA Technical Reports Server (NTRS)
Miller, A. I.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1988-01-01
The global diversification of the class Bivalvia has historically received two conflicting interpretations. One is that a major upturn in diversification was associated with, and a consequence of, the Lake Permian mass extinction. The other is that mass extinctions have had little influence and that bivalves have experienced slow but nearly steady exponential diversification through most of their history, unaffected by interactions with other clades. We find that the most likely explanation lies between these two interpretations. Through most of the Phanerozoic, the diversity of bivalves did indeed exhibit slow growth, which was not substantially altered by mass extinctions. However, the presence of "hyperexponential bursts" in diversification during the initial Ordovician radiation and following the Late Permian and Late Cretaceous mass extinctions suggests a more complex history in which a higher characteristic diversification rate was dampened through most of the Phanerozoic. The observed pattern can be accounted for with a two-phase coupled (i.e., interactive) logistic model, where one phase is treated as the "bivalves" and the other phase is treated as a hypothetical group of clades with which the "bivalves" might have interacted. Results of this analysis suggest that interactions with other taxa have substantially affected bivalve global diversity through the Phanerozoic.
Dust extinction in the first galaxies
NASA Astrophysics Data System (ADS)
Jaacks, Jason; Finkelstein, Steven L.; Bromm, Volker
2018-04-01
Using cosmological volume simulations and a custom built sub-grid model for Population III (Pop III) star formation, we examine the baseline dust extinction in the first galaxies due to Pop III metal enrichment in the first billion years of cosmic history. We find that although the most enriched, high-density lines of sight in primordial galaxies can experience a measurable amount of extinction from Pop III dust [E(B - V)max = 0.07, AV, max ≈ 0.28], the average extinction is very low with
NASA Astrophysics Data System (ADS)
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.
2016-08-01
Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.
A scale of greatness and causal classification of mass extinctions: Implications for mechanisms
Şengör, A. M. Celâl; Atayman, Saniye; Özeren, Sinan
2008-01-01
A quantitative scale for measuring greatness, G, of mass extinctions is proposed on the basis of rate of biodiversity diminution expressed as the product of the loss of biodiversity, called magnitude (M), and the inverse of time in which that loss occurs, designated as intensity (I). On this scale, the catastrophic Cretaceous–Tertiary (K-T) extinction appears as the greatest since the Ordovician and the only one with a probable extraterrestrial cause. The end-Permian extinction was less great but with a large magnitude (M) and smaller intensity (I); only some of its individual episodes involved some semblance of catastrophe. Other extinctions during the Phanerozoic, with the possible exception of the end-Silurian diversity plunge, were parts of a forced oscillatory phenomenon and seem caused by marine- and land-habitat destruction during continental assemblies that led to elimination of shelves and (after the Devonian) rain forests and enlargement of deserts. Glaciations and orogenies that shortened and thickened the continental crust only exacerbated these effects. During the Mesozoic and Cainozoic, the evolution of life was linearly progressive, interrupted catastrophically only at the K-T boundary. The end-Triassic extinction was more like the Paleozoic extinctions in nature and probably also in its cause. By contrast, the current extinction resembles none of the earlier ones and may end up being the greatest of all. PMID:18779562
Ceballos, Gerardo; Ehrlich, Paul R; Dirzo, Rodolfo
2017-07-25
The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth's sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high-even in "species of low concern." In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a "biological annihilation" to highlight the current magnitude of Earth's ongoing sixth major extinction event.
Mitchell, Audra
2017-03-01
A global extinction crisis may threaten the survival of most existing life forms. Influential discourses of 'existential risk' suggest that human extinction is a real possibility, while several decades of evidence from conservation biology suggests that the Earth may be entering a 'sixth mass extinction event'. These conditions threaten the possibilities of survival and security that are central to most branches of International Relations. However, this discipline lacks a framework for addressing (mass) extinction. From notions of 'nuclear winter' and 'omnicide' to contemporary discourses on catastrophe, International Relations thinking has treated extinction as a superlative of death. This is a profound category mistake: extinction needs to be understood not in the ontic terms of life and death, but rather in the ontological context of be(com)ing and negation. Drawing on the work of theorists of the 'inhuman' such as Quentin Meillassoux, Claire Colebrook, Ray Brassier, Jean-Francois Lyotard and Nigel Clark, this article provides a pathway for thinking beyond existing horizons of survival and imagines a profound transformation of International Relations. Specifically, it outlines a mode of cosmopolitics that responds to the element of the inhuman and the forces of extinction. Rather than capitulating to narratives of tragedy, this cosmopolitics would make it possible to think beyond the restrictions of existing norms of 'humanity' to embrace an ethics of gratitude and to welcome the possibility of new worlds, even in the face of finitude.
NASA Astrophysics Data System (ADS)
Rampino, Michael R.; Caldeira, Ken
2018-03-01
Many studies have linked mass extinction events with the catastrophic effects of large-body impacts and flood-basalt eruptions, sometimes as competing explanations. We find that the ages of at least 10 out of a total of 11 documented extinction events over the last 260 Myr (12 out of 13 if we include two lesser extinction events) coincide, within errors, with the best-known ages of either a large impact crater (≥70 km diameter) or a continental flood-basalt eruption. The null hypothesis that this could occur by chance can be rejected with very high confidence (>99.999%). The ages of large impact craters correlate with recognized extinction events at 36 (two impacts), 66, 145 and 215 Myr ago (and possibly an event at 168 Myr ago), and the ages of continental flood basalts correlate with extinctions at 66, 94, 116, 183, 201, 252 and 259 Myr ago (and possibly at 133 Myr ago). Furthermore, at least 7 periods of widespread anoxia in the oceans of the last 260 Myr coincide with the ages of flood-basalt eruptions (with 99.999% confidence), and are coeval with extinctions, suggesting causal connections. These statistical relationships argue that most mass extinction events are related to climatic catastrophes produced by the largest impacts and large-volume continental flood-basalt eruptions.
Mitchell, Audra
2016-01-01
A global extinction crisis may threaten the survival of most existing life forms. Influential discourses of ‘existential risk’ suggest that human extinction is a real possibility, while several decades of evidence from conservation biology suggests that the Earth may be entering a ‘sixth mass extinction event’. These conditions threaten the possibilities of survival and security that are central to most branches of International Relations. However, this discipline lacks a framework for addressing (mass) extinction. From notions of ‘nuclear winter’ and ‘omnicide’ to contemporary discourses on catastrophe, International Relations thinking has treated extinction as a superlative of death. This is a profound category mistake: extinction needs to be understood not in the ontic terms of life and death, but rather in the ontological context of be(com)ing and negation. Drawing on the work of theorists of the ‘inhuman’ such as Quentin Meillassoux, Claire Colebrook, Ray Brassier, Jean-Francois Lyotard and Nigel Clark, this article provides a pathway for thinking beyond existing horizons of survival and imagines a profound transformation of International Relations. Specifically, it outlines a mode of cosmopolitics that responds to the element of the inhuman and the forces of extinction. Rather than capitulating to narratives of tragedy, this cosmopolitics would make it possible to think beyond the restrictions of existing norms of ‘humanity’ to embrace an ethics of gratitude and to welcome the possibility of new worlds, even in the face of finitude. PMID:29708126
Refat, Moamen S; El-Hawary, W F; Moussa, Mohamed A A
2011-05-01
The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I(2)) as a sigma acceptor has been studied spectrophotometrically in CHCl(3). At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant (K(CT)), molar extinction coefficient (ɛ(CT)), standard free energy (ΔG°), oscillator strength (f), transition dipole moment (μ), resonance energy (R(N)) and ionization potential (I(D)) were estimated. The spectroscopic techniques such as IR, (1)H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wagler, Amy; Wagler, Ron
2014-01-01
Earth is experiencing a great mass extinction (GME) that has been caused by the environmentally destructive activities of humans. This GME is having and will have profound effects on Earth's biodiversity if environmental sustainability is not reached. Activities and curriculum tools have been developed to assist teachers in integrating the current…
de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P
2016-12-15
Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.
Brassey, Charlotte A.; Gardiner, James D.
2015-01-01
Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r2=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons. PMID:26361559
The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.
Ezcurra, Martín D; Butler, Richard J
2018-06-13
One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction ( ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas. © 2018 The Author(s).
Are we in the midst of the sixth mass extinction? A view from the world of amphibians
Wake, David B.; Vredenburg, Vance T.
2008-01-01
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. PMID:18695221
Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.
2015-11-01
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
Wake, David B; Vredenburg, Vance T
2008-08-12
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.
SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffusemore » Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.« less
NASA Astrophysics Data System (ADS)
Geiss, Alexander; Marksteiner, Uwe; Lux, Oliver; Lemmerz, Christian; Reitebuch, Oliver; Kanitz, Thomas; Straume-Lindner, Anne Grete
2018-04-01
By the end of 2017, the European Space Agency (ESA) will launch the Atmospheric laser Doppler instrument (ALADIN), a direct detection Doppler wind lidar operating at 355 nm. An important tool for the validation and optimization of ALADIN's hardware and data processors for wind retrievals with real atmospheric signals is the ALADIN airborne demonstrator A2D. In order to be able to validate and test aerosol retrieval algorithms from ALADIN, an algorithm for the retrieval of atmospheric backscatter and extinction profiles from A2D is necessary. The A2D is utilizing a direct detection scheme by using a dual Fabry-Pérot interferometer to measure molecular Rayleigh signals and a Fizeau interferometer to measure aerosol Mie returns. Signals are captured by accumulation charge coupled devices (ACCD). These specifications make different steps in the signal preprocessing necessary. In this paper, the required steps to retrieve aerosol optical products, i. e. particle backscatter coefficient βp, particle extinction coefficient αp and lidar ratio Sp from A2D raw signals are described.
Sun, Xiao-gang; Tang, Hong; Dai, Jing-min
2008-12-01
The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.
Mass extinctions: Persistent problems and new directions
NASA Technical Reports Server (NTRS)
Jablonski, D.
1994-01-01
Few contest that mass extinctions have punctuated the history of life, or that those events were so pervasive environmentally, taxonomically, and geographically that physical forcing factors were probably involved. However, consensus remains elusive on the nature of those factors, and on how a given perturbation - impact, volcanism, sea-level change, or ocean anoxic event - could actually generate the observed intensity and selectivity of biotic losses. At least two basic problems underlie these long-standing disagreements: difficulties in resolving the fine details of taxon ranges and abundances immediately prior to and after an extinction boundary and the scarcity of simple, unitary cause-and-effect relations in complex biological systems.
[1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.
Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio
2016-04-15
Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.
Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-04-01
Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.
NASA Astrophysics Data System (ADS)
Boness, D. A.
2013-12-01
The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.
Periodic Comet Showers, Mass Extinctions, and the Galaxy
NASA Technical Reports Server (NTRS)
Rampino, M. R.; Stothers, R. B.
2000-01-01
Geologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.
2012-01-01
The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.
Goodness of fit of probability distributions for sightings as species approach extinction.
Vogel, Richard M; Hosking, Jonathan R M; Elphick, Chris S; Roberts, David L; Reed, J Michael
2009-04-01
Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.
The Geochemistry of Mass Extinction
NASA Astrophysics Data System (ADS)
Kump, L. R.
2003-12-01
The course of biological evolution is inextricably linked to that of the environment through an intricate network of feedbacks that span all scales of space and time. Disruptions to the environment have biological consequences, and vice versa. Fossils provide the prima facie evidence for biotic disruptions: catastrophic losses of global biodiversity at various times in the Phanerozoic. However, the forensic evidence for the causes and environmental consequences of these mass extinctions resides primarily in the geochemical composition of sedimentary rocks deposited during the extinction intervals. Thus, advancement in our understanding of mass extinctions requires detailed knowledge obtained from both paleontological and geochemical records.This chapter reviews the state of knowledge concerning the geochemistry of the "big five" extinctions of the Phanerozoic (e.g., Sepkoski, 1993): the Late Ordovician (Hirnantian; 440 Ma), the Late Devonian (an extended or multiple event with its apex at the Frasnian-Famennian (F-F) boundary; 367 Ma), the Permian-Triassic (P-Tr; 251 Ma), the Triassic-Jurassic (Tr-J; 200 Ma), and the Cretaceous-Tertiary (K-T; 65 Ma). The focus on the big five is a matter of convenience, as there is a continuum in extinction rates from "background" to "mass extinction." Although much of the literature on extinctions centers on the causes and extents of biodiversity loss, in recent years paleontologists have begun to focus on recoveries (see, e.g., Hart, 1996; Kirchner and Weil, 2000; Erwin, 2001 and references therein).To the extent that the duration of the recovery interval may reflect a slow relaxation of the environment from perturbation, analysis of the geochemical record of recovery is an integral part of this effort. In interpreting the geochemical and biological records of recovery, we need to maintain a clear distinction among the characteristics of the global biota: their biodiversity (affected by differences in origination and extinction rates) and ecosystem function (guild structure, complexity of interactions, productivity). Geochemical records reflect attributes of ecosystem function, not biodiversity; low-diversity recovery faunas and floras may support pre-event productivities. Thus, geochemical and biodiversity recovery intervals are interdependent but not equivalent, and may not be of equal duration.From the biological point of view, there is an inevitable lag between peak extinction rates and peak origination rates, and the durations and underlying causes of the lags are topics of debate. Both intrinsic (e.g., the fact that ecospace is created as biodiversity increases producing positive feedback) and external (environmental) constraints are possible. Kirchner and Weil (2000) performed a time-series analysis of extinction and origination-rate data, and concluded that the lag is ˜10 Myr and independent of the magnitude of the event. Erwin (2001) raised the possibility that the 10 Myr lag may be an artifact of the coarseness of the timescales utilized, and discussed possible environmental and ecological limits on rate of recovery from mass extinction.The comparison of the geochemical records of the five major mass extinctions of the Phanerozoic reveals few commonalities. Most, but not all, exhibit sharp drops in the carbon isotopic composition (δ13C) of the surface ocean, indicating substantial disruptions to the global carbon cycle. The P-Tr and F-F events are associated with indicators of widespread anoxia and enhanced pyrite burial (positive δ34S excursions), whereas the Late Ordovician extinction occurred during a brief interlude of oxic conditions from general anoxia. Some are associated with sea-level transgressions from previous lowstands (P-Tr, Tr-J, K-T), but the Late Ordovician and F-F occurred during sea-level falls. Long-term climates change across all events, but span major coolings (Late Ordovician, F-F) to prominent warmings (P-Tr, Tr-J, K-T).Evidence for extraterrestrial influence is strong for the K-T, suggestive for the Tr-J and Late Permian, and missing for the F-F and Late Ordovician. What these times have in common is that all were times of biotic and environmental change. Long-term trends toward extreme environmental conditions presaged the Late Ordovician, F-F, and P-Tr events, whereas the Tr-J and K-T seem to have been abrupt shocks to the Earth system, perhaps belying their extraterrestrial cause. However, even for the K-T extinction there is indication of environmental and biotic change before the known impact event and mass extinction (e.g., Keller et al., 1993; Barrera, 1994; Abramovich and Keller, 2002).
NASA Astrophysics Data System (ADS)
Cambrésy, Laurent
1999-11-01
This thesis consists in a study of molecular clouds, essentially of the point of view of the interstellar environment, but also of the one of the star formation. The original method to estimate extinction presented here is based on adaptive star counts as well as on a wavelet decomposition. For the first time, an extinction map of the whole sky is proposed (USNO-PMM optical data). Access to very large field maps offers the opportunity to analyze the interstellar matter distribution in various environments. A first result is that the contained mass in regions for which AV > 1 would not exceed half of the total cloud mass. Using DENIS data, it becomes possible to probe dense regions of clouds. For instance, star counts in the Chamaeleon complex show cores which were not resolved before. Moreover, the selection of stars with a strong infrared excess yields about fifty T Tauri candidates. From their luminosity function, I derived the average lifetime of circumstellar disc of low--mass stars: ~4cdot 106 years. It is difficult to understand the relation between extinction and molecular emission, but it appears clearly that molecular emission is a bad estimator of the column density for low extinction area. Actually, thresholds exist in the CO detection and I conclude that photodissociation, density and cloud geometry have important consequences on the CO emission when AV < 2. Investigation of the relation between extinction and far--infrared emission in Polaris leads to a four times larger emissivity in cold areas than in hot areas. This result explains the low temperatures in this cloud and implies severe restrictions concerning the use of far--infrared fluxes as an extinction estimator.
The end-triassic mass extinction event
NASA Technical Reports Server (NTRS)
Hallam, A.
1988-01-01
The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.
Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan
2014-12-01
In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.
Surviving Mass Extinctions through Biomineralized DNA.
Turon, Pau; Puiggalí, Jordi; Bertrán, Oscar; Alemán, Carlos
2015-12-21
Even in the worst of conditions, such as those which occurred during mass extinction events, life on Earth never totally stopped. Aggressive chemical and physical attacks able to sterilize or poison living organisms occurred repeatedly. Surprisingly, DNA was not degraded, denatured or modified to the point of losing the capability of transferring the genetic information to the next generations. After the events of mass extinction life was able to survive and thrive. DNA was passed on despite being an extremely fragile biomolecule. The potential implications of hydroxyapatite protection of DNA are discussed in this Concept article including how DNA acts as a template for hydroxyapatite (HAp) formation, how cell death can trigger biomineralization, and how DNA can be successfully released from HAp when the conditions are favorable for life. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Yost, E.; Hollman, R.; Alexander, J.; Nuzzi, R.
1974-01-01
ERTS-1 photographic data products have been analyzed using additive color viewing and electronic image analysis techniques. Satellite data were compared to water sample data collected simultaneously with the data of ERTS-1 coverage in New York Bight. Prediction of the absolute value of total suspended particles can be made using composites of positives of MSS bands 5 and 6 which have been precisely made using the step wedge supplied on the imagery. Predictions of the relative value of the extinction coefficient can be made using bands 4 and 5. Thematic charts of total suspended particles (particles per litre) and extinction coefficient provide scientists conducting state and federal water sampling programs in New York Bight with data which improves the performance of these programs.
Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor
NASA Astrophysics Data System (ADS)
Erdoğan, Erman; Gündüz, Bayram
2016-09-01
N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
NASA Astrophysics Data System (ADS)
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-01-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China. PMID:26538179
Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-05
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
Mass Extinction and the Structure of the Milky Way
NASA Astrophysics Data System (ADS)
Filipovic, M. D.; Horner, J.; Crawford, E. J.; Tothill, N. F. H.; White, G. L.
2013-12-01
We use the most up-to-date Milky Way model and solar orbit data in order to test the hypothesis that the Sun's galactic spiral arm crossings cause mass extinction events on Earth. To do this, we created a new model of the Milky Way's spiral arms by combining a large quantity of data from several surveys. We then combined this model with a recently derived solution for the solar orbit to determine the timing of the Sun's historical passages through the Galaxy's spiral arms. Our new model was designed with a symmetrical appearance, with the major alteration being the addition of a spur at the far side of the Galaxy. A correlation was found between the times at which the Sun crosses the spiral arms and six known mass extinction events. Furthermore, we identify five additional historical mass extinction events that might be explained by the motion of the Sun around our Galaxy. These five additional significant drops in marine genera that we find include significant reductions in diversity at 415, 322, 300, 145 and 33~Myr ago. Our simulations indicate that the Sun has spent ˜60 per cent of its time passing through our Galaxy's various spiral arms. Also, we briefly discuss and combine previous work on the Galactic Habitable Zone with the new Milky Way model.
Theory of invasion extinction dynamics in minimal food webs
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim
2018-02-01
When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.
Theory of invasion extinction dynamics in minimal food webs.
Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim
2018-02-01
When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.
Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y 3+ ions
NASA Astrophysics Data System (ADS)
Shakeri, M. S.; Rezvani, M.
2011-09-01
The effect of different amounts of Y 2O 3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li 2O-20Al 2O 3-65.2SiO 2 (wt%) composition accompanied with Y 2O 3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y 3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y 3+ ions as the network former in the track of SiO 4 tetrahedrals.
Ceballos, Gerardo; Ehrlich, Paul R.; Dirzo, Rodolfo
2017-01-01
The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high—even in “species of low concern.” In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a “biological annihilation” to highlight the current magnitude of Earth’s ongoing sixth major extinction event. PMID:28696295
Ultraviolet Spectroscopy of Matrix-isolated Amorphous Carbon Particles
NASA Astrophysics Data System (ADS)
Schnaiter, M.; Mutschke, H.; Henning, Th.; Lindackers, D.; Strecker, M.; Roth, P.
1996-06-01
In view of the interstellar 217.5 nm and the circumstellar 230--250 nm extinction features, the UV extinction behavior of small matrix-isolated amorphous carbon grains is investigated experimentally. The particles were produced in a flame by burning acetylene with oxygen at low pressure. To prevent coagulation, the condensing primary soot grains (average diameter ~6 nm) were extracted by a molecular beam technique into a high-vacuum chamber. There they were deposited into a layer of solid argon, isolated from each other. The particle mass and size were controlled using a particle mass spectrometer. The measured UV extinction of the matrix-isolated particles is compared with measurements on samples produced in the conventional way by collecting carbon smoke on substrate as well as with scattering calculations for small spheres and ellipsoides. The laboratory data give a good representation of the circumstellar extinction feature observed in the spectrum of V348 Sgr.
Macroecological analyses support an overkill scenario for late Pleistocene extinctions.
Diniz-Filho, J A F
2004-08-01
The extinction of megafauna at the end of Pleistocene has been traditionally explained by environmental changes or overexploitation by human hunting (overkill). Despite difficulties in choosing between these alternative (and not mutually exclusive) scenarios, the plausibility of the overkill hypothesis can be established by ecological models of predator-prey interactions. In this paper, I have developed a macroecological model for the overkill hypothesis, in which prey population dynamic parameters, including abundance, geographic extent, and food supply for hunters, were derived from empirical allometric relationships with body mass. The last output correctly predicts the final destiny (survival or extinction) for 73% of the species considered, a value only slightly smaller than those obtained by more complex models based on detailed archaeological and ecological data for each species. This illustrates the high selectivity of Pleistocene extinction in relation to body mass and confers more plausibility on the overkill scenario.
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
Photophysical and redox properties of molecule-like CdSe nanoclusters.
Dolai, Sukanta; Dass, Amala; Sardar, Rajesh
2013-05-21
Advancing our understanding of the photophysical and electrochemical properties of semiconductor nanoclusters with a molecule-like HOMO-LUMO energy level will help lead to their application in photovoltaic devices and photocatalysts. Here we describe an approach to the synthesis and isolation of molecule-like CdSe nanoclusters, which displayed sharp transitions at 347 nm (3.57 eV) and 362 nm (3.43 eV) in the optical spectrum with a lower energy band extinction coefficient of ~121,000 M(-1) cm(-1). Mass spectrometry showed a single nanocluster molecular weight of 8502. From this mass and various spectroscopic analyses, the nanoclusters are determined to be of the single molecular composition Cd34Se20(SPh)28, which is a new nonstiochiometric nanocluster. Their reversible electrochemical band gap determined in Bu4NPF6/CH3CN was found to be 4.0 V. There was a 0.57 eV Coulombic interaction energy of the electron-hole pair involved. The scan rate dependent electrochemistry suggested diffusion-limited transport of nanoclusters to the electrode. The nanocluster diffusion coefficient (D = 5.4 × 10 (-4) cm(2)/s) in acetonitrile solution was determined from cyclic voltammetry, which suggested Cd34Se20(SPh)28 acts as a multielectron donor or acceptor. We also present a working model of the energy level structure of the newly discovered nanocluster based on its photophysical and redox properties.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.
1985-01-01
Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.
1993-07-24
orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman...to a common aerosol parameter (e.g., backscatter coefficients at selected CO2 wavelengths), have all led to similar estimated values of that...increase only as -r 2 . During this phase, therefore, the backscatter coefficient of a coagulating aerosol population decreases as -r- The maximum
Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system
NASA Astrophysics Data System (ADS)
Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad
2012-11-01
Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research Institute in São Paulo and radiosonde data from Campo de Marte Airport, in São Paulo.
NASA Astrophysics Data System (ADS)
Prevosti, Francisco; Santiago, Fernando; Prates, Luciano; Salemme, Mónica; Martin, Fabiana
2010-05-01
The mass extinction at the end of the Pleistocene affected South America during the Late Pleistocene and the Early Holocene, when megamammals and large mammals disappeared. Several carnivores became extinct, like the sabretooth Smilodon, the short face bear (Arctotherium) and some large canids (i.e. Protocyon, Canis dirus). After this mass event virtually no carnivores became extinct in South America. The only exception is the fox Dusicyon avus, a middle sized canid (estimated body mass between 10-15 kg) with a more carnivore diet than the living South American foxes (i.e. Lycalopex culpaeus). The last record of the species comes from middle-late Holocene archaeological sites in the Pampean Region (Argentina) and Patagonia (Argentina and Chile). During the Late Pleistocene D. avus had a wide distribution, that covered part of Uruguay, Argentina (Buenos Aires province) and the southernmost Chile. Albeit some remains from late Holocene sites have been published, these remains lack of isotopic dates that could (allow?) constraint (to determine) the date of extinction of this fox. In this contribution we present several new records from the Pampean Region and Patagonia, and several taxon dates. The new records indicate that D. avus disappeared in the late Holocene at least ≈ 3000 years BP in the island of Tierra del Fuego (Patagonia) and ≈ 1600 BP in the continent. Since at this time humans were occupying most of the Pampas and Patagonia a revision of the causes behind the extinction of this fox is required.
NASA Astrophysics Data System (ADS)
Gammariello, R. T., Jr.; Petryshyn, V. A.; Ibarra, Y.; Greene, S. E.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.
2014-12-01
Stromatolites are laminated sedimentary structures that are commonly thought to be created by cyanobacteria, either through the trapping and binding of sediment, or through metabolically-induced precipitation. However, stromatolite formation is poorly understood. In general, stromatolite abundance was higher in the Proterozoic than the Phanerozoic, but notable increases in stromatolite abundance occur in association with Phanerozoic mass extinction events. Here, we focus on stromatolites from the latest Triassic Cotham Marble (United Kingdom) that are associated with the extinction interval. The end-Triassic mass extinction is coincident with large-scale volcanism in the Central Atlantic Magmatic Province (CAMP) and the associated breakup of Pangea. Some hypothesize that CAMP-associated increases in atmospheric CO2 led to a rise in global temperatures and ocean acidification that caused or enhanced the extinction. In order to quantify the role of climate change with respect to the end-Triassic mass extinction, we applied the carbonate "clumped" isotope paleothermometer to the well-preserved Cotham Marble stromatolites. The stromatolites were deposited in the shallow Tethys Sea, and today occur in several localities across the southwestern UK. The stromatolites alternate on the cm scale between laminated and dendrolitic microstructures and each was microdrilled for clumped isotope analysis. The two microstructures display different temperatures of formation, where the dendrolitic portions apparently grew under cooler conditions than laminated layers, and younger layers grew in cooler conditions than older layers. Our results suggest that temperature fluctuated and potentially trended towards amelioration of the warm temperatures during the deposition of the Cotham Marble.
NASA Astrophysics Data System (ADS)
Nguyen, Tran B.; Lee, Paula B.; Updyke, Katelyn M.; Bones, David L.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A.
2012-01-01
Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d-limonene were subjected to dissolution, evaporation, and re-dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4-9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (<2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (>105 L mol-1 cm-1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g-1 - a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ˜ 2 with sulfuric acid. These chromophores were produced by acid-catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light-absorbing compounds.
Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.
1995-01-01
Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.
Eutrophication, microbial-sulfate reduction and mass extinctions
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2016-01-01
ABSTRACT In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic “dead” zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans. PMID:27066181
Global direct radiative forcing by process-parameterized aerosol optical properties
NASA Astrophysics Data System (ADS)
KirkevâG, Alf; Iversen, Trond
2002-10-01
A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.
Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary
Vellekoop, Johan; Sluijs, Appy; Smit, Jan; Schouten, Stefan; Weijers, Johan W. H.; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk
2014-01-01
The mass extinction at the Cretaceous–Paleogene boundary, ∼66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called “impact winter” phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis. PMID:24821785
Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements
NASA Astrophysics Data System (ADS)
Lane, John E.; Metzger, Philip T.
2015-04-01
A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)ṡD2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.
Interstellar extinction from photometric surveys: application to four high-latitude areas
NASA Astrophysics Data System (ADS)
Malkov, Oleg; Karpov, Sergey; Kilpio, Elena; Sichevsky, Sergey; Chulkov, Dmitry; Dluzhnevskaya, Olga; Kovaleva, Dana; Kniazev, Alexei; Mickaelian, Areg; Mironov, Alexey; Murthy, Jayant; Sytov, Alexey; Zhao, Gang; Zhukov, Aleksandr
2018-04-01
Information on interstellar extinction and dust properties may be obtained from modern large photometric surveys data. Virtual Observatory facilities allow users to make a fast and correct cross-identification of objects from various surveys. It yields a multicolor photometry data on detected objects and makes it possible to estimate stellar parameters and calculate interstellar extinction. A 3D extinction map then can be constructed. The method was applied to 2MASS, SDSS, GALEX and UKIDSS surveys. Results for several high-latitude areas are obtained, compared with independent sources and discussed here.
Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods
NASA Astrophysics Data System (ADS)
Kamimoto, Takeyuki
2006-07-01
Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.
The Development of a Tactical Dual-Wavelength Nephelometer.
1982-11-24
Instrument Layout 50 4.5 Optical Systems 53 4.6 Electronic Systems 56 4.6.1 Transmitter System 56 4.6.2 Receiver Systems 58 5. R&D TEST AND ACCEPTANCE PLAN 61... PLAN , 136 HSS-B-086, 10 DEC1981. APPENDIX B ARVIN CALSPAN DOCUMENTATION OF 155 EXTINCTION AND PARTICLE SIZE MEASUREMENTS FOR CHAMBER TESTS OF MAY 1982. 6...121 FP’enn Aerosol Models. 8.9 Aerosol Extinction Coefficients at Two Wavelenghts 129 and their Ratio for Four Deirmendjian Aerosol Models. 10
NASA Astrophysics Data System (ADS)
Cohen, E.; Quan, T. M.
2012-12-01
The mass extinction event at the Cretaceous-Paleogene (K-Pg) boundary was the result of a bolide impact, and is popularly known for the extinction of the dinosaurs, but is also one of the largest Paleogene mass extinctions identified. In addition, it was followed by a period of drastic changes in ecological conditions, including a complete alteration of the global carbon cycle; the root cause of this change is still debated. Little information is known regarding changes in the nitrogen cycle during these periods of mass extinction and recovery. Given the importance of the nitrogen cycle to primary production and its relationship to the redox state of the local environment, determining changes in the nitrogen cycle will provide important information as to the processes of global mass extinction and the subsequent recovery. Three lessons for students' grade 6-12 were created to support the content surrounding: National Science Education Content Standards: Standard A: Science as Inquiry Standard D: Earth and Space Science Ocean Literacy Essential Principles: 3. The ocean is a major influence on weather and climate 7. The ocean is largely unexplored In the Nature of Science activity, students sequence a series of photographs to illustrate the scientific process of one scientist, Dr. Tracy Quan, of Oklahoma State University as she uses deep sea core data obtained by the JOIDES Resolution research vessel to investigate the climate during the mass extinction that took place ~ 65 million years ago. By reading the information contained on each card and studying the pictures, students learn that science is a dynamic, non-linear, and creative process. Students do not have to create the exact order Dr. Quan uses as her scientific process, but they need to justify their reasoning for placing the pictures in the order they did. The activity begins with a photo of the JOIDES Resolution and ends during a presentation at a scientific conference. There are 21 other photo cards showing the conduction of the science on the ship and shore.
NASA Astrophysics Data System (ADS)
Foster, William J.; Sebe, Krisztina
2017-08-01
The recovery of benthic invertebrates following the late Permian mass extinction event is often described as occurring in the Middle Triassic associated with the return of Early Triassic Lazarus taxa, increased body sizes, platform margin metazoan reefs, and increased tiering. Most quantitative palaeoecological studies, however, are limited to the Early Triassic and the timing of the final phase of recovery is rarely quantified. Here, quantitative abundance data of benthic invertebrates were collected from the Middle Triassic (Anisian) succession of the Mecsek Mountains (Hungary), and analysed with univariate and multivariate statistics to investigate the timing of recovery following the late Permian mass extinction. These communities lived in a mixed siliciclastic-carbonate ramp setting on the western margin of the Palaeotethys Ocean. The new data presented here is combined with the previously studied Lower Triassic succession of the Aggtelek Karst (Hungary), which records deposition of comparable facies and in the same region of the Palaeotethys Ocean. The Middle Triassic benthic fauna can be characterised by three distinct ecological states. The first state is recorded in the Viganvár Limestone Formation representing mollusc-dominated communities restricted to above wave base, which are comparable to the lower and mid-Spathian Szin Marl Formation faunas. The second state is recorded in the Lapis Limestone Formation and records extensive bioturbation that is not limited to wave base and is comparable to the upper Spathian Szinpetri Limestone Formation. The third ecological state occurs in the Zuhánya Limestone Formation which was deposited in the Pelsonian Binodosus Zone, and has a more 'Palaeozoic' structure with sessile brachiopods dominating assemblages for the first time in the Mesozoic. The return of community-level characteristics to pre-extinction levels and the diversification of invertebrates suggests that the final stages of recovery and the radiation of the benthos in ramp settings following the late Permian mass extinction occurred in the upper Pelsonian Zuhánya Limestone Formation, approximately 8 million years after the extinction event.
Estimation of desert-dust-related ice nuclei profiles from polarization lidar
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Hadjimitsis, Diofantos; Ansmann, Albert
2015-04-01
This paper presents a methodology based on the use of active remote sensing techniques for the estimation of ice nuclei concentrations (INC) for desert dust plumes. Although this method can be applied to other aerosol components, in this study we focus on desert dust. The method makes use of the polarization lidar technique for the separation of dust and non-dust contributions to the particle backscatter and extinction coefficients. The profile of the dust extinction coefficient is converted to APC280 (dust particles with radius larger than 280 nm) and, in a second step, APC280 is converted to INC by means of an APC-INC relationship from the literature. The observed close relationship between dust extinction at 500 nm and APC280 is the key to a successful INC retrieval. The correlation between dust extinction coefficient and APC280 is studied by means of AERONET sun/sky photometer at Morocco, Cape Verde, Barbados, and Cyprus, during situations dominated by desert dust outbreaks. In the present study, polarization lidar observations of the EARLINET (European Aerosol Research Lidar Network) lidar at the Cyprus University of Technology (CUT), Limassol (34.7o N, 33o E), Cyprus were used together with spaceborne lidar observations during CALIPSO satellite overpasses to demonstrate the potential of the new INC retrieval method. A good agreement between the CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) and our CUT lidar observations regarding the retrieval of dust extinction coefficient, APC280, and INC profiles were found and corroborate the potential of CALIOP to provide 3-D global desert-dust-related INC data sets. In the next step, efforts should be undertaken towards the establishment of a global, height-resolved INC climatology for desert dust plumes. Realistic global INC distributions are required for an improved estimation of aerosol effects on cloud formation and the better quantification of the indirect aerosol effect on climate. Acknowledgements. The authors thank the CUT Remote Sensing Laboratory for their support. The research leading to these results has also received scientific support from the European Union Seventh Framework Programme (FP7/2011-2015) under grant agreement no. 262254 (ACTRIS project). We acknowledge funding from the EU FP7-ENV-2013 programme "impact of Biogenic vs. Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding" (BACCHUS), project no. 603445. We are grateful to AERONET for high-quality sun/sky photometer measurements in Cyprus, Morocco, Cape Verde, and Barbados. We thank the NASA Langley Research Center and the CALIPSO science team for the constant effort and improvement of then CALIPSO data.
Galli, C
2001-07-01
It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.
Woo, Seouk-Hoon; Hwangbo, Chang Kwon
2006-03-01
Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.
Polarization lidar for atmospheric monitoring
NASA Astrophysics Data System (ADS)
Liu, Qiaojun; Wu, Chengxuan; Yuk Sun Cheng, Andrew; Wang, Zhangjun; Meng, Xiangqian; Chen, Chao; Li, Xianxin; Liu, Xingtao; Zhang, Hao; Zong, Fangyi
2018-04-01
Aerosol plays an important role in global climate and weather changes. Polarization lidar captures parallel and perpendicular signals from atmosphere to research aerosols. The lidar system we used has three emission wavelengths and could obtain the atmospheric aerosol extinction coefficient, backscattering coefficient and depolarization ratio. In this paper, the design of the lidar is described. The methods of data acquisition and inversion are given. Some recent results are presented.
Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals
NASA Astrophysics Data System (ADS)
Chen, Youhua; Peng, Shushi
2017-03-01
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Chen, Youhua; Peng, Shushi
2017-03-16
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Model intra-comparison of transboundary sulfate loadings over springtime east Asia
NASA Astrophysics Data System (ADS)
Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.
2013-12-01
Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.
Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction
NASA Astrophysics Data System (ADS)
Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke
2016-07-01
The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.
Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction
Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke
2016-01-01
The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid–high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years. PMID:27414998
NASA Astrophysics Data System (ADS)
Bond, David; Grasby, Stephen; Wignall, Paul
2017-04-01
The controversial Capitanian (Middle Permian, 262 Ma) mass extinction, mostly known from equatorial latitudes, has recently been identified in a Boreal setting in Spitsbergen. We now document this extinction in the record of brachiopods from the Sverdrup Basin in NW Pangaea (Ellesmere Island, Canada), confirming Middle Permian losses as a global crisis on par with the "Big Five". Redox proxies (pyrite framboids and trace metals) show that the high latitude crisis coincided with an intensification of oxygen-poor conditions - a potent killer that is not clearly developed in lower latitude sections. Mercury becomes briefly enriched in strata at the level of the Middle Permian extinction level in Spitsbergen and Ellesmere Island, indicating voluminous but short-lived volcanism that is likely to have been the emplacement of the Emeishan large igneous province (LIP) in SW China. A potent cocktail of poisons appears to have impacted across the Boreal Realm, whilst the near-total loss of carbonates near the extinction level is also consistent with reduced pH across the region. Multiple stresses, possibly with origins in low-latitude LIP volcanism, are therefore implicated in the Middle Permian extinction and there was no respite even in the far-distant Boreal Realm.
Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction.
Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke
2016-07-14
The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; ...
2014-10-10
Here, we present measurements acquired by the world's first airborne 3 backscatter (β) + 2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50–60 sr at 355 nm and 60–70more » sr at 532 nm. Extinction-related Ångström exponents were on average 1.2–1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 μm, which is in agreement with the large Angstrom exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft.« less
NASA Astrophysics Data System (ADS)
Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel
2002-12-01
Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurements in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NOx (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindle, R.; Gal, R. R.; La Barbera, F.
2011-10-15
We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less
NASA Astrophysics Data System (ADS)
Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.
2012-12-01
Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data for eight CAMP flows and sills from the eastern U.S. and Morocco. These data are used first to independently test the astronomically calibrated time scale and sediment accumulation rates within the Triassic-Jurassic rift basins along the eastern North America. The U-Pb, paleontological, magnetostratigraphic and astronomical data are combined to constrain the onset and duration of the CAMP and clarify the temporal relationship between the CAMP and the ETE. The dataset together allows more precise estimates of eruptive volume per unit time, a requirement for rigorous evaluation of climate-driven models for the extinction.
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Pekour, M.; Flowers, B.; Dubey, M. K.; Setyan, A.; Zhang, Q.; Harworth, J. W.; Radney, J. G.; Atkinson, D. B.; China, S.; Mazzoleni, C.; Gorkowski, K.; Subramanian, R.; Jobson, B. T.; Moosmüller, H.
2013-03-01
Ground-based aerosol measurements made in June 2010 within Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area are used to investigate the evolution of multispectral optical properties as the urban aerosols aged and interacted with biogenic emissions. Along with black carbon and non-refractory aerosol mass and composition observations, spectral absorptio (βabs), scattering (βsca), and extinction (βext) coefficients for wavelengths ranging from 355 to 1064 nm were measured at both sites using photoacoustic (PA) instruments with integrating nephelometers and using cavity ring-down (CRD) instruments. The daytime average Ångström exponent of absorption (AEA) was ~1.6 for the wavelength pair 405 and 870 nm at T0, while it was ~1.8 for the wavelength pair 355 and 870 nm at T1, indicating a modest wavelength-dependent enhancement of absorption at both sites throughout the study. The measured and Mie theory calculations of multispectral βsca showed good correlation (R2=0.85-0.94). The average contribution of supermicron aerosol (mainly composed of sea salt particles advected in from the Pacific Ocean) to the total scattering coefficient ranged from less than 20% at 405 nm to greater than 80% at 1064 nm. From 22 to 28 June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the short wavelength scattering coefficients at both sites gradually increased due to increase in the size of submicron aerosols. At the same time, BC mass-normalized absorption cross-section (MAC) values for ultraviolet wavelengths at T1 increased by ~60% compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for 870 nm wavelength were identical at both sites. These results suggest formation of moderately brown secondary organic aerosols formed in biogenically-influenced urban air.
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Darvish, Behnam; Seibert, Mark
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David
2017-06-01
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.
NASA Astrophysics Data System (ADS)
Attwood, A. R.; Washenfelder, R. A.; Brock, C. A.; Hu, W.; Baumann, K.; Campuzano-Jost, P.; Day, D. A.; Edgerton, E. S.; Murphy, D. M.; Palm, B. B.; McComiskey, A.; Wagner, N. L.; Sá, S. S.; Ortega, A.; Martin, S. T.; Jimenez, J. L.; Brown, S. S.
2014-11-01
Emissions of SO2 in the United States have declined since the early 1990s, resulting in a decrease in aerosol sulfate mass in the Southeastern U.S. of -4.5(±0.9)% yr-1 between 1992 and 2013. Organic aerosol mass, the other major aerosol component in the Southeastern U.S., has decreased more slowly despite concurrent emission reductions in anthropogenic precursors. Summertime measurements in rural Alabama quantify the change in aerosol light extinction as a function of aerosol composition and relative humidity. Application of this relationship to composition data from 2001 to 2013 shows that a -1.1(±0.7)% yr-1 decrease in extinction can be attributed to decreasing aerosol water mass caused by the change in aerosol sulfate/organic ratio. Calculated reductions in extinction agree with regional trends in ground-based and satellite-derived aerosol optical depth. The diurnally averaged summertime surface radiative effect has changed by 8.0 W m-2, with 19% attributed to the decrease in aerosol water.
NASA Astrophysics Data System (ADS)
Xie, Shucheng; Wang, Yongbiao
2011-03-01
The pattern and causes of Permo/Triassic biotic crisis were mainly documented by faunal and terrestrial plant records. We reviewed herein the geomicrobiological perspective on this issue based on the reported cyanobacterial record. Two episodic cyanobacterial blooms were observed to couple with carbon isotope excursions and faunal mass extinction at Meishan section, suggestive of the presence of at least two episodic biotic crises across the Permian-Triassic boundary (PTB). The two episodes of cyanobacterial blooms, carbon isotope excursions and faunal mass extinction were, respectively, identified in several sections of the world, inferring the presence of two global changes across the PTB. Close associations among the three records (cyanobacterial bloom, shift in carbon isotope composition, and faunal extinction) were subsequently observed in three intervals in the Early Triassic, the protracted recovery period as previously thought, inferring the occurrence of more episodes of global changes. Spatiotemporal association of cyanobacterial blooms with volcanic materials in South China, and probably in South-east Asia, infers their causal relationship. Volcanism is believed to trigger the biotic crisis in several ways and to cause the close association among microbial blooms, the carbon isotope excursions and faunal mass extinctions in four intervals from the latest Permian to the Early Triassic. The major episodes of the well-known Siberian flood eruption are proposed to be responsible for the extinctions in the Early Triassic, but their synchronicity with the end-Permian extinction awaits more precise dating data to confirm. Geomicrobial records are thus suggestive of a long-term episodic biotic crisis (at least four episodes) lasting from the latest Permian to the end of the Early Triassic, induced by the global volcanic eruptions and sea level changes during Pangea formation.
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.
1994-01-01
UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.
Day, Michael O.; Ramezani, Jahandar; Bowring, Samuel A.; Sadler, Peter M.; Erwin, Douglas H.; Abdala, Fernando; Rubidge, Bruce S.
2015-01-01
A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions. PMID:26156768
The fossil record of evolution: Data on diversification and extinction
NASA Technical Reports Server (NTRS)
Sepkoski, J. John, Jr.
1990-01-01
The two principle efforts include: (1) a compilation of a synoptic, mesoscale data base on times of origination and extinction of animal genera in the oceans over the last 600 million years of geologic time; and (2) an analysis of statistical patterns in these data that relate to the diversification of complex life and to the occurrence of mass extinctions, especially those that might be associated with extraterrestrial phenomena. The data base is unique in its taxonomic scope and detail and in its temporal resolution. It is a valuable resource for investigating evolutionary expansions and extinctions of complex life.
Ohta, T.
1992-01-01
There are several unsolved problems concerning the model of nearly neutral mutations. One is the interaction of subdivided population structure and weak selection that spatially fluctuates. The model of nearly neutral mutations whose selection coefficient spatially fluctuates has been studied by adopting the island model with periodic extinction-recolonization. Both the number of colonies and the migration rate play significant roles in determining mutants' behavior, and selection is ineffective when the extinction-recolonization is frequent with low migration rate. In summary, the number of mutant substitutions decreases and the polymorphism increases by increasing the total population size, and/or decreasing the extinction-recolonization rate. However, by increasing the total size of the population, the mutant substitution rate does not become as low when compared with that in panmictic populations, because of the extinction-recolonization, especially when the migration rate is limited. It is also found that the model satisfactorily explains the contrasting patterns of molecular polymorphisms observed in sibling species of Drosophila, including heterozygosity, proportion of polymorphism and fixation index. PMID:1582566
THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shu; Gao Jian; Jiang, B. W.
In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s}more » band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease of the 3.1 {mu}m H{sub 2}O ice absorption optical depth {tau}{sub ice}.« less
Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)
NASA Technical Reports Server (NTRS)
Rampino, Michael R.; Volk, Tyler
1988-01-01
The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan; et al.,
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To testmore » this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.« less
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Gosselink, M.; Haller, J.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Marrouche, J.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Hopkins, W.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Berry, E.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.; CMS Collaboration
2014-08-01
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.
Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution
Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry
2016-01-01
Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937
Mass extinctions and missing matter
NASA Technical Reports Server (NTRS)
Stothers, R. B.
1984-01-01
The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.
Starburst clusters in the Galactic center
NASA Astrophysics Data System (ADS)
Habibi, Maryam
2014-09-01
The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2
PARAMETER MONITORING FOR REAL-TIME ELECTROSTATIC PRECIPITATOR TROUBLESHOOTING
The paper discusses detailed numerical calculations of particle charge and extinction coefficient performed using current models. The results suggest that information about rapping reentrainment, back corona, and, possibly, sulfuric acid condensation can be gained from simultaneo...
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...
Measurement of phase function of aerosol at different altitudes by CCD Lidar
NASA Astrophysics Data System (ADS)
Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing
2018-02-01
The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.
2016-11-01
The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.
Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.
Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C
2007-04-13
Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.
NASA Astrophysics Data System (ADS)
Hanley, J. T.; Mack, E. J.
1985-05-01
The overall objective of the program is the development of an effective screening agent to both visible and IR wavelengths utilizing pyrotechnically-generated hygroscopic aerosol. In pursuit of an effective IR wavelength screen and an increased understanding of the particle formation mechanisms and resultant size distribution, the primary objective of this year's effort was to evaluate the influence of an energetic binder (GAP) on the performance of two pyrotechnics, one which produced a KCL aerosol, the other a mixed aerosol, the other a mixed aerosol of MgCl2 and carbon. Comparison tests were run, in Calspan's 600 cu m test chamber, in which the performance of the energetic vs. non-energetic pyrotechnics was compared in terms of mass yield, payload mass extinction coefficient, aerosol decay rate and size distribution. A secondary objective of limited scope was to investigate the potential of using IR absorbing surface active agents to coat the smoke aerosol so as to enhance the smoke's IR wavelength absorption as well as inhibit subsequent aerosol evaporation upon exposure to decreasing humidity.
Methanogenic burst in the end-Permian carbon cycle.
Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E
2014-04-15
The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.
Mass extinctions caused by large bolide impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, L.W.
1987-07-01
Evidence indicates that the collision of Earth and a large piece of Solar System derbris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.
Infrared Extinction and Stellar Populations in the Milky Way Midplane
NASA Astrophysics Data System (ADS)
Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.
2012-01-01
The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.
2015-12-01
Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.
Body size and extinction risk in terrestrial mammals above the species level.
Tomiya, Susumu
2013-12-01
Mammalian body mass strongly correlates with life history and population properties at the scale of mouse to elephant. Large body size is thus often associated with elevated extinction risk. I examined the North American fossil record (28-1 million years ago) of 276 terrestrial genera to uncover the relationship between body size and extinction probability above the species level. Phylogenetic comparative analysis revealed no correlation between sampling-adjusted durations and body masses ranging 7 orders of magnitude, an observation that was corroborated by survival analysis. Most of the ecological and temporal groups within the data set showed the same lack of relationship. Size-biased generic extinctions do not constitute a general feature of the Holarctic mammalian faunas in the Neogene. Rather, accelerated loss of large mammals occurred during intervals that experienced combinations of regional aridification and increased biomic heterogeneity within continents. The latter phenomenon is consistent with the macroecological prediction that large geographic ranges are critical to the survival of large mammals in evolutionary time. The frequent lack of size selectivity in generic extinctions can be reconciled with size-biased species loss if extinctions of large and small mammals at the species level are often driven by ecological perturbations of different spatial and temporal scales, while those at the genus level are more synchronized in time as a result of fundamental, multiscale environmental shifts.
Lamsdell, James C; Selden, Paul A
2017-01-01
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
The future of the oceans past.
Jackson, Jeremy B C
2010-11-27
Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.
Jackson, Jeremy B. C.
2010-01-01
Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable. PMID:20980323
Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions.
Shakeri, M S; Rezvani, M
2011-09-01
The effect of different amounts of Y2O3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li2O-20Al2O3-65.2SiO2 (wt%) composition accompanied with Y2O3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y3+ ions as the network former in the track of SiO4 tetrahedrals. Copyright © 2011 Elsevier B.V. All rights reserved.
Turvey, Samuel T; Fritz, Susanne A
2011-09-12
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.
Turvey, Samuel T.; Fritz, Susanne A.
2011-01-01
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat. PMID:21807737
Geologic constraints on the macroevolutionary history of marine animals
Peters, Shanan E.
2005-01-01
The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic. PMID:16105949
Measurements of Intensive Aerosol Optical Properties During TexAQS II
NASA Astrophysics Data System (ADS)
Atkinson, D. B.; Radney, J. G.; Wright, M. E.
2007-12-01
Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle nucleation or growth via gas-phase condensation. These results may be confirmed by other data taken during the TRAMP experiment. These results will be discussed in the context of aerosol effects on regional and larger scale climate.
Flourishing ocean drives the end-Permian marine mass extinction
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2015-01-01
The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth’s history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323
NASA Astrophysics Data System (ADS)
Tackett, L.
2017-12-01
The Rhaetian Stage of the Late Triassic terminated with a mass extinction, but the late Norian-early Rhaetian paleoecological and geochemical transitions and their relationship to events leading up to the End-Triassic mass extinction are poorly understood. To address this issue, presented here is a multi-proxy dataset from New York Canyon, Nevada (USA) relating isotope chemostratigraphy (Sr, C, O), shallow marine benthic macrofossils, and microfossils. At this Panthalassan locality the Norian-Rhaetian boundary is characterized by a negative strontium isotope excursion that facilitates correlation with Tethyan deposits. In sedimentary horizons immediately below and above this excursion, siliceous demosponge spicules (desmids) are abundant components of the microfossil populations, and silicification of calcareous microfossils becomes common. In the sedimentary beds marking the main excursion, hexactinellid sponge spicules are abundant. These results indicate a large input of dissolved silica in shallow marine environments, while the negative strontium values are consistent with increased seafloor spreading and hydrothermal vent activity or basalt weathering, either scenario being a plausible silica source for the typically silica-limited sponges that proliferated during this interval. The biosedimentary features observed across the Norian-Rhaetian boundary are similar to those observed in the earliest Jurassic in marine sections around the world following the End-Triassic mass extinction, but no clear biotic turnover is observed across the Norian-Rhaetian boundary in this succession. Thus, biosedimentary shifts across the Norian-Rhaetian boundary may add important geochemical context to the end-Triassic mass extinction event.
NASA Astrophysics Data System (ADS)
Song, H.; Algeo, T. J.; Romaniello, S. J.; Tong, J.; Du, Y.; Wei, H.; Shen, S.; Anbar, A. D.
2016-12-01
The end-Guadalupian (Middle/Late Permian) mass extinction was one of the major crises of the Phanerozoic, resulting in the disappearance of numerous shallow-marine taxa. Several hypotheses have been proposed for this catastrophe but are still under debate. Here, we undertook a high-resolution carbonate U isotopic (δ238/235U) study of the Guadalupian-Lopingian boundary (GLB) at the Penglaitan section (Guadalupian/ Lopingian GSSP) to explore the causal relationship between ocean redox changes and the mass extinction event. The Penglaitan δ238U profile shows two abrupt negative excursions, one in the uppermost Guadalupian (Beds 6j-6k) and the other in the lowermost Lopingian (lower Bed 7). The first excursion (from ‒0.30 ‰ to ‒0.50 ‰) coincided with the main extinction event, suggesting that rapid expansion of oceanic anoxia may have been a contributor to the biotic crisis. The second, larger excursion (from ‒0.25 ‰ to ‒0.65 ‰) demonstrates that the crisis interval was marked by multiple phases of expanded oceanic anoxia. A U-isotope mass balance model shows that, during these excursions, the anoxic/euxinic sink flux increased to 40 % of the total sink flux of seawater U, which is three times of the modern ocean value of 13 %. This study thus provides circumstantial evidence for a causal relationship between expansion of oceanic anoxia and the end-Guadalupian biotic crisis.
Flourishing ocean drives the end-Permian marine mass extinction.
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2015-08-18
The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.
The magnetic and mineralogical signature of the Deccan volcanism in the sedimentary record: a review
NASA Astrophysics Data System (ADS)
Font, Eric
2016-04-01
The contribution of the Deccan Traps volcanism in the Cretaceous-Palaeogene (KPg) crisis is still a matter of debate. The main limitation is the lack of mass extinction proxies within the Deccan lava flows, making hard the correlation of the onset of Deccan volcanism in India with the mass extinction recorded in the global marine record. An alternative is to investigate the magnetic and mineral assemblages of remote marine section. Iron oxides are very sensitive to changes in redox conditions, and thus can be possibly used as markers of paleoenvironmental changes driven by Deccan volcanism. This is the case in the Basque-Cantabric basin (Bidart, Zumaya) and the western margin of the Tethys (Gubbio), where an interval of low magnetic susceptibility (MS) containing akaganeite features in the last 50 cm just below the KPg boundary. The low MS interval originated from the loss of detrital and biogenic magnetites, features consistent with reductive iron oxide dissolution possibly linked to environmental acidification (acid rain and acidification of surficial waters). These insights provide new and promising benchmarks of the sedimentary imprint of the Deccan-induced paleoclimatic and paleoenvironmental changes. More importantly, the fact that the hypothesised Deccan perturbations occurred some 50 cm (~30,000 y.r.) before the KPg boundary suggest that Deccan volcanism may have contribute significantly to the KPg mass extinction. Keywords: Deccan, reductive iron oxide dissolution, akaganeite, KPg boundary, mass extinction Funded by IDL (FCT UID/GEO/50019/2013)
UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust
NASA Astrophysics Data System (ADS)
Shvartzvald, Y.; Calchi Novati, S.; Gaudi, B. S.; Bryden, G.; Nataf, D. M.; Penny, M. T.; Beichman, C.; Henderson, C. B.; Jacklin, S.; Schlafly, E. F.; Huston, M. J.
2018-04-01
We report the discovery of a giant planet in event UKIRT-2017-BLG-001, detected by the United Kingdom Infrared Telescope (UKIRT) microlensing survey. The mass ratio between the planet and its host is q={1.50}-0.14+0.17× {10}-3, about 1.5 times the Jupiter/Sun mass ratio. The event lies 0.°35 from the Galactic center and suffers from high extinction of A K = 1.68. Therefore, it could be detected only by a near-infrared (NIR) survey. The field also suffers from large spatial differential extinction, which makes it difficult to estimate the source properties required to derive the angular Einstein radius. Nevertheless, we find evidence suggesting that the source is located in the far disk. If correct, this would be the first source star of a microlensing event to be identified as belonging to the far disk. We estimate the lens mass and distance using a Bayesian analysis to find that the planet’s mass is {1.28}-0.44+0.37 {M}J, and it orbits a {0.81}-0.27+0.21 {M}ȯ star at an instantaneous projected separation of {4.18}-0.88+0.96 au. The system is at a distance of {6.3}-2.1+1.6 kpc, and so likely resides in the Galactic bulge. In addition, we find a non-standard extinction curve in this field, in agreement with previous results toward high-extinction fields near the Galactic center.
Optical and structural properties of amorphous Se x Te100- x aligned nanorods
NASA Astrophysics Data System (ADS)
Al-Agel, Faisal A.
2013-12-01
In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.
Extinction coefficients and purity of single-walled carbon nanotubes.
Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C
2004-11-01
Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.
NASA Astrophysics Data System (ADS)
Straižys, V.; Boyle, R. P.; Janusz, R.; Laugalys, V.; Kazlauskas, A.
2013-06-01
The results of CCD photometry in the Vilnius seven-color system down to V = 18 mag are presented for 242 stars in the direction of the young open cluster IC 1805 that is located in the active star-forming region W4 in the Cas OB6 association. Photometric data were used to classify stars into spectral and luminosity classes, and to determine their interstellar reddenings, extinctions and distances. We confirm the CH3OH and H2O maser VLBA parallax results that the cluster is located close to the front side of the Perseus arm, at a distance about 2.0 kpc. In the color-magnitude diagram, zero-age main sequence (ZAMS) stars of the cluster extend to spectral class A0. The extinction values for the majority of the cluster stars are between 2.2 and 2.7 mag, with a mean value of 2.46 mag. This extinction originates mainly between the Sun and the outer edge of the Local arm, in accordance with the distribution of CO clouds. In the Perseus arm and beyond, the extinction was investigated using the classification and reddening determination for A0-F0 stars measured in the r, i, Hα system of the IPHAS survey to r = 19 mag. The extinction AV within the Perseus arm ranges from 2.5-4.5 mag at the front edge to 3.0-5.0 mag at the far edge. Possibly, we have found about 20 early A-type stars located in the Outer arm. The 2MASS JHKs photometry for red giants gives much higher extinction values (up to about 6 mag), which would correspond to the stars located behind dense clouds of both arms. In the area, using the WISE, 2MASS, and IPHAS photometry data, 18 possible young stellar objects (YSOs) of low masses are identified. Six high-mass YSOs (five Ae/Be stars and a F6e star) are known from previous investigations. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A3
Open-path, closed-path and reconstructed aerosol extinction at a rural site.
Gordon, Timothy D; Prenni, Anthony J; Renfro, James R; McClure, Ethan; Hicks, Bill; Onasch, Timothy B; Freedman, Andrew; McMeeking, Gavin R; Chen, Ping
2018-04-09
The Handix Scientific Open-Path Cavity Ringdown Spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's Cavity Attenuated Phase Shift Particulate Matter Extinction Monitor, CAPS PMex). Derived hygroscopicity (RH < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern U.S. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high time resolution OPCRDS+CAPS PMex data, and the K ext model was more accurate than the γ model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.
A Lesson on Evolution & Natural Selection
ERIC Educational Resources Information Center
Curtis, Anthony D.
2010-01-01
I describe three activities that allow students to explore the ideas of evolution, natural selection, extinction, mass extinction, and rates of evolutionary change by engaging a simple model using paper, pens, chalk, and a chalkboard. As a culminating activity that supports expository writing in the sciences, the students write an essay on mass…
NASA Astrophysics Data System (ADS)
Alvarez, L. W.
1982-09-01
The development of the theory that the mass extinction of the dinosaurs at the Cretaceous-Tertiary boundary was caused by as asteroid impact is reviewed. The scientists involved, the objections to the theory, and the evidence refuting those objections are presented chronologically.
NASA Technical Reports Server (NTRS)
Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma;
2012-01-01
Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal, aerosol particle scattering is largely capped below 1.5 km MSL, though ground-based lidar measurements at Singapore differ slightly from this finding. Significant aerosol particle presence over land is similarly capped near 3.0 km MSL over most regions. Particle presence at low levels regionally, except over India, is dominated by relatively non-depolarizing particles. Industrial haze, sea salt droplets and fresh smoke are thus most likely present.
Synthesis and characterization of surface-modified colloidal CdTe Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajh, T.; Micic, O.I.; Nozik, A.J.
1993-11-18
The controlled synthesis of quantized colloidal CdTe nanocrystals (in aqueous solutions) with narrow size distributions and stabilized against rapid oxidation was achieved by capping the quantum dot particles with 3-mercapto-1,2-propanediol. Nanocrystals (i.e., quantum dots) with mean diameters of 20, 25, 35, and 40 A were produced. Optical absorption spectra showed strong excitonic peaks at the smallest size; the absorption coefficient was shown to follow an inverse cube dependence on particle diameter, while the extinction coefficient per particle remained constant. The quantum yield for photoluminescence increased with decreasing particle size and reached 20% at 20 A. The valence band edges ofmore » the CdTe quantum dots were determined by pulse radiolysis experiments (hole injection from oxidizing radicals); the bandgaps were estimated from pulse radiolysis data (redox potentials of hole and electron injecting radicals) and from the optical spectra. The dependence of the CdTe bandgap on quantum dot size was found to be much weaker than predicted by the effective mass approximation; this result is consistent with recently published theoretical calculations by several groups. 36 refs., 5 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Kandori, Ryo; Tamura, Motohide; Nagata, Tetsuya; Tomisaka, Kohji; Kusakabe, Nobuhiko; Nakajima, Yasushi; Kwon, Jungmi; Nagayama, Takahiro; Tatematsu, Ken’ichi
2018-04-01
The relationship between dust polarization and extinction was determined for the cold dense starless molecular cloud core FeSt 1-457 based on the background star polarimetry of dichroic extinction at near-infrared wavelengths. Owing to the known (three-dimensional) magnetic field structure, the observed polarizations from the core were corrected by considering (a) the subtraction of the ambient polarization component, (b) the depolarization effect of inclined distorted magnetic fields, and (c) the magnetic inclination angle of the core. After these corrections, a linear relationship between polarization and extinction was obtained for the core in the range up to A V ≈ 20 mag. The initial polarization versus extinction diagram changed dramatically after the corrections of (a) to (c), with the correlation coefficient being refined from 0.71 to 0.79. These corrections should affect the theoretical interpretation of the observational data. The slope of the finally obtained polarization–extinction relationship is {P}H/{E}H-{Ks}=11.00+/- 0.72 % {mag}}-1, which is close to the statistically estimated upper limit of the interstellar polarization efficiency. This consistency suggests that the upper limit of interstellar polarization efficiency might be determined by the observational viewing angle toward polarized astronomical objects.
Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.
Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E
2003-06-13
We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.
Radiocarbon dating of extinct fauna in the Americas recovered from tar pits
NASA Astrophysics Data System (ADS)
Jull, A. J. T.; Iturralde-Vinent, M.; O'Malley, J. M.; MacPhee, R. D. E.; McDonald, H. G.; Martin, P. S.; Moody, J.; Rincón, A.
2004-08-01
We have obtained radiocarbon dates by accelerator mass spectrometry on bones of extinct large mammals from tar pits. Results on some samples of Glyptodon and Holmesina (extinct large mammals similar to armadillos) yielded ages of >25 and >21 ka, respectively. We also studied the radiocarbon ages of three different samples of bones from the extinct Cuban ground sloth, Parocnus bownii, which yielded dates ranging from 4960 ± 280 to 11 880 ± 420 yr BP. In order to remove the tar component pretreat the samples sufficiently to obtain reliable dates, we cleaned the samples by Soxhlet extraction in benzene. Resulting samples of collagenous material were often small.
Impact Ejecta Layer from the Mid-Devonian: Possible Connection to Global Mass Extinctions
NASA Astrophysics Data System (ADS)
Ellwood, Brooks B.; Benoist, Stephen L.; Hassani, Ahmed El; Wheeler, Christopher; Crick, Rex E.
2003-06-01
We have found evidence for a bolide impacting Earth in the mid-Devonian (~380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.
Risk of population extinction from fixation of deleterious and reverse mutations.
Lande, R
1998-01-01
A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N(e)) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N(e) below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 10(3) to 10(4) generations.
Selection in a subdivided population with local extinction and recolonization.
Cherry, Joshua L
2003-01-01
In a subdivided population, local extinction and subsequent recolonization affect the fate of alleles. Of particular interest is the interaction of this force with natural selection. The effect of selection can be weakened by this additional source of stochastic change in allele frequency. The behavior of a selected allele in such a population is shown to be equivalent to that of an allele with a different selection coefficient in an unstructured population with a different size. This equivalence allows use of established results for panmictic populations to predict such quantities as fixation probabilities and mean times to fixation. The magnitude of the quantity N(e)s(e), which determines fixation probability, is decreased by extinction and recolonization. Thus deleterious alleles are more likely to fix, and advantageous alleles less likely to do so, in the presence of extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations. PMID:12807797
NASA Astrophysics Data System (ADS)
Nisantzi, A.; Mamouri, R. E.; Ansmann, A.; Hadjimitsis, D.
2014-06-01
Four-year observations (2010-2014) with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E), Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3 days old smoke plumes in terms of particle depolarization contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke-dust mixtures from the emission event to phases of long-range transport (>4 days after emission). We found significant differences in the particle depolarization ratio (PDR) with values from 9-18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3-13% when Turkish fires were absent. High Ångström exponents of 1.4-2.2 during all these events with lofted smoke layers, occuring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. the travel time (spatial distance between Limassol and last fire area), PDR decreased strongly from initial values around 16-18% (one day travel) to 4-8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with the literature. Computation of particle extinction coefficient and mass concentrations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions of the order of 10% (for PDR = 4%, travel times >4 days) and 50% (PDR = 15%, one day travel time) and mass-related dust fractions of 25% (PDR = 4%) to 80% (PDR = 15%). Biomass burning should be considered as another source of free tropospheric soil dust.
Fischer, Valentin; Bardet, Nathalie; Benson, Roger B J; Arkhangelsky, Maxim S; Friedman, Matt
2016-03-08
Despite their profound adaptations to the aquatic realm and their apparent success throughout the Triassic and the Jurassic, ichthyosaurs became extinct roughly 30 million years before the end-Cretaceous mass extinction. Current hypotheses for this early demise involve relatively minor biotic events, but are at odds with recent understanding of the ichthyosaur fossil record. Here, we show that ichthyosaurs maintained high but diminishing richness and disparity throughout the Early Cretaceous. The last ichthyosaurs are characterized by reduced rates of origination and phenotypic evolution and their elevated extinction rates correlate with increased environmental volatility. In addition, we find that ichthyosaurs suffered from a profound Early Cenomanian extinction that reduced their ecological diversity, likely contributing to their final extinction at the end of the Cenomanian. Our results support a growing body of evidence revealing that global environmental change resulted in a major, temporally staggered turnover event that profoundly reorganized marine ecosystems during the Cenomanian.
Mass extinction in poorly known taxa.
Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H; Bouchet, Philippe; Fontaine, Benoît
2015-06-23
Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.
Mass extinction in poorly known taxa
Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H.; Bouchet, Philippe; Fontaine, Benoît
2015-01-01
Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis. PMID:26056308
Extinction of Harrington's mountain goat
Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.
1986-01-01
Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters. Images PMID:16593655
Trophic network models explain instability of Early Triassic terrestrial communities
Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel
2007-01-01
Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191
Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR
NASA Astrophysics Data System (ADS)
Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas
2016-04-01
Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm-1 sr-1. Winter values of Raman backscatter coefficient are less than 0.06 Mm-1 sr-1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.
Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling
Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models. PMID:19225569
Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.
Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashino, D.; Sugiyama, N.; Silverman, J. D.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy formore » 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.« less
Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions
NASA Astrophysics Data System (ADS)
Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.
2016-02-01
The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.
Golisch, Anne; Heba, Stefanie; Glaubitz, Benjamin; Tegenthoff, Martin; Lissek, Silke
2017-01-01
A distributed network including prefrontal and hippocampal regions is involved in context-related extinction learning as well as in renewal. Renewal describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Animal studies have demonstrated that prefrontal, but not hippocampal N-methyl-D-aspartate receptor (NMDAR) antagonism disrupted extinction learning and processing of task context. However, human studies of NMDAR in extinction learning are lacking, while NMDAR antagonism yielded contradictory results in other learning tasks. This fMRI study investigated the role of NMDAR for human behavioral and brain activation correlates of extinction and renewal. Healthy volunteers received a single dose of the NMDAR antagonist memantine prior to extinction of previously acquired stimulus-outcome associations presented in either identical or novel contexts. We observed better, and partly faster, extinction learning in participants receiving the NMDAR antagonist compared to placebo. However, memantine did not affect renewal. In both extinction and recall, the memantine group showed a deactivation in extinction-related brain regions, particularly in the prefrontal cortex, while hippocampal activity was increased. This higher hippocampal activation was in turn associated with the participants' body mass index (BMI) and extinction errors. Our results demonstrate potentially dose-related enhancing effects of memantine and highlight involvement of hippocampal NMDAR in context-related extinction learning. PMID:28326025
Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments
NASA Technical Reports Server (NTRS)
Skala, R.; Lnagenhorst, F.; Hoerz, F.
2004-01-01
Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.
Mass Estinctions Caused by Large Bolide Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavarez, Luis W.
1987-01-01
In this talk, I will describe the wealth of evidence that has forced my colleagues and me to conclude that the great mass extinctions, 65 million years ago, were caused by a large bolide impact on the earth. Bolide is a new word to most people, and it means any piece of solar system debris, such as a meteorite, asteroid, or comet nucleus. As I will show, the bolide responsible for the extinction of most of the then existing species, including the dinosaurs, was about 10 kilometers in diameter.
Comparative Earth history and Late Permian mass extinction
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J. P.
1996-01-01
The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.
Progress towards a universal family of UV-IR extinction laws
NASA Astrophysics Data System (ADS)
Maíz Apellániz, J.; Trigueros Páez, E.; Bostroem, A. K.; Barbá, R. H.; Evans, C. J.
2017-03-01
We present our progress on the study of extinction laws along three diferent lines. [a] We compare how well different families of extinction laws fit existing photometric data for Galactic sightlines and we find that the Maíz Apellániz et al. (2014) family provides better results than those of Cardelli et al. (1989) or Fitzpatrick (1999). [b] We describe the HST/STIS spectrophotometry in the 1700-10 200 Å range that we are obtaining for several tens of sightlines in 30 Doradus with the purpose of deriving an improved wavelength-detailed family of extinction laws. [c] We present the study we are conducting on the behavior of the extinction law in the infrared by combining 2MASS and WISE photometry with Spitzer and ISO spectrophotometry.
Sensitivity of the Lidar ratio to changes in size distribution and index of refraction
NASA Technical Reports Server (NTRS)
Evans, B. T. N.
1986-01-01
In order to invert lidar signals to obtain reliable extinction coefficients, sigma, a relationship between sigma and the backscatter coefficient, beta, must be given. These two coefficients are linearly related if the complex index of refraction, m, particle shape size distribution, N, does not change along the path illuminated by the laser beam. This, however, is generally not the case. An extensive Mie computation of the lidar ratio R = beta/sigma and the sensitivity of R to the changes in a parametric space defined by N and m were examined.
NASA Astrophysics Data System (ADS)
Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.
2012-12-01
Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the coated particles, at each RH%, the fRHext values fall between those for pure ammonium sulfate and pure 1,2,6-hexanetriol values. This suggests that the organic coating does not prevent water uptake by the ammonium sulfate cores.
Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir
2008-04-01
We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.
The spectral irradiance of the moon
Kieffer, H.H.; Stone, T.C.
2005-01-01
Images of the Moon at 32 wavelengths from 350 to 2450 nm have been obtained from a dedicated observatory during the bright half of each month over a period of several years. The ultimate goal is to develop a spectral radiance model of the Moon with an angular resolution and radiometric accuracy appropriate for calibration of Earth-orbiting spacecraft. An empirical model of irradiance has been developed that treats phase and libration explicitly, with absolute scale founded on the spectra of the star Vega and returned Apollo samples. A selected set of 190 standard stars are observed regularly to provide nightly extinction correction and long-term calibration of the observations. The extinction model is wavelength-coupled and based on the absorption coefficients of a number of gases and aerosols. The empirical irradiance model has the same form at each wavelength, with 18 coefficients, eight of which are constant across wavelength, for a total of 328 coefficients. Over 1000 lunar observations are fitted at each wavelength; the average residual is less than 1%. The irradiance model is actively being used in lunar calibration of several spacecraft instruments and can track sensor response changes at the 0.1% level. ?? 2005. The American Astronomical Society. All rights reserved.
Liao, Bo-Huei; Hsiao, Chien-Nan
2014-02-01
Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, L.W.
1982-09-01
The development of the theory that the mass extinction of the dinosaurs at the Cretaceous-Tertiary boundary was caused by an asteroid impact is reviewed. The personnel involved, the objections to the theory, and the evidence refuting those objections are presented chronologically. (ACR)
Periodic cometary showers: Real or imaginary?
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.; Sharpton, V. L.; Goodacre, A. K.; Garvin, J. B.
1985-01-01
Since the initial reports in 1980, a considerable body of chemical and physical evidence has been accumulated to indicate that a major impact event occurred on earth 65 million years ago. The effects of this event were global in extent and have been suggested as the cause of the sudden demise or mass extinction of a large percentage of life, including the dinosaurs, at the end of the geologic time period known as the Cretaceous. Recent statistical analyses of extinctions in the marine faunal record for the last 250 million years have suggested that mass extinctions may occur with a periodicity of every 26 to 30 million years. Following these results, other workers have attempted to demonstrate that these extinction events, like that at the end of the Cretaceous, are temporally correlated with large impact events. A recent scenario suggests that they are the result of periodic showers of comets produced by either the passage of the solar system through the galactic plane or by perturbations of the cometary cloud in the outer solar system by a, as yet unseen, solar companion. This hypothesized solar companion has been given the name Nemesis.
Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.
2004-01-01
Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.
Numerical experiments with model monophyletic and paraphyletic taxa
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Kendrick, D. C.; Sepkoski JJ, J. r. (Principal Investigator)
1993-01-01
The problem of how accurately paraphyletic taxa versus monophyletic (i.e., holophyletic) groups (clades) capture underlying species patterns of diversity and extinction is explored with Monte Carlo simulations. Phylogenies are modeled as stochastic trees. Paraphyletic taxa are defined in an arbitrary manner by randomly choosing progenitors and clustering all descendants not belonging to other taxa. These taxa are then examined to determine which are clades, and the remaining paraphyletic groups are dissected to discover monophyletic subgroups. Comparisons of diversity patterns and extinction rates between modeled taxa and lineages indicate that paraphyletic groups can adequately capture lineage information under a variety of conditions of diversification and mass extinction. This suggests that these groups constitute more than mere "taxonomic noise" in this context. But, strictly monophyletic groups perform somewhat better, especially with regard to mass extinctions. However, when low levels of paleontologic sampling are simulated, the veracity of clades deteriorates, especially with respect to diversity, and modeled paraphyletic taxa often capture more information about underlying lineages. Thus, for studies of diversity and taxic evolution in the fossil record, traditional paleontologic genera and families need not be rejected in favor of cladistically-defined taxa.
Near-infrared reddening of extra-galactic giant molecular clouds in a face-on geometry
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2008-04-01
Aims: We describe the near-infrared reddening signature of giant molecular clouds (GMCs) in external galaxies. In particular, we examine the EJ-H and EH-K color excesses and the effective extinction law observed in discrete GMC regions. We also study the effect of the relative scale height of the GMC distribution to the color excesses, and to the observed mass function of GMCs when the masses are derived using color excess as a linear estimator of mass. Methods: We performed Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions, resembling a face-on geometry. The scattered light is included in the models, and near-infrared color maps were calculated from the simulated data. We performed the simulations with different scale heights of GMCs and compared the color excesses and attenuation of light in different geometries. We extracted GMCs from the simulated color maps and compared the mass functions to the input mass functions. Results: The effective near-infrared reddening law, i.e. the ratio EJ-H/EH-K, has a value close to unity in GMC regions. The ratio depends significantly on the relative scale height of GMCs, ξ, and for ξ values 0.1...0.75, we find the typical ratios of 0.6...1.1. The effective extinction law turns out to be very flat in GMC regions. We find the ratios of apparent extinctions of AH^a/AKa = 1.35...1.55 and AJ^a/AHa = 1.15. The effect of the scattered flux on the effective reddening law, as well as on the effective extinction law, is significant. Regarding the GMC mass function, we find no correlation between the input and observed slopes of the mass functions. Instead, the observed slope reflects the parameter ξ and the dynamical range of the mass function. As the observed slope depends on the geometric parameters, which are not known, it is not possible to constrain the slope of the mass function using this technique. We estimate that only a fraction of 10...20% of the total mass of GMCs is recovered, if the observed color excess values are transformed to masses using the Galactic reddening law. In the case of individual clouds, the fraction can vary between ~0...50%.
NASA Astrophysics Data System (ADS)
Cohen, E.
2013-12-01
The mass extinction event at the Cretaceous-Paleogene (K-Pg) boundary was the result of a bolide impact, and is popularly known for the extinction of the dinosaurs, but is also one of the largest Paleogene mass extinctions identified. In addition, it was followed by a period of drastic changes in ecological conditions, including a complete alteration of the global carbon cycle; the root cause of this change is still debated. Little information is known regarding changes in the nitrogen cycle during these periods of mass extinction and recovery. Given the importance of the nitrogen cycle to primary production and its relationship to the redox state of the local environment, determining changes in the nitrogen cycle will provide important information as to the processes of global mass extinction and the subsequent recovery. Data from the JOIDES Resolution is used to introduce students to authentic data analysis. Students are asked to analyze if standards are consistent, is there anomalous data, how are significant figures used, and how consistent is the method which then, in turn effects data collection. Students are provided data from one core sample and asked to represent the data using technology. Students use Infograms, a technology which not only includes graphs but also visuals and texts in order to represent information in a meaningful way. Students create correlation between the data of nitrogen isotopes, foraminifera, oxygen isotopes, age of the earth and depth of collections. The lesson aligned to standards for students' grade 6-12 were created to support the content surrounding: National Science Education Content Standards: Standard A: Science as Inquiry Standard D: Earth and Space Science Ocean Literacy Essential Principles: 3. The ocean is a major influence on weather and climate 7. The ocean is largely unexplored.
NASA Astrophysics Data System (ADS)
Srinivasan, P. S.; Bachan, A.; Stanford School of Earth Sciences Department of Paleobiology
2011-12-01
The Central Atlantic Magmatic Province (CAMP) is one of the largest flood basalt provinces known. Its empacement coincided with a period of major plant and animal extinctions-the end-Triassic mass extinction. It is postulated that the release of large amounts of carbon dioxide into the atmosphere from the volcanics was one of the causes of this mass extinction. However,the magnitude of impact on ocean chemistry, and timescales involved remain unclear. To determine CAMP's role in this increased flux of CO2, we studied the geochemistry of samples of rock from the Triassic-Jurassic boundary, in northern Italy. Specifically, by observing the ratios of carbon isotopes 12 and 13 in the organic carbon found in these limestone sedimentary rocks, we could determine the ratio of carbonate to organic burial fluxes globally. We drilled limestone rocks from two different sections in the Southern Alps-- Pozzo Glaciale and Val Adrara. Once they were drilled to a fine powder-like form, we acidified the CaCO3 with HCl to isolate the organic carbon. Then, the organic matter was cleaned to rid the acid, and eventually was placed into tin foil to be placed into the Elemental Analyzer, which determined the percent Carbon in each sample. We tested about 200 samples, and placed them into the Mass Spectrometer machine to determine the isotopic ratios of C12 and C13. According to the data, there was a positive excursion for both sample sets, which means that there was an increase in the amount of C13 in the organic matter. The duration of this excursion was at least a few hundred thousand years. This suggests a protracted increase in the burial flux of organic carbon globally, which is consistent with the hypothesized volcanically driven increase in CO2. This further bolsters the contention that CAMP was responsible, in part, for this mass extinction. By studying the earth's recovery from increased carbon fluxes in the past, we can predict the recovery path that our anthropogenically altered atmosphere today will take.
The role of extinction in evolution
NASA Technical Reports Server (NTRS)
Raup, D. M.
1994-01-01
The extinction of species is not normally considered an important element of neodarwinian theory, in contrast to the opposite phenomenon, speciation. This is surprising in view of the special importance Darwin attached to extinction, and because the number of species extinctions in the history of life is almost the same as the number of originations; present-day biodiversity is the result of a trivial surplus of originations, cumulated over millions of years. For an evolutionary biologist to ignore extinction is probably as foolhardy as for a demographer to ignore mortality. The past decade has seen a resurgence of interest in extinction, yet research on the topic is still at a reconnaissance level, and our present understanding of its role in evolution is weak. Despite uncertainties, extinction probably contains three important elements. (i) For geographically widespread species, extinction is likely only if the killing stress is one so rare as to be beyond the experience of the species, and thus outside the reach of natural selection. (ii) The largest mass extinctions produce major restructuring of the biosphere wherein some successful groups are eliminated, allowing previously minor groups to expand and diversify. (iii) Except for a few cases, there is little evidence that extinction is selective in the positive sense argued by Darwin. It has generally been impossible to predict, before the fact, which species will be victims of an extinction event.
THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.; Schinnerer, Eva; Munoz-Mateos, Juan-Carlos
2012-04-01
We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest thatmore » the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.« less
NASA Astrophysics Data System (ADS)
Svensen, H.; Planke, S.; Polozov, A.; Schmidbauer, N.
2006-12-01
Life on Earth was severely affected during the Permo-Triasic mass extinction. A 5-10º C global warming and oceanic anoxia accompanied the mass extinction. There is a consensus that massive volcanic eruptions from the Siberian Traps Large igneous province 251 million years ago played a key role in the environmental catastrophe. However, the actual mechanisms are strongly debated. We present new field, geochemical and experimental data that links both the mass extinction and the global warming to processes in the Tunguska Basin in Siberia. The basin is composed of dominantly Cambrian evaporates and Ordovician to Permian marine to terrestrial carbonates, sandstones, shales and coals. During the formation of the Siberian Traps, these sediments were intruded by magmatic sills and dykes. The emplacement resulted in heating of the sedimentary host rocks, gas generation and formation of hundreds of explosion pipes. The pipes are rooted in a 1-2 km thick evaporate sequence (halite, anhydrate, dolostone) and contain brecciated and altered sedimentary and magmatic rocks. Borehole data show intense alteration in the contact aureoles around sill intrusions and around the pipes. Heating experiments of hydrocarbon-bearing evaporates show that gases generated during metamorphism include CO2, SO2 and a range of halocarbons and sulfur-bearing hydrocarbon gases. Furthermore, chloride isotope data from the contact aureoles support a removal of Cl during metamorphism. Our results demonstrate that metamorphism and degassing from the Tunguska Basin provided the necessary components to cause an environmental disaster, including destruction of the Late Permian ozone layer.
Zhang, Feifei; Romaniello, Stephen J; Algeo, Thomas J; Lau, Kimberly V; Clapham, Matthew E; Richoz, Sylvain; Herrmann, Achim D; Smith, Harrison; Horacek, Micha; Anbar, Ariel D
2018-04-01
Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ 238 U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ 238 U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO 4 3- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
Switchgrass leaf area index and light extinction coefficients
USDA-ARS?s Scientific Manuscript database
Biomass production simulation modeling for plant species is often dependent upon accurate simulation or measurement of canopy light interception and radiation use efficiency. With the recent interest in converting large tracts of land to biofuel species cropping, modeling vegetative yield with grea...
DEVELOPMENT AND APPLICAIONS OF A STANDARD VISUAL INDEX
A standard visual index appropriate for characterizing visibility through uniform hazes, is defined in terms of either of the traditional metrics: visual range or extinction coefficient. This index was designed to be linear with respect to perceived visual changes over its entire...
CALIPSO V1.00 L3 IceCloud Formal Release Announcement
Atmospheric Science Data Center
2018-06-13
... The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO mission team announces the ... distributions of ice cloud extinction coefficients and ice water content histograms on a uniform spatial grid. All parameters are ...
Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction
NASA Astrophysics Data System (ADS)
White, Rosalind V.
2002-12-01
The mass extinction that occurred at the end of the Permian period, 250 million years ago, was the most devastating loss of life that Earth has ever experienced. It is estimated that ca.96% of marine species were wiped out and land plants, reptiles, amphibians and insects also suffered. The causes of this catastrophic event are currently a topic of intense debate. The geological record points to significant environmental disturbances, for example, global warming and stagnation of ocean water. A key issue is whether the Earth's feedback mechanisms can become unstable on their own, or whether some forcing is required to precipitate a catastrophe of this magnitude. A prime suspect for pushing Earth's systems into a critical condition is massive end-Permian Siberian volcanism, which would have pumped large quantities of carbon dioxide and toxic gases into the atmosphere. Recently, it has been postulated that Earth was also the victim of a bolide impact at this time. If further research substantiates this claim, it raises some intriguing questions. The Cretaceous-Tertiary mass extinction, 65 million years ago, was contemporaneous with both an impact and massive volcanism. Are both types of calamity necessary to drive Earth to the brink of faunal cataclysm? We do not presently have enough pieces of the jigsaw to solve the mystery of the end-Permian extinction, but the forensic work continues.
Optical modulation in silicon waveguides via charge state control of deep levels.
Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A
2009-10-12
The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.
On Kill Curves and Sampling Protocols: Studying the Relationships between Impact and Extinction
NASA Astrophysics Data System (ADS)
Ward, Peter D.
1997-05-01
The pioneering efforts of Raup (1990) have suggested that a relationship exists between crater diameter and percentage of organisms killed as a result of meteor or comet impact with the Earth. The new data (coming from study of the Manson and Chicxulub craters) suggest that the nature of target rock may be a factor nearly as important as impacter size, and that other aspects of the target, including its latitude, the atmospheric and climate conditions characterizing the Earth, as well as the stage of biological evolution and community development at the time of impact are factors which all must be factored into any new kill curve. It may be that no single 'curve' is appropriate, but that a family of curves may be necessary to model the biological effects of large impacts. We propose that a new protocol be developed to better constrain and understand the relationship between impact and extinction. Rather than searching known mass extinction boundaries for evidence of impact (an exercise which up to now has demonstrated that only the Chicxulub crater can be unambiguously related to a mass extinction of planetary scale), we propose that four known craters be investigated to see if they are temporally correlated with extinction at any detectable level. We suggest that Kara, Popigai, Manson, and Manicouagan Craters be investigated in the following way. First, what is their age? The Manson lesson is that the first step in understanding the relationship between impact and extinction is through reliable age dating. Second, can distal components of the impact ejecta (spherules, shocked quartz, and mineral signatures) be located from sedimentary record? Third, once identified, do these signatures coincide with paleontological or geochemical markers of extinction in either the synoptic literature, or from actual outcrops (or deep sea cores).
Extinction and the spatial dynamics of biodiversity
Jablonski, David
2008-01-01
The fossil record amply shows that the spatial fabric of extinction has profoundly shaped the biosphere; this spatial dimension provides a powerful context for integration of paleontological and neontological approaches. Mass extinctions evidently alter extinction selectivity, with many factors losing effectiveness except for a positive relation between survivorship and geographic range at the clade level (confirmed in reanalyses of end-Cretaceous extinction data). This relation probably also holds during “normal” times, but changes both slope and intercept with increasing extinction. The strong geographical component to clade dynamics can obscure causation in the extinction of a feature or a clade, owing to hitchhiking effects on geographic range, so that multifactorial analyses are needed. Some extinctions are spatially complex, and regional extinctions might either reset a diversity ceiling or create a diversification debt open to further diversification or invasion. Evolutionary recoveries also exhibit spatial dynamics, including regional differences in invasibilty, and expansion of clades from the tropics fuels at least some recoveries, as well as biodiversity dynamics during normal times. Incumbency effects apparently correlate more closely with extinction intensities than with standing diversities, so that regions with higher local and global extinctions are more subject to invasion; the latest Cenozoic temperate zones evidently received more invaders than the tropics or poles, but this dynamic could shift dramatically if tropical diversity is strongly depleted. The fossil record can provide valuable insights, and their application to present-day issues will be enhanced by partitioning past and present-day extinctions by driving mechanism rather than emphasizing intensity. PMID:18695229
Variability in life-history and ecological traits is a buffer against extinction in mammals.
González-Suárez, Manuela; Revilla, Eloy
2013-02-01
Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management. © 2012 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni
2014-03-01
Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.
NASA Astrophysics Data System (ADS)
Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; da Silva, Arlindo; Colarco, Peter; Castellanos, Patricia; Korenskiy, Mikhail; Hu, Qiaoyun; Whiteman, David N.; Pérez-Ramírez, Daniel; Augustin, Patrick; Fourmentin, Marc; Kolgotin, Alexei
2018-02-01
Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.
Characterization of soot properties in two-meter JP-8 pool fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail
2005-02-01
The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less
Whittle, Nigel; Schmuckermair, Claudia; Gunduz Cinar, Ozge; Hauschild, Markus; Ferraguti, Francesco; Holmes, Andrew; Singewald, Nicolas
2013-01-01
Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled ‘Cognitive Enhancers’. PMID:22722028
Star formation and extinct radioactivities
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1984-01-01
An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.