Sample records for mass function determinations

  1. Measuring Aggregation of Events about a Mass Using Spatial Point Pattern Methods

    PubMed Central

    Smith, Michael O.; Ball, Jackson; Holloway, Benjamin B.; Erdelyi, Ferenc; Szabo, Gabor; Stone, Emily; Graham, Jonathan; Lawrence, J. Josh

    2017-01-01

    We present a methodology that detects event aggregation about a mass surface using 3-dimensional study regions with a point pattern and a mass present. The Aggregation about a Mass function determines aggregation, randomness, or repulsion of events with respect to the mass surface. Our method closely resembles Ripley’s K function but is modified to discern the pattern about the mass surface. We briefly state the definition and derivation of Ripley’s K function and explain how the Aggregation about a Mass function is different. We develop the novel function according to the definition: the Aggregation about a Mass function times the intensity is the expected number of events within a distance h of a mass. Special consideration of edge effects is taken in order to make the function invariant to the location of the mass within the study region. Significance of aggregation or repulsion is determined using simulation envelopes. A simulation study is performed to inform researchers how the Aggregation about a Mass function performs under different types of aggregation. Finally, we apply the Aggregation about a Mass function to neuroscience as a novel analysis tool by examining the spatial pattern of neurotransmitter release sites as events about a neuron. PMID:29046865

  2. Binary Systems and the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  3. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  4. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  5. Excited-State Effective Masses in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  6. Asymptotic coefficients for one-interacting-level Voigt profiles

    NASA Astrophysics Data System (ADS)

    Cope, D.; Lovett, R. J.

    1988-02-01

    The asymptotic behavior of general Voigt profiles with general width and shift functions has been determined by Cope and Lovett (1987). The resulting asymptotic coefficients are functions of the perturber/radiator mass ratio; also, the coefficients for the one-interacting-level (OIL) profiles proposed by Ward et al. (1974) were studied. In this paper, the behavior of the OIL asymptotic coefficients for large mass ratio values is determined, thereby providing a complete picture of OIL asymptotics for all mass ratios.

  7. The Theory of Propellers I : Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    Values of the circulation function have been obtained for dual-rotating propellers. Numerical values are given for four, eight, and twelve-blade dual-rotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determine for single-rotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced.

  8. Cuban Mass Media: Organization, Control and Functions. Journalism Monographs Number Seventy-Eight.

    ERIC Educational Resources Information Center

    Nichols, John Spicer

    The mass media as interdependent parts of a larger social system both control and are controlled by other subsystems. The various combinations of control, in turn, determine the functions the media system will serve. In the 1960's, the Cuban mass media underwent frequent change that reflected the volatility of the revolutionary process. Today,…

  9. Determination of the top-quark pole mass and strong coupling constant from the t t-bar production cross section in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-08-21

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass,more » $$m_t^{pole}$$, or the strong coupling constant, $$\\alpha_S$$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$$^{+3.0}_{-2.8}$$ GeV is obtained when constraining $$\\alpha_S$$ at the scale of the Z boson mass, $$m_Z$$, to the current world average. Alternatively, by constraining $$m_t^{pole}$$ to the latest average from direct mass measurements, a value of $$\\alpha_S(m_Z)$$ = 0.1151$$^{+0.0028}_{-0.0027}$$ is extracted. This is the first determination of $$\\alpha_S$$ using events from top-quark production.« less

  10. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    PubMed Central

    Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi

    2017-01-01

    Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420

  11. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  12. Luminosity Function of Faint Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph

    2006-10-01

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  13. Uncertainties and Systematic Effects on the estimate of stellar masses in high z galaxies

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Fontana, A.; Giallongo, E.; Grazian, A.; Menci, N.; Pentericci, L.; Santini, P.

    2009-05-01

    We discuss the uncertainties and the systematic effects that exist in the estimates of the stellar masses of high redshift galaxies, using broad band photometry, and how they affect the deduced galaxy stellar mass function. We use at this purpose the latest version of the GOODS-MUSIC catalog. In particular, we discuss the impact of different synthetic models, of the assumed initial mass function and of the selection band. Using Chariot & Bruzual 2007 and Maraston 2005 models we find masses lower than those obtained from Bruzual & Chariot 2003 models. In addition, we find a slight trend as a function of the mass itself comparing these two mass determinations with that from Bruzual & Chariot 2003 models. As consequence, the derived galaxy stellar mass functions show diverse shapes, and their slope depends on the assumed models. Despite these differences, the overall results and scenario is observed in all these cases. The masses obtained with the assumption of the Chabrier initial mass function are in average 0.24 dex lower than those from the Salpeter assumption, at all redshifts, causing a shift of galaxy stellar mass function of the same amount. Finally, using a 4.5 μm-selected sample instead of a Ks-selected one, we add a new population of highly absorbed, dusty galaxies at z~=2-3 of relatively low masses, yielding stronger constraints on the slope of the galaxy stellar mass function at lower masses.

  14. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  15. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia.

    PubMed

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.

  16. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  17. Memory effects in nanoparticle dynamics and transport

    NASA Astrophysics Data System (ADS)

    Sanghi, Tarun; Bhadauria, Ravi; Aluru, N. R.

    2016-10-01

    In this work, we use the generalized Langevin equation (GLE) to characterize and understand memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle. It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory function with the reduced mass of the system. Further, we show that for different mass nanoparticles it is the initial value of the memory function and not its relaxation time that determines the "memory" or "memoryless" dynamics. The size and the shape of the nanoparticle are found to influence both the functional-form and the initial value of the memory function. For a fixed mass nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also investigate and highlight the role of memory in nanoparticle dynamics and transport.

  18. Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2009-09-01

    Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier

  19. Determination of the mass function of extra-galactic GMCs via NIR color maps. Testing the method in a disk-like geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2007-06-01

    The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.

  20. Center-of-Mass Tomography and Wigner Function for Multimode Photon States

    NASA Astrophysics Data System (ADS)

    Dudinets, Ivan V.; Man'ko, Vladimir I.

    2018-06-01

    Tomographic probability representation of multimode electromagnetic field states in the scheme of center-of-mass tomography is reviewed. Both connection of the field state Wigner function and observable Weyl symbols with the center-of-mass tomograms as well as connection of the Grönewold kernel with the center-of-mass tomographic kernel determining the noncommutative product of the tomograms are obtained. The dual center-of-mass tomogram of the photon states are constructed and the dual tomographic kernel is obtained. The models of other generalized center-of-mass tomographies are discussed. Example of two-mode even and odd Schrödinger cat states is presented in details.

  1. An analytic formula for the supercluster mass function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seunghwan; Lee, Jounghun, E-mail: slim@astro.umass.edu, E-mail: jounghun@astro.snu.ac.kr

    2014-03-01

    We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicatormore » of any deviation of the real universe from the prediction of the standard ΛCDM model.« less

  2. Muscle abnormalities in osteogenesis imperfecta

    PubMed Central

    Veilleux, L-N.; Trejo, P.; Rauch, F.

    2017-01-01

    Osteogenesis imperfecta (OI) is mainly characterized by bone fragility but muscle abnormalities have been reported both in OI mouse models and in children with OI. Muscle mass is decreased in OI, even when short stature is taken into account. Dynamic muscle tests aiming at maximal eccentric force production reveal functional deficits that can not be explained by low muscle mass alone. However, it appears that diaphyseal bone mass is normally adapted to muscle force. At present the determinants of muscle mass and function in OI have not been clearly defined. Physiotherapy interventions and bisphosphonate treatment appear to have some effect on muscle function in OI. Interventions targeting muscle mass have shown encouraging results in OI animal models and are an interesting area for further research. PMID:28574406

  3. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  4. A test of the cross-scale resilience model: Functional richness in Mediterranean-climate ecosystems

    USGS Publications Warehouse

    Wardwell, D.A.; Allen, Craig R.; Peterson, G.D.; Tyre, A.J.

    2008-01-01

    Ecological resilience has been proposed to be generated, in part, in the discontinuous structure of complex systems. Environmental discontinuities are reflected in discontinuous, aggregated animal body mass distributions. Diversity of functional groups within body mass aggregations (scales) and redundancy of functional groups across body mass aggregations (scales) has been proposed to increase resilience. We evaluate that proposition by analyzing mammalian and avian communities of Mediterranean-climate ecosystems. We first determined that body mass distributions for each animal community were discontinuous. We then calculated the variance in richness of function across aggregations in each community, and compared observed values with distributions created by 1000 simulations using a null of random distribution of function, with the same n, number of discontinuities and number of functional groups as the observed data. Variance in the richness of functional groups across scales was significantly lower in real communities than in simulations in eight of nine sites. The distribution of function across body mass aggregations in the animal communities we analyzed was non-random, and supports the contentions of the cross-scale resilience model. ?? 2007 Elsevier B.V. All rights reserved.

  5. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes?

    NASA Astrophysics Data System (ADS)

    Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.

    2016-08-01

    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.

  6. Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells.

    PubMed

    Bonarius, H P; Timmerarends, B; de Gooijer, C D; Tramper, J

    The estimation of intracellular fluxes of mammalian cells using only mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. In order to quantify fluxes in cyclic pathways the mass balance equations can be complemented with several constraints: (1) the mass balances of co-metabolites, such as ATP or NAD(P)H, (2) linear objective functions, (3) flux data obtained by isotopic-tracer experiments. Here, these three methods are compared for the analysis of fluxes in the primary metabolism of continuously cultured hybridoma cells. The significance of different theoretical constraints and different objective functions is discussed after comparing their resulting flux distributions to the fluxes determined using 13CO2 and 13C-lactate measurements of 1 - 13C-glucose-fed hybridoma cells. Metabolic fluxes estimated using the objective functions "maximize ATP" and "maximize NADH" are relatively similar to the experimentally determined fluxes. This is consistent with the observation that cancer cells, such as hybridomas, are metabolically hyperactive, and produce ATP and NADH regardless of the need for these cofactors. Copyright 1998 John Wiley & Sons, Inc.

  7. First constraints on the stellar mass function of star-forming clumps at the peak of cosmic star formation

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Adamo, Angela

    2018-06-01

    Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to -2. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at z ˜ 1 - 3.5. The sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope ˜-1.7 and flattens at masses below 2 × 107 M⊙. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope -2, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope ≃ -2. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.

  8. Increased left ventricular mass and diastolic dysfunction are associated with endothelial dysfunction in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, Bogomir; Poredos, Pavel

    2007-01-01

    We aimed to investigate left ventricular (LV) morphology and function in normotensive offspring of subjects with essential hypertension (familial trait - FT), and to determine the association between LV mass and determinants of LV diastolic function and endothelium-dependent (NO-mediated) dilation of the brachial artery (BA). The study encompassed 76 volunteers of whom 44 were normotonics with FT aged 28-39 (mean 33) years and 32 age-matched controls without FT. LV mass and LV diastolic function was measured using conventional echocardiography and tissue Doppler imaging (TDI). LV diastolic filling properties were assessed and reported as the peak E/A wave ratio, and peak septal annular velocities (E(m) and E(m)/A(m) ratio) on TDI. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperaemia (flow-mediated dilation--FMD) were measured. In subjects with FT, the LV mass index was higher than in controls (92.14+/-24.02 vs 70.08+/-20.58); p<0.001). Offspring of hypertensive families had worse LV diastolic function than control subjects (lower E/A ratio, lower E(m) and E(m)/A(m) ratio; p<0.001). In subjects with FT, FMD was decreased compared with the controls (6.11+/-3.28% vs 10.20+/-2.07%; p<0.001). LV mass index and E(m)/A(m) ratio were associated with FMD (p<0.001). In normotensive individuals with FT, LV morphological and functional changes were found. We demonstrated that an increase in LV mass and alterations in LV diastolic function are related to endothelial dysfunction.

  9. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    USDA-ARS?s Scientific Manuscript database

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  10. The Mass Function in h+(chi) Persei

    NASA Astrophysics Data System (ADS)

    Bragg, Ann; Kenyon, Scott

    2000-08-01

    Knowledge of the stellar initial mass function (IMF) is critical to understanding star formation and galaxy evolution. Past studies of the IMF in open clusters have primarily used luminosity functions to determine mass functions, frequently in relatively sparse clusters. Our goal with this project is to derive a reliable, well- sampled IMF for a pair of very dense young clusters (h+(chi) Persei) with ages, 1-2 × 10^7 yr (e.g., Vogt A& A 11:359), where stellar evolution theory is robust. We will construct the HR diagram using both photometry and spectral types to derive more accurate stellar masses and ages than are possible using photometry alone. Results from the two clusters will be compared to examine the universality of the IMF. We currently have a spectroscopic sample covering an area within 9 arc-minutes of the center of each cluster taken with the FAST Spectrograph. The sample is complete to V=15.4 and contains ~ 1000 stars. We request 2 nights at WIYN/HYDRA to extend this sample to deeper magnitudes, allowing us to determine the IMF of the clusters to a lower limiting mass and to search for a pre-main sequence, theoretically predicted to be present for clusters of this age. Note that both clusters are contained within a single HYDRA field.

  11. Excursion set mass functions for hierarchical Gaussian fluctuations

    NASA Technical Reports Server (NTRS)

    Bond, J. R.; Kaiser, N.; Cole, S.; Efstathiou, G.

    1991-01-01

    It is pointed out that most schemes for determining the mass function of virialized objects from the statistics of the initial density perturbation field suffer from the cloud-in-cloud problem of miscounting the number of low-mass clumps, many of which would have been subsumed into larger objects. The paper proposes a solution based on the theory of the excursion sets of F(r, R sub f), the four-dimensional initial density perturbation field smoothed with a continuous hierarchy of filters of radii R sub f.

  12. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    NASA Astrophysics Data System (ADS)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  13. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls.

    PubMed

    Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G

    2012-04-01

    Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.

  14. Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Driver, S. P.; Loveday, J.; Taylor, E. N.; Kelvin, L. S.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Brough, S.; Hopkins, A. M.; Bamford, S. P.; Peacock, J. A.; Bland-Hawthorn, J.; Conselice, C. J.; Croom, S. M.; Jones, D. H.; Parkinson, H. R.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Tuffs, R. J.

    2012-03-01

    We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a density-corrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0= 70 km s-1 Mpc-1, the GSMF is well described between 108 and 1011.5 M⊙ using a double Schechter function with ?, ?, α1=-0.35, ? and α2=-1.47. This result is more robust to uncertainties in the flow-model corrected redshifts than from the shallower Sloan Digital Sky Survey main sample (r < 17.8 mag). The upturn in the GSMF is also seen directly in the i-band and K-band galaxy luminosity functions. Accurately measuring the GSMF below 108 M⊙ is possible within the GAMA survey volume but as expected requires deeper imaging data to address the contribution from low surface-brightness galaxies.

  15. High mass resolution isochronous time-of-flight spectrograph for three-dimensional space plasma measurements

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Bochsler, P.; Ghielmetti, A. G.; Hamilton, D. C.

    1990-01-01

    By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, an instrument was developed that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution (M/Delta-M greater than 50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment.

  16. Determination of atomic hydrogen in non-thermal hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry.

    PubMed

    Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min

    2005-01-01

    Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.

  17. A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo

    We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less

  18. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  19. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  20. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  1. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    PubMed

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  2. Quantal diffusion description of multinucleon transfers in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ayik, S.; Yilmaz, B.; Yilmaz, O.; Umar, A. S.

    2018-05-01

    Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustable parameter, includes the effects of shell structure, and is consistent with the fluctuation-dissipation theorem of the nonequilibrium statistical mechanics. As a first application of the approach, we analyze the fragment mass distribution in 48Ca+ 238U collisions at the center-of-mass energy Ec.m.=193 MeV and compare the calculations with the experimental data.

  3. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  4. Light intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study

    USDA-ARS?s Scientific Manuscript database

    Background: Identifying modifiable determinants of fat mass and muscle strength in older adults is important given their impact on physical functioning and health. Light intensity physical activity and sedentary behavior are potential determinants, but their relations to these outcomes are poorly un...

  5. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  6. Mass-improvement of the vector current in three-flavor QCD

    NASA Astrophysics Data System (ADS)

    Fritzsch, P.

    2018-06-01

    We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O( a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.

  7. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: calf circumference, midarm muscle circumference and walking speed.

    PubMed

    Akın, S; Mucuk, S; Öztürk, A; Mazıcıoğlu, M; Göçer, Ş; Arguvanlı, S; Şafak, E D

    2015-10-01

    The aim of this study was to determine the prevalence of muscle strength-based sarcopenia and to determine possible predictors. This is a cross-sectional population-based study in the community-dwelling Turkish elderly. Anthropometric measurements, namely body height, weight, triceps skin fold (TSF), mid upper arm circumference (MUAC), waist circumference (WC) and calf circumference (CC), were noted. The midarm muscle circumference (MAMC) was calculated by using MUAC and TSF measurement. Sarcopenia was assessed, adjusted for body mass index (BMI) and gender, according to muscle strength. Physical performance was determined by 4 m walking speed (WS; m/s). The receiver operating curve analysis was performed to determine cut-offs of CC, MAMC and 4 m WS. A total of 879 elderly subjects, 50.1% of whom were female, were recruited. The mean handgrip strength (HGS) and s.d. was 24.2 (8.8) kg [17.9 (4.8) female, 30.6 (7.1) male]. The muscle function-dependent sarcopenia was 63.4% (female 73.5%, male 53.2%). The muscle mass-dependent sarcopenia for CC (<31 cm) and MAMC(<21.1 cm in males, <19.9 cm in females) was 6.7% and 7.3%, respectively. The prevalence of low 4 m WS (≤ 0.8 m/s) was 81.8% (91.3% in females and 72.3% in males, respectively). We compared MAMC, CC and 4 m WS and found that AUC for 4 m WS was the best predictor of sarcopenia. An adequate muscle mass may not mean a reliable muscle function. Muscle function may describe sarcopenia better compared with muscle mass. The CC, MAMC and 4 m WS cut-offs may be used to assess sarcopenia in certain age groups.

  8. On the link between energy equipartition and radial variation in the stellar mass function of star clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2017-01-01

    We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.

  9. Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB

    NASA Astrophysics Data System (ADS)

    De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie

    2016-07-01

    This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.

  10. Bivariate mass-size relation as a function of morphology as determined by Galaxy Zoo 2 crowdsourced visual classifications

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Scarlata, Claudia; Fortson, Lucy; Willett, Kyle; Galloway, Melanie

    2016-01-01

    It is well known that the mass-size distribution evolves as a function of cosmic time and that this evolution is different between passive and star-forming galaxy populations. However, the devil is in the details and the precise evolution is still a matter of debate since this requires careful comparison between similar galaxy populations over cosmic time while simultaneously taking into account changes in image resolution, rest-frame wavelength, and surface brightness dimming in addition to properly selecting representative morphological samples.Here we present the first step in an ambitious undertaking to calculate the bivariate mass-size distribution as a function of time and morphology. We begin with a large sample (~3 x 105) of SDSS galaxies at z ~ 0.1. Morphologies for this sample have been determined by Galaxy Zoo crowdsourced visual classifications and we split the sample not only by disk- and bulge-dominated galaxies but also in finer morphology bins such as bulge strength. Bivariate distribution functions are the only way to properly account for biases and selection effects. In particular, we quantify the mass-size distribution with a version of the parametric Maximum Likelihood estimator which has been modified to account for measurement errors as well as upper limits on galaxy sizes.

  11. [Anthropometry, body composition and functional limitations in the elderly].

    PubMed

    Arroyo, Patricia; Lera, Lydia; Sánchez, Hugo; Bunout, Daniel; Santos, José Luis; Albala, Cecilia

    2007-07-01

    Functional limitations limit the independence and jeopardize the quality of life of elderly subjects. To assess the association between anthropometric measures and body composition with functional limitations in community-living older people. Cross-sectional survey of 377 people > or = 6 5 years old (238 women), randomly selected from the SABE/Chile project. Complete anthropometric measurements were done. Handgrip muscle strength was measured using dynamometers. Body composition was determined using Dual-Energy X-Ray Absorptiometry. Functional limitations were assessed using self reported and observed activities. Body mass index was strongly associated with fat mass (men r =0.87; women r =0.91) and with lean mass (men r =0.55; women r =0.62). Males had significantly greater lean mass (48.9 kg vs 34.9 kg), and bone mass than females (2.6 kg vs 1.8 kg) and women had higher fat mass than men (26.3 kg vs 22.9 kg). The prevalence of functional limitations was high, affecting more women than men (63.7% vs 37.5%, p <0.01). Functional limitations were associated with lower handgrip strength in both sexes. In the multiple regression models, with functional limitations as dependent variable and anthropometric measures as contributing variables, only hand grip strength had a significant association (negative) with functional limitations in both genders. Age was also a significant risk factor for functional limitations among women. Hand grip strength was strongly and inversely associated with functional limitations. Handgrip dynamometry is an easy, cheap and low time-consuming indicator for the assessment of functional limitations and the evaluation of geriatric interventions aimed to improve functional ability.

  12. Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia.

    PubMed

    Burney, Basil O; Hayes, Teresa G; Smiechowska, Joanna; Cardwell, Gina; Papusha, Victor; Bhargava, Peeyush; Konda, Bhavana; Auchus, Richard J; Garcia, Jose M

    2012-05-01

    Male cancer patients suffer from fatigue, sexual dysfunction, and decreased functional performance and muscle mass. These symptoms are seen in men with hypogonadism and/or inflammatory conditions. However, the relative contribution of testosterone and inflammation to symptom burden in cancer has not been well-established. The aim of this study was to measure testosterone levels in male cancer patients and determine the relationship between testosterone, inflammation, and symptom burden. This cross-sectional study enrolled patients from a tertiary-care center. SUBJECTS/OUTCOME MEASURES: Subjects included males with cancer-cachexia (CC; n = 45) and cancer without cachexia (CNC; n = 50), as well as noncancer controls (CO; n = 45). Total testosterone (TT), bioavailable testosterone, C-reactive protein (CRP), and IL-6 were measured in plasma. Functional performance was assessed by the ECOG (Eastern Cooperative Oncology Group) and KPS (Karnofsky Performance Scales), and sexual function was assessed by the IIEF (International Index of Erectile Function). Low testosterone levels were seen in more than 70% of CC cases. TT was lower in CC compared to CNC (P < 0.05). Also, CC had lower bioavailable testosterone, grip strength, IIEF scores, appendicular lean body mass, and fat mass and higher IL-6 and CRP compared to controls (P ≤ 0.05). ECOG and KPS were lower in CC and CNC compared to controls (P ≤ 0.05). On multiple regression analysis, TT, albumin, and CRP predicted symptoms differentially in cancer patients. CC patients have higher inflammation and lower testosterone, grip strength, functional status, erectile function, fat mass, and appendicular lean body mass. Inflammation, TT, and albumin are associated with heavier symptom burden in this population. Interventional trials are needed to determine whether testosterone replacement and/or antiinflammatory agents benefit cancer patients.

  13. Does the galaxy-halo connection vary with environment?

    NASA Astrophysics Data System (ADS)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  14. Effects of cosmic string velocities and the origin of globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less

  15. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  16. Effects of radiobiological uncertainty on shield design for a 60-day lunar mission

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.

  17. Effects of mass on aircraft sidearm controller characteristics

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A.

    1994-01-01

    When designing a flight simulator, providing a set of low mass variable-characteristic pilot controls can be very difficult. Thus, a strong incentive exists to identify the highest possible mass that will not degrade the validity of a simulation. The NASA Dryden Flight Research Center has conducted a brief flight program to determine the maximum acceptable mass (system inertia) of an aircraft sidearm controller as a function of force gradient. This information is useful for control system design in aircraft as well as development of suitable flight simulator controls. A modified Learjet with a variable-characteristic sidearm controller was used to obtain data. A boundary was defined between mass considered acceptable and mass considered unacceptable to the pilot. This boundary is defined as a function of force gradient over a range of natural frequencies. This investigation is limited to a study of mass-frequency characteristics only. Results of this investigation are presented in this paper.

  18. Optimal positions and parameters of translational and rotational mass dampers in beams subjected to random excitation

    NASA Astrophysics Data System (ADS)

    Łatas, Waldemar

    2018-01-01

    The problem of vibrations of the beam with the attached system of translational and rotational dynamic mass dampers subjected to random excitations with peaked power spectral densities, is presented in the hereby paper. The Euler-Bernoulli beam model is applied, while for solving the equation of motion the Galerkin method and the Laplace time transform are used. The obtained transfer functions allow to determine power spectral densities of the beam deflection and other dependent variables. Numerical examples present simple optimization problems of mass dampers parameters for local and global objective functions.

  19. VizieR Online Data Catalog: Tracers of the Milky Way mass (Bratek+, 2014)

    NASA Astrophysics Data System (ADS)

    Bratek, L.; Sikora, S.; Jalocha, J.; Kutschera, M.

    2013-11-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ~~150-200kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4x1011M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. (1 data file).

  20. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of effective mass of heavy hole from phonon-assisted excitonic luminescence spectra in ZnO

    NASA Astrophysics Data System (ADS)

    Shi, S. L.; Xu, S. J.

    2011-03-01

    Longitudinal optical (LO) phonon-assisted luminescence spectra of free excitons in high-quality ZnO crystal were investigated both experimentally and theoretically. By using the rigorous Segall-Mahan model based on the Green's function, good agreement between the experimental emission spectra involving one or two LO phonons and theoretical spectra can be achieved when only one adjustable parameter (effective mass of heavy hole) was adopted. This leads to determination of the heavy-hole effective mass mh⊥ = (0.8 m0 and mh∥ = 5.0 m0) in ZnO. Influence of anisotropic effective masses of heavy holes on the phonon sidebands is also discussed.

  2. Data Analysis Methods for Synthetic Polymer Mass Spectrometry: Autocorrelation

    PubMed Central

    Wallace, William E.; Guttman, Charles M.

    2002-01-01

    Autocorrelation is shown to be useful in describing the periodic patterns found in high- resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time-of-flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function. PMID:27446716

  3. The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.

    2013-12-01

    Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.

  4. The He I 2.06 microns/Br-gamma ratio in starburst galaxies - An objective constraint on the upper mass limit to the initial mass function

    NASA Technical Reports Server (NTRS)

    Doyon, Rene; Puxley, P. J.; Joseph, R. D.

    1992-01-01

    The use of the He I 2.06 microns/Br-gamma ratio as a constraint on the massive stellar population in star-forming galaxies is developed. A theoretical relationship between the He I 2.06 microns/Br-gamma ratio and the effective temperature of the exciting star in H II regions is derived. The effects of collisional excitation and dust within the nebula on the ratio are also considered. It is shown that the He I 2.06 microns/Br-gamma ratio is a steep function of the effective temperature, a property which can be used to determine the upper mass limit of the initial mass function (IMF) in galaxies. This technique is reliable for upper mass limits less than about 40 solar masses. New near-infrared spectra of starburst galaxies are presented. The He I 2.06 microns/Br-gamma ratios observed imply a range of upper mass limits from 27 to over 40 solar masses. There is also evidence that the upper mass limit is spatially dependent within a given galaxy. These results suggest that the upper mass limit is not a uniquely defined parameter of the IMF and probably varies with local physical conditions.

  5. From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348

    NASA Technical Reports Server (NTRS)

    Najita, Joan R.; Tiede, Glenn P.; Carr, John S.

    2000-01-01

    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.

  6. Body composition and lung function in cystic fibrosis and their association with adiposity and normal-weight obesity.

    PubMed

    Alvarez, Jessica A; Ziegler, Thomas R; Millson, Erin C; Stecenko, Arlene A

    2016-04-01

    This study aimed to evaluate the relationship between lung function and body composition in cystic fibrosis (CF) and examine the presence of normal-weight obesity (NWO), a high body fat percentage with a normal body mass index (BMI), in this population. In a pilot, cross-sectional study, 32 subjects with CF and a reference group of 20 adults without CF underwent body composition analysis with air displacement plethysmography. NWO was defined as a BMI <25 kg/m(2) and body fat >30% (for women) or >23% (for men). Lung function in subjects with CF was determined by the percentage of predicted forced expiratory volume in 1 s (FEV1% predicted). Despite lower BMI and fat-free mass index (P < 0.01), fat mass index and percent body fat did not differ between subjects with CF and the reference group. Among subjects with CF, FEV1% predicted was positively associated with fat-free mass index (β = 6.31 ± 2.93, P = 0.04) and inversely associated with fat mass index (β = -6.44 ± 2.93, P = 0.04), after adjusting for age, sex, and BMI. Ten subjects with CF (31%) had NWO, which corresponded with lower fat-free mass index and FEV1% predicted compared with overweight subjects (P = 0.006 and 0.004, respectively). Excess adiposity, particularly in the form of NWO, was inversely associated with lung function in CF. Larger prospective studies should be undertaken to confirm these findings and determine the long-term metabolic and clinical consequences of excess adiposity in CF. As the lifespan of individuals with CF increases, nutrition screening protocols, which primarily rely on BMI, may require reassessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The baryonic mass function of galaxies.

    PubMed

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  8. Stellar mass and velocity functions of galaxies. Backward evolution and the fate of Milky Way siblings

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Buat, V.; Ilbert, O.

    2010-11-01

    Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.

  9. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  10. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  11. Ballistic heat conduction and mass disorder in one dimension.

    PubMed

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  12. Functional Body Composition and Related Aspects in Research on Obesity and Cachexia

    PubMed Central

    Müller, M.J.; Baracos, V.; Bosy-Westphal, A.; Dulloo, A.; Eckel, J.; Fearon, K.C.H.; Hall, K.D.; Pietrobelli, A.; Sørensen, T.I.A.; Speakman, J.; Trayhurn, P.; Visser, M.; Heymsfield, S.B.

    2014-01-01

    The 12th Stock Conference addressed body composition and related functions in two extreme situations, obesity and cancer cachexia. The concept of “functional body composition” integrates body components into regulatory systems relating the mass of organs and tissues to corresponding in vivo functions and metabolic processes. This concept adds to an understanding of organ/tissue mass and function in the context of metabolic adaptations to weight change and disease. During weight gain and loss there are associated changes in individual body components while the relationships between organ and tissue mass are fixed. Thus, an understanding of weight regulation involves an examination of organ-tissue regulation rather than of individual organ mass. The between organ/tissue mass relationships are associated with and explained by cross-talk between organs and tissues mediated by cytokines, hormones, and metabolites that are coupled with changes in body weight, composition, and function as observed in obesity and cancer cachexia. In addition to established roles in intermediary metabolism, cell function and inflammation, organ-tissue cross-talk mediators are determinants of body composition and its’ change with weight gain and loss. The 12th Stock Conference supported Michael Stocks’ concept of gaining new insights by integrating research ideas from obesity and cancer cachexia. The conference presentations provide an in-depth understanding of body composition and metabolism. PMID:24835453

  13. Determination of beam-position dependent transfer functions of LCR-G gravimeters by means of moving mass calibration device in the Mátyáshegy Gravity and Geodynamical Observatory, Budapest

    NASA Astrophysics Data System (ADS)

    Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno

    2017-04-01

    In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. Authors wish to express their thanks to OTKA (Hungarian Scientific Research Fund) for their support (OTKA-K101603, OTKA K109060).

  14. Relationships among body weight, joint moments generated during functional activities, and hip bone mass in older adults

    PubMed Central

    Wang, Man-Ying; Flanagan, Sean P.; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.

    2012-01-01

    Objective To investigate the relationships among hip joint moments produced during functional activities and hip bone mass in sedentary older adults. Methods Eight male and eight female older adults (70–85 yr) performed functional activities including walking, chair sit–stand–sit, and stair stepping at a self-selected pace while instrumented for biomechanical analysis. Bone mass at proximal femur, femoral neck, and greater trochanter were measured by dual-energy X-ray absorptiometry. Three-dimensional hip moments were obtained using a six-camera motion analysis system, force platforms, and inverse dynamics techniques. Pearson’s correlation coefficients were employed to assess the relationships among hip bone mass, height, weight, age, and joint moments. Stepwise regression analyses were performed to determine the factors that significantly predicted bone mass using all significant variables identified in the correlation analysis. Findings Hip bone mass was not significantly correlated with moments during activities in men. Conversely, in women bone mass at all sites were significantly correlated with weight, moments generated with stepping, and moments generated with walking (p < 0.05 to p < 0.001). Regression analysis results further indicated that the overall moments during stepping independently predicted up to 93% of the variability in bone mass at femoral neck and proximal femur; whereas weight independently predicted up to 92% of the variability in bone mass at greater trochanter. Interpretation Submaximal loading events produced during functional activities were highly correlated with hip bone mass in sedentary older women, but not men. The findings may ultimately be used to modify exercise prescription for the preservation of bone mass. PMID:16631283

  15. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  16. Analysis of Glycosaminoglycans Using Mass Spectrometry

    PubMed Central

    Staples, Gregory O.; Zaia, Joseph

    2015-01-01

    The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS. PMID:25705143

  17. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapatero Osorio, M. R.; Béjar, V. J. S.; Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl

    We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership andmore » planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.« less

  18. On the scatter in the relation between stellar mass and halo mass: random or halo formation time dependent?

    NASA Astrophysics Data System (ADS)

    Wang, Lan; De Lucia, Gabriella; Weinmann, Simone M.

    2013-05-01

    The empirical traditional halo occupation distribution (HOD) model of Wang et al. fits, by construction, both the stellar mass function and correlation function of galaxies in the local Universe. In contrast, the semi-analytical models of De Lucia & Blazoit (hereafter DLB07) and Guo et al. (hereafter Guo11), built on the same dark matter halo merger trees than the empirical model, still have difficulties in reproducing these observational data simultaneously. We compare the relations between the stellar mass of galaxies and their host halo mass in the three models, and find that they are different. When the relations are rescaled to have the same median values and the same scatter as in Wang et al., the rescaled DLB07 model can fit both the measured galaxy stellar mass function and the correlation function measured in different galaxy stellar mass bins. In contrast, the rescaled Guo11 model still overpredicts the clustering of low-mass galaxies. This indicates that the detail of how galaxies populate the scatter in the stellar mass-halo mass relation does play an important role in determining the correlation functions of galaxies. While the stellar mass of galaxies in the Wang et al. model depends only on halo mass and is randomly distributed within the scatter, galaxy stellar mass depends also on the halo formation time in semi-analytical models. At fixed value of infall mass, galaxies that lie above the median stellar mass-halo mass relation reside in haloes that formed earlier, while galaxies that lie below the median relation reside in haloes that formed later. This effect is much stronger in Guo11 than in DLB07, which explains the overclustering of low mass galaxies in Guo11. Assembly bias in Guo11 model might be overly strong. Nevertheless, in case that a significant assembly bias indeed exists in the real Universe, one needs to use caution when applying current HOD and abundance matching models that employ the assumption of random scatter in the relation between stellar and halo mass.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on themore » cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.« less

  20. Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Mancuso, C.; Bressan, A.; Danese, L.

    2017-09-01

    The continuity equation is developed for the stellar mass content of galaxies and exploited to derive the stellar mass function of active and quiescent galaxies over the redshift range z˜ 0{--}8. The continuity equation requires two specific inputs gauged from observations: (I) the star formation rate functions determined on the basis of the latest UV+far-IR/submillimeter/radio measurements and (II) average star formation histories for individual galaxies, with different prescriptions for disks and spheroids. The continuity equation also includes a source term taking into account (dry) mergers, based on recent numerical simulations and consistent with observations. The stellar mass function derived from the continuity equation is coupled with the halo mass function and with the SFR functions to derive the star formation efficiency and the main sequence of star-forming galaxies via the abundance-matching technique. A remarkable agreement of the resulting stellar mass functions for active and quiescent galaxies of the galaxy main sequence, and of the star formation efficiency with current observations is found; the comparison with data also allows the characteristic timescales for star formation and quiescence of massive galaxies, the star formation history of their progenitors, and the amount of stellar mass added by in situ star formation versus that contributed by external merger events to be robustly constrained. The continuity equation is shown to yield quantitative outcomes that detailed physical models must comply with, that can provide a basis for improving the (subgrid) physical recipes implemented in theoretical approaches and numerical simulations, and that can offer a benchmark for forecasts on future observations with multiband coverage, as will become routinely achievable in the era of JWST.

  1. Antarctic Mass Loss from GRACE from Space- and Time-Resolved Modeling with Slepian Functions

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Harig, C.

    2013-12-01

    The melting of polar ice sheets is a major contributor to global sea-level rise. Antarctica is of particular interest since most of the mass loss has occurred in West Antarctica, however updated glacial isostatic adjustment (GIA) models and recent mass gains in East Antarctica have reduced the continent-wide integrated decadal trend of mass loss. Here we present a spatially and temporally resolved estimation of the Antarctic ice mass change using Slepian localization functions. With a Slepian basis specifically for Antarctica, the basis functions maximize their energy on the continent and we can project the geopotential fields into a sparse set of orthogonal coefficients. By fitting polynomial functions to the limited basis coefficients we maximize signal-to-noise levels and need not perform smoothing or destriping filters common to other approaches. In addition we determine an empirical noise covariance matrix from the GRACE data to estimate the uncertainty of mass estimation. When applied to large ice sheets, as in our own recent Greenland work, this technique is able to resolve both the overall continental integrated mass trend, as well as the spatial distribution of the mass changes over time. Using CSR-RL05 GRACE data between Jan. 2003 and Jan 2013, we estimate the regional accelerations in mass change for several sub-regions and examine how the spatial pattern of mass has changed. The Amundsen Sea coast of West Antarctica has experienced a large acceleration in mass loss (-26 Gt/yr^2). While mass loss is concentrated near Pine Island and Thwaites glaciers, it has also increased along the coast further towards the Ross ice shelf.

  2. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse

    PubMed Central

    Shaw, SC; Denison, EM; Cooper, C

    2017-01-01

    Sarcopenia is an age-related syndrome characterised by progressive and generalised loss of skeletal muscle mass and strength; it is a major contributor to the risk of physical frailty, functional impairment in older people, poor health-related quality of life, and premature death. Many different definitions have been used to describe sarcopenia and have resulted in varying estimates of prevalence of the condition. The most recent attempts of definitions have tried to integrate information on muscle mass, strength and physical function and provide a definition that is useful in both research and clinical settings. This review focuses on the epidemiology of the three distinct physiological components of sarcopenia, and highlights the similarities and differences between their patterns of variation with age, gender, geography and time; and the individual risk factors that cluster selectively with muscle mass, strength and physical function. Methods used to measure muscle mass, strength and physical functioning and how differences in these approaches can contribute to the varying prevalence rates will also be described. The evidence for this review was gathered by undertaking a systematic search of the literature. The descriptive characteristics of muscle mass, strength and function described in this review point to the urgent need for a consensual definition of sarcopenia incorporating these parameters. PMID:28469267

  3. Exploring SMBH assembly with semi-analytic modelling

    NASA Astrophysics Data System (ADS)

    Ricarte, Angelo; Natarajan, Priyamvada

    2018-02-01

    We develop a semi-analytic model to explore different prescriptions of supermassive black hole (SMBH) fuelling. This model utilizes a merger-triggered burst mode in concert with two possible implementations of a long-lived steady mode for assembling the mass of the black hole in a galactic nucleus. We improve modelling of the galaxy-halo connection in order to more realistically determine the evolution of a halo's velocity dispersion. We use four model variants to explore a suite of observables: the M•-σ relation, mass functions of both the overall and broad-line quasar population, and luminosity functions as a function of redshift. We find that `downsizing' is a natural consequence of our improved velocity dispersion mappings, and that high-mass SMBHs assemble earlier than low-mass SMBHs. The burst mode of fuelling is sufficient to explain the assembly of SMBHs to z = 2, but an additional steady mode is required to both assemble low-mass SMBHs and reproduce the low-redshift luminosity function. We discuss in detail the trade-offs in matching various observables and the interconnected modelling components that govern them. As a result, we demonstrate the utility as well as the limitations of these semi-analytic techniques.

  4. A lower bound on the Milky Way mass from general phase-space distribution function models

    NASA Astrophysics Data System (ADS)

    Bratek, Łukasz; Sikora, Szymon; Jałocha, Joanna; Kutschera, Marek

    2014-02-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ≈150-200 kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4 × 1011 M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A134

  5. Determining plasma parameters in cold, multi-species plasmas using Maxwell and Kappa distribution functions.

    NASA Astrophysics Data System (ADS)

    Jahn, J. M.; Denton, R. E.; Nose, M.; Bonnell, J. W.; Kurth, W. S.; Livadiotis, G.; Larsen, B.; Goldstein, J.

    2016-12-01

    Determining the total plasma density from ion data is essentially an impossible task for particle instruments. The lowest instrument energy threshold never includes the coldest particles (i.e., Emin> 0 eV), and any positive spacecraft charging—which is normal for a sunlit spacecraft—exacerbates the problem by shifting the detectable minimum energy to higher values. For ion data, traditionally field line resonance measurements of ULF waves in the magnetosphere have been used to determine the mass loading of magnetic field lines in this case. This approach delivers a reduced ion mass M that represents the mass ratio of all ions on a magnetic field line. For multi-species plasmas like the plasmasphere this bounds the problem, but it does not provide a unique solution. To at least estimate partial densities using particle instruments, one traditionally performs fits to the measured particle distribution functions under the assumption that the underlying particle distributions are Maxwellian. Uncertainties performing a fit aside, there is usually no possibility to detect a possible bi-Maxwellian distribution where one of the Maxwellians is very cold. The tail of such a distribution may fall completely below the low energy threshold of the measurement. In this paper we present a different approach to determining the fractional temperatures Ti and densities ni in a multi-species plasma. First, we describe and demonstrate an approach to determine Ti and ni that does not require fitting but relies more on the mathematical properties of the distribution functions. We apply our approach to Van Allen Probes measurements of the plasmaspheric H+, He+, and O+ distribution functions under the assumption that the particle distributions are Maxwellian. We compare our results to mass loading results from the Van Allen Probes field line resonance analyses (for composition) and to the total (electron) plasma density derived from the EFW and EMFISIS experiments. Then we expand our approach to allow for kappa distributions instead. While this introduces an additional degree of freedom and therefore requires fitting, our approach is still better constrained than the traditional Maxwell fitting and may hold the key to a better understanding of the true nature of plasmaspheric particle distributions.

  6. 52 Genetic Loci Influencing Myocardial Mass

    PubMed Central

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.

    2017-01-01

    BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466

  7. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  8. Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles.

    PubMed

    Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N

    2018-03-01

    In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Seismic design of passive tuned mass damper parameters using active control algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Shia, Syuan; Lai, Yong-An

    2018-07-01

    Tuned mass dampers are a widely-accepted control method to effectively reduce the vibrations of tall buildings. A tuned mass damper employs a damped harmonic oscillator with specific dynamic characteristics, thus the response of structures can be regulated by the additive dynamics. The additive dynamics are, however, similar to the feedback control system in active control. Therefore, the objective of this study is to develop a new tuned mass damper design procedure based on the active control algorithm, i.e., the H2/LQG control. This design facilitates the similarity of feedback control in the active control algorithm to determine the spring and damper in a tuned mass damper. Given a mass ratio between the damper and structure, the stiffness and damping coefficient of the tuned mass damper are derived by minimizing the response objective function of the primary structure, where the structural properties are known. Varying a single weighting in this objective function yields the optimal TMD design when the minimum peak in the displacement transfer function of the structure with the TMD is met. This study examines various objective functions as well as derives the associated equations to compute the stiffness and damping coefficient. The relationship between the primary structure and optimal tuned mass damper is parametrically studied. Performance is evaluated by exploring the h2-and h∞-norms of displacements and accelerations of the primary structure. In time-domain analysis, the damping effectiveness of the tune mass damper controlled structures is investigated under impulse excitation. Structures with the optimal tuned mass dampers are also assessed under seismic excitation. As a result, the proposed design procedure produces an effective tuned mass damper to be employed in a structure against earthquakes.

  10. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  11. Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.

    NASA Astrophysics Data System (ADS)

    de Marchi, G.; Paresce, F.

    1995-12-01

    We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 195%. The main sequence luminosity function obtained from the observed CMD increases with decreasing luminosity following a power-law trend with index α=~0.15 in the range 5

  12. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Andrea; Evans, Neal J.; Martel, Hugo

    2010-02-20

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less

  13. ARE SOME MILKY WAY GLOBULAR CLUSTERS HOSTED BY UNDISCOVERED GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Crnojević, Denija; Sand, David J., E-mail: dennis.zaritsky@gmail.com

    2016-07-20

    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 10{sup 9} M {sub ⊙} of total mass, themore » surviving Milky Way (MW) subhalos with masses smaller than 10{sup 10} M {sub ⊙} could host as many as 5–31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass–halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.« less

  14. Comparative Study of Exchange-Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in d0 Perovskite Oxides

    NASA Astrophysics Data System (ADS)

    Ohkubo, Isao; Mori, Takao

    2017-07-01

    The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.

  15. Mapping the core mass function to the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2015-07-01

    It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.

  16. Relationship of nutritional risk, Body Mass Index (BMI), and cognitive functioning in preschoolers

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the relationships, if any, between nutritional risk, BMI z-score, and cognitive function in preschoolers. Background: Excessive adipose tissue found in obesity places children at increased health risk. Considerable research has documented that obesity leads to increased ri...

  17. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  18. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas, E-mail: ellyn.baines@nrl.navy.mil, E-mail: tarmstr@crater.nrl.navy.mil

    We measured the angular diameter of the exoplanet host star {epsilon} Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones, respectively. We used the resulting stellar mass of 0.82 {+-} 0.05 M{sub Sun} plus the mass function from Benedict et al. to calculate the planet's mass, which is 1.53 {+-} 0.22 M{sub Jupiter}. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.

  20. Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris

    NASA Astrophysics Data System (ADS)

    Baer, James; Chesley, Steven R.

    2008-01-01

    We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M⊙), 17 Thetis (6.17 ± 0.64 × 10-13 M⊙), 19 Fortuna (5.41 ± 0.76 × 10-12 M⊙), and 189 Phthia (1.87 ± 0.64 × 10-14 M⊙) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.

  1. On the manifestation of coexisting nontrivial equilibria leading to potential well escapes in an inhomogeneous floating body

    NASA Astrophysics Data System (ADS)

    Sequeira, Dane; Wang, Xue-She; Mann, B. P.

    2018-02-01

    This paper examines the bifurcation and stability behavior of inhomogeneous floating bodies, specifically a rectangular prism with asymmetric mass distribution. A nonlinear model is developed to determine the stability of the upright and tilted equilibrium positions as a function of the vertical position of the center of mass within the prism. These equilibria positions are defined by an angle of rotation and a vertical position where rotational motion is restricted to a two dimensional plane. Numerical investigations are conducted using path-following continuation methods to determine equilibria solutions and evaluate stability. Bifurcation diagrams and basins of attraction that illustrate the stability of the equilibrium positions as a function of the vertical position of the center of mass within the prism are generated. These results reveal complex stability behavior with many coexisting solutions. Static experiments are conducted to validate equilibria orientations against numerical predictions with results showing good agreement. Dynamic experiments that examine potential well hopping behavior in a waveflume for various wave conditions are also conducted.

  2. A comparison between handgrip strength, upper limb fat free mass by segmental bioelectrical impedance analysis (SBIA) and anthropometric measurements in young males

    NASA Astrophysics Data System (ADS)

    Gonzalez-Correa, C. H.; Caicedo-Eraso, J. C.; Varon-Serna, D. R.

    2013-04-01

    The mechanical function and size of a muscle may be closely linked. Handgrip strength (HGS) has been used as a predictor of functional performing. Anthropometric measurements have been made to estimate arm muscle area (AMA) and physical muscle mass volume of upper limb (ULMMV). Electrical volume estimation is possible by segmental BIA measurements of fat free mass (SBIA-FFM), mainly muscle-mass. Relationship among these variables is not well established. We aimed to determine if physical and electrical muscle mass estimations relate to each other and to what extent HGS is to be related to its size measured by both methods in normal or overweight young males. Regression analysis was used to determine association between these variables. Subjects showed a decreased HGS (65.5%), FFM, (85.5%) and AMA (74.5%). It was found an acceptable association between SBIA-FFM and AMA (r2 = 0.60) and poorer between physical and electrical volume (r2 = 0.55). However, a paired Student t-test and Bland and Altman plot showed that physical and electrical models were not interchangeable (pt<0.0001). HGS showed a very weak association with anthropometric (r2 = 0.07) and electrical (r2 = 0.192) ULMMV showing that muscle mass quantity does not mean muscle strength. Other factors influencing HGS like physical training or nutrition require more research.

  3. Maternal determinants of renal mass and function in the fetus and neonate.

    PubMed

    Brophy, Patrick

    2017-04-01

    The impact of adverse maternal and early gestational issues, ranging from maternal-fetal interactions all the way through to premature birth, are recognized as having influence on the subsequent development of chronic diseases later in life. The development of chronic kidney disease (CKD) as a direct result of early life renal injury or a sequela of diseases such as hypertension or diabetes is a good model example of the potential impact that early life events may have on renal development and lifelong function. The global monetary and human resource cost of CKD is exorbitant. Socio-economic factors, along with other factors (genetic and environmental) may significantly influence the timing and display of phenotypic expression in fetuses and neonates at risk for developing CKD, yet very few of these factors are studied or well understood. In general our focus has been directed at treatment once CKD is established. This strategy has been and remains short-sighted and costly. Earlier understanding of the intrauterine determinants of renal mass development (i.e. environmental "biomes", poor maternal-fetal health, socio-economic factors impacting early life events, diet, access to value based health care and educational opportunities on disease evolution) may allow us an opportunity for earlier intervention. This article aims to provide some foundation for improved understanding of the maternal determinants of renal mass and function in the fetus and neonate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  5. Unique forbidden beta decays and neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornický, Rastislav, E-mail: dvornicky@dnp.fmph.uniba.sk; Comenius University, Mlynská dolina F1, SK-842 48 Bratislava; Šimkovic, Fedor

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  6. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  7. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  8. Gas-liquid coexistence for the boson square-well fluid and the (4)He binodal anomaly.

    PubMed

    Fantoni, Riccardo

    2014-08-01

    The binodal of a boson square-well fluid is determined as a function of the particle mass through a quantum Gibbs ensemble Monte Carlo algorithm devised by R. Fantoni and S. Moroni [J. Chem. Phys. (to be published)]. In the infinite mass limit we recover the classical result. As the particle mass decreases, the gas-liquid critical point moves at lower temperatures. We explicitly study the case of a quantum delocalization de Boer parameter close to the one of (4)He. For comparison, we also determine the gas-liquid coexistence curve of (4)He for which we are able to observe the binodal anomaly below the λ-transition temperature.

  9. Effect of low appendicular lean mass, grip strength, and gait speed on the functional outcome after surgery for distal radius fractures.

    PubMed

    Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis, the poor recovery of MHQ score was associated with an increase in age, weak grip strength, and lower appendicular lean mass, and these three factors accounted for 37% of the variation in the MHQ scores. Patients with low appendicular lean mass plus slowness or weakness are at risk for poor functional recovery after surgery for DRF, even when they have similar radiologic outcomes.

  10. The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603

    NASA Astrophysics Data System (ADS)

    Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans

    2006-07-01

    Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I-0135.

  11. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  12. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia.

    PubMed

    Han, Der-Sheng; Chang, Ke-Vin; Li, Chia-Ming; Lin, Yu-Hong; Kao, Tung-Wei; Tsai, Keh-Sung; Wang, Tyng-Grey; Yang, Wei-Shiung

    2016-01-20

    Sarcopenia, characterized by low muscle mass and function, results in frailty, comorbidities and mortality. However, its prevalence varies according to the different criteria used in its diagnosis. This cross-sectional study investigated the difference in the number of sarcopenia cases recorded by two different measurement methods of low muscle mass to determine which measurement was better. We recruited 878 (54.2% female) individuals aged over 65 years and obtained their body composition and functional parameters. Low muscle mass was defined as two standard deviations below either the mean height-adjusted (hSMI) or weight-adjusted (wSMI) muscle mass of a young reference group. The prevalence of sarcopenia was 6.7% vs. 0.4% (male/female) by hSMI, and 4.0% vs. 10.7% (male/female) by wSMI. The κ coefficients for these two criteria were 0.39 vs. 0.03 (male/female), and 0.17 in all subjects. Serum myostatin levels correlated positively with gait speed (r = 0.142, p = 0.007) after adjustment for gender. hSMI correlated with grip strength, cardiopulmonary endurance, leg endurance, gait speed, and flexibility. wSMI correlated with grip strength, leg endurance, gait speed, and flexibility. Since hSMI correlated more closely with grip strength and more muscular functions, we recommend hSMI in the diagnosis of low muscle mass.

  13. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  14. A two-step initial mass function:. Consequences of clustered star formation for binary properties

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.

    2001-06-01

    If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.

  15. Association of sarcopenia with functional decline in community-dwelling elderly subjects in Japan.

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Tanimoto, Keiji; Shishikura, Kanako; Sugiura, Yumiko; Kusabiraki, Toshiyuki; Kono, Koichi

    2013-10-01

    The present study aimed to determine the association of sarcopenia, defined by muscle mass, muscle strength and physical performance, with functional disability from a 2-year cohort study of community-dwelling elderly Japanese people. Participants were 743 community-dwelling elderly Japanese people aged 65 years or older. We used bioelectrical impedance analysis (BIA) to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance in a baseline study. Functional disability was defined using an activities of daily living (ADL) scale and instrumental activities of daily living (IADL) scale at baseline and during follow-up examinations 2 years later. Logistic regression analysis, adjusted for age and body mass index, was used to examine the association between sarcopenia and the occurrence of functional disability. In the present study, 7.8% of men and 10.2% of women were classified as having sarcopenia. Among sarcopenia patients in the baseline study, 36.8% of men and 18.8% of women became dependent in ADL at 2-year follow up. From the logistic regression analysis adjusted by age and body mass index, sarcopenia was significantly associated with the occurrences of physical disability compared with normal subjects in both men and women. Sarcopenia, defined by muscle mass, muscle strength and physical performance, was associated with functional decline over a 2-year period in elderly Japanese. Interventions to prevent sarcopenia are very important to prevent functional decline among elderly individuals. © 2013 Japan Geriatrics Society.

  16. [Sarcopenia and functionality in elderly inpatient].

    PubMed

    Chávez-Moreno, Diana Victoria; Infante-Sierra, Héctor; Serralde-Zúñiga, Aurora E

    2015-04-01

    Sarcopenia is a geriatric syndrome associated with adverse events. The aim of the present study was to assess the sarcopenia prevalence and its association with the functionality in elderly inpatient. A cross sectional study, during 6 months were included elderly inpatients to determine the presence of sarcopenia using the Baumgartner method. The functionality to perform basic activities of daily living (ABVD) was determined by the Katz index. Student's t test or U de Mann-Whitney was used to assess the differences between two groups and one-factor ANOVA or Kruskal Wallis for multiple comparisons; X2 and Fisher's exact test were used to compare the categorical variables and the Pearson correlation was calculated to determine the correlations between variables. 102 patients were included, 41 women and 61 man; subjects had a mean age of 71±8.6 years, body mass index 27.8±5.2 kg/m2, grip strength 14.9±8.3 kg, appendicular skeletal muscle mass (MMEA) 17.6±4.3 kg and skeletal muscle mass index (IMME) 7.1±1.2 kg/m2. The global prevalence of sarcopenia was 27.5%, was major in men (RR 1.33; CI 95% 1.06-1.67 p<0.05). There was a significant decrease on the grip strength (r=-.341) and MMEA (r=-.231) (p<0.05); sarcopenia was associated to a major dependence in both genders (p<0.05). Sarcopenia is a frequent condition in the elderly inpatients associated with the functionality's deterioration,identifying it help to perform a primary or secondary prevention and opportunity treatment.

  17. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  18. Analysis of material particle motion and optimizing parameters of vibration of two-mass GZS vibratory feeder

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Xo; Golikov, N. S.

    2018-05-01

    The structure and kinematics of the two-mass GZS vibratory feeder operation are considered. It is established that the movement of the material's particles on the feeder surface determines its capacity. The development and analysis of the mathematical model of material's particle movement on the two-mass GZS vibratory feeder surface are shown. The results of Matlab optimization of material particles velocity function are given that allows setting rational kinematics of the feeder.

  19. Galactic Stellar and Substellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2003-07-01

    We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy-disk, spheroid, young, and globular clusters-and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m>~1 Msolar and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc~0.08 Msolar and a variance in logarithmic mass σ~0.7, whereas the IMF for multiple systems has mc~0.2 Msolar and σ~0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD~n*~0.1 pc-3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages >~130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc~0.2-0.3 Msolar, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below ~1 Msolar. These results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions. These conclusions, however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvénic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability. The page charges for this Review were partially covered by a generous gift from a PASP supporter.

  20. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    PubMed

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  1. Calibrating the Planck cluster mass scale with CLASH

    NASA Astrophysics Data System (ADS)

    Penna-Lima, M.; Bartlett, J. G.; Rozo, E.; Melin, J.-B.; Merten, J.; Evrard, A. E.; Postman, M.; Rykoff, E.

    2017-08-01

    We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We have compared the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We used a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, bSZ, between true cluster mass, M500, and the Planck mass proxy, MPL, our analysis constrains 1-bSZ = 0.73 ± 0.10 when moderate priors on weak lensing accuracy are used, including a zero-mean Gaussian with standard deviation of 8% to account for possible bias in lensing mass estimations. Our analysis explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants program and the Canadian Cluster Comparison Project. It is also consistent, at 1.34σ, with the value needed to reconcile the Planck SZ cluster counts with Planck's base ΛCDM model fit to the primary cosmic microwave background anisotropies.

  2. GPS Recovery of Daily Hydrologic and Atmospheric Mass Variation: A Methodology and Results From the Australian Continent

    NASA Astrophysics Data System (ADS)

    Han, Shin-Chan; Razeghi, S. Mahdiyeh

    2017-11-01

    We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine the surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and/or ocean. We develop an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. The same approach is applied to determine global mass changes from "global" geopotential change data of Gravity Recovery and Climate Experiment (GRACE). We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS-inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and interannual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins than two different GRACE solutions. The submonthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, it is suggested to integrate GPS and GRACE data to draw a comprehensive picture of daily mass changes on different continents.

  3. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    PubMed

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  4. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-18

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  5. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  6. Lack of relationship between masticatory performance and nutritional status in adults with natural dentition.

    PubMed

    Flores-Orozco, Elan Ignacio; Tiznado-Orozco, Gaby Esthela; Osuna-González, Olga Dionicia; Amaro-Navarrete, Claudia Lucero; Rovira-Lastra, Bernat; Martinez-Gomis, Jordi

    2016-11-01

    This study assessed the relation among several aspects of the masticatory function and the nutritional status in adults with natural dentition. One hundred adults with natural dentition participated in this cross-sectional study. They performed one free-style masticatory test consisting of five trials of 20 silicon-chewing cycles. The preferred chewing side was determined by calculating the asymmetry index. Masticatory performance was determined by sieving the silicon particles, and the cycle duration was also recorded. Weight, body water percentage, body fat mass, muscle mass and osseous mass were measured using a portable digital weighing machine. Body mass index (BMI), waist-hip ratio, skinfold thickness and the upper-arm composition were determined. The relation between masticatory function and a nutritional variable were tested using Pearson or Spearman rank correlation coefficients or using analysis of variance or the Kruskal-Wallis H-test and the Mann-Whitney U test, as appropriate. Whereas body fat percentages for women were significantly higher than for men, the body mass index was higher in men than in women. Participants who were underweight chewed more asymmetrically and more slowly than normal weight or obese participants. A negative correlation was observed between body fat percentage and masticatory laterality. No relation between masticatory performance and any nutritional status indicator was detected. Being underweight and having a low body fat percentage seem to be related to a masticatory lateral asymmetry and to a large cycle duration in young adults with natural dentition. Masticatory performance does not seem to be related to nutritional status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models.

    PubMed

    Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov

    2014-01-01

    Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.

  8. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari

    2016-07-01

    Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.

  9. Body mass index in ambulatory cerebral palsy patients.

    PubMed

    Feeley, Brian T; Gollapudi, Kiran; Otsuka, Norman Y

    2007-05-01

    Malnutrition is a common problem in children with cerebral palsy. Although malnutrition is often recognized in patients with severe cerebral palsy, it can be unrecognized in less severely affected patients. The consequences of malnutrition are serious, and include decreased muscle strength, poor immune status, and depressed cerebral functioning. Low body mass index has been used as a marker for malnutrition. The purpose of this study was to determine which patients in an ambulatory cerebral palsy patient population were at risk for low body mass index. A retrospective chart review was performed on 75 patients. Age, sex, height, weight, type of cerebral palsy, and functional status [gross motor functional classification system (GMFCS) level] was recorded from the chart. Descriptive statistics with bivariate and multivariate regression analyses were performed. Thirty-eight boys and 37 girls with an average age of 8.11 years were included in the study. Unique to our patient population, all cerebral palsy patients were independent ambulators. Patients with quadriplegic cerebral palsy had a significantly lower body mass index than those with diplegic and hemiplegic cerebral palsy. Patients with a GMFCS III had significantly lower body mass index than those with GMFCS I and II. When multivariate regression analysis to control for age and sex was performed, low body mass index remained associated with quadriplegic cerebral palsy and GMFCS III. Malnutrition is a common health problem in patients with cerebral palsy, leading to significant morbidity in multiple organ systems. We found that in an ambulatory cerebral palsy population, patients with lower functional status or quadriplegia had significantly lower body mass index, suggesting that even highly functioning ambulatory cerebral palsy patients are at risk for malnutrition.

  10. BANYAN. IX. The Initial Mass Function and Planetary-mass Object Space Density of the TW HYA Association

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Faherty, Jacqueline K.; Mamajek, Eric E.; Malo, Lison; Doyon, René; Filippazzo, Joseph C.; Weinberger, Alycia J.; Donaldson, Jessica K.; Lépine, Sébastien; Lafrenière, David; Artigau, Étienne; Burgasser, Adam J.; Looper, Dagny; Boucher, Anne; Beletsky, Yuri; Camnasio, Sara; Brunette, Charles; Arboit, Geneviève

    2017-02-01

    A determination of the initial mass function (IMF) of the current, incomplete census of the 10 Myr-old TW Hya association (TWA) is presented. This census is built from a literature compilation supplemented with new spectra and 17 new radial velocities from ongoing membership surveys, as well as a reanalysis of Hipparcos data that confirmed HR 4334 (A2 Vn) as a member. Although the dominant uncertainty in the IMF remains census incompleteness, a detailed statistical treatment is carried out to make the IMF determination independent of binning while accounting for small number statistics. The currently known high-likelihood members are fitted by a log-normal distribution with a central mass of {0.21}-0.06+0.11 M ⊙ and a characteristic width of {0.8}-0.1+0.2 dex in the 12 M Jup-2 M ⊙ range, whereas a Salpeter power law with α ={2.2}-0.5+1.1 best describes the IMF slope in the 0.1-2 M ⊙ range. This characteristic width is higher than other young associations, which may be due to incompleteness in the current census of low-mass TWA stars. A tentative overpopulation of isolated planetary-mass members similar to 2MASS J11472421-2040204 and 2MASS J11193254-1137466 is identified: this indicates that there might be as many as {10}-5+13 similar members of TWA with hot-start model-dependent masses estimated at ˜5-7 M Jup, most of which would be too faint to be detected in 2MASS. Our new radial velocity measurements corroborate the membership of 2MASS J11472421-2040204, and secure TWA 28 (M8.5 γ), TWA 29 (M9.5 γ), and TWA 33 (M4.5 e) as members. The discovery of 2MASS J09553336-0208403, a young L7-type interloper unrelated to TWA, is also presented.

  11. Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Hamed, Ahmed M; Arroyo-Manzanares, Natalia; García-Campaña, Ana M; Gámiz-Gracia, Laura

    2017-11-01

    Vegetable milks are considered as functional foods due to their physiological benefits. Although the consumption of these products has significantly increased, they have received little attention in legislation with regard to contaminants. However, they may contain mycotoxins resulting from the use of contaminated raw materials. In this work, ultra-high-performance liquid chromatography tandem mass spectrometry has been proposed for the determination of the most relevant Fusarium toxins (fumonisin B 1 and B 2 , HT-2 and T-2 toxins, zearalenone, deoxynivalenol and fusarenon-X) in different functional beverages based on cereals, legumes and seeds. Sample treatment consisted of a simple salting-out-assisted liquid-liquid extraction with no further clean-up. The method provided limits of quantification between 3.2 and 57.7 µg L -1 , recoveries above 80% and precision with RSD lower than 12%. The method was also applied for studying the occurrence of these mycotoxins in market samples of vegetable functional beverages and deoxynivalenol was found in three oat-based commercial drinks.

  12. Milky Way Mass Models and MOND

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2008-08-01

    Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND (modified Newtonian dynamics). The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 kpc lesssim Rdlesssim 2.5 kpc. The favored value of Rd depends somewhat on the choice of interpolation function. There is some preference for the "simple" interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with "bumps and wiggles" in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.

  13. Relationship between ultrasound bone parameters, lung function, and body mass index in healthy student population.

    PubMed

    Cvijetić, Selma; Pipinić, Ivana Sabolić; Varnai, Veda Maria; Macan, Jelena

    2017-03-01

    Low bone mineral density has been reported in paediatric and adult patients with different lung diseases, but limited data are available on the association between lung function and bone density in a healthy young population. We explored the predictors of association between bone mass and pulmonary function in healthy first-year university students, focusing on body mass index (BMI). In this cross-sectional study we measured bone density with ultrasound and lung function with spirometry in 370 university students (271 girls and 99 boys). Information on lifestyle habits, such as physical activity, smoking, and alcohol consumption were obtained with a questionnaire. All lung function and bone parameters were significantly higher in boys than in girls (P<0.001). Underweight students had a significantly lower forced vital capacity (FVC%) (P=0.001 girls; P=0.012 boys), while overweight students had a significantly higher FVC% than normal weight students (P=0.024 girls; P=0.001 boys). BMI significantly correlated with FVC% (P=0.001) and forced expiratory volume in 1 second (FEV1 %) in both genders (P=0.001 girls; P=0.018 boys) and with broadband ultrasound attenuation (BUA) in boys. There were no significant associations between any of the bone and lung function parameters either in boys or girls. The most important determinant of lung function and ultrasound bone parameters in our study population was body mass index, with no direct association between bone density and lung function.

  14. Comparison of hydrological and GRACE-based excitation functions of polar motion in the seasonal spectral band

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2008-04-01

    Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.

  15. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  16. Correlation between T2* cardiovascular magnetic resonance with left ventricular function and mass in adolescent and adult major thalassemia patients with iron overload.

    PubMed

    Djer, Mulyadi M; Anggriawan, Shirley L; Gatot, Djajadiman; Amalia, Pustika; Sastroasmoro, Sudigdo; Widjaja, Patricia

    2013-10-01

    to assess for a correlation between T2*CMR with LV function and mass in thalassemic patients with iron overload. a cross-sectional study on thalassemic patients was conducted between July and September 2010 at Cipto Mangunkusumo and Premier Hospitals, Jakarta, Indonesia. Clinical examinations, review of medical charts, electrocardiography, echocardiography, and T2*CMR were performed. Cardiac siderosis was measured by T2*CMR conduction time. Left ventricle diastolic and systolic functions, as well as LV mass index were measured using echocardiography. Correlations between T2*CMR and echocardiography findings, as well as serum ferritin were determined using Pearson's and Spearman's tests. thirty patients aged 13-41 years were enrolled, of whom two-thirds had -thalassemia major and one-third had HbE/-thalassemia. Diastolic dysfunction was identified in 8 patients, whereas systolic function was normal in all patients. Increased LV mass index was found in 3 patients. T2*CMR conduction times ranged from 8.98 to 55.04 ms and a value below 20 ms was demonstrated in 14 patients. There was a statistically significant moderate positive correlation of T2*CMR conduction time with E/A ratio (r = 0.471, P = 0.009), but no correlation was found with LV mass index (r=0.097, P=0.608). A moderate negative correlation was found between T2*CMR and serum ferritin (r = -0.514, P = 0.004), while a moderate negative correlation was found between serum ferritin and E/A ratio (r = -0.425, P = 0.019). T2*CMR myocardial conduction time has a moderate positive correlation with diastolic function, moderate negative correlation with serum ferritin, but not with LV mass index and systolic function.

  17. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    NASA Astrophysics Data System (ADS)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  18. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Etherington, J.; Thomas, D.; Maraston, C.; ...

    2016-01-04

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less

  19. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    PubMed

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  20. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    NASA Astrophysics Data System (ADS)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyáën Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-04-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  1. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    NASA Astrophysics Data System (ADS)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyen Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-06-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  2. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less

  3. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  4. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.« less

  5. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

  6. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  7. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  8. The detectability of brown dwarfs - Predictions and uncertainties

    NASA Technical Reports Server (NTRS)

    Nelson, L. A.; Rappaport, S.; Joss, P. C.

    1993-01-01

    In order to determine the likelihood for the detection of isolated brown dwarfs in ground-based observations as well as in future spaced-based astronomy missions, and in order to evaluate the significance of any detections that might be made, we must first know the expected surface density of brown dwarfs on the celestial sphere as a function of limiting magnitude, wavelength band, and Galactic latitude. It is the purpose of this paper to provide theoretical estimates of this surface density, as well as the range of uncertainty in these estimates resulting from various theoretical uncertainties. We first present theoretical cooling curves for low-mass stars that we have computed with the latest version of our stellar evolution code. We use our evolutionary results to compute theoretical brown-dwarf luminosity functions for a wide range of assumed initial mass functions and stellar birth rate functions. The luminosity functions, in turn, are utilized to compute theoretical surface density functions for brown dwarfs on the celestial sphere. We find, in particular, that for reasonable theoretical assumptions, the currently available upper bounds on the brown-dwarf surface density are consistent with the possibility that brown dwarfs contribute a substantial fraction of the mass of the Galactic disk.

  9. Infrared Detection of Very Low Mass Stars.

    NASA Astrophysics Data System (ADS)

    Probst, Ronald George

    We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute magnitudes on this level. Candidates for astrometric mass determination are suggested. Several stars are found to be composites containing an accretion disk or a hot subdwarf + dK secondary. We find very few new low-luminosity companions to normal white dwarfs. This does not appear to be a selection effect, nor is there reason to believe that all parent systems have been altered or destroyed in the mass loss phase. Our strongly negative result constrains the luminosity function for red dwarf companions to decline steeply past M(,v) (DBLTURN) 13. This may reflect a general decline in the initial mass function for star formation, or a failure of systems with large mass ratios to form or remain bound in the parent star-forming regions.

  10. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less

  11. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    NASA Astrophysics Data System (ADS)

    Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9

  12. Pion quasiparticle in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2015-11-01

    We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is significantly reduced compared to its value in the vacuum, in contrast with the static screening mass, which increases with temperature. By a simple argument, near the chiral limit the two masses are expected to determine the quasiparticle dispersion relation. Analyzing two-point functions of the axial charge density at nonvanishing spatial momentum, we find that the predicted dispersion relation and the residue of the pion pole are consistent with the lattice data at low momentum. This test, based on fits to the correlation functions, is confirmed by a second analysis using the Backus-Gilbert method.

  13. Function and position determine relative proportions of different fiber types in limb muscles of the lizard Tropidurus psammonastes.

    PubMed

    Pereira, Anieli G; Abdala, Virginia; Kohlsdorf, Tiana

    2015-02-01

    Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types. Copyright © 2014. Published by Elsevier GmbH.

  14. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  15. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  16. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  17. Renal mass anatomic characteristics and perioperative outcomes of laparoscopic partial nephrectomy: a critical analysis.

    PubMed

    Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander

    2012-10-01

    Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (P<0.001). No anatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to the different measures of outcomes (WIT, OT, EBL, complications, and renal function) emphasizing the importance of the learning curve.

  18. The Arches Cluster Out to its Tidal Radius: Dynamical Mass Segregation and the Effect of the Extinction Law on the - Lar Mass Function

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam; Stolte, Andrea; Brandner, Wolfgang; Hussman, Benjamin

    2013-07-01

    The Galactic Center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic Center through the Galactic disk, knowledge of extinction is crucial to study this region. The Arches cluster is a young, massive starburst cluster near the Galactic Center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper-mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ∆AKs˜1 magnitude in acquired Ks-band extinction, while the present mass function slope changes by ˜0.17 dex. The present-day mass function slope derived assuming the Nishiyama et al. (2009) extinction law increases from a flat slope of α-Nishi = 1.50 ± 0.35 in the core (r<0.2 pc) to α-Nishi = 2.21±0.27 in the intermediate annulus (0.2

  19. Aspects of Chiral Symmetry Breaking in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.

  20. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these late-type M dwarfs are substellar. The luminosity function data together with an empirical derivation of the mass-luminosity relation (from Henry & McCarthy) are used to compute a mass function independent of theory. This mass function increases toward the end of the main sequence, but the observed density of M dwarfs is still insufficient to account for the missing mass. If the increases seen in the luminosity and mass functions are indicative of a large, unseen, substellar population, brown dwarfs may yet add significantly to the mass of the Galaxy.

  1. Noncommutative Jackiw-Pi model: One-loop renormalization

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Ghasemkhani, M.; Alipour, M.

    2018-06-01

    In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.

  2. Solving the Mystery of Galaxy Bulges and Bulge Substructure

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2017-08-01

    Understanding galaxy bulges is crucial for understanding galaxy evolution and the growth of supermassive black holes (SMBHs). Recent studies have shown that at least some - perhaps most - disk-galaxy bulges are actually composite structures, with both classical-bulge (spheroid) and pseudobulge (disky) components; this calls into question the standard practice of using simple, low-resolution bulge/disk decompositions to determine spheroid and SMBH mass functions. We propose WFC3 optical and near-IR imaging of a volume- and mass-limited sample of local disk galaxies to determine the full range of pure-classical, pure-pseudobulge, and composite-bulge frequencies and parameters, including stellar masses for classical bulges, disky pseudobulges, and boxy/peanut-shaped bulges. We will combine this with ground-based spectroscopy to determine the stellar-kinematic and population characteristics of the different substructures revealed by our WFC3 imaging. This will help resolve growing uncertainties about the status and nature of bulges and their relation to SMBH masses, and will provide an essential local-universe reference for understanding bulge (and SMBH) formation and evolution.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czakon, M.; Fiedler, P.; Heymes, D.

    The differentialmore » $$t\\bar{t}$$ cross sections, measured as a function of the transverse momentum of the top quark and the invariant mass of the $$t\\bar{t}$$ system, are employed to determine the pole mass of the top quark. The data corresponds to an integrated luminosity of 9.7 $$fb^{−1}$$, collected with the D0 detector of the Fermilab Tevatron. Precise calculations at next-to-next-to leading order in perturbative quantum chromodynamics provide the absolute differential cross sections that are employed to extract the pole mass of the top quark.We measure the pole mass of the top quark to be 169.1 ± 2.5 (tot.) GeV.« less

  4. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass

    NASA Astrophysics Data System (ADS)

    Reichl, Katherine K.; Inman, Daniel J.

    2017-09-01

    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  5. THE ARECIBO LEGACY FAST ALFA SURVEY. IX. THE LEO REGION H I CATALOG, GROUP MEMBERSHIP, AND THE H I MASS FUNCTION FOR THE LEO I GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stierwalt, Sabrina; Haynes, Martha P.; Giovanelli, Riccardo

    We present the catalog of H I sources extracted from the ongoing Arecibo Legacy Fast ALFA (ALFALFA) extragalactic H I line survey, found within the sky region bounded by 9{sup h}36{sup m} < {alpha} < 11{sup h}36{sup m} and +08{sup 0} < {delta} < +12{sup 0}. The H I catalog presented here for this 118 deg{sup 2} region is combined with the ones derived from surrounding regions also covered by the ALFALFA survey to examine the large-scale structure in the complex Leo region. Because of the combination of wide sky coverage and superior sensitivity, spatial and spectral resolution, the ALFALFAmore » H I catalog of the Leo region improves significantly on the numbers of low H I mass sources as compared with those found in previous H I surveys. The H I mass function of the Leo I group presented here is dominated by low-mass objects: 45 of the 65 Leo I members have M{sub H{sub l}}<10{sup 8} M-odot, yielding tight constraints on the low-mass slope of the Leo I H I mass function. The best-fit slope is {alpha} {approx_equal} -1.41 + 0.2 - 0.1. A direct comparison between the ALFALFA H I line detections and an optical search of the Leo I region proves the advantage of the ALFALFA strategy in finding low-mass, gas-rich dwarfs. These results suggest the existence of a significant population of low surface brightness, gas-rich, yet still very low H I mass galaxies, and may reflect the same type of morphological segregation as is seen in the Local Group. While the low-mass end slope of the Leo I H I mass function is steeper than that determined for luminosity functions of the group, the slope still falls short of the values predicted by simulations of structure formation in the lambda cold dark matter paradigm.« less

  6. Regional differences in brain glucose metabolism determined by imaging mass spectrometry.

    PubMed

    Kleinridders, André; Ferris, Heather A; Reyzer, Michelle L; Rath, Michaela; Soto, Marion; Manier, M Lisa; Spraggins, Jeffrey; Yang, Zhihong; Stanton, Robert C; Caprioli, Richard M; Kahn, C Ronald

    2018-06-01

    Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Determination of the top-quark pole mass using tt¯ + 1-jet events collected with the ATLAS experiment in 7TeV pp collisions

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-10-19

    In this study, the normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯ + 1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton-proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb –1 . The selected events were identified usingmore » the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, m pole t , is: m pole t = 173.7 ± 1.5(stat.) ± 1.4(syst.) +1.0 –0.5(theory) GeV.« less

  8. Recovery of surface mass redistribution from a joint inversion of GPS and GRACE data - A methodology and results from the Australian and other continents

    NASA Astrophysics Data System (ADS)

    Han, S. C.; Tangdamrongsub, N.; Razeghi, S. M.

    2017-12-01

    We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and ocean. The identical assumption is made when global geopotential change data from Gravity Recovery And Climate Experiment (GRACE) are used to determine surface mass changes. We developed an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS-only inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and inter-annual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins of Australia than two different GRACE solutions. The sub-monthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, we integrate GPS data from different continents with GRACE in the least-square normal equations and solve for the global surface mass changes by jointly inverting GPS and GRACE data. We present the results of surface mass changes from the GPS-only inversion and from the joint GPS-GRACE inversion.

  9. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    NASA Astrophysics Data System (ADS)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  10. Diastolic dysfunction is associated with insulin resistance, but not with aldosterone level in normotensive offspring of hypertensive families.

    PubMed

    Zizek, Bogomir; Poredos, Pavel; Trojar, Andrej; Zeljko, Tadej

    2008-01-01

    We investigated left ventricular (LV) morphology and function in association with insulin level/insulin resistance (IR) and aldosterone level in normotensive offspring of subjects with essential hypertension (familial trait, FT). The study encompassed 76 volunteers of whom 44 were normotensive with FT (aged 28-39 years) and 32 age-matched controls without FT. LV mass and function were measured using conventional echocardiography and tissue Doppler imaging. LV diastolic function was reported as peak septal annular velocities (E(m) and E(m)/A(m) ratio) in tissue Doppler imaging. Fasting insulin and aldosterone were determined. In subjects with FT, the LV mass was higher than in controls (92.14 +/- 24.02 vs. 70.08 +/- 20.58 g; p < 0.001). The study group had a worse LV diastolic function than control subjects (lower E(m) and E(m)/A(m) ratio; p < 0.001). In subjects with FT, the E(m)/A(m) ratio was independently associated with IR (partial p = 0.029 in multivariate model, R(2) = 0.51), but not with LV mass. The aldosterone level was comparable in both groups. In normotensive individuals with FT, LV morphological and functional abnormalities were found. LV dysfunction but not an increase in LV mass is associated with IR. The aldosterone level is probably not responsible for the development of early hypertensive heart disease. (c) 2008 S. Karger AG, Basel.

  11. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  12. The universal function in color dipole model

    NASA Astrophysics Data System (ADS)

    Jalilian, Z.; Boroun, G. R.

    2017-10-01

    In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.

  13. Extractions of polarized and unpolarized parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  14. Fundamental Parameters Of The Lowest Mass Stars To The Highest Mass Planets

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joseph C.

    2016-09-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of funda- mental parameters for a wide diversity of objects at the low end of the initial mass function (IMF) is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 234 M, L, T, and Y dwarfs using published parallaxes and (0.3-40 \\mu m) spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity ((L_\\text{bol})), effective temperature ((T_\\text{off})), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive (L_\\text{bol}), (T_\\text{eff}), and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared (NIR) into the mid-infrared (MIR). Consequently we find the SED flux pivots at K-band, making BCK as a function of spectral type a reliable, age-independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. These findings are used to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs using heterogeneous and limited spectral data.

  15. The Exoplanet Mass-Ratio Function From the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass

    NASA Technical Reports Server (NTRS)

    Suzuki, D.; Bennett, D. P.; Sumi, T.; Bond, I. A.; Rogers, L. A.; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Freeman, M.; hide

    2016-01-01

    We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet star mass ratio, q, and projected planet star separation, s, in Einstein radius units. We find that the mass-ratio function is not a single power law, but has a change in slope at q approx.10(exp -4), corresponding to approx. 20 Stellar Mass for the median host-star mass of approx. 0.6 M. We find significant planetary signals in 23 of the 1474 alert events that are well-characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. The unbroken power-law model is disfavored with a p-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.

  16. A New Determination of the Luminosity Function of the Galactic Halo.

    NASA Astrophysics Data System (ADS)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 < M(,v) < 14 is about 2 x 10('-5) M(,o) pc('-3). With due allowance for white dwarfs and binaries, and taking into account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  17. High-temperature mass spectrometry - Vaporization of group 4-B metal carbides. [using Knudsen effusion

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.

    1974-01-01

    The high temperature vaporization of the metal-carbon systems TiC, ZrC, HfC, and ThC was studied by the Knudsen effusion - mass spectrometric method. For each system the metal dicarbide and tetracarbide molecular species were identified in the gas phase. Relative ion currents of the carbides and metals were measured as a function of temperature. Second- and third-law methods were used to determine enthalpies. Maximum values were established for the dissociation energies of the metal monocarbide molecules TiC, ZrC, HfC, and ThC. Thermodynamic functions used in the calculations are discussed in terms of assumed molecular structures and electronic contributions to the partition functions. The trends shown by the dissociation energies of the carbides of Group 4B are compared with those of neighboring groups and discussed in relation to the corresponding oxides and chemical bonding. The high temperature molecular beam inlet system and double focusing mass spectrometer are described.

  18. Left ventricular morphology and diastolic function in uraemia: echocardiographic evidence of a specific cardiomyopathy.

    PubMed Central

    Facchin, L.; Vescovo, G.; Levedianos, G.; Zannini, L.; Nordio, M.; Lorenzi, S.; Caturelli, G.; Ambrosio, G. B.

    1995-01-01

    OBJECTIVE--To see whether cardiac morphological and functional abnormalities in uraemic patients are determined by high blood pressure or if they are an expression of a specific cardiomyopathy. DESIGN--Cross sectional study. SETTING--City general hospital in Italy. SUBJECTS--35 uraemic patients receiving haemodialysis (17 men, 18 women; mean age 60.3 (11.2); mean duration of dialysis 52 months) were selected from the 64 patients in Venice who were receiving dialysis; subjects with diabetes, haemochromatosis, valvar dysfunction, regional dyskinesias, and pericarditis were excluded. 19 control normotensive subjects (6 men and 13 women), matched for age. MAIN OUTCOME MEASURES--Echocardiographic measurements of left atrium, left ventricular end diastolic and end systolic volume, aortic root diameter, posterior wall and interventricular septum thickness, left ventricle mass index, and ejection fraction in controls and in patients according to whether they were normotensive (five men, eight women) or hypertensive (12 men, 10 women) on 48 hour ambulatory monitoring; left ventricular diastolic function by Doppler ultrasonography. RESULTS--Mean systolic and diastolic pressures, daytime systolic and diastolic pressures, and night time systolic and diastolic pressures were significantly higher in the hypertensive patients than in the normotensive patients. The normotensive patients had similar blood pressures to the controls. Left ventricular mass correlated significantly with the mean diastolic pressure and mean night time systolic and diastolic pressures. Parathyroid hormone concentrations were similar in the two groups of patients. Diastolic relaxation was impaired to the same degree in the two groups of patients. Parameters of diastolic function showed no relation to left ventricular mass, which was significantly higher in the hypertensive than in the normotensive patients. CONCLUSIONS--Uraemia is likely to induce specific changes in the relaxation properties of the myocardium. These changes are responsible for the impaired diastolic function independently of blood pressure, degree of hypertrophy, and metabolic changes, which suggests the existence of a specific cardiomyopathy. Hypertension remains a determinant of left ventricular mass. PMID:7546998

  19. Sleep, Muscle Mass and Muscle Function in Older People.

    PubMed

    Buchmann, Nikolaus; Spira, Dominik; Norman, Kristina; Demuth, Ilja; Eckardt, Rahel; Steinhagen-Thiessen, Elisabeth

    2016-04-15

    Loss of muscle mass, particularly in old age, can restrict mobility and physical function. Sleep is thought to play a key role in the maintenance of muscle mass; sleep disturbances have a prevalence of 6-30% in Germany. In this study, based on data from the Berlin Aging Study II (BASE-II), we analyze the relationship between sleep efficiency and quality on the one hand, and muscle mass and muscle function on the other. We analyzed cross-sectional data from 1196 subjects (52.5% women; 68 ± 4 years). Sleep behavior was assessed with questions from the Pittsburgh Sleep Quality Index; appendicular lean mass (ALM) with dual x-ray absorp - tiometry; and muscle function with a measure of grip strength and with questionnaires about physical activity and impairment of physical activities. Low muscle mass was determined from the ALM corrected by the body-mass index (BMI), i.e., from the ratio ALM/BMI. 19.1% of the women and 13.4% of the men reported poor sleep quality. Men whose ALM/BMI ratio was below the cutoff value for low muscle mass more frequently reported very poor sleep efficiency (9.1% , versus 4.8% in women; p<0.002). The adjusted odds ratio for low muscle mass was 2.8 for men with poor sleep quality (95% confidence interval: [1.1; 6.7]) and 4.3 for men with poor sleep efficiency [1.2; 15.1]. In women, there was no statistically significant association between sleep quality and efficiency on the one hand and ALM/BMI values below cutoff on the other, but poor sleep quality was found to be associated with reduced grip strength (16.25 kg ± 2.33 kg versus 15.67 kg ± 2.38 kg; p = 0.009) and low appendicular lean mass (ALM: 16.25 kg ± 2.33 kg versus 15.67 kg ± 2.38 kg; p = 0.016). These findings support the hypothesis of a link between sleep and muscle mass. The dependence of muscle mass on sleep behavior needs to be investigated in longitudinal studies.

  20. Testing the Relation between the Local and Cosmic Star Formation Histories

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.

    1999-04-01

    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF) typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test.

  1. Determination of mixing state and sources of wintertime organic aerosol in Paris using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Wiedensohler, A.; Jeong, C.; McGuire, M.; Evans, G. J.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J.

    2012-12-01

    The size-resolved chemical composition of single particles at an urban background site in Paris, France, was determined using an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) as part of the MEGAPOLI winter campaign in January/February 2010. A variety of mixing states were identified for organic aerosol by mass spectral clustering and apportioned to both fossil fuel and biomass burning sources. The ATOFMS data were scaled in order to produce mass concentration estimates for each organic aerosol particle type identified. Potassium-containing organic aerosol internally mixed with nitrate, associated with local wood burning, was observed to dominate during periods characterised by marine air masses. Sulfate-rich potassium-containing organic aerosol, associated with transboundary transport of biomass burning emissions, dominated during periods influenced by continental air masses. The scaled total mass concentration for potassium-containing particles was well correlated (R2 = 0.79) with concurrent measurements of potassium mass concentration measured with a Particle-Into-Liquid-Sampler (PILS). Another organic particle type, also containing potassium but rich in trimethylamine and sulfate, was detected exclusively during continental air mass events. These particles are postulated to have accumulated gas phase trimethylamine through heterogeneous reaction before arriving at the sampling site. Potential source regions for transboundary organic aerosols have been investigated using the potential source contribution function (PSCF). Comparison with aerosol mass spectrometer (AMS) measurements will also be discussed.

  2. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  3. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography.

    PubMed

    Qin, J X; Shiota, T; Thomas, J D

    2000-11-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  4. MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi

    2013-05-20

    Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-biasmore » measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.« less

  5. Astrophysics of brown dwarfs; Proceedings of the Workshop, George Mason University, Fairfax, VA, Oct. 14, 15, 1985

    NASA Technical Reports Server (NTRS)

    Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)

    1986-01-01

    Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.

  6. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  7. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, C.; Almeida, L.

    2010-04-26

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  8. Biodiversity and ecosystem functioning in evolving food webs.

    PubMed

    Allhoff, K T; Drossel, B

    2016-05-19

    We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. © 2016 The Author(s).

  9. Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches.

    PubMed

    Dickinson, Patsy S; Qu, Xuan; Stanhope, Meredith E

    2016-12-01

    Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides. Such studies suggest that there is some evolutionary conservation of function, but also divergence of function even within a species. With current baseline data, it should be possible to begin using comparative approaches to ask fundamental questions about why peptides are encoded the way that they are and how this affects nervous system function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A proteomic analysis of leaf sheaths from rice.

    PubMed

    Shen, Shihua; Matsubae, Masami; Takao, Toshifumi; Tanaka, Naoki; Komatsu, Setsuko

    2002-10-01

    The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.

  11. HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results

    NASA Astrophysics Data System (ADS)

    Schellenberger, G.; Reiprich, T. H.

    2017-10-01

    The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.

  12. Partition functions with spin in AdS2 via quasinormal mode methods

    DOE PAGES

    Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng

    2016-10-12

    We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less

  13. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass.

    PubMed

    Wen, H J; Huang, T H; Li, T L; Chong, P N; Ang, B S

    2017-02-01

    Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers. The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass. Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05). After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P < 0.05). While there was no significant change of osteocalcin in both groups. As expected, there was no significant change of BMD in both groups. In addition, the functional fitness components in the EG were significantly improved, as demonstrated by substantial enhancement in both lower- and upper-limb muscular strength and cardiovascular endurance (P < 0.05). The current short-term GBSA exercise benefited to bone metabolism and general health by significantly reduced bone resorption activity and improved functional fitness in PMW with low bone mass. This suggested GBSA could be adopted as a form of group-based exercise for senior community.

  14. Determination of the sign of the decay width difference in the B(s)(0) system.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; de Bruyn, K; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-06-15

    The interference between the K+ K- S-wave and P-wave amplitudes in B(s)(0) → J/ψK+ K- decays with the K+ K- pairs in the region around the ϕ(1020) resonance is used to determine the variation of the difference of the strong phase between these amplitudes as a function of K+ K- invariant mass. Combined with the results from our CP asymmetry measurement in B(s)(0) → J/ψϕ decays, we conclude that the B(s)(0) mass eigenstate that is almost CP = +1 is lighter and decays faster than the mass eigenstate that is almost CP = -1. This determines the sign of the decay width difference ΔΓ(s) ≡ Γ(L) - Γ(H) to be positive. Our result also resolves the ambiguity in the past measurements of the CP violating phase ϕ(s) to be close to zero rather than π. These conclusions are in agreement with the standard model expectations.

  15. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    NASA Astrophysics Data System (ADS)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  16. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  17. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.

  18. Optimal Quasi-steady Plasma Thruster system characteristics.

    NASA Technical Reports Server (NTRS)

    Ludwig, D. E.; Kelly, A. J.

    1972-01-01

    The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.

  19. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    PubMed

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  20. A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: comparative studies with the standard Jaffé and isotope-dilution mass spectrometric assays.

    PubMed

    Leung, Elvis M K; Chan, Wan

    2014-02-01

    Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.

  1. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    PubMed

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  2. HICOSMO - X-ray analysis of a complete sample of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Schellenberger, G.; Reiprich, T.

    2017-10-01

    Galaxy clusters are known to be the largest virialized objects in the Universe. Based on the theory of structure formation one can use them as cosmological probes, since they originate from collapsed overdensities in the early Universe and witness its history. The X-ray regime provides the unique possibility to measure in detail the most massive visible component, the intra cluster medium. Using Chandra observations of a local sample of 64 bright clusters (HIFLUGCS) we provide total (hydrostatic) and gas mass estimates of each cluster individually. Making use of the completeness of the sample we quantify two interesting cosmological parameters by a Bayesian cosmological likelihood analysis. We find Ω_{M}=0.3±0.01 and σ_{8}=0.79±0.03 (statistical uncertainties) using our default analysis strategy combining both, a mass function analysis and the gas mass fraction results. The main sources of biases that we discuss and correct here are (1) the influence of galaxy groups (higher incompleteness in parent samples and a differing behavior of the L_{x} - M relation), (2) the hydrostatic mass bias (as determined by recent hydrodynamical simulations), (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other cosmological (non-negligible neutrino mass), and instrumental (calibration) effects.

  3. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    PubMed

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Development of a general equation to determine the transfer factor feed-to-meat for radiocesium on the basis of the body mass of domestic animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalezinski, S.; Ruehm, W.; Wirth, E.

    1996-05-01

    Transfer factors from feed to meat (5{sub {integral}}), taken from literature for monogastric animals and ruminants have been correlated to their corresponding animal body mass (m{sub b}). Taking all data into account, a close relationship between both transfer factor and body mass becomes evident, yielding a regression function of (T{sub {integral}} = 8.0 x m{sub b}{sup {minus}0.91}) (r = -0.97). For monogastric animals (including poultry), the corresponding relationships are T{sub {integral}} = 1.9 x m{sub b}{sup {minus}0.72} (r = 0.78). The equations offer the opportunity to estimate the transfer factor for individual animals more precisely taking individual body masses intomore » account. They are of interest for animals, on which no or only poor data concerning radiocesium transfer factors are available. The determination of radiocesium transfer factors are reduced to a simple weighing process. 17 refs., 1 fig., 2 tabs.« less

  5. Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: applications and instrumentation

    NASA Astrophysics Data System (ADS)

    Rosen, Amy L.; Hieftje, Gary M.

    2004-02-01

    To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.

  6. An X-Ray Flux-Limited Sample of Galaxy Clusters: Physical Properties and Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Reiprich, Thomas H.

    2001-07-01

    An X-ray selected and X-ray flux-limited sample comprising the 63 X-ray brightest galaxy clusters in the sky (excluding the galactic band, called HIFLUGCS) has been constructed based on the ROSAT All-Sky Survey. The flux limit has been set at 2x10^-11 erg/s/cm^2 in the energy band 0.1-2.4 keV. It has been shown that a high completeness is indicated by several tests. Due to the high flux limit this sample can be used for a variety of applications requiring a statistical cluster sample without any corrections to the effective survey volume. Mainly high quality pointed observations have been used to determine fluxes and physical cluster parameters. It has been shown that a tight correlation exists between the X-ray luminosity and the gravitational mass using HIFLUGCS and an extended sample of 106 galaxy clusters. The relation and its scatter have been quantified using different fitting methods. A comparison to theoretical and numerical predictions shows an overall agreement. This relation may be directly applied in large X-ray cluster surveys or dark matter simulations for conversions between X-ray luminosity and gravitating mass. Data from the performance verification phase of the recently launched X-ray satellite observatory XMM-Newton on the galaxy cluster Abell 1835 has been analyzed, in order to test the assumption of isothermality of the cluster gas in the outer parts applied throughout the work. It has been found that the measured outer temperature profile is consistent with being isothermal. In the inner regions a clear drop of the temperature by a factor of two has been found. Physical properties of the cluster sample have been studied by analyzing relations between different cluster parameters. The overall properties are well understood but in detail deviations from simple expectations have been found. It has been found that the gas mass fraction (fgas) does not vary as a function of intracluster gas temperature. For galaxy groups (kTx < 2 keV), however, a steep drop of fgas has been observed. No clear trend of a variation of the shape of the surface brightness profile, i.e. beta, has been observed as a function of temperature. The Lx-Tx relation has been found to be steeper than expected from simple self similar models, as has been found by previous authors. But no clear deviations from a power law shape down to kTx = 0.7 keV have been found. The Mt-Tx relation found here is steeper than expected from self similar models and its normalization is lower compared to hydrodynamic simulations, in agreement with previous findings. Suggested scenarios to account for these deviations, including heating and cooling processes, and observational difficulties have been described. It appears that a blend of different effects, possibly including a variation of mean formation redshift with system mass, is needed to account for the observations presented here. Using HIFLUGCS the gravitational mass function has been determined for the mass interval 3.5x10^13 < M200 < 5.2x10^15 h50^-1 Msun. Comparison with Press-Schechter mass functions has yielded tight constraints on the mean matter density in the universe and the amplitude of density fluctuations. The large covered mass range has allowed to put constraints on the parameters individually. Specifically it has been found that OmegaM = 0.12^{+0.06}_{-0.04} and sigma8 = 0.96^{+0.15}_{-0.12} (90% c.l. statistical uncertainty). This result is consistent with two more estimates of OmegaM obtained in this work using different methods. The mean intracluster gas fraction of the 106 clusters in the extended sample combined with predictions from the theory of nucleosynthesis indicates OmegaM < 0.34. The cluster mass to light ratio multiplied by the mean luminosity density implies OmegaM 0.15. Various tests for systematic uncertainties have been performed, including comparison of the Press-Schechter mass function with the most recent results from large N-body simulations, yielding deviations smaller than the statistical uncertainties. For comparison the best fit OmegaM values for fixed sigma8 values have been determined yielding the relation sigma8 = 0.43OmegaM^-0.38. The mass function has been integrated to obtain the fraction of the total gravitating mass in the universe contained in galaxy clusters. Normalized to the critical density it has been found that Omega_Cluster = 0.012^{+0.003}_{-0.004} for cluster masses larger than 6.4^{+0.7}_{-0.6}x10^13 h50^-1 Msun. With the value for OmegaM determined here this implies that about 90% of the mass in the universe resides outside virialized cluster regions. Similarly it has been found that the fraction of the total gravitating mass which is contained in the intracluster gas, Omega_b,Cluster = 0.0015^{+0.0002}_{-0.0001} h50^-1.5 for gas masses larger than 6.9^{+1.4}_{-1.5}x10^12 h50^{-5/2}Msun, is very small.

  7. Impact of accretion on the statistics of neutron star masses

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Taani, A.; Zhao, Y. H.

    2013-02-01

    We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly mass distribution of the NS that obtained from observation. We also applied the Monte-Carlo simulation and introduce the characteristic spin period 20 ms, in order to distinguish between millisecond pulsars (MSPs) and less recycled pulsars. The mass distributions of MSPs and the less recycled pulsars could be fitted by a Gaussian function as 1.45+/-0.42 M⊙ and 1.31+/-0.17 M⊙ (with 1σ) respectively. As such, the MSP masses are heavier than those in less recycled systems by factor of ~ 0.13M⊙, since the accretion effect during the recycling process.

  8. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

  9. An atlas of L-T transition brown dwarfs with VLT/XShooter

    NASA Astrophysics Data System (ADS)

    Marocco, F.; Day-Jones, A. C.; Jones, H. R. A.; Pinfield, D. J.

    In this contribution we present the first results from a large observing campaign we are carrying out using VLT/Xshooter to obtain spectra of a large sample (˜250 objects) of L-T transition brown dwarfs. Here we report the results based on the first ˜120 spectra already obtained. The large sample, and the wide spectral coverage (300-2480 nm) given by Xshooter, will allow us to do a new powerful analysis, at an unprecedent level. By fitting the absorption lines of a given element (e.g. Na) at different wavelengths we can test ultracool atmospheric models and draw for the first time a 3D picture of stellar atmospheres at temperatures down to 1000K. Determining the atmospheric parameters (e.g. temperature, surface gravity and metallicity) of a big sample of brown dwarfs, will allow us to understand the role of these parameters on the formation of their spectra. The large number of objects in our sample also will allow us to do a statistical significant test of the birth rate and initial mass function predictions for brown dwarfs. Determining the shape of the initial mass function for very low mass objects is a fundamental task to improve galaxy models, as recent studies tep{2010Natur.468..940V} have shown that low-mass objects dominate in massive elliptical galaxies.

  10. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

    NASA Astrophysics Data System (ADS)

    Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang

    2000-02-01

    We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.

  11. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less

  12. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle.

    PubMed

    Semelka, R C; Tomei, E; Wagner, S; Mayo, J; Caputo, G; O'Sullivan, M; Parmley, W W; Chatterjee, K; Wolfe, C; Higgins, C B

    1990-06-01

    The validity of geometric formulas to derive mass and volumes in the morphologically abnormal left ventricle is problematic. Imaging techniques that are tomographic and therefore inherently three-dimensional should be more reliable and reproducible between studies in such ventricles. Determination of reproducibility between studies is essential to define the limits of an imaging technique for evaluating the response to therapy. Sequential cine magnetic resonance (MR) studies were performed on patients with dilated cardiomyopathy (n = 11) and left ventricular hypertrophy (n = 8) within a short interval in order to assess interstudy reproducibility. Left ventricular mass, volumes, ejection fraction, and end-systolic wall stress were determined by two independent observers. Between studies, left ventricular mass was highly reproducible for hypertrophied and dilated ventricles, with percent variability less than 6%. Ejection fraction and end-diastolic volume showed close reproducibility between studies, with percent variability less than 5% End-systolic volume varied by 4.3% and 4.5% in dilated cardiomyopathy and 8.4% and 7.2% in left ventricular hypertrophy for the two observers. End-systolic wall stress, which is derived from multiple measurements, varied the greatest, with percent variability of 17.2% and 15.7% in dilated cardiomyopathy and 14.8% and 13% in left ventricular hypertrophy, respectively. The results of this study demonstrate that mass, volume, and functional measurements are reproducible in morphologically abnormal ventricles.

  13. Determination of the isotopic composition and molar mass of a new 'Avogadro' crystal: homogeneity and enrichment-related uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pramann, Axel; Narukawa, Tomohiro; Rienitz, Olaf

    2017-10-01

    The molar mass M and isotopic composition (expressed in amount-of-substance fractions x( i Si) of the silicon isotopes 28Si, 29Si, and 30Si) of a new silicon crystal (notation: Si28-23Pr11) highly enriched in the 28Si isotope have been determined independently at PTB and NMIJ by measuring exactly the same sample solutions using both a high resolution multicollector-inductively coupled plasma mass spectrometer (MC-ICP-MS). This crystal will be used for the complementary determination of the Avogadro constant N A and thus providing one of many key parameters in the planned redefinition of the SI units kilogram and mole, using fundamental constants. Samples from three different axial positions in the crystal ingot, each divided into several radial positions were measured in order to probe possible variations of the molar mass and isotopic composition. Results obtained at PTB and NMIJ agreed within the limits of uncertainty. The application of the latest improved measurement techniques as well as an improved determination of the calibration factors (K) required to correct for mass bias effects resulted in an averaged M  =  27.976 942 666(40) g mol-1 with a relative combined uncertainty u c,rel(M)  =  1.4  ×  10-9. The course of M as a function of the origin of the measured samples suggests no significant inhomogeneity within the limits of the claimed uncertainty throughout the crystal supporting its applicability for the determination of a new N A. This extends to x(28Si) and x(29Si). Variations in x(30Si) as a function of the sample location were observed, but a systematic relation to physical origins cannot be claimed. Compared to the previous silicon crystal (‘AVO28’, notation: Si28-10Pr11) used for the latest determination of N A, the enrichment increases from x(28Si)  =  0.999 957 52(12) mol mol-1 (‘AVO28’) to x(28Si)  =  0.999 984 470(39) mol mol-1 (Si28-23Pr11, discussed in this paper) which is at least in part responsible for a reduction of the associated measurement uncertainty u(M).

  14. MASSCLEANCOLORS-MASS-DEPENDENT INTEGRATED COLORS FOR STELLAR CLUSTERS DERIVED FROM 30 MILLION MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan; Hanson, M. M.

    2010-04-10

    We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M {sub cluster} {>=} 10{sup 6} M {sub sun}. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictionsmore » and is less red, in the first 10{sup 7} to 10{sup 8} years in UBV colors, and for all ages in (V - K). Second, the 1{sigma} dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.« less

  15. A mass census of the nearby universe with the RESOLVE survey

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen

    The galaxy mass function, i.e., the distribution of galaxies as a function of mass, is a useful way to characterize the galaxy population. In this work, we examine the stellar and baryonic mass function, and the velocity function of galaxies and galaxy groups for two volume-limited surveys of the nearby universe. Stellar masses are estimated from multi-band photometry, and we add cold atomic gas from measurements and a newly calibrated estimator to obtain baryonic mass. Velocities are measured from the internal motions of galaxies and groups and account for all matter within the system. We compare our observed mass and velocity functions with the halo mass function from theoretical simulations of dark matter, which predict a much more steeply rising low-mass slope than is normally observed for the galaxy mass function. We show that taking into account the cold gas mass, which dominates the directly detectable mass of low-mass galaxies, steepens the low-mass slope of the galaxy mass function. The low- mass slope of the baryonic mass function, however, is still much shallower than that of the halo mass function. The discrepancy in low-mass slope persists when examining the velocity function, which accounts for all matter in galaxies (detectable or not), suggesting that some mechanism must reduce the mass in halos or destroy them completely. We investigate the role of environment by performing group finding and examining the mass and velocity functions as a function of group halo mass. Broken down by halo mass regime, we find dips and varying low-mass slopes in the mass and velocity functions, suggesting that group formation processes such as merging and stripping, which destroy and lower the mass of low-mass satellites respectively, potentially contribute to the discrepancy in low-mass slope. In particular, we focus on the nascent group regime, groups of mass 10 11.4-12 [solar mass] with few members, which has a depressed and flat low-mass slope in the galaxy mass and velocity function. We find that nascent groups are at the peak baryonic collapse efficiency (group-integrated cold baryonic mass divided by the group halo mass), while isolated dwarfs in lower mass halos are rapidly growing in their collapsed baryonic mass and larger groups are increasingly dominated by their hot halo gas. Scatter in this collapsed baryon efficiency could indicate varying hot gas fractions in nascent groups, suggestive of a wide variety of group formation processes occurring at these scales. We point to this nascent group regime as a period of transition in group evolution, where merging and stripping remove galaxies from the population, contributing to the discrepancy in low-mass slope between observations and dark matter simulations.

  16. A class of ejecta transport test problems

    NASA Astrophysics Data System (ADS)

    Oro, David M.; Hammerberg, J. E.; Buttler, William T.; Mariam, Fesseha G.; Morris, Christopher L.; Rousculp, Chris; Stone, Joseph B.

    2012-03-01

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function of particulate masses and velocities, f0(m,u;t). Some properties of this source distribution function have been determined from Taylor- and supported-shockwave experiments. Such experiments measure the mass moment of f0 under vacuum conditions assuming weak particle-particle interactions and, usually, fully inelastic scattering (capture) of ejecta particles from piezoelectric diagnostic probes. Recently, planar ejection of W particles into vacuum, Ar, and Xe gas atmospheres have been carried out to provide benchmark transport data for transport model development and validation. We present those experimental results and compare them with modeled transport of the W-ejecta particles in Ar and Xe.

  17. Generalization of multifractal theory within quantum calculus

    NASA Astrophysics Data System (ADS)

    Olemskoi, A.; Shuda, I.; Borisyuk, V.

    2010-03-01

    On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.

  18. Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at √{sNN} = 8.16 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjoern, M. B.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Borysova, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddock, B.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-11-01

    The production of J / ψ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair √{sNN} = 8.16 TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J / ψ production are measured as a function of the J / ψ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.

  19. SHINE, The SpHere INfrared survey for Exoplanets

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Feldt, M.; Gratton, R.; Langlois, M.; Cheetham, A.; Bonnefoy, M.; Meyer, M.

    2017-12-01

    The SHINE survey for SPHERE High-contrast ImagiNg survey for Exoplanets, is a large near-infrared survey of 400-600 young, nearby stars and represents a significant component of the SPHERE consortium Guaranteed Time Observations consisting in 200 observing nights. The scientific goals are: i) to characterize known planetary systems (architecture, orbit, stability, luminosity, atmosphere); ii) to search for new planetary systems using SPHERE's unprecedented performance; and finally iii) to determine the occurrence and orbital and mass function properties of the wide-orbit, giant planet population as a function of the stellar host mass and age. Combined, the results will increase our understanding of planetary atmospheric physics and the processes of planetary formation and evolution.

  20. The orbit and companion of the Cepheid S Sge - A probable triple system

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.; Welch, Douglas L.; Slovak, Mark H.; Barnes, Thomas G., III; Moffett, Thomas J.

    1993-01-01

    New radial velocities for the classical Cepheid S Sge have been obtained and combined with previous observations to derive a new orbit. The revised orbital elements are: gamma, -10.3 +/- 0.4 km/s; K, 15.5 +/- 0.2 km/s; e, 0.23 +/- 0.02; omega, 203.1 +/- 4.2 deg; T0, 39902.3 +/- 6.6 JD; P, 675.79 +/- 0.18 days; f(m), 0.239 +/- 0.010 solar masses; a sin i, 0.935 AU = 139.9 +/- 2.0 x 10 exp 6 km; s.e., 1.2 km/s. The revised elements differ very little from the orbit determined by Herbig and Moore (1952). We have also obtained low resolution IUE spectra to search for the companion. The IUE spectra show excess flux at 1800 A when compared with spectra of the single Cepheid Delta Cep at the same (B-V)0. The spectral type of the companion determined from this flux excess is A7 V to F0 V. However, the mass of such a companion (1.7 to 1.5 solar masses) is smaller than the minimum mass (2.8 solar masses) required by the mass function and an evolutionary mass of the Cepheid. We infer that the companion is itself a short period binary.

  1. On the Effective Mass of the Electron Neutrino in Beta Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-20

    In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less

  2. Mass media and rational domination: a critical review of a dominant paradigm.

    PubMed

    Moemeka, A

    1988-01-01

    The mass media exert powerful influences on the way people perceive, think about, and ultimately act in their world. Despite agreement on this fact, communication scholars are divided into 2 opposing camps. The functionalists view the mass media as instruments for providing the framework for the education and enlightenment of the masses socially, economically, and politically. In contrast, the conflict and critical theorists see the mass media as instruments for rational domination and manipulation of the masses through ideological control. Because the mass media are part of the social system and their operators belong to the ruling elite class, they invariably support the ideology of the power structure through justifying the sociopolitical status quo. It is axiomatic that the mass media are capable of diverting people's attention and consciousness away from sociopolitical issues by filling their leisure time with escapist forms of entertainment. The political structure is fully aware of the potential of the mass media to effect cognitive changes among individuals and to structure their thinking. As long as social, political, and economic status determine who is important and who is not, the media will continue to be instruments of control. However, this control function can be weakened when media infrastructure and administration are decentralized and closer to the masses. Then, solutions to the problems of the masses are the priority targets of media contents. The democratic-participant media theory calls for the right of access to the mass media for citizens and the rights of the masses to be served by the media according to their own self-determined needs.

  3. NEW CONSTRAINTS ON MASS-DEPENDENT DISRUPTION OF STAR CLUSTERS IN M51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandar, Rupali; Whitmore, Bradley C.; Regan, Michael

    2011-02-01

    We use UBVI H{alpha} images of the Whirlpool galaxy, M51, taken with the Advanced Camera for Surveys and WFPC2 cameras on the Hubble Space Telescope (HST) to select star clusters, and to estimate their masses and ages by comparing their observed colors with predictions from population synthesis models. We construct the mass function of intermediate-age (1-4 x 10{sup 8} yr) clusters, and find that it is well described by a power law, {psi}(M) {proportional_to} M{sup {beta}}, with {beta} = -2.1 {+-} 0.2, for clusters more massive than M {approx} 6 x 10{sup 3} M{sub sun}. This extends the mass functionmore » of intermediate-age clusters in M51 to masses lower by nearly a factor of five over previous determinations. The mass function does not show evidence for curvature at either the high or low mass end. This shape indicates that there is no evidence for the earlier disruption of lower mass clusters compared with their higher mass counterparts (i.e., no mass-dependent disruption) over the observed range of masses and ages, or for a physical upper mass limit M{sub C} with which clusters in M51 can form. These conclusions differ from previous suggestions based on poorer-quality HST observations. We discuss their implications for the formation and disruption of the clusters. Ages of clusters in two 'feathers', stellar features extending from the outer portion of a spiral arm, show that the feather with a larger pitch angle formed earlier, and over a longer period, than the other.« less

  4. Myostatin--the holy grail for muscle, bone, and fat?

    PubMed

    Buehring, B; Binkley, N

    2013-12-01

    Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily, was first described in 1997. Since then, myostatin has gained growing attention because of the discovery that myostatin inhibition leads to muscle mass accrual. Myostatin not only plays a key role in muscle homeostasis, but also affects fat and bone. This review will focus on the impact of myostatin and its inhibition on muscle mass/function, adipose tissue and bone density/geometry in humans. Although existing data are sparse, myostatin inhibition leads to increased lean mass and 1 study found a decrease in fat mass and increase in bone formation. In addition, myostatin levels are increased in sarcopenia, cachexia and bed rest whereas they are increased after resistance training, suggesting physiological regulatory of myostatin. Increased myostatin levels have also been found in obesity and levels decrease after weight loss from caloric restriction. Knowledge on the relationship of myostatin with bone is largely based on animal data where elevated myostatin levels lead to decreased BMD and myostatin inhibition improved BMD. In summary, myostatin appears to be a key factor in the integrated physiology of muscle, fat, and bone. It is unclear whether myostatin directly affects fat and bone, or indirectly via muscle. Whether via direct or indirect effects, myostatin inhibition appears to increase muscle and bone mass and decrease fat tissue-a combination that truly appears to be a holy grail. However, at this time, human data for both efficacy and safety are extremely limited. Moreover, whether increased muscle mass also leads to improved function remains to be determined. Ultimately potential beneficial effects of myostatin inhibition will need to be determined based on hard outcomes such as falls and fractures.

  5. An extended Zel'dovich model for the halo mass function

    NASA Astrophysics Data System (ADS)

    Lim, Seunghwan; Lee, Jounghun

    2013-01-01

    A new way to construct a fitting formula for the halo mass function is presented. Our formula is expressed as a solution to the modified Jedamzik matrix equation that automatically satisfies the normalization constraint. The characteristic parameters expressed in terms of the linear shear eigenvalues are empirically determined by fitting the analytic formula to the numerical results from the high-resolution N-body simulation and found to be independent of scale, redshift and background cosmology. Our fitting formula with the best-fit parameters is shown to work excellently in the wide mass-range at various redshifts: The ratio of the analytic formula to the N-body results departs from unity by up to 10% and 5% over 1011 <= M/(h-1Msolar) <= 5 × 1015 at z = 0,0.5 and 1 for the FoF-halo and SO-halo cases, respectively.

  6. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  7. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  8. Measurements of the $W$ Boson Mass with the D0 Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes de Sa, Rafael

    2013-01-01

    In the first part, we describe what is the W boson mass in the context of the Standard Model. We discuss the prominent role this physical observable plays in the determination of the internal self consistency of the Electroweak Sector. We review measurements and calculation of the W boson mass done in past and argue about the importance and feasibility of improving the experimental determination. We give a description of the Fermilab Tevatron Collider and the D0 detector, highlighting the relevant parts for the measurement described in this Dissertation. In the second part, we give a detailed description of amore » measurement of the W boson mass using the D0 Central Calorimeter. The measurement uses 1.68 x 10 6 candidates from W → en decays, corresponding to 4.3 fb -1 of integrated luminosity collected from 2006 to 2009. We measure the mass using the transverse mass, electron transverse momentum, and missing transverse energy distributions. The transverse mass and electron transverse momentum measurements are the most precise and are combined to give MW = 80.367 ± 0.013(stat) ± 0.023 (syst) GeV = 80.367 ± 0.026 GeV. This is combined with an earlier D0 result determined using an independent 1 fb -1 data sample, also with central electrons only, to give M W = 80.375± 0.023 GeV. The uncertainty in the measurement is dominated by the determination of the calorimeter electron energy scale, the W sample size, the knowledge of the parton distribution function. In the third part, we discuss methods of reducing the dominant uncertainties in the W boson mass measurements. We show that introducing electrons detected in the End Calorimeters greatly reduce the measurement systematic uncertainty, especially the on related to the parton distribution functions. We describe a precise calibration of the End Calorimeter using Z → ee events corresponding to 4.3 fb -1 of integrated luminosity. The calibration is an important milestone in a measurement that explores a larger part of the D0 Calorimeter. We present parametrized models that describe the response of the End Calorimeters to electron showers and soft hadronic particles, giving special attention to the specific challenges of a measurement in the forward region: the inhomogeneity of the uninstrumented materials, the large hadronic energy flow in the calorimeter and the jet misidentification probability.« less

  9. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  10. Relationships of 35 lower limb muscles to height and body mass quantified using MRI.

    PubMed

    Handsfield, Geoffrey G; Meyer, Craig H; Hart, Joseph M; Abel, Mark F; Blemker, Silvia S

    2014-02-07

    Skeletal muscle is the most abundant tissue in the body and serves various physiological functions including the generation of movement and support. Whole body motor function requires adequate quantity, geometry, and distribution of muscle. This raises the question: how do muscles scale with subject size in order to achieve similar function across humans? While much of the current knowledge of human muscle architecture is based on cadaver dissection, modern medical imaging avoids limitations of old age, poor health, and limited subject pool, allowing for muscle architecture data to be obtained in vivo from healthy subjects ranging in size. The purpose of this study was to use novel fast-acquisition MRI to quantify volumes and lengths of 35 major lower limb muscles in 24 young, healthy subjects and to determine if muscle size correlates with bone geometry and subject parameters of mass and height. It was found that total lower limb muscle volume scales with mass (R(2)=0.85) and with the height-mass product (R(2)=0.92). Furthermore, individual muscle volumes scale with total muscle volume (median R(2)=0.66), with the height-mass product (median R(2)=0.61), and with mass (median R(2)=0.52). Muscle volume scales with bone volume (R(2)=0.75), and muscle length relative to bone length is conserved (median s.d.=2.1% of limb length). These relationships allow for an arbitrary subject's individual muscle volumes to be estimated from mass or mass and height while muscle lengths may be estimated from limb length. The dataset presented here can further be used as a normative standard to compare populations with musculoskeletal pathologies. © 2013 Published by Elsevier Ltd.

  11. Estimation of Skeletal Muscle Mass Relative to Adiposity Improves Prediction of Physical Performance and Incident Disability.

    PubMed

    Baker, Joshua F; Long, Jin; Leonard, Mary B; Harris, Tamara; Delmonico, Matthew J; Santanasto, Adam; Satterfield, Suzanne; Zemel, Babette; Weber, David R

    2018-06-14

    We assessed the discrimination of lean mass estimates that have been adjusted for adiposity for physical functioning deficits and prediction of incident disability. Included were 2,846 participants from the Health, Aging and Body Composition Study with available whole-body dual energy absorptiometry measures of appendicular lean mass index (ALMI, kg/m2) and fat mass index (FMI, kg/m2). Age-, sex-, and race-specific Z-Scores and T-Scores were determined by comparison to published reference ranges. ALMI values were adjusted for FMI (ALMIFMI) using a novel published method. Sex-stratified analyses assessed associations between lean mass estimates and the physical performance score, ability to complete a 400-meter walk, grip strength, and incident disability. Dichotomized definitions of low lean for age and sarcopenia were examined and their performance compared to the ALM-to-BMI ratio. Compared to ALMI T-Scores and Z-Scores, the ALMIFMI scores demonstrated stronger associations with physical functioning, and were similarly associated with grip strength. Greater FMI Z-Scores and T-Scores were associated with poor physical functioning and incident disability. Definitions of low lean for age and sarcopenia using ALMIFMI (compared to ALMI) better discriminated those with poor physical functioning and a greater risk of incident disability. The ALM-to-BMI ratio was modestly associated with grip strength and physical performance, but was not associated with completion of the 400-meter walk or incident disability, independent of adiposity and height. Estimation of skeletal muscle mass relative to adiposity improves correlations with physical performance and prediction of incident disability suggesting it is an informative outcome for clinical studies.

  12. On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    NASA Astrophysics Data System (ADS)

    Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.

    2004-04-01

    We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.

  13. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan.

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2012-01-01

    This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  15. Determination of some L-3,4-dihydroxyphenylalanine and dopamine metabolites in urine by means of mass fragmentography.

    PubMed

    Muskiet, F A; Fremouw-Ottevangers, D C; van der Meulen, J; Wolthers, B G; de Vries, J A

    1978-01-01

    We describe a mass-fragmentographic method for determination in urine of the following metabolites of L-3,4-dihydroxyphenylalanine and dopamine: vanillactic acid, 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylethanol, and 3,4-dihydroxyphenylethanol. Deuterated analogs were used as internal standards. The method is fast, reproducible, sensitive, and selective, and does not require the use of time-consuming clean-up procedures. Normal excretion values in terms of creatinine, expressed as a function of age, as well as values obtained for patients with neurogenic tumors, a patient during therapy with L-3,4-dihydroxyphenylalanine, and a patient receiving dopamine are presented and discussed.

  16. Impact tensile testing of wires

    NASA Technical Reports Server (NTRS)

    Dawson, T. H.

    1976-01-01

    The test consists of fixing one end of a wire specimen and allowing a threaded falling weight to strike the other. Assuming the dynamic stress in the wire to be a function only of its strain, energy considerations show for negligible wire inertia effects that the governing dynamic stress-strain law can be determined directly from impact energy vs. wire elongation data. Theoretical calculations are presented which show negligible wire inertia effects for ratios of wire mass to striking mass of the order of .01 or less. The test method is applied to soft copper wires and the dynamic stress-strain curve so determined is found to be about 30 percent higher than the corresponding static curve.

  17. Work function determination of promising electrode materials for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.

    1976-01-01

    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.

  18. A Generalized Exosphere Model Across the Solar System

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Hurley, D.; Farrell, W. M.; Burger, M. H.

    2016-12-01

    We have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, mass of the exospheric species, heliocentric distance, rotation rate of the primary, and composition of the body. These parameters will be useful for mission planning as well as quick look data to determine the size and location of bodies likely to retain their exospheres, the observability of exospheric species, and differences among bodies based on size, composition, rotation rate and other parameters. We will also consider the sizes of small clusters of atoms, and small dust particles that may be gravitationally bound to low mass bodies such as Phobos and asteroids. In addition, it is of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements, and the effect on the measurements of outgassing in the instruments.

  19. Electromagnetic corrections to the hadronic vacuum polarization of the photon within QEDL and QEDM

    NASA Astrophysics Data System (ADS)

    Bussone, Andrea; Della Morte, Michele; Janowski, Tadeusz

    2018-03-01

    We compute the leading QED corrections to the hadronic vacuum polarization (HVP) of the photon, relevant for the determination of leptonic anomalous magnetic moments, al. We work in the electroquenched approximation and use dynamical QCD configurations generated by the CLS initiative with two degenerate flavors of nonperturbatively O(a)-improved Wilson fermions. We consider QEDL and QEDM to deal with the finite-volume zero modes. We compare results for the Wilson loops with exact analytical determinations. In addition we make sure that the volumes and photon masses used in QEDM are such that the correct dispersion relation is reproduced by the energy levels extracted from the charged pions two-point functions. Finally we compare results for pion masses and the HVP between QEDL and QEDM. For the vacuum polarization, corrections with respect to the pure QCD case, at fixed pion masses, turn out to be at the percent level.

  20. The Effect of Star Formation History on the Inferred Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Scalo, John

    2006-01-01

    Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaus and declines in the present-day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with lognormal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.

  1. Chiral symmetry constraints on resonant amplitudes

    NASA Astrophysics Data System (ADS)

    Bruns, Peter C.; Mai, Maxim

    2018-03-01

    We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.

  2. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: assessment with plasma citrulline in a rodent model.

    PubMed

    Beaufrère, A M; Neveux, N; Patureau Mirand, P; Buffière, C; Marceau, G; Sapin, V; Cynober, L; Meydinal-Denis, D

    2014-11-01

    Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.

  3. The Mass Function of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.

    1998-12-01

    The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.

  4. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  5. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

    DOE PAGES

    Krumholz, Mark R.; Myers, Andrew T.; Klein, Richard I.; ...

    2016-05-24

    As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical time-scale, the opacity limit for fragmentation, at ~0.01M⊙. However, the observed peak of the initial mass function (IMF) lies a factor of 20-30 higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. Here, we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation inmore » them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, ~0.01M⊙, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why ~0.01M⊙ objects are rare: unless an outside agent intervenes (e.g. a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of ~0.2M⊙, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at ~0.2M⊙.« less

  6. A theoretical measure technique for determining 3D symmetric nearly optimal shapes with a given center of mass

    NASA Astrophysics Data System (ADS)

    Alimorad D., H.; Fakharzadeh J., A.

    2017-07-01

    In this paper, a new approach is proposed for designing the nearly-optimal three dimensional symmetric shapes with desired physical center of mass. Herein, the main goal is to find such a shape whose image in ( r, θ)-plane is a divided region into a fixed and variable part. The nearly optimal shape is characterized in two stages. Firstly, for each given domain, the nearly optimal surface is determined by changing the problem into a measure-theoretical one, replacing this with an equivalent infinite dimensional linear programming problem and approximating schemes; then, a suitable function that offers the optimal value of the objective function for any admissible given domain is defined. In the second stage, by applying a standard optimization method, the global minimizer surface and its related domain will be obtained whose smoothness is considered by applying outlier detection and smooth fitting methods. Finally, numerical examples are presented and the results are compared to show the advantages of the proposed approach.

  7. The nuclear size and mass effects on muonic hydrogen-like atoms embedded in Debye plasma

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Bahar, M. K.; Soylu, A.

    2016-10-01

    Effects of finite nuclear size and finite nuclear mass are investigated for muonic atoms and muonic ions embedded in the Debye plasma. Both nuclear charge radii and nuclear masses are taken into account with experimentally determined values. In particular, isotope shifts of bound state energies, radial probability densities, transition energies, and binding energies for several atoms are studied as functions of Debye length. The theoretical model based on semianalytical calculations, the Sturmian expansion method, and the perturbative approach has been constructed, in the nonrelativistic frame. For some limiting cases, the comparison with previous most accurate literature results has been made.

  8. Fragmentation of a valine molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Vukstich, V. S.; Romanova, L. G.; Megela, I. G.; Papp, A. V.; Snegurskii, A. V.

    2017-05-01

    The formation of ion products of single and dissociative ionization of a valine molecule (C5H11NO2) by high-energy (11.5 MeV) and low-energy (below 150 eV) electrons has been investigated by mass spectrometry. Mass spectra of this molecule and near-threshold functions of yield of its ion fragments, for which the magnitudes of occurrence energies are determined, have been obtained. The analysis of the changes in mass spectra of valine molecules irradiated with doses of 5 and 20 kGy in comparison with those for unirradiated molecules shows that high-energy irradiation changes irreversibly the structure of some of the initial molecules.

  9. Geographic origin as a determinant of left ventricular mass and diastolic function - the Cardiovascular Risk in Young Finns Study.

    PubMed

    Vähämurto, L; Juonala, M; Ruohonen, S; Hutri-Kähönen, N; Kähönen, M; Laitinen, T; Tossavainen, P; Jokinen, E; Viikari, J; Raitakari, O T; Pahkala, K

    2018-03-01

    Eastern Finns have higher risk of coronary heart disease (CHD) and carotid intima-media thickness than western Finns although current differences in CHD risk factors are minimal. Left ventricular (LV) mass and diastolic function predict future cardiovascular events but their east-west differences are unknown. We examined the association of eastern/western baseline origin with LV mass and diastolic function. The study population included 2045 subjects of the Cardiovascular Risk in Young Finns Study with data from the baseline survey (1980) and the latest follow-up (2011) when echocardiography was performed at the age of 34-49 years. Subjects with eastern baseline origin had in 2011 higher LV mass (139±1.0 vs. 135±1.0 g, p=0.006) and E/e'-ratio indicating weaker LV diastolic function (4.86±0.03 vs. 4.74±0.03, p=0.02) than western subjects. Results were independent of age, sex, area of examination and CHD risk factors such as blood pressure and BMI (LV mass indexed with height: p<0.0001; E/e'-ratio: p=0.01). LV end-diastolic volume was higher among subjects with eastern baseline origin (135±0.9 vs. 131±0.9 ml, p=0.0011) but left atrial end-systolic volume, also indicating LV diastolic function, was not different between eastern and western subjects (43.4±0.5 vs. 44.0±0.5 ml, p=0.45). Most of the subjects were well within the normal limits of these echocardiographic measurements. In our healthy middle-aged population, geographic origin in eastern Finland associated with higher LV mass compared to western Finland. Higher E/e'-ratio suggests that subjects with eastern baseline origin might have higher prevalence of diastolic dysfunction in the future than western subjects.

  10. Mass-Luminosity Relations for Rapid and Slow Rotators.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2006-08-01

    Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.

  11. Insights on the distribution of substitutions in spruce galactoglucomannan and its derivatives using integrated chemo-enzymatic deconstruction, chromatography and mass spectrometry.

    PubMed

    Liu, Jun; Leppänen, Ann-Sofie; Kisonen, Victor; Willför, Stefan; Xu, Chunlin; Vilaplana, Francisco

    2018-06-01

    Accurate determination of the distribution of substitutions in the primary molecular structure of heteropolysaccharides and their derivatives is a prerequisite for their increasing application in the pharmaceutical and biomedical fields, which is unfortunately hindered due to the lack of effective analytical techniques. Acetylated galactoglucomannan (GGM) is an abundant plant polysaccharide as the main hemicellulose in softwoods, and therefore constitutes an important renewable resource from lignocellulosic biomass for the development of bioactive and functional materials. Here we present a methodology for profiling the intramolecular structure of spruce GGM and its chemical derivatives (cationic, anionic, and benzoylated) by combining chemo-enzymatic hydrolysis, liquid chromatography, and mass spectrometry. Fast identification and qualitative mass profiling of GGM and its derivatives was conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and electrospray ionization mass spectrometry (ESI-MS). Tandem mass fragmentation analysis and its hyphenation with hydrophilic interaction liquid chromatography (HILIC-ESI-MS/MS) provide further insights on the substitution placement of the GGM oligosaccharides and its derivatives. This method will be useful in understanding the structure-function relationships of native GGM and their derivatives, and therefore facilitate their potential application. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity function over much of M31.

  13. Comparison of pulmonary function between children living in rural and urban areas in northern Nigeria.

    PubMed

    Glew, R H; Kassam, H; Vander Voort, J; Agaba, P A; Harkins, M; VanderJagt, D J

    2004-08-01

    Children in northern Nigeria and elsewhere in the hot, arid western Sahel, are at risk of having their lung function compromised by a variety of factors, including undernutrition, environmental factors (e.g. airborne pollutants such as dust and smoke from wood fires), chronic upper-respiratory tract infections, and low socioeconomic class. We were interested in using spirometry to compare the pulmonary function of Nigerian children and adolescents aged 6-18 years who were living in urban and rural settings with the corresponding standards for African-American children. A total of 183 boys and girls in the rural village of Sabon Fobur on the Jos Plateau and another 128 boys and girls in the city of Jos were tested to determine their forced vital capacity (FVC), FVC at 1 s (FVC1), and peak expiratory flow (PEF). The nutritional status of the subjects was determined by measuring the body mass index (BMI), triceps skin-fold thickness, and mid-arm circumference, and fat-free mass (FFM) and fat mass (FM) by bioelectrical impedance analysis. According to the results of anthropometry, the subjects in Sabon Fobur and Jos were lean but generally adequately nourished. The mean FVC, FVC1 and PEF values for the rural males were 1.851,1.761, and 3.521, and for the urban males they were 1.971,1.791, and 3.471, respectively. The corresponding values for the rural females were 1.791,1.701, and 3.371, and for the urban females they were 1.761,1.671, and 3.091. These values were approximately 100 per cent of the corresponding values for African-American children. In general, strong correlations were found between each of the three lung function parameters and age, weight, height (only for the males), BMI, MAC, and FFM. These results show that: (1) the lung function of Nigerian children and adolescents living in either rural or urban areas were similar and compared favorably with African-American standards, and (2) weight was as important as height in determining pulmonary function. The inclusion of FFM as an explanatory variable did notfurther increase the accuracy of the prediction, even in a population where malnutrition may be prevalent. Therefore, we conclude that measurements of height and weight are all that are required for the assessment of lung function using spirometry in Nigerian children.

  14. Experimental Study of Thermophysical Properties of Peat Fuel

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. S.; Piralishvili, Sh. A.; Stepanov, E. G.; Spesivtseva, N. S.

    2017-03-01

    A study has been made of thermophysical properties of peat pellets of higher-than-average reactivity due to the pretreatment of the raw material. A synchronous differential analysis of the produced pellets was performed to determine the gaseous products of their decomposition by the mass-spectroscopy method. The parameters of the mass loss rate, the heat-release function, the activation energy, the rate constant of the combustion reaction, and the volatile yield were compared to the properties of pellets compressed by the traditional method on a matrix pelletizer. It has been determined that as a result of the peat pretreatment, the yield of volatile components increases and the activation energy of the combustion reaction decreases by 17 and 30% respectively compared with the raw fuel. This determines its prospects for burning in an atomized state at coal-fired thermal electric power plants.

  15. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    PubMed

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  16. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2

  17. Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, Gheorghe

    2007-01-01

    This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb -1 of pmore » $$\\bar{p}$$ collisions at √s =1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the t$$\\bar{t}$$ all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, sigmac. The measured mass of the top quark is 171.1±3.7(stat.unc.)±2.1(syst.unc.) GeV/ c 2 and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.« less

  18. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    PubMed

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  19. Testing Fundamental Physics with Distant Star Clusters: Analysis of Observational Data on Palomar 14

    NASA Astrophysics Data System (ADS)

    Jordi, K.; Grebel, E. K.; Hilker, M.; Baumgardt, H.; Frank, M.; Kroupa, P.; Haghi, H.; Côté, P.; Djorgovski, S. G.

    2009-06-01

    We use the distant outer halo globular cluster Palomar 14 as a test case for classical versus modified Newtonian dynamics (MOND). Previous theoretical calculations have shown that the line-of-sight velocity dispersion predicted by these theories can differ by up to a factor of 3 for such sparse, remote clusters like Pal 14. We determine the line-of-sight velocity dispersion of Palomar 14 by measuring radial velocities of 17 red giant cluster members obtained using the Very Large Telescope and Keck telescope. The systemic velocity of Palomar 14 is (72.28 ± 0.12) km s-1. The derived velocity dispersion of (0.38 ± 0.12) km s-1 of the 16 definite member stars is in agreement with the theoretical prediction for the classical Newtonian case according to Baumgardt et al. In order to exclude the possibility that a peculiar mass function might have influenced our measurements, we derived the cluster's main-sequence mass function down to 0.53 M sun using archival images obtained with the Hubble Space Telescope. We found a mass function slope of α = 1.27 ± 0.44, which is, compared to the canonical mass function, a significantly shallower slope. The derived lower limit on the cluster's mass is higher than the theoretically predicted mass in the case of MOND. Our data are consistent with a central density of ρ0 = 0.1 M sun pc-3. We need no dark matter in Palomar 14. If the cluster is on a circular orbit, our spectroscopic and photometric results argue against MOND, unless the cluster experienced significant mass loss. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  1. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  2. Dithizone-functionalized solid phase extraction-displacement elution-high performance liquid chromatography-inductively coupled plasma mass spectrometry for mercury speciation in water samples.

    PubMed

    Yin, Yong-guang; Chen, Ming; Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin

    2010-06-15

    A novel and simple solid phase extraction (SPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) method was developed for determination of inorganic mercury (IHg), methylmercury MeHg and ethylmercury (EtHg) in water samples in the present work. The procedure involves pre-functionalization of the commercially available C18 SPE column with dithizone, loading water sample, displacement elution of mercury species by Na(2)S(2)O(3) solution, followed by HPLC-ICP-MS determination. Characterization and optimization of operation parameters of this new SPE procedure were discussed, including eluting reagent selection, concentration of eluting reagent, volume of eluting reagent, effect of NaCl and humic acid in sample matrix. At optimized conditions, the detection limits of mercury species for 100mL water sample were about 3ngL(-1) and the average recoveries were 93.7, 83.4, and 71.7% for MeHg, IHg and EtHg, respectively, by spiking 0.2microgL(-1) mercury species into de-ion water. Stability experiment reveals that both the dithizone-functionalized SPE cartridge and the mercury species incorporated were stable in the storage procedure. These results obtained demonstrate that SPE-HPLC-ICP-MS is a simple and sensitive technique for the determination of mercury species at trace level in water samples with high reproducibility and accuracy.

  3. A Mass Census of the Nearby Universe with RESOLVE and ECO

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila; Stark, David; Moffett, Amanda J.; Norris, Mark A.; Berlind, Andreas A.; Hall, Kirsten; Baker, Ashley; Snyder, Elaine M.; Bittner, Ashley; Hoversten, Erik A.; Lagos, Claudia; Nasipak, Zachary; RESOVE Team

    2017-01-01

    The low-mass slope of the galaxy stellar mass function is significantly shallower than that of the theoretical dark matter halo mass function, leading to several possible interpretations including: 1) stellar mass does not fully represent galaxy mass, 2) galaxy formation becomes increasingly inefficient in lower mass halos, and 3) environmental effects, such as stripping and merging, may change the mass function. To investigate these possible scenarios, we present the census of stellar, baryonic (stars + cold gas), and dynamical masses of galaxies and galaxy groups for the RESOLVE and ECO surveys. RESOLVE is a highly complete volume-limited survey of ~1500 galaxies, enabling direct measurement of galaxy mass functions without statistical completeness corrections down to baryonic mass Mb ~ 10^9 Msun. ECO provides a larger data set (~10,000 galaxies) complete down to Mb ~ 10^9.4 Msun. We show that the baryonic mass function has a steeper low-mass slope than the stellar mass function due to the large population of low-mass, gas-rich galaxies. The baryonic mass function’s low-mass slope, however, is still significantly shallower than that of the dark matter halo mass function. A more direct probe of total galaxy mass is its characteristic velocity, and we present RESOLVE’s preliminary galaxy velocity function, which combines ionized-gas rotation curves, stellar velocity dispersions, and estimates from scaling relations. The velocity function also diverges from the dark matter halo velocity function at low masses. To study the effect of environment, we break the mass functions into different group halo mass bins, finding complex substructure, including a depressed and flat low-mass slope for groups with halo masses ~10^11.4-12 Msun, which we refer to as the nascent group regime, with typical membership of 2-4 galaxies. This substructure is suggestive of efficient merging or gas stripping in nascent groups, which we find also have large scatter in their cold-baryon fractions, possibly pointing to diversity in hot halo gas content in this regime. This work is supported by NSF grant AST-0955368, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society Dissertation Completion Fellowship.

  4. Measuring Low Mass Galaxies In The WFC3 Infrared Spectroscopic Parallels Survey

    NASA Astrophysics Data System (ADS)

    Colbert, James; Teplitz, Harry; Scarlata, Claudia; Siana, Brian; Malkan, Matt; McCarthy, Patrick; Henry, Alaina; Atek, Hakim; Fosbury, Robert; Ross, Nathanial; Hathi, Nimish; Bridge, Carrie; Bunker, Andrew; Dressler, Alan; Shim, Hyunjin; Bedregal, Alejandro; Dominguez, Alberto; Rafelski, Marc; Masters, Dan; Martin, Crystal; Dai, Sophia

    2015-10-01

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey uses over 1800 HST orbits to study galaxy evolution over a majority of cosmic history. Its slitless grism spectroscopy over a wide, continuous spectral range (0.8-1.7 micron) provides an unbiased selection of thousands of emission line galaxies over 0.5 < z < 2.5. Hundreds of these galaxies are detected in multiple emission lines, allowing for important diagnostics of metallicity and dust extinction. We propose deep 3.6 micron imaging (5 sigma, 0.9 micro-Jy) of 60 of the deepest WISP fields observed with the combination of G102+G141 grisms, in order to detect emission-line galaxies down to 0.1 L* and masses below 10^8 Mo. Combined with our HST optical and near-IR photometry, these IRAC data will be critical to determining accurate stellar masses for both passive and active galaxies in our survey. We will determine the evolution of the faint end slope of the stellar mass function and the mass-metallicity relation down to low-mass galaxies. The addition of the IRAC photometry will also provide much stronger constraints on dust extinction and star formation history, especially when combined with information available from the emission lines themselves.

  5. [Adrenal incidentaloma: a clinical problem related to imaging].

    PubMed

    de Bruijne, E L E; Burgmans, J P J; Krestin, G P; Pols, H A P; van den Meiracker, A H; de Herder, W W

    2005-08-13

    Two female patients, 68 and 67 years of age, were referred for right abdominal pain and pyelonephritis, respectively. During the diagnostic work-up, an unsuspected adrenal mass was found in both patients. Hormonal evaluation and imaging showed a benign non-hyperactive functioning adenoma in one patient and a pheochromocytoma in the other. Both patients were successfully treated with endoscopic adrenalectomy. Wider application and improvement of abdominal imaging procedures have caused an increase of incidentally detected adrenal masses, posing a common clinical problem. Typically, a diagnosis can be made on the basis of the characteristic radiological image. The exact nature of the defect is often unclear and further evaluation is required to determine functionality and possible malignancy. An algorithm is presented for the management of adrenal incidentalomas.

  6. Investigating Open Clusters Melotte 111 and NGC 6811

    NASA Astrophysics Data System (ADS)

    Gunshefski, Linda; Paust, Nathaniel E. Q.; van Belle, Gerard

    2018-01-01

    We present photometry and color-magnitude diagrams for the open clusters Melotte 111 (Coma Bernices) and NGC 6811. These clusters were observed with Lowell Observatory’s Discovery Channel Telescope Large Monolithic Imager in the V and I bands. The images were reduced with IRAF and photometry was performed with DAOPHOT/ALLSTAR. The resulting photometry extends many magnitudes below the main sequence turnoff. Both clusters are located nearby, (Melotte 111 d=86 pc and NGC 6811 d=1,107) and are evolutionarily young (Melotte 111, age=450 Myr and NGC 6811, age=1,000 Myr). This work marks the first step of a project to determine the cluster main sequence mass functions and examine how the mass functions evolve in young stellar populations.

  7. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  8. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.

  9. Validation: Codes to compare simulation data to various observations

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2017-02-01

    Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

  10. Right ventricular performance and mass by use of cine MRI late after atrial repair of transposition of the great arteries.

    PubMed

    Lorenz, C H; Walker, E S; Graham, T P; Powers, T A

    1995-11-01

    The long-term adaptation of the right ventricle after atrial repair of transposition of the great arteries (TGA) remains a subject of major concern. Cine magnetic resonance imaging (MRI), with its tomographic capabilities, allows unique quantitative evaluation of both right and left ventricular function and mass. Our purpose was to use MRI and an age-matched normal population to examine the typical late adaptation of the right and left ventricles after atrial repair of TGA. Cine MRI was used to study ventricular function and mass in 22 patients after atrial repair of TGA. Images were obtained in short-axis sections from base to apex to derive normalized right and left ventricular mass (RVM and LVM, g/m2), interventricular septal mass (IVSM, g/m2), RV and LV end-diastolic volumes (EDV, mL/m2), and ejection fractions (EF). Results 8 to 23 years after repair were compared with analysis of 24 age- and sex-matched normal volunteers and revealed markedly elevated RVM, decreased LVM and IVSM, normal RV size, and only mildly depressed RVEF. Only 1 of 22 patients had clinical RV dysfunction, and this patient had increased RVM. Cine MRI allows quantitative evaluation of both RV and LV mass and function late after atrial repair of TGA. Longitudinal studies that include these measurements should prove useful in determining the mechanism of late RV failure in these patients. On the basis of these early data, inadequate hypertrophy does not appear to be the cause of late dysfunction in this patient group.

  11. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  12. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  13. Sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women.

    PubMed

    Straight, Chad R; Brady, Anne O; Evans, Ellen

    2015-03-01

    This study aims to determine the sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women. Seventy-nine community-dwelling men (n = 39; mean [SD] age, 76.1 [6.2] y; mean [SD] body mass index, 27.3 [3.8] kg/m(2)) and women (n = 40; mean [SD] age, 75.8 [5.5] y; mean [SD] body mass index, 27.0 [3.8] kg/m(2)) were assessed for physical activity via questionnaire, body composition via dual-energy x-ray absorptiometry scanning, leg extension power using the Nottingham power rig, and muscle quality (W/kg; the ratio of leg extension power [W] to lower-body mineral-free lean mass [kg]). A composite measure of physical function was obtained by summing Z scores from the 6-minute walk, 8-ft up-and-go test, and 30-second chair-stand test. As expected, men had significantly greater levels of physical activity, lower adiposity, greater lean mass, higher leg extension power, and greater muscle quality compared with women (all P < 0.05). In linear regression analyses, muscle quality and physical activity were the strongest predictors of lower-extremity physical function in men and independently explained 42% and 29% of the variance, respectively. In women, muscle quality (16%) and percent body fat (12%) were independent predictors after adjustment for covariates. Muscle quality is the strongest predictor of lower-extremity physical function in men and women, but sex impacts the importance of physical activity and adiposity. These findings suggest that older men and women may benefit from different intervention strategies for preventing physical disability and also highlight the importance of weight management for older women to preserve physical function.

  14. Low-luminosity stellar mass functions in globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, H.B.; Fahlman, G.G.; Buonanno, R.

    New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less

  15. Slicing cluster mass functions with a Bayesian razor

    NASA Astrophysics Data System (ADS)

    Sealfon, C. D.

    2010-08-01

    We apply a Bayesian ``razor" to forecast Bayes factors between different parameterizations of the galaxy cluster mass function. To demonstrate this approach, we calculate the minimum size N-body simulation needed for strong evidence favoring a two-parameter mass function over one-parameter mass functions and visa versa, as a function of the minimum cluster mass.

  16. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry.

    PubMed

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.

  17. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.

  18. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  19. Vibration mitigation in partially liquid-filled vessel using passive energy absorbers

    NASA Astrophysics Data System (ADS)

    Farid, M.; Levy, N.; Gendelman, O. V.

    2017-10-01

    We consider possible solutions for vibration mitigation in reduced-order model (ROM) of partially filled liquid tank under impulsive forcing. Such excitations may lead to strong hydraulic impacts applied to the tank inner walls. Finite stiffness of the tank walls is taken into account. In order to mitigate the dangerous internal stresses in the tank walls, we explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performance in both cases is examined numerically. The liquid sloshing mass is modeled by equivalent mass-spring-dashpot system, which can both perform small-amplitude linear oscillations and hit the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for a well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite element approach to assess the natural frequencies for specific system parameters. Numerical evaluation criteria are suggested to determine the energy absorption performance.

  20. Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions*

    PubMed Central

    Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre

    2013-01-01

    Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID:23750026

  1. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    PubMed

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  2. Spectroscopic constraints on the form of the stellar cluster mass function

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Konstantopoulos, I. S.; Trancho, G.; Weisz, D. R.; Larsen, S. S.; Fouesneau, M.; Kaschinski, C. B.; Gieles, M.

    2012-05-01

    This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. The advantages are that more clusters can be used and that the ICMF leaves a distinct pattern on the global relation between the cluster luminosity and median age within a population. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009, A&A, 494, 539) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6 × 105 M⊙ is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M 83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009, A&A, 494, 539) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a truncation in the cluster mass functions. However for the case of the Antennae, we find a truncation mass of a few × 106M⊙ , suggesting a dependence on the environment, as has been previously suggested.

  3. Wigner molecules: the strong-correlation limit of the three-electron harmonium.

    PubMed

    Cioslowski, Jerzy; Pernal, Katarzyna

    2006-08-14

    At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.

  4. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  5. Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS)

    PubMed Central

    Holman, Stephen W.; Hammond, Dean E.; Simpson, Deborah M.; Waters, John; Hurst, Jane L.

    2016-01-01

    Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many biological processes. In this study, the more widely used approach of non-targeted precursor ion signal intensity (MS1) quantification is compared with selected reaction monitoring (SRM), a data acquisition strategy that records data for specific peptides, to determine if improved quantitative data would be obtained using a targeted quantification approach. Using mouse liver as a model system, turnover measurement of four tricarboxylic acid cycle proteins was performed using both MS1 and SRM quantification strategies. SRM outperformed MS1 in terms of sensitivity and selectivity of measurement, allowing more confident determination of protein turnover rates. SRM data are acquired using cheaper and more widely available tandem quadrupole mass spectrometers, making the approach accessible to a larger number of researchers than MS1 quantification, which is best performed on high mass resolution instruments. SRM acquisition is ideally suited to focused studies where the turnover of tens of proteins is measured, making it applicable in determining the dynamics of proteins complexes and complete metabolic pathways. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644981

  6. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  7. Effects of eight weeks of functional training in the functional autonomy of elderly women: a pilot study.

    PubMed

    DE Matos, Dihogo G; Mazini Filho, Mauro L; Moreira, Osvaldo C; DE Oliveira, Cláudia E; DE Oliveira Venturini, Gabriela R; DA Silva-Grigoletto, Marzo E; Aidar, Felipe J

    2017-03-01

    This study aimed to evaluate the effects of eight weeks of practical training on the functional autonomy of the elderly. The study included 52 elderly women, 65.42±10.31 years, 65.29±11.30 kg body mass, 1.58±0.07 height, 26.30±4.52 body mass index, 86.48±10.96 cm waist circumference. These elderly women received a specific functional training protocol where their functional autonomy was assessed at three specific times (0, 10 and 20 sessions). The evaluation consisted of a set of five tests defined by the Latin-American Development Group for the Elderly (GDLAM) to determine the functional autonomy of the elderly: walk 10 meters (C10m); stand up from a chair and walk straightaway (SUCWA); dress and undress a T-shirt (DUT); stand up from a sitting position (SUSP); stand up from a lying position (SULP). In each test, the time taken to complete the task was measured. There were statistically significant differences in all functional autonomy tests after 20 training sessions: C10m (pre: 8.10±1.27; post: 7.55±1.10); SUCWA (pre: 40.98±2.77; post: 38.44±2.57); DUT (pre: 13.25±0.88; post: 11.85±0.82); SUSP (pre: 10.74±0.52; post: 8.98±056) and SULP (pre: 3.86±0.37; post: 2.82±0.37). It was determined that 20 functional training sessions were enough to improve the functional autonomy of elderly women. However, we believe that higher volume and intensity of training could be interesting alternatives for even stronger results in future interventions.

  8. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  9. Childhood as Rhetoric.

    ERIC Educational Resources Information Center

    Katriel, Tamar; Nesher, Pearla

    1987-01-01

    Investigates a news program aimed at children in Israel to determine its functions as a mass media form. Suggests that the content of the news items reflects a culturally derived view of childhood as a golden time of innocence, which conflicts with Israeli children's needs to confront "real world" issues in their politically tense…

  10. Apparatus for Teaching Physics: Linearizing a Nonlinear Spring.

    ERIC Educational Resources Information Center

    Wagner, Glenn

    1995-01-01

    Describes a method to eliminate the nonlinearity from a spring that is used in experimental verification of Hooke's Law where students are asked to determine the force constant and the linear equation that describes the extension of the spring as a function of the mass placed on it. (JRH)

  11. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH), organonitrates (RONO2) and/or organosulfates (ROSO3H).

  12. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  13. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  14. Stochastic modeling of soil salinity

    NASA Astrophysics Data System (ADS)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  15. Pain mediates the association between physical activity and the impact of fibromyalgia on daily function.

    PubMed

    Umeda, Masataka; Corbin, Lisa W; Maluf, Katrina S

    2015-01-01

    This study quantified the association between recreational physical activity and daily function in women with fibromyalgia, and determined if this association is mediated by symptoms of pain, depression, or body mass. Twenty-three women diagnosed with fibromyalgia participated in an observational survey study. Recreational physical activity and the impact of fibromyalgia on daily function were assessed using the sport and leisure time physical activity subscales of the Baecke Physical Activity Questionnaire (BPAQ) and the Fibromyalgia Impact Questionnaire (FIQ), respectively. Potential mediators of the association between physical activity and daily function were assessed using the Visual Analogue Scale for pain intensity (VAS-Pain), the Beck Depression Inventory (BDI), and body mass index (BMI). BPAQ was inversely associated with FIQ (R (2) = 0.20) and VAS-Pain (R (2) = 0.39). VAS-Pain was positively associated with FIQ (R (2) = 0.23). The inverse association between BPAQ and FIQ was no longer significant after controlling for VAS-Pain. BDI was positively associated with FIQ (R (2) = 0.37), whereas BMI was not. BPAQ was not significantly associated with either BDI or BMI. These results indicate that the intensity of musculoskeletal pain, rather than depressive symptoms or body mass, mediates the association between physical activity and daily function among women with fibromyalgia.

  16. The influence of body mass index on skin susceptibility to sodium lauryl sulphate.

    PubMed

    Löffler, H; Aramaki, J U N; Effendy, Isaak

    2002-02-01

    The influence of nutrition on the physiological functions of man is well studied. Numerous diseases can be exacerbated by obesity. However, it has not yet been determined whether body weight and body mass index (BMI), as an indicator of a high body fat store, can influence skin sensitivity. This study investigates the correlation between body mass index and the epidermal functions, evaluated by bioengineering methods, before and after an irritant patch test with sodium lauryl sulphate (SLS). Epidermal functions were evaluated using an evaporimeter, chromameter and laser-Doppler-flowmeter. Patch testing was conducted for 48 h with two different concentrations of SLS (0.25% and 0.5%) on the forearms of healthy volunteers. Measurements were performed 24h after patch removal. Obese individuals showed significantly increased transepidermal water loss (TEWL), skin blood flow and skin colour (red) as compared to a control group. However, the degree of skin sensitivity to SLS was not correlated with BMI. Basal biophysical parameters of the skin are primarily correlated with the BMI. This may be caused by obesity-induced physiological changes, e.g. increased sweat gland activity, high blood pressure and physiological temperature-regulating system. The epidermal barrier function, as evaluated after SLS patch testing is, however, not correlated with a high BMI, indicating a normal skin barrier.

  17. Sources and geographical origins of fine aerosols in Paris (France)

    NASA Astrophysics Data System (ADS)

    Bressi, M.; Sciare, J.; Ghersi, V.; Mihalopoulos, N.; Petit, J.-E.; Nicolas, J. B.; Moukhtar, S.; Rosso, A.; Féron, A.; Bonnaire, N.; Poulakis, E.; Theodosi, C.

    2013-12-01

    The present study aims at identifying and apportioning the major sources of fine aerosols in Paris (France) - the second largest megacity in Europe -, and determining their geographical origins. It is based on the daily chemical composition of PM2.5 characterised during one year at an urban background site of Paris (Bressi et al., 2013). Positive Matrix Factorization (EPA PMF3.0) was used to identify and apportion the sources of fine aerosols; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential Source Contribution Function (PSCF) and Conditional Probability Function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors named ammonium sulfate (A.S.) rich factor, ammonium nitrate (A.N.) rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metals industry were identified; a detailed discussion of their chemical characteristics is reported. They respectively contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 μg m-3) on the annual average; their seasonal variability is discussed. The A.S. and A.N. rich factors have undergone north-eastward mid- or long-range transport from Continental Europe, heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine aerosols abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites in Paris, suggesting instead more coordinated strategies amongst neighbouring countries. Similar conclusions might be drawn in other continental urban background sites given the transboundary nature of PM2.5 pollution.

  18. Sources and geographical origins of fine aerosols in Paris (France)

    NASA Astrophysics Data System (ADS)

    Bressi, M.; Sciare, J.; Ghersi, V.; Mihalopoulos, N.; Petit, J.-E.; Nicolas, J. B.; Moukhtar, S.; Rosso, A.; Féron, A.; Bonnaire, N.; Poulakis, E.; Theodosi, C.

    2014-08-01

    The present study aims at identifying and apportioning fine aerosols to their major sources in Paris (France) - the second most populated "larger urban zone" in Europe - and determining their geographical origins. It is based on the daily chemical composition of PM2.5 examined over 1 year at an urban background site of Paris (Bressi et al., 2013). Positive matrix factorization (EPA PMF3.0) was used to identify and apportion fine aerosols to their sources; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential source contribution function (PSCF) and conditional probability function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors, namely ammonium sulfate (A.S.)-rich factor, ammonium nitrate (A.N.)-rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metal industry, were identified; a detailed discussion of their chemical characteristics is reported. They contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 μg m-3) respectively on the annual average; their seasonal variability is discussed. The A.S.- and A.N.-rich factors have undergone mid- or long-range transport from continental Europe; heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine-aerosol abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites in Paris, suggesting instead more coordinated strategies amongst neighbouring countries. Similar conclusions might be drawn in other continental urban background sites given the transboundary nature of PM2.5 pollution.

  19. Membership and Dynamical Parameters of the Open Cluster NGC 1039

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxin; Ma, Jun; Wu, Zhenyu; Zhou, Xu

    2017-11-01

    In this paper, we analyze the open cluster NGC 1039. This young open cluster is observed as a part of Beijing-Arizona-Taiwan-Connecticut Multicolor Sky Survey. Combining our observations with the Sloan Digital Sky Survey photometric data, we employ the Padova stellar model and the zero-age main-sequence curve to the data to derive a reddening, E(B-V)=0.10+/- 0.02, and a distance modulus, {(m-M)}0=8.4+/- 0.2, for NGC 1039. The photometric membership probabilities of stars in the region of NGC 1039 are derived using the spectral energy distribution-fitting method. According to the membership probabilities ({P}{SED}) obtained here, 582 stars are cluster members with {P}{SED} larger than 60%. In addition, we determine the structural parameters of NGC 1039 by fitting its radial density profile with the King model. These parameters are a core radius, {R}{{c}}=4.44+/- 1.31 {pc}; a tidal radius, {R}{{t}}=13.57+/- 4.85 {pc}; and a concentration parameter of {C}0={log}({R}{{t}}/{R}{{c}})=0.49+/- 0.20. We also fit the observed mass function of NGC 1039 with masses from 0.3 {M}⊙ to 1.65 {M}⊙ with a power-law function {{Φ }}(m)\\propto {m}α to derive its slopes of mass functions of different spatial regions. The results obtained here show that the slope of the mass function of NGC 1039 is flatter in the central regions (α = 0.117), becomes steeper at larger radii (α = -2.878), and breaks at {m}{break}≈ 0.80 {M}⊙ . In particular, for the first time, our results show that the mass segregation appears in NGC 1039.

  20. [Determination of 11 anabolic hormones in fish tissue by multi-function impurity adsorption solid-phase extraction-ultrafast liquid chromatography-tandem mass spectrometry].

    PubMed

    Yao, Shanshan; Zhao, Yonggang; Li, Xiaoping; Chen, Xiaohong; Jin, Micong

    2012-06-01

    A method was developed for the determination of 11 anabolic hormones (boldenone, androstenedione, nandrolone, methandrostenolone, methyltestosterone, testosterone, testosterone acetate, trenbolone, testosterone propionate, stanozolol, fluoxymesterone) in fish by multi-function impurity adsorption solid-phase extraction-ultrafast liquid chromatography-tandem mass spectrometry. After the sample was extracted by methanol, the extract was cleaned-up quickly by C18 adsorbent, neutral alumina adsorbent and amino-functionalized nano-adsorbent. The separation was performed on a Shim-Pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) using the mobile phases of 0.1% (v/v) formic acid in acetonitrile and 0.1% (v/v) formic acid solution in a gradient elution mode. The identification and quantification were achieved by using electrospray ionization in positive ion mode (ESI+) in multiple reaction monitoring (MRM) mode. The matrix-matched external standard calibration curves were used for quantitative determination. The results showed that the calibration curves were in good linearity for the eleven analytes with the correlation coefficients (r) more than 0.999. The limits of detection (LODs, S/N > 3) for the 11 anabolic hormones were from 0.03 microg/kg to 0.4 microg/kg and the limits of quantification (LOQs, S/N > 10) were from 0.1 microg/kg to 1.5 microg/kg. The average recoveries ranged from 80.9% to 98.1% with the relative standard deviations between 5.2% and 11.5%. The method is simple, rapid, sensitive, accurate and suitable for the quantitative determination and confirmation of the 11 anabolic hormones in fish.

  1. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming; Raghavan, Santosh

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  2. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains

    PubMed Central

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.

    2010-01-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563

  3. Bose polaron problem: Effect of mass imbalance on binding energy

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2016-12-01

    By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.

  4. Micro-solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids.

    PubMed

    Sergi, Manuel; Compagnone, Dario; Curini, Roberta; D'Ascenzo, Giuseppe; Del Carlo, Michele; Napoletano, Sabino; Risoluti, Roberta

    2010-08-24

    A confirmatory method for the determination of illicit drugs based on micro-solid phase extraction with modified tips, made of a functionalized fiberglass with apolar chains of octadecylsilane into monolithic structure, has been developed in this study. Drugs belonging to different chemical classes, such as amphetamine, methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethylamphetamine, cocaine, benzoylecgonine, ketamine, mescaline, phencyclidine and psilocybine were analyzed. The quantitation was performed by liquid chromatography-tandem mass spectrometry and the analytes were detected in positive ionization by means of an electrospray source. The limits of quantification ranged between 0.3 ng mL(-1) for cocaine and 4.9 ng mL(-1) for psilocybine, with coefficients of determination (r(2)) >0.99 for all the analytes as recommended in the guidelines of Society of Forensic Toxicologists-American Association Forensic Sciences. 2010 Elsevier B.V. All rights reserved.

  5. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples

    PubMed Central

    Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan

    2013-01-01

    Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329

  6. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  7. Ground-based determination of atmospheric radiance for correction of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1974-01-01

    A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.

  8. Testosterone dose-response relationships in hysterectomized women with or without oophorectomy: effects on sexual function, body composition, muscle performance and physical function in a randomized trial.

    PubMed

    Huang, Grace; Basaria, Shehzad; Travison, Thomas G; Ho, Matthew H; Davda, Maithili; Mazer, Norman A; Miciek, Renee; Knapp, Philip E; Zhang, Anqi; Collins, Lauren; Ursino, Monica; Appleman, Erica; Dzekov, Connie; Stroh, Helene; Ouellette, Miranda; Rundell, Tyler; Baby, Merilyn; Bhatia, Narender N; Khorram, Omid; Friedman, Theodore; Storer, Thomas W; Bhasin, Shalender

    2014-06-01

    This study aims to determine the dose-dependent effects of testosterone on sexual function, body composition, muscle performance, and physical function in hysterectomized women with or without oophorectomy. Seventy-one postmenopausal women who previously underwent hysterectomy with or without oophorectomy and had total testosterone levels less than 31 ng/dL or free testosterone levels less than 3.5 pg/mL received a standardized transdermal estradiol regimen during the 12-week run-in period and were randomized to receive weekly intramuscular injections of placebo or 3, 6.25, 12.5, or 25 mg of testosterone enanthate for 24 weeks. Total and free testosterone levels were measured by liquid chromatography-tandem mass spectrometry and equilibrium dialysis, respectively. The primary outcome was change in sexual function measured by the Brief Index of Sexual Functioning for Women. Secondary outcomes included changes in sexual activity, sexual distress, Derogatis Interview for Sexual Functioning, lean body mass, fat mass, muscle strength and power, and physical function. Seventy-one women were randomized; five groups were similar at baseline. Sixty-two women with analyzable data for the primary outcome were included in the final analysis. The mean on-treatment total testosterone concentrations were 19, 78, 102, 128, and 210 ng/dL in the placebo, 3-mg, 6.25-mg, 12.5-mg, and 25-mg groups, respectively. Changes in composite Brief Index of Sexual Functioning for Women scores, thoughts/desire, arousal, frequency of sexual activity, lean body mass, chest-press power, and loaded stair-climb power were significantly related to increases in free testosterone concentrations; compared with placebo, changes were significantly greater in women assigned to the 25-mg group, but not in women in the lower-dose groups. Sexual activity increased by 2.7 encounters per week in the 25-mg group. The frequency of androgenic adverse events was low. Testosterone administration in hysterectomized women with or without oophorectomy for 24 weeks was associated with dose and concentration-dependent gains in several domains of sexual function, lean body mass, chest-press power, and loaded stair-climb power. Long-term trials are needed to weigh improvements in these outcomes against potential long-term adverse effects.

  9. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    DOE PAGES

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; ...

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its highmore » energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. Finally, this opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.« less

  10. Exercise, dietary obesity, and growth in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.

    1977-01-01

    Experiments were conducted on weanling male rats 35 days old and weighing about 100 g to determine how endurance-type exercise and high-fat diet administered during growth influence body mass and composition. The animals were divided into four weight-matched groups of 25 animals each: group I - high-fat diet, exercised; group II - chow, exercised; group III - high-fat diet, sedentary; and group IV - chow, sedentary. During growth, masses of water, muscle and skin increased as functions of body size; bone as a function of age; and heart, liver, gut, testes, and CNS were affected by combinations of size, age, activity, and diet. Major conclusions are that growth in body size is expressed more precisely with fat-free body mass (FFBM), that late rectilinear growth is probably attributable to fat accretion, and that the observed influences on FFBM of exercise and high-fat diet are obtained only if the regimen is started at or before age 5-7 weeks.

  11. Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Patwardhan, Dinesh V.; Ken McDermott, M.

    2006-07-01

    Secondary ion mass spectrometry (SIMS) employing an SF 5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene- co-vinyl acetate) (PEVA), poly(lactic- co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF 5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF 5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ˜5 × 10 15 ions/cm 2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).

  12. Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-02-03

    Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb -1 recorded at the Large Hadron Collider. The anti-k t algorithm is used to identify jets, with two jet resolution parameters, R=0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presentedmore » as functions of dijet mass and the angular variable χ. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.« less

  13. On the abundance of extreme voids II: a survey of void mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk

    2017-03-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  14. Photometric Determination of Binary Mass Ratios in the WIYN Open Cluster Study (WOCS) Using Theoretical Isochrones

    NASA Astrophysics Data System (ADS)

    Cai, K.; Durisen, R. H.; Deliyannis, C. P.

    2003-05-01

    Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.

  15. The maximal-density mass function for primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  16. Mass Measurement of 56Sc Reveals a Small A=56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    DOE PAGES

    Meisel, Z.; George, S.; Ahn, S.; ...

    2015-10-16

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((+0)(-54)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted bymore » the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A approximate to 56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.« less

  17. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    NASA Technical Reports Server (NTRS)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  18. Mass Measurement of 56Sc Reveals a Small A =56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cole, A. L.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.

    2015-10-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85 (59 )(-54+0) MeV and -21.0 (1.3 ) MeV , respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A =56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A ≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.

  19. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2012-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study, observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. The multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (10^{2+3} M_sun) - the regime about which there is much ongoing debate."

  20. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  1. Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Jeanne Marie

    1990-01-01

    A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.

  2. The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K.

    2013-08-01

    The Galactic center is the most active site of star formation in the Milky Way, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/CISCO J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ΔAKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of αNishi = -1.50 ± 0.35 in the core (r < 0.2 pc) to αNishi = -2.21 ± 0.27 in the intermediate annulus (0.2 < r < 0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to αNishi = -3.21 ± 0.30 in the outer annulus (0.4 < r < 1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster. Based on observations collected at the ESO/VLT under Program ID 081.D-0572(B) (PI: Brandner) and ID 71.C-0344(A) (PI: Eisenhauer, retrieved from the ESO archive). Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A26

  3. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Oh, Minji; Song, Yong-Seon

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small mν lesssim 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of mν. The signature of mν is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial mν through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe mν simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, mν is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on mν is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and mν, and the mν is observed to be mν = 0.19+0.28-0.17 eV which is different from massless neutrino at 68% confidence.

  4. Clinical Outcomes of Living Liver Transplantation According to the Presence of Sarcopenia as Defined by Skeletal Muscle Mass, Hand Grip, and Gait Speed.

    PubMed

    Harimoto, N; Yoshizumi, T; Izumi, T; Motomura, T; Harada, N; Itoh, S; Ikegami, T; Uchiyama, H; Soejima, Y; Nishie, A; Kamishima, T; Kusaba, R; Shirabe, K; Maehara, Y

    2017-11-01

    Sarcopenia is an independent predictor of death after living-donor liver transplantation (LDLT). However, the ability of the Asian Working Group for Sarcopenia criteria for sarcopenia (defined as reduced skeletal muscle mass plus low muscle strength) to predict surgical outcomes in patients who have undergone LDLT has not been determined. This study prospectively enrolled 366 patients who underwent LDLT at Kyushu University Hospital. Skeletal muscle area (determined by computed tomography), hand-grip strength, and gait speed were measured in 102 patients before LDLT. We investigated the relationship between sarcopenia and surgical outcomes after LDLT performed in three time periods. The number of patients with lower skeletal muscle area has increased to 52.9% in recent years. The incidence of sarcopenia according to the Asian Working Group for Sarcopenia criteria was 23.5% (24/102). Patients with sarcopenia (defined by skeletal muscle area and functional parameters) had significantly lower skeletal muscle area and weaker hand-grip strength than did those without sarcopenia. Compared with non-sarcopenic patients, patients with sarcopenia also had significantly worse liver function, greater estimated blood loss, greater incidence of postoperative complications of Clavien-Dindo grade IV or greater (including amount of ascites on postoperative day 14, total bilirubin on postoperative day 14, and postoperative sepsis), and longer postoperative hospital stay. Multiple logistic regression analysis revealed sarcopenia as a significant predictor of 6-month mortality. The combination of skeletal muscle mass and function can predict surgical outcomes in LDLT patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluating the potential for secondary mass savings in vehicle lightweighting.

    PubMed

    Alonso, Elisa; Lee, Theresa M; Bjelkengren, Catarina; Roth, Richard; Kirchain, Randolph E

    2012-03-06

    Secondary mass savings are mass reductions that may be achieved in supporting (load-bearing) vehicle parts when the gross vehicle mass (GVM) is reduced. Mass decompounding is the process by which it is possible to identify further reductions when secondary mass savings result in further reduction of GVM. Maximizing secondary mass savings (SMS) is a key tool for maximizing vehicle fuel economy. In today's industry, the most complex parts, which require significant design detail (and cost), are designed first and frozen while the rest of the development process progresses. This paper presents a tool for estimating SMS potential early in the design process and shows how use of the tool to set SMS targets early, before subsystems become locked in, maximizes mass savings. The potential for SMS in current passenger vehicles is estimated with an empirical model using engineering analysis of vehicle components to determine mass-dependency. Identified mass-dependent components are grouped into subsystems, and linear regression is performed on subsystem mass as a function of GVM. A Monte Carlo simulation is performed to determine the mean and 5th and 95th percentiles for the SMS potential per kilogram of primary mass saved. The model projects that the mean theoretical secondary mass savings potential is 0.95 kg for every 1 kg of primary mass saved, with the 5th percentile at 0.77 kg/kg when all components are available for redesign. The model was used to explore an alternative scenario where realistic manufacturing and design limitations were implemented. In this case study, four key subsystems (of 13 total) were locked-in and this reduced the SMS potential to a mean of 0.12 kg/kg with a 5th percentile of 0.1 kg/kg. Clearly, to maximize the impact of mass reduction, targets need to be established before subsystems become locked in.

  6. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  7. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  8. The high-energy X-ray spectrum of black hole candidate GX 339-4 during a transition

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Orwig, L. E.

    1987-01-01

    The X-ray emitting system GX 339-4 contains one of the prime candidates for a stellar mass-sized black hole. Determining the observational similarities and differences between the members of this group is of value in specifying which characteristics can be used to identify systems containing a black hole, especially those for which no mass determination can be made. The first observations of the E greater than 20 keV spectrum of GX 339-4 during a transition between luminosity states are reported here. The hard spectral state is the lower luminosity state of the system. GX 339-4 has a power-low spectrum above 20 keV which pivots during transitions between distinct luminosity states. The only other X-ray sources known to exhibit this behavior, Cyg XR-1 and (probably) A0620-00, are leading candidates for systems containing a black hole component based on their measured spectrocopic mass function.

  9. Identification of the functional groups on the surface of nanoparticles formed in photonucleation of aldehydes generated during forest fire events

    NASA Astrophysics Data System (ADS)

    Dultsev, Fedor N.; Mik, Ivan A.; Dubtsov, Sergei N.; Dultseva, Galina G.

    2014-11-01

    We describe the new procedure developed to determine the functional groups on the surface of nanoparticles formed in photonucleation of furfural, one of the aldehydes generated during forest fire events. The procedure is based on the detection of nanoparticle rupture from chemically modified surface of the quartz crystal microbalance oscillating in the thickness shear mode under voltage sweep. The rupture force is determined from the voltage at which the rupture occurs. It depends on particle mass and on the affinity of the surface functional groups of the particle to the groups that are present on the modified QCM surface. It was demonstrated with the amine modification of the surface that the nanoparticles formed in furfural photonucleation contain carbonyl and carboxyl groups. The applicability of the method for the investigation of functional groups on the surface of the nanoparticles of atmospheric aerosol is demonstrated.

  10. The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model

    PubMed Central

    Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe

    2008-01-01

    Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794

  11. FGF signals from the nasal pit are necessary for normal facial morphogenesis.

    PubMed

    Szabo-Rogers, Heather L; Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Fu, Kathy K; Richman, Joy M

    2008-06-15

    Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.

  12. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  13. Form, shape and function: segmented blood flow in the choriocapillaris

    PubMed Central

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-01-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations. PMID:27779198

  14. Non-enzymolytic adenosine barcode-mediated dual signal amplification strategy for ultrasensitive protein detection using LC-MS/MS.

    PubMed

    Yang, Wen; Li, Tengfei; Shu, Chang; Ji, Shunli; Wang, Lei; Wang, Yan; Li, Duo; Mtalimanja, Michael; Sun, Luning; Ding, Li

    2018-05-10

    A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.

  15. Centered reduced moments and associate density functions applied to alkaline comet assay.

    PubMed

    Castaneda, Roman; Pelaez, Alejandro; Marquez, Maria-Elena; Abad, Pablo

    2005-01-01

    The single cell gel electrophoresis assay is a sensitive, rapid, and visual technique for deoxyribonucleic acid (DNA) strand-break detection in individual mammalian cells, whose application has significantly increased in the past few years. The cells are embedded in agarose on glass slides followed by lyses of the cell membrane. Thereafter, damaged DNA strands are electrophoresed away from the nucleus towards the anode giving the appearance of a comet tail. Nowadays, charge coupled device cameras are attached at optical microscopes for recording the images of the cells, and digital image processing is applied for obtaining quantitative descriptors. However, the conventional software is usually expensive, inflexible and, in many cases, can only provide low-order descriptors based in image segmentation, determination of centers of mass, and Euclidean distances. Associated density functions and centered reduced moments offer an effective and flexible alternative for quantitative analysis of the comet cells. We will show how the position of the center of mass, the lengths and orientation of the main semiaxes, and the eccentricity of such images can be accurately determined by this method.

  16. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    NASA Astrophysics Data System (ADS)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  17. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  18. Relationship between body mass index and renal function deterioration among the Taiwanese chronic kidney disease population.

    PubMed

    Chang, Tian-Jong; Zheng, Cai-Mei; Wu, Mei-Yi; Chen, Tzu-Ting; Wu, Yun-Chun; Wu, Yi-Lien; Lin, Hsin-Ting; Zheng, Jing-Quan; Chu, Nain-Feng; Lin, Yu-Me; Su, Sui-Lung; Lu, Kuo-Cheng; Chen, Jin-Shuen; Sung, Fung-Chang; Lee, Chien-Te; Yang, Yu; Hwang, Shang-Jyh; Wang, Ming-Cheng; Hsu, Yung-Ho; Chiou, Hung-Yi; Kao, Senyeong; Lin, Yuh-Feng

    2018-05-02

    This study investigated the characteristics of patients with different chronic kidney disease (CKD) stages according to various body mass index (BMI) categories and determined the influence of BMI in renal function deterioration. We conducted a multicenter, longitudinal cohort study based on the Epidemiology and Risk Factors Surveillance of CKD project (2008-2013) and National Health Insurance Research Database (2001-2013). A total of 7357 patients with CKD aged 20-85 years from 14 hospitals were included in the study. A higher male sex, diabetes mellitus (DM) and hypertension were noted among overweight and obese CKD patients, while more cancer prevalence was noted among underweight CKD patients. Charlson comorbidity index was significantly higher and correlated with BMI among late CKD patients. Patients with BMI < 18.5 kg/m 2 exhibited non-significantly higher events of eGFR decline events in both early and late CKD stages than other BMI groups. BMI alone is not a determinant of CKD progression among our Taiwanese CKD patients. Obesity should be re-defined and body weight manipulation should be individualized in CKD patients.

  19. Determinants of distance walked during the six-minute walk test in patients undergoing cardiac surgery at hospital discharge

    PubMed Central

    2014-01-01

    Introduction The aim of this study was to identify the determinants of distance walked in six-minute walk test (6MWD) in patients undergoing cardiac surgery at hospital discharge. Methods The assessment was performed preoperatively and at discharge. Data from patient records were collected and measurement of the Functional Independence Measure (FIM) and the Nottingham Health Profile (NHP) were performed. The six-minute walk test (6MWT) was performed at discharge. Patients undergoing elective cardiac surgery, coronary artery bypass grafting or valve replacement were eligible. Patients older than 75 years who presented arrhythmia during the protocol, with psychiatric disorders, muscular or neurological disorders were excluded from the study. Results Sixty patients (44.26% male, mean age 51.53 ± 13 years) were assessed. In multivariate analysis the following variables were selected: type of surgery (P = 0.001), duration of cardiopulmonary bypass (CPB) (P = 0.001), Functional Independence Measure - FIM (0.004) and body mass index - BMI (0.007) with r = 0.91 and r2 = 0.83 with P < 0.001. The equation derived from multivariate analysis: 6MWD = Surgery (89.42) + CPB (1.60) + MIF (2.79 ) - BMI (7.53) - 127.90. Conclusion In this study, the determinants of 6MWD in patients undergoing cardiac surgery were: the type of surgery, CPB time, functional capacity and body mass index. PMID:24885130

  20. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    PubMed

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Robotham, Aaron S. G.; Driver, Simon P.

    2018-04-01

    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high-velocity Planetary Nebulae, establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galactocentric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40 km s-1 at a galactocentric distance of 15 kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 1012 M⊙ and 240 ± 10 kpc, respectively. Our M31 mass is on the low side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H I constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass-halo-mass and the dark matter halo concentration-virial mass correlation, and finding it to be an outlier to this relation.

  2. Hypohydration reduces vertical ground reaction impulse but not jump height.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Ely, Brett R; Harman, Everett A; Castellani, John W; Frykman, Peter N; Nindl, Bradley C; Sawka, Michael N

    2010-08-01

    This study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (approximately 4% body mass) does not improve jump height. Measures of functional performance from a force platform were determined for 15 healthy and active males when euhydrated (EUH), hypohydrated (HYP) and hypohydrated while wearing a weighted vest (HYP(v)) adjusted to precisely match water mass losses. HYP produced a significant loss of body mass [-3.2 +/- 0.5 kg (-3.8 +/- 0.6%); P < 0.05], but body mass in HYP(v) was not different from EUH. There were no differences in absolute or relative peak force or power among trials. Jump height was not different between EUH (0.380 +/- 0.048 m) and HYP (0.384 +/- 0.050 m), but was 4% lower (P < 0.05) in HYP(v) (0.365 +/- 0.52 m) than EUH due to a lower jump velocity between HYP(v) and EUH only (P < 0.05). However, vertical ground reaction impulse (VGRI) was reduced in both HYP and HYP(v) (2-3%) compared with EUH (P < 0.05). In conclusion, this study demonstrates the failure to improve jump height when HYP can be explained by offsetting reductions in both VGRI and body mass.

  3. M Dwarfs from Hubble Space Telescope Star Counts. IV.

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir

    2001-07-01

    We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. Geographical and temporal variation in environmental conditions affects nestling growth but not immune function in a year-round breeding equatorial lark.

    PubMed

    Ndithia, Henry K; Bakari, Samuel N; Matson, Kevin D; Muchai, Muchane; Tieleman, B Irene

    2017-01-01

    Variation in growth and immune function within and among populations is often associated with specific environmental conditions. We compared growth and immune function in nestlings of year-round breeding equatorial Red - capped Lark Calandrella cinerea from South Kinangop, North Kinangop and Kedong (Kenya), three locations that are geographically close but climatically distinct. In addition, we studied growth and immune function of lark nestlings as a function of year - round variation in breeding intensity and rain within one location. We monitored mass, wing, and tarsus at hatching (day 1) and at 4, 7, and 10 days post - hatch, and we quantified four indices of immune function (haptoglobin, agglutination, lysis and nitric oxide) using blood samples collected on day 10. Nestling body mass and size at hatching, which presumably reflect the resources that females allocated to their eggs, were lowest in the most arid location, Kedong. Contrary to our predictions, nestlings in Kedong grew faster than nestlings in the two other cooler and wetter locations of South and North Kinangop. During periods of peak reproduction within Kedong, nestlings were heavier at hatching, but they did not grow faster over the first 10 days post - hatch. In contrast, rainfall, which did not relate to timing of breeding, had no effect on hatching mass, but more rain did coincide with faster growth post - hatch. Finally, we found no significant differences in nestling immune function, neither among locations nor with the year - round variation within Kedong. Based on these results, we hypothesize that female body condition determines nestling mass and size at hatching, but other independent environmental conditions subsequently shape nestling growth. Overall, our results suggest that environmental conditions related to food availability for nestlings are relatively unimportant to the timing of breeding in equatorial regions, while these same conditions do have consequences for nestling size and growth.

  5. The ALFALFA H I mass function: a dichotomy in the low-mass slope and a locally suppressed `knee' mass

    NASA Astrophysics Data System (ADS)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Moorman, Crystal

    2018-06-01

    We present the most precise measurement of the z = 0 H I mass function (HIMF) to date based on the final catalogue of the ALFALFA (Arecibo Legacy Fast ALFA) blind H I survey of the nearby Universe. The Schechter function fit has a `knee' mass log (M_{*} h2_{70}/M_{⊙}) = 9.94 ± 0.01 ± 0.05, a low-mass slope parameter α = -1.25 ± 0.02 ± 0.1, and a normalization φ _{*} = (4.5 ± 0.2 ± 0.8) × 10^{-3} h3_{70} Mpc^{-3 dex^{-1}}, with both random and systematic uncertainties as quoted. Together these give an estimate of the H I content of the z = 0 Universe as Ω _{H I} = (3.9 ± 0.1 ± 0.6) × 10^{-4} h^{-1}_{70} (corrected for H I self-absorption). Our analysis of the uncertainties indicates that the `knee' mass is a cosmologically fair measurement of the z = 0 value, with its largest uncertainty originating from the absolute flux calibration, but that the low-mass slope is only representative of the local Universe. We also explore large-scale trends in α and M* across the ALFALFA volume. Unlike with the 40 per cent sample, there is now sufficient coverage in both of the survey fields to make an independent determination of the HIMF in each. We find a large discrepancy in the low-mass slope (Δα = 0.14 ± 0.03) between the two regions, and argue that this is likely caused by the presence of a deep void in one field and the Virgo cluster in the other. Furthermore, we find that the value of the `knee' mass within the Local Volume appears to be suppressed by 0.18 ± 0.04 dex compared to the global ALFALFA value, which explains the lower value measured by the shallower H I Parkes All Sky Survey (HIPASS). We discuss possible explanations and interpretations of these results and how they can be expanded on with future surveys.

  6. Data on the impact of increasing the W amount on the mass density and compressive properties of Ni-W alloys processed by spark plasma sintering.

    PubMed

    Sadat, T; Hocini, A; Lilensten, L; Faurie, D; Tingaud, D; Dirras, G

    2016-06-01

    Bulk Ni-W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni-W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain ([Formula: see text])) data, which can be subsequently used for stress/ strain plots.

  7. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  8. Data on the impact of increasing the W amount on the mass density and compressive properties of Ni–W alloys processed by spark plasma sintering

    PubMed Central

    Sadat, T.; Hocini, A.; Lilensten, L.; Faurie, D.; Tingaud, D.; Dirras, G.

    2016-01-01

    Bulk Ni–W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni–W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain (ΔLL0)) data, which can be subsequently used for stress/ strain plots. PMID:27158658

  9. C P -odd sector and θ dynamics in holographic QCD

    NASA Astrophysics Data System (ADS)

    Areán, Daniel; Iatrakis, Ioannis; Järvinen, Matti; Kiritsis, Elias

    2017-07-01

    The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the C P -odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle points at finite θ is determined, as well as its interplay with chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and nonsinglet masses and mixings) are computed as functions of θ and the quark mass m . Wherever applicable the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the Witten-Veneziano formula in the small x →0 limit, we compute the θ dependence of the pion mass, and we derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the quark mass.

  10. Comparisons between different techniques for measuring mass segregation

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  11. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  12. The emergence of the galactic stellar mass function from a non-universal IMF in clusters

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Basu, Shantanu

    2018-06-01

    We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huey-Wen Lin; Robert G. Edwards; Balint Joo

    In this work, we perform parameter tuning with dynamical anisotropic clover lattices using the Schr\\"odinger functional and stout-smearing in the fermion field. We find thatmore » $$\\xi_R/\\xi_0$$ is relatively close to 1 in our parameter search, which allows us to fix $$\\xi_0$$ in our runs. We proposed to determine the gauge and fermion anisotropy in a Schr\\"odinger-background small box using Wilson loop ratios and PCAC masses. We demonstrate that these ideas are equivalent to but more efficient than the conventional meson dispersion approach. The spatial and temporal clover coefficients are fixed to the tree-level tadpole-improved clover values, and we demonstrate that they satisfy the nonperturbative condition determined by Schr\\"odinger functional method.« less

  14. Aerobic power and lean mass are indicators of competitive sprint performance among elite female cross-country skiers.

    PubMed

    Carlsson, Tomas; Tonkonogi, Michail; Carlsson, Magnus

    2016-01-01

    The purpose of this study was to establish the optimal allometric models to predict International Ski Federation's ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake ( [Formula: see text]) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine [Formula: see text] (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects' FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers' FISsprint based on [Formula: see text], LM, and body mass. The subjects' test and performance data were as follows: [Formula: see text], 4.0±0.3 L min -1 ; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: [Formula: see text] and 6.95 × 10 10 · LM -5.25 ; these models explained 66% ( P =0.0043) and 52% ( P =0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on [Formula: see text] and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose [Formula: see text] differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher [Formula: see text] or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers' performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.

  15. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    PubMed

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  16. Obesity-associated variants within FTO form long-range functional connections with IRX3.

    PubMed

    Smemo, Scott; Tena, Juan J; Kim, Kyoung-Han; Gamazon, Eric R; Sakabe, Noboru J; Gómez-Marín, Carlos; Aneas, Ivy; Credidio, Flavia L; Sobreira, Débora R; Wasserman, Nora F; Lee, Ju Hee; Puviindran, Vijitha; Tam, Davis; Shen, Michael; Son, Joe Eun; Vakili, Niki Alizadeh; Sung, Hoon-Ki; Naranjo, Silvia; Acemel, Rafael D; Manzanares, Miguel; Nagy, Andras; Cox, Nancy J; Hui, Chi-Chung; Gomez-Skarmeta, Jose Luis; Nóbrega, Marcelo A

    2014-03-20

    Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.

  17. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.

  18. Relations between heavy-light meson and quark masses

    NASA Astrophysics Data System (ADS)

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.; Vairo, A.; Tumqcd Collaboration

    2018-02-01

    The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a merger of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χ PT ). For practical implementations of this merger, we extend the one-loop χ PT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.

  19. Relations between heavy-light meson and quark masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.

    Here, the study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a mergermore » of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χPT). For practical implementations of this merger, we extend the one-loop χPT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.« less

  20. Relations between heavy-light meson and quark masses

    DOE PAGES

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.; ...

    2018-02-07

    Here, the study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a mergermore » of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χPT). For practical implementations of this merger, we extend the one-loop χPT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.« less

  1. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity

    PubMed Central

    Fernandez-Garcia, Jose Carlos; Alcaide, Juan; Santiago-Fernandez, Concepcion; Roca-Rodriguez, MM.; Aguera, Zaida; Baños, Rosa; Botella, Cristina; de la Torre, Rafael; Fernandez-Real, Jose M.; Fruhbeck, Gema; Gomez-Ambrosi, Javier; Jimenez-Murcia, Susana; Menchon, Jose M.; Casanueva, Felipe F.; Fernandez-Aranda, Fernando; Tinahones, Francisco J.; Garrido-Sanchez, Lourdes

    2017-01-01

    Introduction Sensory factors may play an important role in the determination of appetite and food choices. Also, some adipokines may alter or predict the perception and pleasantness of specific odors. We aimed to analyze differences in smell–taste capacity between females with different weights and relate them with fat and fat-free mass, visceral fat, and several adipokines. Materials and methods 179 females with different weights (from low weight to morbid obesity) were studied. We analyzed the relation between fat, fat-free mass, visceral fat (indirectly estimated by bioelectrical impedance analysis with visceral fat rating (VFR)), leptin, adiponectin and visfatin. The smell and taste assessments were performed through the "Sniffin’ Sticks" and "Taste Strips" respectively. Results We found a lower score in the measurement of smell (TDI-score (Threshold, Discrimination and Identification)) in obese subjects. All the olfactory functions measured, such as threshold, discrimination, identification and the TDI-score, correlated negatively with age, body mass index (BMI), leptin, fat mass, fat-free mass and VFR. In a multiple linear regression model, VFR mainly predicted the TDI-score. With regard to the taste function measurements, the normal weight subjects showed a higher score of taste functions. However a tendency to decrease was observed in the groups with greater or lesser BMI. In a multiple linear regression model VFR and age mainly predicted the total taste scores. Discussion We show for the first time that a reverse relationship exists between visceral fat and sensory signals, such as smell and taste, across a population with different body weight conditions. PMID:28158237

  2. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J

    2015-07-01

    Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.

  3. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at and first determination of the strong coupling constant in the TeV range

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Dellacasa, G.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rojo, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Gonzalez Suarez, R.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-10-01

    A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, , of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 fb-1. The strong coupling constant at the scale of the Z boson mass is determined to be α S ( M Z)=0.1148±0.0014 (exp.)±0.0018 (PDF)±0.0050(theory), by comparing the ratio in the range to the predictions of perturbative QCD at next-to-leading order. This is the first determination of α S ( M Z) from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

  4. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs.

    PubMed

    Nemeth, Matthias; Millesi, Eva; Siutz, Carina; Wagner, Karl-Heinz; Quint, Ruth; Wallner, Bernard

    2017-01-01

    Dietary saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can highly affect reproductive functions by providing additional energy, modulating the biochemical properties of tissues, and hormone secretions. In precocial mammals such as domestic guinea pigs the offspring is born highly developed. Gestation might be the most critical reproductive period in this species and dietary fatty acids may profoundly influence the gestational effort. We therefore determined the hormonal status at conception, the reproductive success, and body mass changes during gestation in guinea pigs maintained on diets high in PUFAs or SFAs, or a control diet. The diets significantly affected the females' plasma fatty acid status at conception, while cortisol and estrogen levels did not differ among groups. SFA females exhibited a significantly lower body mass and litter size, while the individual birth mass of pups did not differ among groups and a general higher pup mortality rate in larger litters was diminished by PUFAs and SFAs. The gestational effort, determined by a mother's body mass gain during gestation, increased with total litter mass, whereas this increase was lowest in SFA and highest in PUFA individuals. The mother's body mass after parturition did not differ among groups and was positively affected by the total litter mass in PUFA females. While SFAs reduce the litter size, but also the gestational effort as a consequence, PUFA supplementation may contribute to an adjustment of energy accumulations to the total litter mass, which may both favor a mother's body condition at parturition and perhaps increase the offspring survival at birth.

  5. Malnutrition is associated with worse health-related quality of life in children with cancer.

    PubMed

    Brinksma, Aeltsje; Sanderman, Robbert; Roodbol, Petrie F; Sulkers, Esther; Burgerhof, Johannes G M; de Bont, Eveline S J M; Tissing, Wim J E

    2015-10-01

    Malnutrition in childhood cancer patients has been associated with lower health-related quality of life (HRQOL). However, this association has never actually been tested. Therefore, we aimed to determine the association between nutritional status and HRQOL in children with cancer. In 104 children, aged 2-18 years and diagnosed with hematological, solid, or brain malignancies, nutritional status and HRQOL were assessed at diagnosis and at 3, 6, and 12 months using the child- and parent-report versions of the PedsQL 4.0 Generic scale and the PedsQL 3.0 Cancer Module. Scores on both scales range from 0 to 100. Undernourished children (body mass index (BMI) or fat-free mass < -2 standard deviation score (SDS)) reported significantly lower PedsQL scores compared with well-nourished children on the domains physical functioning (-13.3), social functioning (-7.0), cancer summary scale (-5.9), and nausea (-14.7). Overnourished children (BMI or fat mass >2 SDS) reported lower scores on emotional (-8.0) and cognitive functioning (-9.2) and on the cancer summary scale (-6.6), whereas parent-report scores were lower on social functioning (-7.5). Weight loss (>0.5 SDS) was associated with lower scores on physical functioning (-13.9 child-report and -10.7 parent-report), emotional (-7.4) and social functioning (-6.0) (child-report), pain (-11.6), and nausea (-7.8) (parent-report). Parents reported worse social functioning and more pain in children with weight gain (>0.5 SDS) compared with children with stable weight status. Undernutrition and weight loss were associated with worse physical and social functioning, whereas overnutrition and weight gain affected the emotional and social domains of HRQL. Interventions that improve nutritional status may contribute to enhanced health outcomes in children with cancer.

  6. Design of a randomized trial to determine the optimum protein intake to preserve lean body mass and to optimize response to a promyogenic anabolic agent in older men with physical functional limitation.

    PubMed

    Bhasin, Shalender; Apovian, Caroline M; Travison, Thomas G; Pencina, Karol; Huang, Grace; Moore, Lynn L; Campbell, Wayne W; Howland, Andrew; Chen, Ruo; Singer, Martha R; Shah, Mitali; Eder, Richard; Schram, Haley; Bearup, Richelle; Beleva, Yusnie M; McCarthy, Ashley C; Li, Zhouying; Woodbury, Erin; McKinnon, Jennifer; Storer, Thomas W; Basaria, Shehzad

    2017-07-01

    The dietary protein allowance for older men to maintain lean body mass and muscle strength and to accrue optimal anabolic responses to promyogenic stimuli is poorly characterized. The OPTIMEN trial was designed to assess in older men with moderate physical dysfunction and insufficient habitual protein intake (

  7. A precise mass function in the excursion set approach

    NASA Astrophysics Data System (ADS)

    Del Popolo, Antonino

    2017-04-01

    In the present paper, using previous results from Del Popolo papers, we show how the mass function evolution can be obtained in the framework of a spherical collapse model, which has been modified to take account of dynamical friction, the cosmological constant, and angular momentum which proto-structures acquire through tidal interaction with neighbouring ones. We found an improved barrier which is in excellent agreement with simulations. The quoted barrier is used to calculated the mass function. In the case of the ΛCDM paradigm, our mass function is in good agreement (within some %) with the mass function of Klypin's Bolshoi simulation for the virial mass range 5 × 109 - 5 × 1014h-1M⊙, and 0 ≾ z ≿ 10. Similar agreement is obtained with Tinker's mass function, and Castorina's simulations.

  8. The distribution of mass for spiral galaxies in clusters and in the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, D.A.; Whitmore, B.C.

    1989-04-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense thatmore » mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs.« less

  9. Pairing of one-dimensional Bose-Fermi mixtures with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet

    We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less

  10. An algorithm on simultaneous optimization of performance and mass parameters of open-cycle liquid-propellant engine of launch vehicles

    NASA Astrophysics Data System (ADS)

    Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.

    2017-12-01

    In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.

  11. Prevalence of sarcopenia among older community-dwelling people with normal health and nutritional state.

    PubMed

    Hedayati, Kerstin Khalaj; Dittmar, Manuela

    2010-01-01

    This study analyzed whether sarcopenia, a risk factor for disability in the aged, also occurs in healthy community-dwelling elders with normal nutritional state. As indicators, body cell mass (BCM) and lean body mass (LBM) were determined in 110 Germans (ages 60-83) using bioimpedance analysis. Nutritional status, muscle function, anthropometry, and physical activity level were investigated. Sarcopenia was already present in well nourished healthy elders. Its prevalence depended on the measure of muscle mass used (BCM percent, 22 percent males, 20 percent females; LBM percent, 4 percent males, 11 percent females). In conclusion, screening for presence of sarcopenia is needed in healthy, well-nourished elderly populations requiring an international standardization. Copyright © Taylor & Francis Group, LLC

  12. Measurement of the exclusive γγ → μ+μ- process in proton-proton collisions at √{ s } = 13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Chr. Dudder, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-02-01

    The production of exclusive γγ →μ+μ- events in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb-1. The measurement is performed for a dimuon invariant mass of 12GeV

  13. Response of discrete linear systems to forcing functions with inequality constraints.

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Riley, T. A.

    1972-01-01

    An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.

  14. Comprehensive characterization of PM2.5 aerosols in Singapore

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; Qian, W.-B.; Decesari, S.; Facchini, M. C.; Fuzzi, S.

    2003-08-01

    A comprehensive characterization of PM2.5 aerosols collected in Singapore from January through December 2000 is presented. The annual average mass concentration of PM2.5 was 27.2 μg/m3. The atmospheric loading of PM2.5 was elevated sporadically from March through May, mainly due to advection of biomass burning (deliberate fires to clear plantation areas) impacted air masses from Sumatra, Indonesia. Satellite images of the area, trajectory calculations, and surface wind direction data are in support of the transport of pyrogenic products from Sumatra toward Singapore. Aerosol samples collected during the dry season were analyzed for water-soluble ions, water-soluble organic compounds (WSOC), elemental carbon (EC), organic carbon, and trace elements using a number of analytical techniques. The major components were sulfate, EC, water-soluble carbonaceous materials, and water-insoluble carbonaceous materials. Aerosol WSOC were characterized based on a combination of chromatographic separations by ion exchange chromatography, functional group investigation by proton nuclear magnetic resonance, and total organic carbon determination. The comprehensive chemical characterization of PM2.5 particles revealed that both non-sea-salt sufate (nss-SO42-) and carbonaceous aerosols mainly contributed to the increase in the mass concentration of aerosols during the smoke haze period. Using a mass closure test (a mass balance), we determined whether the physical measurement of gravimetric fine PM concentration of a sample is equal to the summed concentrations of the individually identified chemical constituents (measured or inferred) in the sample. The sum of the determined groups of aerosol components and the gravimetrically determined mass agreed reasonably well. Principal component analysis was performed from the combined data set, and five factors were observed: a soil dust component, a metallurgical industry factor, a factor representing emissions from biomass burning and automobiles, a sea-salt component, and an oil combustion factor.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Shweta, E-mail: shwetaverma@rrcat.gov.in; Rao, B. T.; Detty, A. P.

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles ofmore » increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.« less

  16. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  17. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  18. On periodic solutions of an Atwood's pendulum

    NASA Astrophysics Data System (ADS)

    Mittleman, Donald

    1987-05-01

    An Atwood's pendulum is defined as an Atwood's machine in which one of two masses is allowed to swing as a pendulum while the other remains constrained to move only in the vertical direction. The pendulum motion of the one mass induces a varying tension in the connecting wire; this, in turn, produces motion in the second mass. It is shown that this motion can be made periodic if the ratio of the two masses and the dependency of this ratio on the initial conditions are chosen as prescribed in this report. If this condition is not met, the motion consists of the superposition of two motions. The first is motion in a constant gravitational field where the effective gravity is kg; the factor k is determined explicitly. The second is the periodic motion that is the central theme of this report. During the course of the analysis, the fundamental frequency of the periodic motion is determined. It is shown to be slightly higher than the frequency of a pendulum of comparable length swinging in the Earth's gravitational field; the factor is given explicitly. This work is restricted to the extent that small approximations are introduced initially for trigonometric functions.

  19. Strategies to reverse bone loss in women with functional hypothalamic amenorrhea: a systematic review of the literature.

    PubMed

    Vescovi, J D; Jamal, S A; De Souza, M J

    2008-04-01

    Functional hypothalamic amenorrhea (FHA) impairs the attainment of peak bone mass and as such can increase the risk of fractures later in life. To document available treatment strategies, we conducted a systematic review of the literature. We report that hormonal therapies have limited effectiveness in increasing bone mass, whereas increased caloric intake resulting in weight gain and/or resumption of menses is an essential strategy for restoring bone mass in women with FHA. Women with functional hypothalamic amenorrhea (FHA) may not achieve peak bone mass (PBM), which increases the risk of stress fractures, and may increase the risk of osteoporotic fractures in later life. To identify effective treatment strategies for women with FHA, we conducted a systematic review of the literature. We included randomized controlled trials (RCTs), cross-sectional studies, and case studies that reported on the effects of pharmacological and non-pharmacological interventions on bone mineral density (BMD) or bone turnover in women with FHA. Most published studies (n=26) were designed to treat the hormonal abnormalities observed in women with FHA (such as low estrogen, leptin, insulin-like growth factor-1, and DHEA); however none of these treatments demonstrated consistent improvements in BMD. Therapies containing an estrogen given for 8-24 months resulted in variable improvements (1.0-19.0%) in BMD, but failed to restore bone mass to that of age-matched controls. Three studies reported on the use of bisphosphonates (3-12 months) in anorexic women, which appear to have limited effectiveness to improve BMD compared to nutritional treatments. Another three investigations showed no improvements in BMD after androgen therapy (DHEA and testosterone) in anorexic women. In contrast, reports (n=9) describing an increase in caloric intake that results in weight gain and/or the resumption of menses reported a 1.1-16.9% increase in BMD concomitant with an improvement in bone formation and reduction in bone resorption markers. Our literature review indicates that the most successful, and indeed essential strategy for improving BMD in women with FHA is to increase caloric intake such that body mass is increased and there is a resumption of menses. Further long-term studies to determine the persistence of this effect and to determine the effects of this and other strategies on fracture risk are needed.

  20. Accurate mass and velocity functions of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.

  1. ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.

    2018-02-01

    We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.

  2. Nuclear physics from lattice QCD at strong coupling.

    PubMed

    de Forcrand, Ph; Fromm, M

    2010-03-19

    We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".

  3. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    PubMed Central

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  4. Deep luminosity function of the globular cluster M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukier, G.A.; Fahlman, G.G.; Richter, H.B.

    The luminosity function in a field of M13 at 14 core radii has been observed to M(V) = +12.0, and new theoretical, low-mass, stellar models appropriate to M13 are used to convert the function to a mass function which extends to M = 0.18 solar, within a factor of two of brown dwarf masses at this metal abundance. As the number of stars observed in each magnitude bin is still increasing at the limit of the data, the presence of stars with masses lower than 0.18 solar is probable. This result sets an upper limit of 0.18 solar mass formore » low-mass cutoffs in dynamical models of M13. No single power law mass function fits all the observations. The trend of the data supports the idea of a steep increase in the slope of the mass function for M less than 0.4 solar. The results imply that the total mass in low-mass stars in M13, and by implication elsewhere, is higher than was previously thought. 26 references.« less

  5. Constraining the galaxy-halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.

    2017-09-01

    We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ˜ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ˜2.5, could be the result of dry minor mergers.

  6. Effects of Parental Status on Male Body Mass in the Monogamous, Biparental California Mouse

    PubMed Central

    Saltzman, Wendy; Harris, Breanna N.; de Jong, Trynke R.; Nguyen, Pauline P.; Cho, Julia T.; Hernandez, Mindy; Perea-Rodriguez, Juan P.

    2014-01-01

    Studies of biparental mammals demonstrate that males may undergo systematic changes in body mass as a consequence of changes in reproductive status; however, these studies typically have not teased apart effects of specific social and reproductive factors, such as cohabitation with a female per se, cohabitation with a breeding female specifically, and engagement in paternal care. We aimed to determine whether California mouse (Peromyscus californicus) fathers undergo systematic changes in body mass and if so, which specific social/reproductive factor(s) might contribute to these changes. We compared mean weekly body masses over a 5-week period in 1) males housed with another male vs. males housed with a non-reproductive (tubally ligated) female; 2) males housed with a tubally ligated female vs. males housed with a female that was undergoing her first pregnancy; and 3) experienced fathers housed with vs. without pups during their mate’s subsequent pregnancy. Body mass did not differ between males housed with another male and those housed with a non-reproductive female; however, males housed with a non-reproductive female were significantly heavier than those housed with a primiparous female. Among experienced fathers, those housed with pups from their previous litter underwent significant increases in body mass across their mates’ pregnancy, whereas fathers housed without pups did not. These results suggest that male body mass is reduced by cohabitation with a breeding (pregnant) female, but not by cohabitation with a non-reproductive female, and that increases in body mass across the mate’s pregnancy are associated with concurrent care of offspring rather than cohabitation with a pregnant female. Additional work is needed to determine the mechanisms and functional significance, if any, of these changes in male body mass with reproductive condition. PMID:26005292

  7. Estudio de la población estelar de varios cúmulos en Carina

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G. L.; Carraro, G.; Costa, E.

    2015-08-01

    Based on deep photometric data in the bands, complemented with infrared 2MASS data, we conducted an analysis of the fundamental parameters of six open clusters located in the Carina region. To perform a systematic study we developed a specialized code. In particular, we investigated the behavior of the respective lower main sequences. Our analysis indicated the presence of a significant population of pre-sequence stars in several of the clusters. We therefore obtained estimated values of contraction ages. Furthermore, we have determined the slopes of the initial mass functions of the studied clusters.

  8. Preliminary design of a mobile lunar power supply

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Kenny, Barbara H.; Fulmer, Christopher R.

    1991-01-01

    A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program.

  9. Changes in functional construction of bone in rats under conditions of simulated increased gravity.

    NASA Technical Reports Server (NTRS)

    Amtmann, E.; Oyama, J.

    1973-01-01

    An investigation was conducted to determine experimentally whether femur bones are altered in cross-sectional area or cross-sectional shape by chronic centrifugation at different G-levels in conformance to Wolff's law. It was found that the centrifuged animals exhibit on the average smaller body masses, femur lengths and femur cross sections, as compared to their corresponding age controls. The mean inhibitory effect of chronic centrifugation upon body and femur growth can be measured in a shortcut approximation by calculating the decrease of body masses and femoral dimensions on a percentage basis.

  10. Update on ONC's Substellar IMF: A Second Peak in the Brown Dwarf Regime

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Bayo, A.; Chini, R.; Haas, M.

    2017-06-01

    The Orion Nebular Cluster (ONC) has become the prototype cluster for studying the Initial Mass Function (IMF). In a deep JHK survey of the ONC with HAWK-I we detected a large population of 900 Brown Dwarfs and Planetary Mass Object candidates presenting a pronounced second peak in the substellar IMF. One of the most obvious issues of this result is the verification of cluster membership. The analysis so far was mainly based on statistical consideration. In this presentation I will show the results from using different high-resolution extinction map to determine the ONC membership.

  11. Genetic Variations in the Androgen Receptor Are Associated with Steroid Concentrations and Anthropometrics but Not with Muscle Mass in Healthy Young Men

    PubMed Central

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    Objective The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. Design 677 men (25–45 years) were recruited in a cross-sectional, population-based sibling pair study. Methods Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Results Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Conclusions Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function. PMID:24465978

  12. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    PubMed

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. 677 men (25-45 years) were recruited in a cross-sectional, population-based sibling pair study. Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function.

  13. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of myostatin improves NO‐, but not PGI2‐ or EDHF‐mediated vasodilation in obese mice; this vasodilation improvement is mediated by down‐regulation of superoxide. PMID:24965025

  14. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data

    NASA Astrophysics Data System (ADS)

    Mainhagu, J.; Brusseau, M. L.

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts.

  15. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2

    NASA Astrophysics Data System (ADS)

    Borsányi, Sz.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Ratti, C.; Szabó, K. K.

    2012-08-01

    We determine the equation of state of QCD for nonzero chemical potentials via a Taylor expansion of the pressure. The results are obtained for N f = 2 + 1 flavors of quarks with physical masses, on various lattice spacings. We present results for the pressure, interaction measure, energy density, entropy density, and the speed of sound for small chemical potentials. At low temperatures we compare our results with the Hadron Resonance Gas model. We also express our observables along trajectories of constant entropy over particle number. A simple parameterization is given (the Matlab/Octave script parameterization.m, submitted to the arXiv along with the paper), which can be used to reconstruct the observables as functions of T and μ, or as functions of T and S/N.

  16. FLORA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1985-04-01

    FLORA solves, in a 2D domain for the linearized stability of a long-thin (paraxial)axisymmetric equilibrium. This is of interest for determining the magnetohydrodynamic stability of a magnetic mirror plasma confinement system including finite-Larmor radius and rotation effects. An axisymmetric plasma equilibrium is specified by providing pressure profiles, the plasma mass density, the vacuum magnetic fields, and plasma electric potential as functions of (?).

  17. Determination of the top quark mass circa 2013: methods, subtleties, perspectives

    NASA Astrophysics Data System (ADS)

    Juste, Aurelio; Mantry, Sonny; Mitov, Alexander; Penin, Alexander; Skands, Peter; Varnes, Erich; Vos, Marcel; Wimpenny, Stephen

    2014-10-01

    We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e+e- colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.

  18. Precursor ion scanning-mass spectrometry for the determination of nitro functional groups in atmospheric particulate organic matter.

    PubMed

    Dron, Julien; Abidi, Ehgere; Haddad, Imad El; Marchand, Nicolas; Wortham, Henri

    2008-06-23

    An analytical method for the quantitative determination of the total nitro functional group (R-NO2) content in atmospheric particulate organic matter is developed. The method is based on the selectivity of NO2(-) (m/z 46) precursor ion scanning (PAR 46) by atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS). PAR 46 was experimented on 16 nitro compounds of different molecular structures and was compared with a neutral loss of NO (30 amu) technique in terms of sensitivity and efficiency to characterize the nitro functional groups. Covering a wider range of compounds, PAR 46 was preferred and applied to reference mixtures containing all the 16 compounds under study. Repeatability carried out using an original statistical approach, and calibration experiments were performed on the reference mixtures proven the suitability of the technique for quantitative measurements of nitro functional groups in samples of environmental interest with good accuracy. A linear range was obtained for concentrations ranging between 0.005 and 0.25 mM with a detection limit of 0.001 mM of nitro functional groups. Finally, the analytical error based on an original statistical approach applied to numerous reference mixtures was below 20%. Despite of potential artifacts related to nitro-alkanes and organonitrates, this new methodology offers a promising alternative to FT-IR measurements. The relevance of the method and its potentialities are demonstrated through its application to aerosols collected in the EUPHORE simulation chamber during o-xylene photooxidation experiments and in a suburban area of a French alpine valley during summer.

  19. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  1. Does the HI Mass Function Vary with Environment?

    NASA Astrophysics Data System (ADS)

    Minchin, Robert F.

    2017-01-01

    Based on analysis of a large dataset from the ALFALFA survey, Jones et al. (2016) recently claimed that the slope of the HI mass function is constant across different galactic environments, defined by their density. They point out that this finding is “perplexing” given that many previous studies have found that the HI mass functions of groups of galaxies have flat slopes, while the general field has a relatively steep slope. I argue that the analysis of Jones et al., and similar analyses in the past, is flawed as they examine the HI mass function of the galaxies found in environments with a given density, summed across the survey, not the HI mass function actually present in the individual structures at that density. If the position of the knee in the HI mass function were to vary between these structures, then the slope of the HI mass function found by summing across all of the structures with a given density would be steeper than the slope actually found in the individual structures. For example, if a survey were to contain three groups of galaxies, all with flat HI mass functions, but with the ‘knee’, at the mass of the largest galaxy in the group, at 108, 109 and 1010 solar masses, then the summed HI mass function would appear to have a knee at 1010 solar masses and a steep slope below this, rather than the flat slope that is actually present in the individual environments. It is not possible, therefore, to say from the analysis of Jones et al. that there is no dependence of the HI mass function on environment. This scenario explains the “seemingly contradictory findings” of Jones et al. and the earlier studies of individual groups as being due to differences in what is being studies, without having to invoke methodological errors in the derivation of the HI mass function.The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

  2. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.

    PubMed

    Strohalm, Martin; Kavan, Daniel; Novák, Petr; Volný, Michael; Havlícek, Vladimír

    2010-06-01

    While tools for the automated analysis of MS and LC-MS/MS data are continuously improving, it is still often the case that at the end of an experiment, the mass spectrometrist will spend time carefully examining individual spectra. Current software support is mostly provided only by the instrument vendors, and the available software tools are often instrument-dependent. Here we present a new generation of mMass, a cross-platform environment for the precise analysis of individual mass spectra. The software covers a wide range of processing tasks such as import from various data formats, smoothing, baseline correction, peak picking, deisotoping, charge determination, and recalibration. Functions presented in the earlier versions such as in silico digestion and fragmentation were redesigned and improved. In addition to Mascot, an interface for ProFound has been implemented. A specific tool is available for isotopic pattern modeling to enable precise data validation. The largest available lipid database (from the LIPID MAPS Consortium) has been incorporated and together with the new compound search tool lipids can be rapidly identified. In addition, the user can define custom libraries of compounds and use them analogously. The new version of mMass is based on a stand-alone Python library, which provides the basic functionality for data processing and interpretation. This library can serve as a good starting point for other developers in their projects. Binary distributions of mMass, its source code, a detailed user's guide, and video tutorials are freely available from www.mmass.org .

  3. Cardiovascular magnetic resonance of cardiac function and myocardial mass in preterm infants: a preliminary study of the impact of patent ductus arteriosus

    PubMed Central

    2014-01-01

    Background Many pathologies seen in the preterm population are associated with abnormal blood supply, yet robust evaluation of preterm cardiac function is scarce and consequently normative ranges in this population are limited. The aim of this study was to quantify and validate left ventricular dimension and function in preterm infants using cardiovascular magnetic resonance (CMR). An initial investigation of the impact of the common congenital defect patent ductus arteriosus (PDA) was then carried out. Methods Steady State Free Procession short axis stacks were acquired. Normative ranges of left ventricular end diastolic volume (EDV), stroke volume (SV), left ventricular output (LVO), ejection fraction (EF), left ventricular (LV) mass, wall thickness and fractional thickening were determined in “healthy” (control) neonates. Left ventricular parameters were then investigated in PDA infants. Unpaired student t-tests compared the 2 groups. Multiple linear regression analysis assessed impact of shunt volume in PDA infants, p-value ≤ 0.05 being significant. Results 29 control infants median (range) corrected gestational age at scan 34+6(31+1-39+3) weeks were scanned. EDV, SV, LVO, LV mass normalized by weight and EF were shown to decrease with increasing corrected gestational age (cGA) in controls. In 16 PDA infants (cGA 30+3(27+3-36+1) weeks) left ventricular dimension and output were significantly increased, yet there was no significant difference in ejection fraction and fractional thickening between the two groups. A significant association between shunt volume and increased left ventricular mass correcting for postnatal age and corrected gestational age existed. Conclusion CMR assessment of left ventricular function has been validated in neonates, providing more robust normative ranges of left ventricular dimension and function in this population. Initial investigation of PDA infants would suggest that function is relatively maintained. PMID:25160730

  4. Quenched results for light quark physics with overlap fermions

    NASA Astrophysics Data System (ADS)

    Giusti, L.; Hoelbling, C.; Rebbi, C.

    2002-03-01

    We present results of a quenched QCD simulation with overlap fermions on a lattice of volume V = 16 3 × 32 at β = 6.0, which corresponds to a lattice cutoff of ⋍ 2 GeV and an extension of ⋍ 1.4 fm. From the two-point correlation functions of bilinear operators we extract the pseudoscalar meson masses and the corresponding decay constants. From the GMOR relation we determine the chiral condensate and, by using the K-meson mass as experimental input, we compute the sum of the strange and average up-down quark masses ( m s + overlinem). The needed logarithmic divergent renormalization constant Z S is computed with the RI/MOM non-perturbative renormalization technique. Since the overlap preserves chiral symmetry at finite cutoff and volume, no divergent quark mass and chiral condensate additive renormalizations are required and the results are O( a) improved.

  5. Determining Black Hole Mass of AGN using FWHM of H-beta Emission Line and Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas Jacob; Burris, Debra L.

    2017-01-01

    At the center of some active galaxies are super-massive black holes and for some time the accepted method of measuring the mass of such galaxies has been the method used by Vestergaard and Peterson, among others. By using the luminosity function which is related to H-β emission spectra from these black holes, both for cosmic redshift and for Fe-II emissions using IRAF. From there, H-β can accurately measure the full width half max of the H-beta line in these spectrum as well as the luminosity and these paired with the O-III lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values obtained from the Mass-Pitch Angle relation being proposed by Kennefick et al. (2016 in preparation)

  6. The Mass Function of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Audit, E.; Teyssier, R.; Alimi, J.-M.

    We investigate some modifications to the Press and Schechter (1974) (PS) prescription resulting from shear and tidal effects. These modifications rely on more realistic treatments of the collapse process than the standard approach based on the spherical model. First, we show that the mass function resulting from a new approximate Lagrangian dynamic (Audit and Alimi, A&A 1996), contains more objects at high mass, than the classical PS mass function and is well fitted by a PS-like function with a threshold density of deltac ≍ 1.4. However, such a Lagrangian description can underestimate the epoch of structure formation since it defines it as the collapse of the first principal axis. We therefore suggest some analytical prescriptions, for computing the collapse time along the second and third principal axes, and we deduce the corresponding mass functions. The collapse along the third axis is delayed by the shear and the number of objects of high mass then decreases. Finally, we show that the shear also strongly affects the formation of low-mass halos. This dynamical effect implies a modification of the low-mass slope of the mass function and allows the reproduction of the observed luminosity function of field galaxies.

  7. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse

    PubMed Central

    Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee

    2013-01-01

    Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150

  8. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults.

    PubMed

    Won, Huiloo; Abdul Manaf, Zahara; Mat Ludin, Arimi Fitri; Shahar, Suzana

    2017-04-01

    Studies of the association between body composition, both body fat and body muscle, and cognitive function are rarely reported. The aim of the present study was to determine the association between a wide range of body composition measures with cognitive function in older adults. A total of 2322 Malaysian older adults aged 60 years and older were recruited using multistage random sampling in a population-based cross-sectional study. Out of 2322 older adults recruited, 2309 (48% men) completed assessments on cognitive function and body composition. Cognitive functions were assessed using the Malay version of the Mini-Mental State Examination, the Bahasa Malaysia version of Montreal Cognitive Assessment, Digit Span Test, Digit Symbol Test and Rey Auditory Verbal Learning Test. Body composition included body mass index, mid-upper arm circumference, waist circumference, calf circumference, waist-to-hip ratio, percentage body fat and skeletal muscle mass. The association between body composition and cognitive functions was analyzed using multiple linear regression. After adjustment for age, education years, hypertension, hypercholesterolemia, diabetes mellitus, depression, smoking status and alcohol consumption, we found that calf circumference appeared as a significant predictor for all cognitive tests among both men and women (P < 0.05), except for the Rey Auditory Verbal Learning Test. Waist-to-hip ratio was detected as a significant predictor for all cognitive tests among women (P < 0.05), but was only a significant predictor for the Bahasa Malaysia version of Montreal Cognitive Assessment among men (P < 0.05). These results suggest that there is a need to maintain muscle mass and lower adipose tissue among older adults for optimal cognitive function. Geriatr Gerontol Int 2017; 17: 554-560. © 2016 Japan Geriatrics Society.

  9. Protein intake distribution pattern does not affect anabolic response, lean body mass, muscle strength or function over 8 weeks in older adults: A randomized-controlled trial.

    PubMed

    Kim, Il-Young; Schutzler, Scott; Schrader, Amy M; Spencer, Horace J; Azhar, Gohar; Wolfe, Robert R; Ferrando, Arny A

    2018-04-01

    In our recent acute metabolic study, we found no differences in the anabolic response to differing patterns of dietary protein intake. To confirm this in a chronic study, we investigated the effects of protein distribution pattern on functional outcomes and protein kinetics in older adults over 8 weeks. To determine chronic effects of protein intake pattern at 1.1 g protein/kg/day in mixed meals on lean body mass (LBM), functional outcomes, whole body protein kinetics and muscle protein fractional synthesis rate (MPS) over 8-week respective dietary intervention, fourteen older subjects were randomly divided into either EVEN or UNVEN group. The UNEVEN group (n = 7) consumed the majority of dietary protein with dinner (UNEVEN, 15/20/65%; breakfast, lunch, dinner), while the EVEN group (n = 7) consumed dietary protein evenly throughout the day (EVEN: 33/33/33%). We found no significant differences in LBM, muscle strength, and other functional outcomes between EVEN and UNEVEN before and after 8-week intervention. Consistent with these functional outcomes, we did not find significant differences in the 20-h integrated whole body protein kinetics [net protein balance (NB), protein synthesis (PS), and breakdown (PB)] above basal states and MPS between EVEN and UNEVEN intake patterns. We conclude that over an 8-week intervention period, the protein intake distribution pattern in mixed meals does not play an important role in determining anabolic response, muscle strength, or functional outcomes. This trial is registered at https://ClinicalTrials.gov as NCT02787889. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton

    NASA Astrophysics Data System (ADS)

    Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.

  11. Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease.

    PubMed

    Lippincott, Margaret F; Carlow, Andrea; Desai, Aditi; Blum, Arnon; Rodrigo, Maria; Patibandla, Sushmitha; Zalos, Gloria; Smith, Kevin; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-08-01

    Our purpose was to determine predictors of endothelial function and potential association with cardiovascular risk in women with sedentary occupations, in whom obesity-associated risk factors may contribute to excess morbidity and mortality. Ninety consecutive women (age range 22 to 63 years, 22 overweight (body mass index [BMI] > or =25 to 29.9 kg/m(2)) and 42 obese (BMI > or = 30 kg/m(2)), had vital signs, lipids, insulin, glucose, high-sensitivity C-reactive protein, and sex hormones measured. Endothelial function was determined using brachial artery flow-mediated dilation after 5 minutes of forearm ischemia. Treadmill stress testing was performed with gas exchange analysis at peak exercise (peak oxygen consumption [Vo(2)]) to assess cardiorespiratory fitness. Brachial artery reactivity was negatively associated with Framingham risk score (r = -0.3542, p = 0.0007). Univariate predictors of endothelial function included peak Vo(2) (r = 0.4483, p <0.0001), age (r = -0.3420, p = 0.0010), BMI (r = -0.3065, p = 0.0035), and high-sensitivity C-reactive protein (r = -0.2220, p = 0.0400). Using multiple linear regression analysis with stepwise modeling, peak Vo(2) (p = 0.0003) was the best independent predictor of brachial artery reactivity, with age as the only other variable reaching statistical significance (p = 0.0436) in this model. In conclusion, endothelial function was significantly associated with cardiovascular risk in women with sedentary occupations, who were commonly overweight or obese. Even in the absence of routine exercise, cardiorespiratory fitness, rather than conventional risk factors or body mass, is the dominant predictor of endothelial function and suggests a modifiable approach to risk.

  12. Determining accurate measurements of the growth rate from the galaxy correlation function in simulations

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Blake, Chris; Poole, Gregory B.; Marin, Felipe

    2013-04-01

    We use high-resolution N-body simulations to develop a new, flexible empirical approach for measuring the growth rate from redshift-space distortions in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a 1 h-3 Gpc3 volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting luminous red galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the `standard' assumption of a power-law correlation function can result in a significant systematic error in the growth-rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10 per cent) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper, we present the application of our new methodology to the WiggleZ Survey data set.

  13. The P-factor and atomic mass systematics: Application to medium mass nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, D.S.; Haustein, P.E.; Casten, R.F.

    1988-01-01

    The P formalism was applied to atomic mass systematics for medium and heavy nuclei. The P-factor linearizes the structure-dependent part of the nuclear mass in those regions which are free from subshell effects indicating that the attractive quadrupole p-n force plays an important role in determining the binding of valence nucleons. Where marked non-linearities occur, the P-factor provides a means for recognizing subshell closures and/or other structural features not embodied in the simple assumptions of abrupt shell or subshell changes. These are thought to be regions where the monopole part of the p-n interaction is highly orbit dependent and altersmore » the underlying single-particle structure as a function of A, N or Z. Finally, in those regions where the systematics are smooth and subshells are absent, the P-factor provides a means for predicting masses of some nuclei far-from-stability by interpolation rather than by extrapolation. 5 figs.« less

  14. Quantification of free convection effects on 1 kg mass standards

    NASA Astrophysics Data System (ADS)

    Schreiber, M.; Emran, M. S.; Fröhlich, T.; Schumacher, J.; Thess, A.

    2015-12-01

    We determine the free-convection effects and the resulting mass differences in a high-precision mass comparator for cylindrical and spherical 1 kg mass standards at different air pressures. The temperature differences are chosen in the millikelvin range and lead to microgram updrafts. Our studies reveal a good agreement between the measurements and direct numerical simulations of the Boussinesq equations of free thermal convection. A higher sensitivity to the free convection effects is found for the spherical case compared to the cylindrical one. We also translate our results on the free convection effects into a form which is used in fluid mechanics: a dimensionless updraft coefficient as a function of the dimensionless Grashof number Gr that quantifies the thermal driving due to temperature differences. This relation displays a unique scaling behavior over nearly four decades in Gr and levels off into geometry-specific constants for the very small Grashof numbers. The obtained results provide a rational framework for estimating systematic errors in mass metrology due to the effects of free convection.

  15. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2013-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by an order of magnitude, by observing additional 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13A. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^(2+3) M_sun) - the regime about which there is much ongoing debate."

  16. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2013-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13B. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^{2+3} M_sun) - the regime of ongoing debate. Previously allocated 1+2 nights were cancelled (telescope failures)."

  17. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2014-01-01

    The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.

  18. Parametric Study of an Ablative TPS and Hot Structure Heatshield for a Mars Entry Capsule Vehicle

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.

    2017-01-01

    The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.

  19. The impact of weight and fat mass loss and increased physical activity on physical function in overweight, postmenopausal women: results from the Women on the Move Through Activity and Nutrition study.

    PubMed

    Gabriel, Kelley K Pettee; Conroy, Molly B; Schmid, Kendra K; Storti, Kristi L; High, Robin R; Underwood, Darcy A; Kriska, Andrea M; Kuller, Lewis H

    2011-07-01

    The aim of this study was to determine whether changes in leisure time physical activity (LTPA) and body composition reflect concomitant changes in 400-meter walk time. Data were collected at the baseline and 48-month visits in the Women on the Move Through Activity and Nutrition study. At baseline, participants (n = 508) were randomized to the lifestyle intervention or health education group. The lifestyle intervention focused on weight (7%-10%) and waist circumference reduction through healthy lifestyle behavior change. Change in walk time over 48 months was the primary outcome. Secondary measures included change in LTPA and body composition measures including, body weight, body mass index, waist circumference, and dual-energy x-ray absorptiometry--derived fat and lean mass. Increased LTPA and reductions in body weight, body mass index, waist circumference, and fat mass were associated with decreased walk time from baseline to 48 months (P < 0.01). After stratification by group, LTPA was no longer significantly related to walk time in the health education group. Increased LTPA and weight loss resulted in improved physical function, as measured by the 400-meter walk, in a group of overweight, postmenopausal women. These findings support the use of the 400-meter walk to evaluate progress in physical activity or weight loss programs.

  20. Physiological and psychological effects of testosterone during severe energy deficit and recovery: A study protocol for a randomized, placebo-controlled trial for Optimizing Performance for Soldiers (OPS).

    PubMed

    Pasiakos, Stefan M; Berryman, Claire E; Karl, J Philip; Lieberman, Harris R; Orr, Jeb S; Margolis, Lee M; Caldwell, John A; Young, Andrew J; Montano, Monty A; Evans, William J; Vartanian, Oshin; Carmichael, Owen T; Gadde, Kishore M; Harris, Melissa; Rood, Jennifer C

    2017-07-01

    The physiological consequences of severe energy deficit include hypogonadism and the loss of fat-free mass. Prolonged energy deficit also impacts physical performance, mood, attentiveness, and decision-making capabilities. This study will determine whether maintaining a eugonadal state during severe, sustained energy deficit attenuates physiological decrements and maintains mental performance. This study will also assess the effects of normalizing testosterone levels during severe energy deficit and recovery on gut health and appetite regulation. Fifty physically active men will participate in a 3-phase, randomized, placebo-controlled study. After completing a 14-d, energy-adequate, diet acclimation phase (protein: 1.6g∙kg -1 ∙d -1 ; fat: 30% total energy intake), participants will be randomized to undergo a 28-d, 55% energy deficit phase with (DEF+TEST: 200mg testosterone enanthate per week) or without (DEF) exogenous testosterone. Diet and physical activity will be rigorously controlled. Recovery from the energy deficit (ad libitum diet, no testosterone) will be assessed until body mass has been recovered within ±2.5% of initial body mass. Body composition, stable isotope methodologies, proteomics, muscle biopsies, whole-room calorimetry, molecular biology, activity/sleep monitoring, personality and cognitive function assessments, functional MRI, and comprehensive biochemistries will be used to assess physiological and psychological responses to energy restriction and recovery feeding while volunteers are in an expected hypogonadal versus eugonadal state. The Optimizing Performance for Soldiers (OPS) study aims to determine whether preventing hypogonadism will mitigate declines in physical and mental function that typically occur during prolonged energy deficit, and the efficacy of testosterone replacement on recovery from severe underfeeding. NCT02734238. Copyright © 2017. Published by Elsevier Inc.

  1. Near-infrared photometry of WISE J085510.74-071442.5

    NASA Astrophysics Data System (ADS)

    Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martín, E. L.; Ivanov, V. D.; Bayo, A.; Boffin, H. M. J.; Mužić, K.; Minniti, D.; Beamín, J. C.

    2016-08-01

    Aims: We aim at obtaining near-infrared photometry and deriving the mass, age, temperature, and surface gravity of WISE J085510.74-071442.5 (J0855-0714), which is the coolest object beyond the solar system currently known. Methods: We used publicly available data from the archives of the Hubble Space Telescope (HST) and the Very Large Telescope (VLT) to determine the emission of this source at 1.153 μm (F110W) and 1.575 μm (CH4-off). J0855-0714 was detected at both wavelengths with a signal-to-noise ratio of ≈10 (F110W) and ≈4 (CH4-off) at the peak of the corresponding point-spread-functions. Results: This is the first detection of J0855-0714 in the H-band wavelengths. We measured 26.31 ± 0.10 and 23.22 ± 0.35 mag in F110W and CH4-off (Vega system). J0855-0714 remains unresolved in the HST images that have a spatial resolution of 0.22''. Companions at separations of 0.5 AU (similar mass and brightness) and at ~1 AU (≈1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, including non-detections, we build the spectral energy distribution of J0855-0714 from 0.89 through 22.09 μm, and contrast it against current solar-metallicity models of planetary atmospheres. We determine that the best spectral fit yields a temperature of 225-250 K, a bolometric luminosity of log L/L⊙ = -8.57, and a high surface gravity of log g = 5.0 (cm s-2), which suggests an old age although a gravity this high is not fully compatible with evolutionary models. After comparing our data with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2-10 MJup for ages of 1-12 Gyr and high atmospheric gravities of log g ⪆ 3.5 (cm s-2). If it had the age of the Sun, J0855-0714 would be a ≈5-MJup free-floating planetary-mass object. Conclusions: J0855-0714 meets the mass values previously determined for free-floating planetary-mass objects discovered in star-forming regions and young stellar clusters. Based on extrapolations of the substellar mass functions of young clusters to the field, as many J0855-0714-like objects as M5-L2 stars may be expected to populate the solar neighborhood.

  2. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  3. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  4. Myofiber metabolic type determination by mass spectrometry imaging.

    PubMed

    Centeno, Delphine; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe; Théron, Laëtitia

    2017-08-01

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a powerful tool that opens new research opportunities in the field of biology. In this work, predictive model was developed to discriminate metabolic myofiber types using the MALDI spectral data. Rat skeletal muscles are constituted of type I and type IIA fiber, which have an oxidative metabolism for glycogen degradation, and type IIX and type IIB fiber which have a glycolytic metabolism, present in different proportions according to the muscle function and physiological state. So far, myofiber type is determined by histological methods that are time consuming. Thanks to the predictive model, we were able to predict not only the metabolic fiber type but also their location, on the same muscle section that was used for MALDI imaging. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. [Identification and analysis of the proteins interacted with Prestin in cochlear outer hair cells of guinea pig].

    PubMed

    Luo, X; Wang, J Y; Zhang, F L; Xia, Y

    2018-01-07

    Objective: To explore the regulation and mechanism of Prestin protein by identifying the proteins interacted with Prestin in cochlear outer hair cell(OHC) and analyzing their biological function. Methods: Co-immunoprecipitation combined mass spectrometry technology was used to isolate and identify the proteins interacted with Prestin protein of OHC, bioinformatics was used to construct Prestin protein interaction network. The proteins interacted with Prestin in OHC of guinea pig were determined by matching primary interaction mass spectrometry with protein interaction network, and annotated their functions. Results: The results of co-immunoprecipitation combined with mass spectrometry showed that 116 kinds of credible proteins could interact with Prestin. By constructing Prestin protein interaction network, matching the results of mass spectrometry and analyzing of sub-cellular localization, eight kinds of proteins were confirmed that they interacted with Prestin directly, namely EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1, and ERH, respectively, which were mainly involved in the synthesis and transportation, transmembrane folding and localization, structural stability and signal transduction of Prestin protein. Conclusion: EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1 and ERH provide molecular basis for sensory amplification function of OHCs by participating in biotransformation, transmembrane folding and localization, signal transduction and other biological processes of Prestin protein.

  6. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  8. Predicting Functional Capacity From Measures of Muscle Mass in Postmenopausal Women.

    PubMed

    Orsatti, Fábio Lera; Nunes, Paulo Ricardo Prado; Souza, Aletéia de Paula; Martins, Fernanda Maria; de Oliveira, Anselmo Alves; Nomelini, Rosekeila Simões; Michelin, Márcia Antoniazi; Murta, Eddie Fernando Cândido

    2017-06-01

    Menopause increases body fat and decreases muscle mass and strength, which contribute to sarcopenia. The amount of appendicular muscle mass has been frequently used to diagnose sarcopenia. Different measures of appendicular muscle mass have been proposed. However, no studies have compared the most salient measure (appendicular muscle mass corrected by body fat) of the appendicular muscle mass to physical function in postmenopausal women. To examine the association of 3 different measurements of appendicular muscle mass (absolute, corrected by stature, and corrected by body fat) with physical function in postmenopausal women. Cross-sectional descriptive study. Outpatient geriatric and gynecological clinic. Forty-eight postmenopausal women with a mean age (standard deviation [SD]) of 62.1 ± 8.2 years, with mean (SD) length of menopause of 15.7 ± 9.8 years and mean (SD) body fat of 43.6% ± 9.8%. Not applicable. Appendicular muscle mass measure was measured with dual-energy x-ray absorptiometry. Physical function was measured by a functional capacity questionnaire, a short physical performance battery, and a 6 minute-walk test. Muscle quality (leg extensor strength to lower-body mineral-free lean mass ratio) and sum of z scores (sum of each physical function tests z score) were performed to provide a global index of physical function. The regression analysis showed that appendicular muscle mass corrected by body fat was the strongest predictor of physical function. Each increase in the standard deviation of appendicular muscle mass corrected by body fat was associated with a mean sum of z score increase of 59% (standard deviation), whereas each increase in absolute appendicular muscle mass and appendicular muscle mass corrected by stature were associated with a mean sum of z scores decrease of 23% and 36%, respectively. Muscle quality was associated with appendicular muscle mass corrected by body fat. These findings indicate that appendicular muscle mass corrected by body fat is a better predictor of physical function than the other measures of appendicular muscle mass in postmenopausal women. I. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Near-identical star formation rate densities from Hα and FUV at redshift zero

    NASA Astrophysics Data System (ADS)

    Audcent-Ross, Fiona M.; Meurer, Gerhardt R.; Wong, O. I.; Zheng, Z.; Hanish, D.; Zwaan, M. A.; Bland-Hawthorn, J.; Elagali, A.; Meyer, M.; Putman, M. E.; Ryan-Weber, E. V.; Sweet, S. M.; Thilker, D. A.; Seibert, M.; Allen, R.; Dopita, M. A.; Doyle-Pegg, M. T.; Drinkwater, M.; Ferguson, H. C.; Freeman, K. C.; Heckman, T. M.; Kennicutt, R. C.; Kilborn, V. A.; Kim, J. H.; Knezek, P. M.; Koribalski, B.; Smith, R. C.; Staveley-Smith, L.; Webster, R. L.; Werk, J. K.

    2018-06-01

    For the first time both Hα and far-ultraviolet (FUV) observations from an H I-selected sample are used to determine the dust-corrected star formation rate density (SFRD: \\dot{ρ }) in the local Universe. Applying the two star formation rate indicators on 294 local galaxies we determine log(\\dot{ρ } _{Hα }) = -1.68 ^{+0.13}_{-0.05} [M⊙ yr-1 Mpc-3] and log(\\dot{ρ }_{FUV}) = -1.71 ^{+0.12}_{-0.13} [M⊙ yr-1 Mpc-3]. These values are derived from scaling Hα and FUV observations to the H I mass function. Galaxies were selected to uniformly sample the full H I mass (M_{H I}) range of the H I Parkes All-Sky Survey (M_{H I} ˜ 107 to ˜1010.7 M⊙). The approach leads to relatively larger sampling of dwarf galaxies compared to optically-selected surveys. The low H I mass, low luminosity and low surface brightness galaxy populations have, on average, lower Hα/FUV flux ratios than the remaining galaxy populations, consistent with the earlier results of Meurer. The near-identical Hα- and FUV-derived SFRD values arise with the low Hα/FUV flux ratios of some galaxies being offset by enhanced Hα from the brightest and high mass galaxy populations. Our findings confirm the necessity to fully sample the H I mass range for a complete census of local star formation to include lower stellar mass galaxies which dominate the local Universe.

  10. SILAC-Based Comparative Proteomic Analysis of Lysosomes from Mammalian Cells Using LC-MS/MS.

    PubMed

    Thelen, Melanie; Winter, Dominic; Braulke, Thomas; Gieselmann, Volkmar

    2017-01-01

    Mass spectrometry-based proteomics of lysosomal proteins has led to significant advances in understanding lysosomal function and pathology. The ever-increasing sensitivity and resolution of mass spectrometry in combination with labeling procedures which allow comparative quantitative proteomics can be applied to shed more light on the steadily increasing range of lysosomal functions. In addition, investigation of alterations in lysosomal protein composition in the many lysosomal storage diseases may yield further insights into the molecular pathology of these disorders. Here, we describe a protocol which allows to determine quantitative differences in the lysosomal proteome of cells which are genetically and/or biochemically different or have been exposed to certain stimuli. The method is based on stable isotope labeling of amino acids in cell culture (SILAC). Cells are exposed to superparamagnetic iron oxide particles which are endocytosed and delivered to lysosomes. After homogenization of cells, intact lysosomes are rapidly enriched by passing the cell homogenates over a magnetic column. Lysosomes are eluted after withdrawal of the magnetic field and subjected to mass spectrometry.

  11. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  12. De facto molecular weight distributions of glucans by size-exclusion chromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.

    PubMed

    Praznik, Werner; Huber, Anton

    2005-09-25

    A major capability of polysaccharides in aqueous media is their tendency for aggregation and dynamic formation of supermolecular structures. Even extended dissolution processes will not eliminate these structures which dominate many analytical approaches, in particular absolute molecular weight determinations referring to light scattering data. An alternative approach for determination of de facto molecular weight for glucans with free terminal hemiacetal functionality (reducing end group) has been adjusted from carbohydrates for midrange and high-dp glucans: quantitative and stabilized labeling as aminopyridyl-derivatives (AP-glucans) and subsequent analysis of SEC-separated elution profiles based on simultaneously monitored mass and molar fractions by refractive index and fluorescence detection. SEC-DRI/FL of AP-glucans proved as an appropriate approach for determination of de facto molecular weight of constituting glucan molecules even in the presence of supermolecular structures for non-branched (pullulan), branched (dextran), narrow distributed and broad distributed and for mixes of compact and loose packed polymer coils (starch glucan hydrolizate).

  13. Leaf Litter Decomposition as a Functional Assessment of a Natural Stream Channel Design Project

    NASA Astrophysics Data System (ADS)

    Gentry, A.; Word, D.; Carreiro, M.; Jack, J.

    2005-05-01

    In October 2003, a 965m reach of Wilson Creek (Bernheim Research Forest, Kentucky, USA) was relocated, and meanders and riffle-pool sequences were restored, providing a unique opportunity to measure the re-establishment of post-restoration stream functions. Leaf litter bags were placed across riffles in the restored reach, in an upstream reference site and in two reference streams. Bags were collected for nine months, and mass loss, N dynamics and fungal ergosterol were measured. Daily mass loss rates in the restored and reference riffles in Wilson Creek were faster (k= -0.00759 and k= -0.00855, respectively) than those of the two reference streams (k= -0.00511 and k= -0.00308). This is equivalent to litter mean residence times of 132 days for the restored reach in Wilson, 117 days in the upstream reference site, and 196 and 325 days for the reference streams. It appears that the decay rate in the restored reach is similar to the upstream portion of Wilson Creek, indicating rapid mass loss recovery in the restored reach. We also determined that same-stream reference sites are important for evaluating the restoration of stream functions, because of high decay rate variation among nearby streams within the same watershed.

  14. Considering body mass differences, who are the world's strongest women?

    PubMed

    Vanderburgh, P M; Dooman, C

    2000-01-01

    Allometric modeling (AM) has been used to determine the world's strongest body mass-adjusted man. Recently, however, AM was shown to demonstrate body mass bias in elite Olympic weightlifting performance. A second order polynomial (2OP) provided a better fit than AM with no body mass bias for men and women. The purpose of this study was to apply both AM and 2OP models to women's world powerlifting records (more a function of pure strength and less power than Olympic lifts) to determine the optimal model approach as well as the strongest body mass-adjusted woman in each event. Subjects were the 36 (9 per event) current women world record holders (as of Nov., 1997) for bench press (BP), deadlift (DL), squat (SQ), and total (TOT) lift (BP + DL + SQ) according to the International Powerlifting Federation (IPF). The 2OP model demonstrated the superior fit and no body mass bias as indicated by the coefficient of variation and residuals scatterplot inspection, respectively, for DL, SQ, and TOT. The AM for these three lifts, however, showed favorable bias toward the middle weight classes. The 2OP and AM yielded an essentially identical fit for BP. Although body mass-adjusted world records were dependent on the model used, Carrie Boudreau (U.S., 56-kg weight class), who received top scores in TOT and DL with both models, is arguably the world's strongest woman overall. Furthermore, although the 2OP model provides a better fit than AM for this elite population, a case can still be made for AM use, particularly in light of theoretical superiority.

  15. REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    1996-08-01

    Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.

  16. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  17. A potential role for the midbrain in integrating fat-free mass determined energy needs: An H2 (15) O PET study.

    PubMed

    Weise, Christopher M; Thiyyagura, Pradeep; Reiman, Eric M; Chen, Kewei; Krakoff, Jonathan

    2015-06-01

    Little is known on how sensing of energy needs is centrally represented, integrated, and translated into the behavioral aspects of energy homeostasis. Fat free mass (FFM) is the major determinant of energy expenditure. We investigated how interindividual variances in FFM relate to neuronal activity in humans. Healthy adults (n = 64, 21F/43M; age 31.3 ± 9.1y; percentage of body fat [PFAT] 25.6 ± 10.7%; BMI 30.4 ± 9) underwent a 36h fast and subsequent H(2) (15) O positron emission tomographic (PET) measurement of regional cerebral blood flow (rCBF). Multiple variable regression analysis revealed significant associations of FFM with rCBF within the midbrain [including parts of the periaqueductal gray (PAG), ventral tegmental area (VTA), thalamic and hypothalamic regions], the bilateral parahippocampal region, left anterior cingulate, left insular cortex, right cerebellum, and distinct regions within the temporal and occipital cortex. In contrast, no significant associations were found for fat mass (FM). We investigated the potential functional-anatomical link between FFM and central regulation of food intake by performing a conjunction analysis of FFM and the perceived hunger feelings. This showed a significant overlap within the midbrain PAG. Mediation analysis demonstrated a significant indirect effect of FFM on hunger with PAG rCBF as mediator. Most regions we found to be associated with FFM form part in ascending homeostatic pathways and cortical circuitries implicated in the regulation of basic bodily functions indicating a potential role of these central networks in the integration of FFM determined energy needs. © 2015 Wiley Periodicals, Inc.

  18. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.

  19. The Cool White Dwarf Luminosity Function and the Age of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Ruiz, Maria Teresa; Bergeron, P.

    1998-04-01

    We present new optical and infrared data for the cool white dwarfs in the proper motion sample of Liebert, Dahn, & Monet. Stellar properties--surface chemical composition, effective temperature, radius, surface gravity, mass, and luminosity--are determined from these data by using the model atmospheres of Bergeron, Saumon, & Wesemael. The space density contribution is calculated for each star and the luminosity function (LF) for cool white dwarfs is determined. Comparing the LF to the most recent cooling sequences by Wood implies that the age of the local region of the Galactic disk is 8 +/- 1.5 Gyr. This result is consistent with the younger ages now being derived for the globular clusters and the universe itself.

  20. Sarcopenia in Peripheral Arterial Disease: Prevalence and Effect on Functional Status.

    PubMed

    Addison, Odessa; Prior, Steven J; Kundi, Rishi; Serra, Monica C; Katzel, Leslie I; Gardner, Andrew W; Ryan, Alice S

    2018-04-01

    (1) To determine the prevalence of sarcopenia in older men with peripheral arterial disease (PAD); (2) to compare a subgroup of the group with age-, race-, sex-, and body mass index (BMI)-matched non-PAD control counterparts, and (3) to compare the functional status of those with PAD with and without sarcopenia. Cohort study. Medical center. Sedentary community-dwelling men (N=108; age, >50y) with a confirmed diagnosis of PAD (44% blacks; BMI, 27.8±0.4kg/m 2 ; ankle-brachial index, .62±.01). Not applicable. Dual-energy x-ray absorptiometry scans were used to assess appendicular lean mass and determine the prevalence of sarcopenia by/height 2 . Treadmill tests were used to determine claudication onset time, peak walking time, and claudication recovery time. 6-Minute walk distance was also measured. Sarcopenia prevalence in our PAD cohort was 25%. The PAD subgroup (n=42) matched with control counterparts in terms of race, sex, age, and BMI had higher prevalence rates than did their non-PAD counterparts (23.8% vs 2.4%; P<.05). Individuals with sarcopenia (n=28) had a shorter 6-minute walk distance (326±18.8m vs 380±9.7m; P<.05) and higher claudication recovery time (592±98s vs 395±29s; P<.05) than did individuals with PAD but without sarcopenia (n=80). There was no difference in claudication onset time or peak walking time between the PAD groups. Men with PAD demonstrate a high prevalence of sarcopenia. Those with sarcopenia and PAD demonstrate decreased mobility function. Published by Elsevier Inc.

  1. Cellular Scaling Rules for Primate Spinal Cords

    PubMed Central

    Burish, Mark J.; Peebles, J. Klint; Baldwin, Mary K.; Tavares, Luciano; Kaas, Jon H.; Herculano-Houzel, Suzana

    2010-01-01

    The spinal cord can be considered a major sensorimotor interface between the body and the brain. How does the spinal cord scale with body and brain mass, and how are its numbers of neurons related to the number of neurons in the brain across species of different body and brain sizes? Here we determine the cellular composition of the spinal cord in eight primate species and find that its number of neurons varies as a linear function of cord length, and accompanies body mass raised to an exponent close to 1/3. This relationship suggests that the extension, mass and number of neurons that compose the spinal cord are related to body length, rather than to body mass or surface. Moreover, we show that although brain mass increases linearly with cord mass, the number of neurons in the brain increases with the number of neurons in the spinal cord raised to the power of 1.7. This faster addition of neurons to the brain than to the spinal cord is consistent with current views on how larger brains add complexity to the processing of environmental and somatic information. PMID:20926855

  2. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.

    2008-11-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.

  3. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE PAGES

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...

    2016-11-21

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  4. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  5. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    NASA Astrophysics Data System (ADS)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  6. Axisymmetric Plasma Equilibria in General Relativity

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  7. Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2017-12-01

    Galaxies with stellar masses < {10}7.4 {M}ȯ and specific star formation rates {sSFR}> {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .

  8. Calibration and Limitations of the Mg II Line-based Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios; Park, Dawoo; Park, Daeseong; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.

    2018-06-01

    We present single-epoch black hole mass ({M}BH}) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg II 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference {M}BH} based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe II strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg II-based and Hβ-based masses with the L 3000/L 5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + α λ ) + 0.17, which can be added to the Mg II-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based {M}BH}, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.

  9. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats

    PubMed Central

    Almundarij, Tariq I.; Smyers, Mark E.; Spriggs, Addison; Heemstra, Lydia A.; Beltz, Lisa; Dyne, Eric; Ridenour, Caitlyn; Novak, Colleen M.

    2016-01-01

    Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction. PMID:27886210

  10. Sauropod necks: are they really for heat loss?

    PubMed

    Henderson, Donald M

    2013-01-01

    Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.

  11. The initial mass function and star formation law in the outer disc of NGC 2915

    NASA Astrophysics Data System (ADS)

    Bruzzese, S. M.; Meurer, G. R.; Lagos, C. D. P.; Elson, E. C.; Werk, J. K.; Blakeslee, John P.; Ford, H.

    2015-02-01

    Using Hubble Space Telescope (HST) Advanced Camera for Surveys/Wide Field Camera data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended H I disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the H I gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published Hα observations of the field, which show one faint H II region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope α = -2.85 and upper-mass limit M_u = 60 M_{⊙}. However, if we assume that all Hα emission is confined to H II regions then the upper-mass limit is restricted to M_u ≲ 20 M_{⊙}. For the luminosity function fit to be correct, we have to discount the Hα observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with H I imaging, we find the SFL has a power-law index N = 1.53 ± 0.21. Applying these results to the entire outer H I disc indicates that it contributes 11-28 per cent of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.

  12. Sauropod Necks: Are They Really for Heat Loss?

    PubMed Central

    Henderson, Donald M.

    2013-01-01

    Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating. PMID:24204747

  13. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo.

    PubMed

    Horn, Signe; Kirkegaard, Jeannette S; Hoelper, Soraya; Seymour, Philip A; Rescan, Claude; Nielsen, Jens H; Madsen, Ole D; Jensen, Jan N; Krüger, Marcus; Grønborg, Mads; Ahnfelt-Rønne, Jonas

    2016-01-01

    Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of β-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.

  14. Tetraquark bound states in a Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.

    2012-12-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  15. Nutrition in space - Evidence from the U.S. and the U.S.S.R

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    Space flight exposes humans to a hostile, stressful environment as well as to the weightlessness associated with microgravity. The stresses of space travel affect nutritional balance, as evidenced by interrelated changes in body composition, energy utilization, and endocrine function. The limited data gathered thus far suggest that space flight incurs acute decreases in fluid mass and chronic, ongoing changes in muscle and bone mass. Concurrent with these changes is an increase in energy used per unit body mass. Other preliminary data suggest that bed rest and space flight may incur increased sensitivity to insulin. Further research is needed to determine the human energy and protein requirements for space, as well as a means of quantifying changes in body composition during extended-duration space flight.

  16. Cracking the Sugar Code by Mass Spectrometry - An Invited Perspective in Honor of Dr. Catherine E. Costello, Recipient of the 2017 ASMS Distinguished Contribution Award

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, Ekaterina; Karlsson, Niclas G.; Sihlbom, Carina; Larson, Göran; Nilsson, Carol L.

    2018-04-01

    The structural study of glycans and glycoconjugates is essential to assign their roles in homeostasis, health, and disease. Once dominated by nuclear magnetic resonance spectroscopy, mass spectrometric methods have become the preferred toolbox for the determination of glycan structures at high sensitivity. The patterns of such structures in different cellular states now allow us to interpret the sugar codes in health and disease, based on structure-function relationships. Dr. Catherine E. Costello was the 2017 recipient of the American Society for Mass Spectrometry's Distinguished Contribution Award. In this Perspective article, we describe her seminal work in a historical and geographical context and review the impact of her research accomplishments in the field. 8[Figure not available: see fulltext.

  17. Measurement of the exclusive γγ → μ + μ - process in proton–proton collisions at s = 13 TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-20

    The production of exclusive γγ → μ +μ - events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb -1. The measurement is performed for a dimuon invariant mass of 12 GeV μ + μ- < 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. In conclusion, the results are compared to theoretical predictions both with and without corrections formore » absorptive effects.« less

  18. Tuning the Stiffness Balance Using Characteristic Frequencies as a Criterion for a Superconducting Gravity Gradiometer.

    PubMed

    Liu, Xikai; Ma, Dong; Chen, Liang; Liu, Xiangdong

    2018-02-08

    Tuning the stiffness balance is crucial to full-band common-mode rejection for a superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and experimentally tested. In the tuning scheme, the frequency response functions of the displacement of individual test mass upon common-mode accelerations were measured and thus determined a characteristic frequency for each test mass. A reduced difference in characteristic frequencies between the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the characteristic frequencies does not depend on the scale factors of displacement detection, stiffness tuning can be done independently. We have tested this new method on a single-component SGG and obtained a reduction of two orders of magnitude in stiffness mismatch.

  19. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.

    2012-04-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.

  20. THE HALO MASS FUNCTION CONDITIONED ON DENSITY FROM THE MILLENNIUM SIMULATION: INSIGHTS INTO MISSING BARYONS AND GALAXY MASS FUNCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltenbacher, A.; Finoguenov, A.; Drory, N.

    2010-03-20

    The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present amore » simple fitting formula for the cumulative mass function accurate to {approx}<5% for halo masses between 10{sup 10} and 10{sup 15} h {sup -1} M{sub sun}. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.« less

  1. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

    PubMed Central

    Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.

    2015-01-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240

  2. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  3. The use of the ion probe mass spectrometer in the measurement of hydrogen concentration gradients in Monel K 500

    NASA Technical Reports Server (NTRS)

    Truhan, J. J., Jr.; Hehemann, R. F.

    1974-01-01

    The ion probe mass spectrometer was used to measure hydrogen concentration gradients in cathodically charged Monel K 500. Initial work with the ion probe involved the calibration of the instrument and the establishment of a suitable experimental procedure for this application. Samples of Monel K 500 were cathodically charged in a weak sulfuric acid solution. By varying the current density, different levels of hydrogen were introduced into the samples. Hydrogen concentration gradients were taken by ion sputtering on the surface of these samples and monitoring the behavior of the hydrogen mass peak as a function of time. An attempt was made to determine the relative amounts of hydrogen in the bulk and grain boundaries by analyzing a fresh fracture surface with a higher proportion of grain boundary area. It was found that substantially more hydrogen was detected in the grain boundaries than in the bulk, confirming the predictions of previous workers. A sputter rate determination was made in order to establish the rate of erosion.

  4. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  5. Characterization of plant polysaccharides from Dendrobium officinale by multiple chromatographic and mass spectrometric techniques.

    PubMed

    Ma, Huiying; Zhang, Keke; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Chen, David Da Yong

    2018-04-27

    Plant polysaccharides have numerous medicinal functions. Due to the differences in their origins, regions of production, and cultivation conditions, the quality and the functions of polysaccharides can vary significantly. They are macromolecules with large molecular weight (MW) and complex structure, and pose great challenge for the analytical technology used. Taking Dendrobium officinale (DO) from various origins and locations as model samples. In this investigation, mechanochemical extraction method was used to successfully extract polysaccharides from DO using water as solvent, the process is simple, fast (40 s) and with high yield. The MWs of the intact saccharides from calibration curve and light scattering measurement were determined and compared after separation with size exclusion chromatography (SEC). The large polysaccharide was acid hydrolyzed to oligosaccharides and the products were efficiently separated and identified using liquid chromatography coupled to a high resolution tandem mass spectrometry (LC-MS 2 ). Obvious differences were observed among LC-MS 2 chromatograms of digested products, and the chemical structures for the products were proposed based on accurate mass values. More importantly, isomeric digested carbohydrate compounds were explored and characterized. All the chromatographic and mass spectrometric results in this study provided a multi-dimensional characterization, fingerprint analysis, and molecular structure level assessment of plant polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  7. [Simultaneous determination of 16 flavonoids in the ginkgo dietary supplement tea by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Jiang, Yalan; Huang, Fang; Wu, Fuhai; Wu, Huiqin; Huang, Xiaolan; Deng, Xin

    2015-10-01

    A method for the determination of 16 functional components of ginkgo dietary supplement tea such as catechin, vitexin, puerarin, isoflavoues aglycone, silymarin, quercetin, luteolin, apigenin, naringenin, hesperitin dihydrochalcone, kaempferol, hesperitin, isorhamnetin, baicalein, nobiletin and tangeretin by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was proposed. The conditions of chromatography and mass spectrometry were optimized. The 16 flavonoids were separated on a C18 chromatographic column with acetonitrile and water (additional 0.1% formic acid) as mobile phases under gradient elution at a flow rate of 0.25 mL/min. The determination was conducted by tandem mass spectrometry in positive ESI mode under multiple reaction monitoring (MRM) mode. Good linearities for all the compounds, with correlation coefficients over 0.996, were acquired. The recoveries were in the range of 70.9% to 100.0% (n = 6), while the relative standard deviations (RSDs) were less than 10%. The results showed that the nine flavonoids, which were kaempferol, quercetin, hesperitin, vitexin, luteolin, catechin, apigenin, naringenin and isorhamnetin, were higher in contents among the 16 flavonoids in real samples, and they constituted up to 99.6% of the total flavonoids. The contents of these nine flavonoids can be considered as the quality control index of the ginkgo dietary supplement tea. The method proved to be rapid, selective, sensitive and stable, and it can be applied to control the quality of the ginkgo dietary supplement tea.

  8. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2007-11-01

    The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321.

  9. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  10. [Botulism: structure and function of botulinum toxin and its clinical application].

    PubMed

    Oguma, Keiji; Yamamoto, Yumiko; Suzuki, Tomonori; Fatmawati, Ni Nengah Dwi; Fujita, Kumiko

    2012-08-01

    Clostridium botulinum produces seven immunological distinct poisonous neurotoxins, A to G, with molecular masses of approximately 150kDa. In acidic foods and culture fluid, the neurotoxins associate with non-toxic components, and form large complexes designated progenitor toxins. The progenitor toxins are found in three forms named LL, L, and M. These neurotoxins and progenitor toxins were purified, and whole nucleotide sequences of their structure genes were determined. In this manuscript, the structure and function of these toxins, and the application of these toxins to clinical usage have been described.

  11. Biological implications of the adolescent growth process: body composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, G.B.

    The adolescent growth curve for total-body potassium, as determined by potassium-40 counting, is described. Since this is a function of the lean body mass, this curve permits estimates of increments in body Ca and N contents. A new mathematical model is proposed in which the idolescent spurt is considered to be superimposed on a pre-adolescent growth pattern. (auth)

  12. The feasibility of a fluidic respiratory flow meter

    NASA Technical Reports Server (NTRS)

    Neradka, V. F.; Bray, H. C., Jr.

    1974-01-01

    A study was undertaken to determine the feasibility of adapting a fluidic airspeed sensor for use as a respiratory flowmeter. A Pulmonary Function Testing Flowmeter was developed which should prove useful for mass screening applications. The fluidic sensor threshold level was not reduced sufficiently to permit its adaptation to measuring the low respiratory flow rates encountered in many respiratory disorders.

  13. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections II and III. The main point of this paper is to use these deceleration rate data, together with results from a computer model, to determine values of the quantities mPs 2 (the meteor mass times its material density squared); and further, by combining these m s 2 values with meteor mass estimates for the same set of meteors determined separately from measured radar scattering

  14. Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer

    NASA Astrophysics Data System (ADS)

    Lubis, M.; Gana, A.; Maysarah, S.; Ginting, M. H. S.; Harahap, M. B.

    2018-02-01

    The production of bioplastic from jackfruit seed starch reinforced with microcrystalline cellulose (MCC) cocoa pod husk using glycerol as plasticizer was investigated to determine the most optimum mass and volume of MCC and glycerol in producing bioplastics. To produce MCC, Cocoa pod husk was subjected to alkali treatment, bleaching, and hydrochloric acid hydrolysis. The degree of crystallinity of MCC, were determined by XRD, functional group by FT-IR and morphologycal analysis by SEM. Analysis of bioplastic mechanical properties includes tensile strength and elongation at break based on ASTM D882 standard. Bioplastics were produced by casting method from jackfruit seed starch and reinforced with MCC from cocoa pod husk at starch mass to MCC ratio of 6:4, 7:3, 8:2, and 9:1, using glycerol as plasticizer at 20%, 25%, 30% (wt/v of glycerol to starch). From the result, the isolated MCC from cocoa pod husk were in a form of rod-like shape of length 5-10 µm with diameter 11.635 nm and 74% crystallinity. The highest tensile strength of bioplastics was obtained at starch to MCC mass ratio of 8:2, addition of 20% glycerol with measured tensile strength of 0.637 MPa and elongation at break of 7.04%. Transform infrared spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds.

  15. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: the Korea National Health and Nutrition Examination Survey (KNHANES) from 2009.

    PubMed

    Chin, Sang Ouk; Rhee, Sang Youl; Chon, Suk; Hwang, You-Cheol; Jeong, In-Kyung; Oh, Seungjoon; Ahn, Kyu Jeung; Chung, Ho Yeon; Woo, Jeong-taek; Kim, Sung-Woon; Kim, Jin-Woo; Kim, Young Seol; Ahn, Hong-Yup

    2013-01-01

    The association between sarcopenia and cardiovascular disease (CVD) in elderly people has not been adequately assessed. The aim of this study was to investigate whether CVD is more prevalent in subjects with sarcopenia independent of other well-established cardiovascular risk factors in older Korean adults. This study utilized the representative Korean population data from the Korea National Health and Nutrition Examination Survey (KNHANES) which was conducted in 2009. Subjects older than 65 years of age with appendicular skeletal muscle mass (ASM) determined by dual energy X-ray absorptiometry were selected. The prevalence of sarcopenia in the older Korean adults was investigated, and it was determined whether sarcopenia is associated with CVD independent of other well-known risk factors. 1,578 subjects aged 65 years and older with the data for ASM were selected, and the overall prevalence of sarcopenia was 30.3% in men and 29.3% in women. Most of the risk factors for CVD such as age, waist circumference, body mass index, fasting plasma glucose and total cholesterol showed significant negative correlations with the ratio between appendicular skeletal muscle mass and body weight. Multiple logistic regression analysis demonstrated that sarcopenia was associated with CVD independent of other well-documented risk factors, renal function and medications (OR, 1.768; 95% CI, 1.075-2.909, P = 0.025). Sarcopenia was associated with the presence of CVD independent of other cardiovascular risk factors after adjusting renal function and medications.

  16. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, A.; Allen, S.W.; Ebeling, H.

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less

  17. Tracer-Test Planning Using the Efficient Hydrologic Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be

  18. EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to

  19. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  20. Superior Cardiac Function Via Anaplerotic Pyruvate in the Immature Swine Heart After Cardiopulmonary Bypass and Reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Hyyti, Outi M.; Cohen, Gordon A.

    2008-12-01

    Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the citric acid cycle (CAC) via carboxylation are linked to stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age 10-18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2]-13C-pyruvate (to achieve a final concentration of 8 mM) was given for 35 minutes starting either during weaning (Group I), after discontinuation (Group II) or without (Control) CPB. Hemodynamic data was collected. 13C NMRmore » spectroscopy was used to determine the fraction of pyruvate entering the CAC via pyruvate carboxylation (PC) to total CAC entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatography-mass spectrometry was used to determine total glutamate enrichment.« less

  1. Functional specialisation of pelvic limb anatomy in horses (Equus caballus)

    PubMed Central

    Payne, RC; Hutchinson, JR; Robilliard, JJ; Smith, NC; Wilson, AM

    2005-01-01

    We provide quantitative anatomical data on the muscle–tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity. PMID:15960766

  2. Detecting Anomalies in Process Control Networks

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Kang, Kyoung-Don

    This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.

  3. Microvascular lesions of the true vocal fold.

    PubMed

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  4. Mass-number and excitation-energy dependence of the spin cutoff parameter

    DOE PAGES

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less

  5. A galaxy lacking dark matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  6. A galaxy lacking dark matter.

    PubMed

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  7. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  8. Meal-based enhancement of protein quality and quantity during weight loss in obese older adults with mobility limitations: rationale and design for the MEASUR-UP trial.

    PubMed

    McDonald, Shelley R; Porter Starr, Kathryn N; Mauceri, Luisa; Orenduff, Melissa; Granville, Esther; Ocampo, Christine; Payne, Martha E; Pieper, Carl F; Bales, Connie W

    2015-01-01

    Obese older adults with even modest functional limitations are at a disadvantage for maintaining their independence into late life. However, there is no established intervention for obesity in older individuals. The Measuring Eating, Activity, and Strength: Understanding the Response - Using Protein (MEASUR-UP) trial is a randomized controlled pilot study of obese women and men aged ≥60 years with mild to moderate functional impairments. Changes in body composition (lean and fat mass) and function (Short Physical Performance Battery) in an enhanced protein weight reduction (Protein) arm will be compared to those in a traditional weight loss (Control) arm. The Protein intervention is based on evidence that older adults achieve optimal rates of muscle protein synthesis when consuming about 25-30 g of high quality protein per meal; these participants will consume ~30 g of animal protein at each meal via a combination of provided protein (beef) servings and diet counseling. This trial will provide information on the feasibility and efficacy of enhancing protein quantity and quality in the context of a weight reduction regimen and determine the impact of this intervention on body weight, functional status, and lean muscle mass. We hypothesize that the enhancement of protein quantity and quality in the Protein arm will result in better outcomes for function and/or lean muscle mass than in the Control arm. Ultimately, we hope our findings will help identify a safe weight loss approach that can delay or prevent late life disability by changing the trajectory of age-associated functional impairment associated with obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women.

    PubMed

    Ilich, J Z; Inglis, J E; Kelly, O J; McGee, D L

    2015-11-01

    We determined the prevalence of osteosarcopenic obesity (loss of bone and muscle coexistent with increased adiposity) in overweight/obese postmenopausal women and compared their functionality to obese-only women. Results showed that osteosarcopenic obese women were outperformed by obese-only women in handgrip strength and walking/balance abilities indicating their higher risk for mobility impairments. Osteosarcopenic obesity (OSO) is a recently defined triad of osteopenia/osteoporosis, sarcopenia, and adiposity. We identified women with OSO in overweight/obese postmenopausal women and evaluated their functionality comparing them with obese-only (OB) women. Additionally, women with osteopenic/osteoporotic obesity (OO), but no sarcopenia, and those with sarcopenic obesity (SO), but no osteopenia/osteoporosis, were identified and compared. We hypothesized that OSO women will have the lowest scores for each of the functionality measures. Participants (n = 258; % body fat ≥35) were assessed using a Lunar iDXA instrument for bone and body composition. Sarcopenia was determined from negative residuals of linear regression modeled on appendicular lean mass, height, and body fat, using 20th percentile as a cutoff. Participants with T-scores of L1-L4 vertebrae and/or total femur <-1, but without sarcopenia, were identified as OO (n = 99) and those with normal T-scores, but with sarcopenia, as SO (n = 28). OSO (n = 32) included women with both osteopenia/osteoporosis and sarcopenia, while those with normal bone and no sarcopenia were classified as OB (n = 99). Functionality measures such as handgrip strength, normal/brisk walking speed, and right/left leg stance were evaluated and compared among groups. Women with OSO presented with the lowest handgrip scores, slowest normal and brisk walking speed, and shortest time for each leg stance, but these results were statistically significantly different only from the OB group. These findings indicate a poorer functionality in women presenting with OSO, particularly compared to OB women, increasing the risk for bone fractures and immobility from the combined decline in bone and muscle mass, and increased fat mass.

  10. The Most Massive Galaxies and Black Holes Allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-04-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z > 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected ΛCDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass — stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  11. Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Haag, Thomas W.

    1999-01-01

    Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.

  12. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  13. Spacecraft Solar Particle Event (SPE) Shielding: Shielding Effectiveness as a Function of SPE model as Determined with the FLUKA Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina

    2010-01-01

    Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event

  14. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples.

    PubMed

    Kalb, Suzanne R; Schieltz, David M; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R

    2015-11-25

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.

  15. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  16. The Effects of Racket Inertia Tensor on Elbow Loadings and Racket Behavior for Central and Eccentric Impacts

    PubMed Central

    Nesbit, Steven M.; Elzinga, Michael; Herchenroder, Catherine; Serrano, Monika

    2006-01-01

    This paper discusses the inertia tensors of tennis rackets and their influence on the elbow swing torques in a forehand motion, the loadings transmitted to the elbow from central and eccentric impacts, and the racket acceleration responses from central and eccentric impacts. Inertia tensors of various rackets with similar mass and mass center location were determined by an inertia pendulum and were found to vary considerably in all three orthogonal directions. Tennis swing mechanics and impact analyses were performed using a computer model comprised of a full-body model of a human, a parametric model of the racket, and an impact function. The swing mechanics analysis of a forehand motion determined that inertia values had a moderate linear effect on the pronation-supination elbow torques required to twist the racket, and a minor effect on the flexion-extension and valgus-varus torques. The impact analysis found that mass center inertia values had a considerable effect on the transmitted torques for both longitudinal and latitudinal eccentric impacts and significantly affected all elbow torque components. Racket acceleration responses to central and eccentric impacts were measured experimentally and found to be notably sensitive to impact location and mass center inertia values. Key Points Tennis biomechanics. Racket inertia tensor. Impact analysis. Full-body computer model. PMID:24260004

  17. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    NASA Astrophysics Data System (ADS)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  18. Allometric scaling of lung volume and its consequences for marine turtle diving performance.

    PubMed

    Hochscheid, Sandra; McMahon, Clive R; Bradshaw, Corey J A; Maffucci, Fulvio; Bentivegna, Flegra; Hays, Graeme C

    2007-10-01

    Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.

  19. Threshold region for Higgs boson production in gluon fusion.

    PubMed

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  20. Cell growth and catecholase production for Polyporus versicolor in submerged culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1977-04-01

    Cell growth and catecholase production for Polyporus versicolor (ATCC 12679) were studied in mechanically agitated submerged culture, as functions of temperature. The exponential-phase growth rate exhibited a maximum at 28/sup 0/C. Over the range of 20/sup 0/C to approximately 30/sup 0/C, both cell mass and enzyme yield factors were constant. At higher temperatures (30 to 40/sup 0/C) cell mass yield factor decreased and enzyme yield factor increased. Specific respiration rate of P. versicolor was determined. Thermal deactivation of catecholase was investigated between 30 and 50/sup 0/C, and deactivation rates were fit to an Arrhenius rate expression.

Top