Sample records for mass immunization

  1. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells.

    PubMed

    Orecchioni, Marco; Bedognetti, Davide; Newman, Leon; Fuoco, Claudia; Spada, Filomena; Hendrickx, Wouter; Marincola, Francesco M; Sgarrella, Francesco; Rodrigues, Artur Filipe; Ménard-Moyon, Cécilia; Cesareni, Gianni; Kostarelos, Kostas; Bianco, Alberto; Delogu, Lucia G

    2017-10-24

    Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH 2 ) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH 2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline.

  2. [Relationship between BCG immunization coverage and the immunization delivery system in the Tama area of Tokyo].

    PubMed

    Sugishita, Yoshiyuki; Hayashi, Kunihiko; Mori, Toru; Horiguchi, Itsuko; Marui, Eiji

    2012-03-01

    The BCG immunization has long been performed in Japan. Although the BCG immunization service is the responsibility of the municipality, the manner in which the BCG immunization is delivered differs from municipality to municipality. The purpose of this study was to clarify how the different manner of the BCG immunization delivery systems influenced the BCG immunization coverage. The study of BCG immunization coverage was conducted in the Tama area located in the western suburbs of Tokyo in 2004. The birth data and the immunization history by the age of 3 years were collected in the three-year-old health check-up from a total of 2,341 children residing in the Tama area. Based on the age at immunization for each child, the BCG immunization coverage was calculated according to the types of the BCG immunization delivery system. The immunization types were defined as follows; the BCG immunization given on the occasion of the mass health check-up (Group 1); the exclusive mass BCG immunization in a monthly service (Group 2); the exclusive mass BCG immunization in a bimonthly service (Group 3); the exclusive mass BCG immunization in services of fewer than every two months (Group 4); and the immunization given on an individual basis by a general practitioner (Group 5). A univariate analysis was performed to examine the relationship between the BCG immunization coverage by the age of 6 months and the difference among the BCG immunization delivery systems, followed by a multivariate regression analysis to adjust for the factors related to the demography, health care services and the socio-economic status of the municipalities. Unadjusted odds ratios and adjusted odds ratios for BCG unimmunized children under the age of 6 months by the BCG immunization delivery manner groups were OR 1 reference, adj. OR 1 reference in Group 1; OR 1.42 CI 0.87-2.29, adj. OR 4.01 CI 2.24-7.11 in Group 2; OR 4.96 CI 3.66-6.82, adj. OR 15.59 CI 10.10-24.49 in Group 3;OR 18.60 CI 13.77-25.49, adj. OR 48.17 CI 29.62-79.75 in Group 4; and OR 4.24 CI 2.86-6.31, adj. OR 15.61 CI 9.05-27.26 in Group 5. The univariate analysis and multivariate regression analysis revealed an influence of the BCG immunization delivery manner on the BCG immunization coverage. The choice of BCG immunization delivery manner is very important to raise the BCG immunization coverage. The BCG immunization given on the occasion of the mass health check-up and the high-frequent immunization service are thought to improve the BCG immunization coverage.

  3. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2010-01-01

    Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.

  4. Comparative study of mothers' knowledge of children immunization before and after mass media.

    PubMed

    el-Shazly, M K; Farghaly, N F; Abou Khatwa, S A; Ibrahim, A G

    1991-01-01

    Past experience about immunization programs calls for continuous monitoring of a healthy attitude among users towards vaccination. The aim of this study was to assess the effect of health education messages (mass media) on knowledge and practice of mothers as regards compulsory vaccination schedule. Data were collected from 250 females attending MCH centers during the first half of 1991 for either vaccinating their children or receiving antenatal care (exposed group). These data were compared to the data collected from a group of mothers before implementation of the intense mass media campaign on immunization (1983), (non-exposed group). There was a significant increase in the mean score of knowledge among the exposed mothers. The mass media messages became the main source of information among the majority of the exposed group. Females utilizing mass media as their main source of information were largely having a satisfactory level of knowledge. This study recommends enforcement of mass media educational campaigns on childhood immunization as well as reconsideration paid to the nature and content of messages.

  5. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    PubMed

    Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa

    2017-05-01

    The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.

  7. Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus

    NASA Astrophysics Data System (ADS)

    Parejo, Deseada; Silva, Nadia

    2009-10-01

    The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.

  8. Geospatial analytics to evaluate point-of-dispensing sites for mass immunizations in Allegheny County, Pennsylvania.

    PubMed

    Everett, Kibri H; Potter, Margaret A; Wheaton, William D; Gleason, Sherrianne M; Brown, Shawn T; Lee, Bruce Y

    2013-01-01

    Public health agencies use mass immunization locations to quickly administer vaccines to protect a population against an epidemic. The selection of such locations is frequently determined by available staffing levels and in some places, not all potential sites can be opened, often because of a lack of resources. Public health agencies need assistance in determining which n sites are the prime ones to open given available staff to minimize travel time and travel distance for those in the population who need to get to a site to receive treatment. Employ geospatial analytical methods to identify the prime n locations from a predetermined set of potential locations (eg, schools) and determine which locations may not be able to achieve the throughput necessary to reach the herd immunity threshold based on varying R0 values. Spatial location-allocation algorithms were used to select the ideal n mass vaccination locations. Allegheny County, Pennsylvania, served as the study area. The most favorable sites were selected and the number of individuals required to be vaccinated to achieve the herd immunity threshold for a given R0, ranging from 1.5 to 7, was determined. Locations that did not meet the Centers for Disease Control and Prevention throughput recommendation for smallpox were identified. At R0 = 1.5, all mass immunization locations met the required throughput to achieve the herd immunity threshold within 5 days. As R0s increased from 2 to 7, an increasing number of sites were inadequate to meet throughput requirements. Identifying the top n sites and categorizing those with throughput challenges allows health departments to adjust staffing, shift length, or the number of sites. This method has the potential to be expanded to select immunization locations under a number of additional scenarios.

  9. Costs of mounting an immune response during pregnancy in a lizard.

    PubMed

    Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald

    2013-01-01

    Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.

  10. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    PubMed

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  11. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket.

    PubMed

    McNamara, K B; van Lieshout, E; Simmons, L W

    2014-06-01

    Trans-generational immune priming is the transmission of enhanced immunity to offspring following a parental immune challenge. Although within-generation increased investment into immunity demonstrates clear costs on reproductive investment in a number of taxa, the potential for immune priming to impact on offspring reproductive investment has not been thoroughly investigated. We explored the reproductive costs of immune priming in a field cricket, Teleogryllus oceanicus. To assess the relative importance of maternal and paternal immune status, mothers and fathers were immune-challenged with live bacteria or a control solution and assigned to one of four treatments in which one parent, neither or both parents were immune-challenged. Families of offspring were reared to adulthood under a food-restricted diet, and approximately 10 offspring in each family were assayed for two measures of immunocompetence. We additionally quantified offspring reproductive investment using sperm viability for males and ovary mass for females. We demonstrate that parental immune challenge has significant consequences for the immunocompetence and, in turn, reproductive investment of their male offspring. A complex interaction between maternal and paternal immune status increased the antibacterial immune response of male offspring. This increased immune response was associated with a reduction in son's sperm viability, implicating a trans-generational resource trade-off between investment into immunocompetence and reproduction. Our data also show that these costs are sexually dimorphic, as daughters did not demonstrate a similar increase in immunity, despite showing a reduction in ovary mass. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds.

    PubMed

    Irene Tieleman, B; Williams, Joseph B; Ricklefs, Robert E; Klasing, Kirk C

    2005-08-22

    We studied the relationship between one component of immune function and basal metabolic rate (BMR), an indicator of the 'pace-of-life syndrome', among 12 tropical bird species and among individuals of the tropical house wren (Troglodytes aedon), to gain insights into functional connections between life history and physiology. To assess constitutive innate immunity we introduced a new technique in the field of ecological and evolutionary immunology that quantifies the bactericidal activity of whole blood. This in vitro assay utilises a single blood sample to provide a functional, integrated measure of constitutive innate immunity. We found that the bactericidal activity of whole blood varied considerably among species and among individuals within a species. This variation was not correlated with body mass or whole-organism BMR. However, among species, bacteria killing activity was negatively correlated with mass-adjusted BMR, suggesting that species with a slower pace-of-life have evolved a more robust constitutive innate immune capability. Among individuals of a single species, the house wren, bacteria killing activity was positively correlated with mass-adjusted BMR, pointing to physiological differences in individual quality on which natural selection potentially could act.

  13. Assessment of acquired immune response to Rhipicephalus appendiculatus tick infestation in different goat breeds.

    PubMed

    Gopalraj, Jeyanthi B P; Clarke, Francoise C; Donkin, Edward F

    2013-01-01

    Changes in serum gamma globulin levels, numbers of replete female ticks and engorged tick mass were used as parameters to monitor the acquired immune response (antibody mediated immune response) elicited by Rhipicephalus appendiculatus adult tick infestations. Three consecutive Rhipicephalus appendiculatus adult tick infestations were applied to South African Indigenous goats (Nguni), Saanen goats and cross-bred goats (Saanen goats crossed with South African Indigenous goats [Nguni]) under laboratory conditions. During the three consecutive Rhipicephalus appendiculatus adult tick infestations the serum gamma globulin levels increased in all three breeds, whilst the mean replete female tick numbers and engorged tick mass decreased. Even though all three goat breeds exhibited an acquired immune response, the South African Indigenous goats (Nguni) response was significantly higher than that of the Saanen and cross-bred goats. However, the acquired immune response elicited by Saanen goats was significantly lower when compared with cross-bred goats.

  14. Immune Priming, Fat Reserves, Muscle Mass and Body Weight of the House Cricket is Affected by Diet Composition.

    PubMed

    Córdoba-Aguilar, A; Nava-Sánchez, A; González-Tokman, D M; Munguía-Steyer, R; Gutiérrez-Cabrera, A E

    2016-08-01

    Some insect species are capable of producing an enhanced immune response after a first pathogenic encounter, a process called immune priming. However, whether and how such ability is driven by particular diet components (protein/carbohydrate) have not been explored. Such questions are sound given that, in general, immune response is dietary dependent. We have used adults of the house cricket Acheta domesticus L. (Orthoptera: Gryllidae) and exposed them to the bacteria Serratia marcescens. We first addressed whether survival rate after priming and nonpriming treatments is dietary dependent based on access/no access to proteins and carbohydrates. Second, we investigated how these dietary components affected fat reserves, muscle mass, and body weight, three key traits in insect fitness. Thus, we exposed adult house crickets to either a protein or a carbohydrate diet and measured the three traits. After being provided with protein, primed animals survived longer compared to the other diet treatments. Interestingly, this effect was also sex dependent with primed males having a higher survival than primed females when protein was supplemented. For the second experiment, protein-fed animals had more fat, muscle mass, and body weight than carbohydrate-fed animals. Although we are not aware of the immune component underlying immune priming, our results suggest that its energetic demand for its functioning and/or consequent survival requires a higher demand of protein with respect to carbohydrate. Thus, protein shortage can impair key survival-related traits related to immune and energetic condition. Further studies varying nutrient ratios should verify our results.

  15. The Impact of Mass School Immunization on School Attendance

    ERIC Educational Resources Information Center

    Wiggs-Stayner, Kathleen S.; Purdy, Teresa R.; Go, Gailya N.; McLaughlin, Natalie C.; Tryzynka, Penny S.; Sines, Joyce R.; Hlaing, Thein

    2006-01-01

    The purpose of this study was to assess the impact a free, on-site influenza immunization program could have on attendance in Title 1 schools. Four Title 1 elementary schools participated in the study. Students at 2 schools were offered free FluMist[R] immunizations on site, and students at 2 control schools were not. Compliance on receiving…

  16. Costs of immune responses are related to host body size and lifespan

    DOE PAGES

    Brace, Amber J.; Lajeunesse, Marc J.; Ardia, Daniel R.; ...

    2017-06-01

    A central assumption in ecological immunology is that immune responses are costly, with costs manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as tradeoffs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host longevity, timing of maturity, and reproductive effort affect the organization of immune systems. It is reasonable, therefore, to expect that these and related factors should also affect immune activation costs. Specifically, species that spread their breeding efforts over a long lifetime should experience lower immune costs than those that mature and breed quickly and die comparatively early. Likewise,more » body mass should affect immune costs, as body size affects the extent to which hosts are exposed to parasites as well as how hosts can combat infections (via its effects on metabolic rates and other factors). Here in this paper, we used phylogenetic meta-regression to reveal that, in general, animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs. These patterns probably arise because of the relative need for defense when infection risk is comparatively high and fitness can only be realized over a comparatively long period. However, given the diversity of species considered here and the overall modest effects of body mass and life history on immune costs, much more research is necessary before generalizations are appropriate.« less

  17. Costs of immune responses are related to host body size and lifespan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brace, Amber J.; Lajeunesse, Marc J.; Ardia, Daniel R.

    A central assumption in ecological immunology is that immune responses are costly, with costs manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as tradeoffs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host longevity, timing of maturity, and reproductive effort affect the organization of immune systems. It is reasonable, therefore, to expect that these and related factors should also affect immune activation costs. Specifically, species that spread their breeding efforts over a long lifetime should experience lower immune costs than those that mature and breed quickly and die comparatively early. Likewise,more » body mass should affect immune costs, as body size affects the extent to which hosts are exposed to parasites as well as how hosts can combat infections (via its effects on metabolic rates and other factors). Here in this paper, we used phylogenetic meta-regression to reveal that, in general, animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs. These patterns probably arise because of the relative need for defense when infection risk is comparatively high and fitness can only be realized over a comparatively long period. However, given the diversity of species considered here and the overall modest effects of body mass and life history on immune costs, much more research is necessary before generalizations are appropriate.« less

  18. Eradication of poliomyelitis in Cuba: a historical perspective.

    PubMed Central

    Más Lago, P.

    1999-01-01

    The eradication of poliomyelitis in Cuba, for which effective vaccines had to be acquired, is reviewed in this article. The strategy for eradication was based on mass immunization campaigns for the annual delivery of two doses of trivalent Sabin oral poliovirus vaccine (OPV). Except during the first campaign in 1962, the ages of the children for immunization were determined through national serological surveys of the entire country, including rural and urban areas. The interruption of wild virus transmission had been suspected since 1967 in Cuba, and since 1970 no studies have detected any wild virus. The important role of political and social organizations in the success of the programme and in the execution of the mass immunization campaigns is underscored. Countries that have successfully interrupted poliovirus circulation should maintain high immunization coverage for as long as there are other countries in the world where poliovirus still exists. PMID:10516790

  19. Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections.

    PubMed

    Tam, Vincent C

    2013-10-31

    Bioactive lipid mediators play crucial roles in promoting the induction and resolution of inflammation. Eicosanoids and other related unsaturated fatty acids have long been known to induce inflammation. These signaling molecules can modulate the circulatory system and stimulate immune cell infiltration into the site of infection. Recently, DHA- and EPA-derived metabolites have been discovered to promote the resolution of inflammation, an active process. Not only do these molecules stop the further infiltration of immune cells, they prompt non-phlogistic phagocytosis of apoptotic neutrophils, stimulating the tissue to return to homeostasis. After the rapid release of lipid precursors from the plasma membrane upon stimulation, families of enzymes in a complex network metabolize them to produce a large array of lipid metabolites. With current advances in mass spectrometry, the entire lipidome can be accurately quantified to assess the immune response upon microbial infection. In this review, we discuss the various lipid metabolism pathways in the context of the immune response to microbial pathogens, as well as their complex network interactions. With the advancement of mass spectrometry, these approaches have also been used to characterize the lipid mediator response of macrophages and neutrophils upon immune stimulation in vitro. Lastly, we describe the recent efforts to apply systems biology approaches to dissect the role of lipid mediators during bacterial and viral infections in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Geographical and temporal variation in environmental conditions affects nestling growth but not immune function in a year-round breeding equatorial lark.

    PubMed

    Ndithia, Henry K; Bakari, Samuel N; Matson, Kevin D; Muchai, Muchane; Tieleman, B Irene

    2017-01-01

    Variation in growth and immune function within and among populations is often associated with specific environmental conditions. We compared growth and immune function in nestlings of year-round breeding equatorial Red - capped Lark Calandrella cinerea from South Kinangop, North Kinangop and Kedong (Kenya), three locations that are geographically close but climatically distinct. In addition, we studied growth and immune function of lark nestlings as a function of year - round variation in breeding intensity and rain within one location. We monitored mass, wing, and tarsus at hatching (day 1) and at 4, 7, and 10 days post - hatch, and we quantified four indices of immune function (haptoglobin, agglutination, lysis and nitric oxide) using blood samples collected on day 10. Nestling body mass and size at hatching, which presumably reflect the resources that females allocated to their eggs, were lowest in the most arid location, Kedong. Contrary to our predictions, nestlings in Kedong grew faster than nestlings in the two other cooler and wetter locations of South and North Kinangop. During periods of peak reproduction within Kedong, nestlings were heavier at hatching, but they did not grow faster over the first 10 days post - hatch. In contrast, rainfall, which did not relate to timing of breeding, had no effect on hatching mass, but more rain did coincide with faster growth post - hatch. Finally, we found no significant differences in nestling immune function, neither among locations nor with the year - round variation within Kedong. Based on these results, we hypothesize that female body condition determines nestling mass and size at hatching, but other independent environmental conditions subsequently shape nestling growth. Overall, our results suggest that environmental conditions related to food availability for nestlings are relatively unimportant to the timing of breeding in equatorial regions, while these same conditions do have consequences for nestling size and growth.

  1. Perspectives on the Impact of Varicella Immunization on Herpes Zoster. A Model-Based Evaluation from Three European Countries

    PubMed Central

    Poletti, Piero; Melegaro, Alessia; Ajelli, Marco; del Fava, Emanuele; Guzzetta, Giorgio; Faustini, Luca; Scalia Tomba, Giampaolo; Lopalco, Pierluigi; Rizzo, Caterina; Merler, Stefano; Manfredi, Piero

    2013-01-01

    The introduction of mass vaccination against Varicella-Zoster-Virus (VZV) is being delayed in many European countries because of, among other factors, the possibility of a large increase in Herpes Zoster (HZ) incidence in the first decades after the initiation of vaccination, due to the expected decline of the boosting of Cell Mediated Immunity caused by the reduced varicella circulation. A multi-country model of VZV transmission and reactivation, is used to evaluate the possible impact of varicella vaccination on HZ epidemiology in Italy, Finland and the UK. Despite the large uncertainty surrounding HZ and vaccine-related parameters, surprisingly robust medium-term predictions are provided, indicating that an increase in HZ incidence is likely to occur in countries where the incidence rate is lower in absence of immunization, possibly due to a higher force of boosting (e.g. Finland), whereas increases in HZ incidence might be minor where the force of boosting is milder (e.g. the UK). Moreover, a convergence of HZ post vaccination incidence levels in the examined countries is predicted despite different initial degrees of success of immunization policies. Unlike previous model-based evaluations, our investigation shows that after varicella immunization an increase of HZ incidence is not a certain fact, rather depends on the presence or absence of factors promoting a strong boosting intensity and which might or not be heavily affected by changes in varicella circulation due to mass immunization. These findings might explain the opposed empirical evidences observed about the increases of HZ in sites where mass varicella vaccination is ongoing. PMID:23613740

  2. Prolonging herd immunity to cholera via vaccination: Accounting for human mobility and waning vaccine effects

    PubMed Central

    Buckee, Caroline O.

    2018-01-01

    Background Oral cholera vaccination is an approach to preventing outbreaks in at-risk settings and controlling cholera in endemic settings. However, vaccine-derived herd immunity may be short-lived due to interactions between human mobility and imperfect or waning vaccine efficacy. As the supply and utilization of oral cholera vaccines grows, critical questions related to herd immunity are emerging, including: who should be targeted; when should revaccination be performed; and why have cholera outbreaks occurred in recently vaccinated populations? Methods and findings We use mathematical models to simulate routine and mass oral cholera vaccination in populations with varying degrees of migration, transmission intensity, and vaccine coverage. We show that migration and waning vaccine efficacy strongly influence the duration of herd immunity while birth and death rates have relatively minimal impacts. As compared to either periodic mass vaccination or routine vaccination alone, a community could be protected longer by a blended “Mass and Maintain” strategy. We show that vaccination may be best targeted at populations with intermediate degrees of mobility as compared to communities with very high or very low population turnover. Using a case study of an internally displaced person camp in South Sudan which underwent high-coverage mass vaccination in 2014 and 2015, we show that waning vaccine direct effects and high population turnover rendered the camp over 80% susceptible at the time of the cholera outbreak beginning in October 2016. Conclusions Oral cholera vaccines can be powerful tools for quickly protecting a population for a period of time that depends critically on vaccine coverage, vaccine efficacy over time, and the rate of population turnover through human mobility. Due to waning herd immunity, epidemics in vaccinated communities are possible but become less likely through complementary interventions or data-driven revaccination strategies. PMID:29489815

  3. Immune complexes in serum of rats during infection with Plasmodium berghei.

    PubMed

    Alder, J D; Kreier, J P

    1989-01-01

    Large amounts of immune complexes were present in the serum of infected rats early in infection when parasitemias were low. As the infection progressed and parasitemia increased and then decreased, the amounts of immune complexes in the serum also fell. This result suggests that increased efficiency of complex clearance was an important factor in determining the levels of immune complexes in the serum. In high performance liquid chromatography (HPLC), the complexes in the serum migrated as a peak with material of 350 kDa and greater in mass. They sedimented in a sucrose gradient as a band with a sedimentation coefficient of 22 s, which was calculated to yield a mass of approximately 1100 kDa. Immunoelectrophoresis and radial immunodiffusion showed that IgG was the major immunoglobulin in the complexes. As the IgG content of the complexes increased, the levels of complexes in the serum generally decreased. HPLC analysis of precipitated complexes suggested that they contained loosely bound albumin. Serum proteins were affected by the infection. A depletion of free immunoglobulin was observed during the initial period of immune complex formation.

  4. Give 'til it hurts: trade-offs between immunity and male reproductive effort in the decorated cricket, Gryllodes sigillatus.

    PubMed

    Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K

    2010-04-01

    Trade-offs between life-history variables can be manifested at either the phenotypic or genetic level, with vastly different evolutionary consequences. Here, we examined whether male decorated crickets (Gryllodes sigillatus) from eight inbred lines and the outbred founder population from which they were derived, trade-off immune effort [lytic activity, phenoloxidase (PO) activity or encapsulation] to produce spermatophylaxes: costly nuptial food gifts essential for successful sperm transfer. Canonical correlation analysis of the outbred population revealed a trade-off between spermatophylax mass and lytic activity. Analysis of our inbred lines, however, revealed that although PO activity, encapsulation, body mass, spermatophylax mass and ampulla (sperm capsule) mass were all highly heritable, lytic activity was not, and there was, therefore, no negative genetic correlation between lytic activity and spermatophylax mass. Thus, males showed a phenotypic but not a genetic trade-off between spermatophylax mass and lytic activity, suggesting that this trade-off is mediated largely by environmental factors.

  5. Exercise and caloric restriction alter the immune system of mice submitted to a high-fat diet.

    PubMed

    Wasinski, Frederick; Bacurau, Reury F P; Moraes, Milton R; Haro, Anderson S; Moraes-Vieira, Pedro M M; Estrela, Gabriel R; Paredes-Gamero, Edgar J; Barros, Carlos C; Almeida, Sandro S; Câmara, Niels O S; Araujo, Ronaldo C

    2013-01-01

    As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity.

  6. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  7. Seroprevalence of antibodies to measles and rubella eight months after a vaccination campaign in the southeast of Iran.

    PubMed

    Izadi, Shahrokh; Zahraei, Seyed Mohsen; Mokhtari-Azad, Talat

    2018-02-08

    Eight months after the mass immunization campaign of November 2015 against measles and rubella in the southeast of Iran, in order to evaluate the sero-immunity level of the people living in the mentioned region, a serosurvey study was performed. Using a multi-stage probability proportional to size cluster sampling, the sera of 1,056 participants, ranging from 15 months to 20 years old, were tested for measles and rubella IgG antibodies in the National Reference Laboratory at Tehran University of Medical Sciences, Tehran, Iran. The seroprevalence rates of antibodies against measles and rubella in the age groups below 16 years were respectively 98.4 and 93.2%. In the age group of 16 to 20 years, who was not the target of the mass immunization campaign, the said rates were respectively 91.7% and 87.4%. The herd immunity of the age groups below 16 years, who were the target of the campaign, is favourably high and reassuring both for measles and for rubella. Campaigns of supplementary vaccination play a substantial role for filling the gaps in the herd immunity.

  8. Negative impact of urban habitat on immunity in the great tit Parus major.

    PubMed

    Bailly, Juliette; Scheifler, Renaud; Belvalette, Marie; Garnier, Stéphane; Boissier, Elena; Clément-Demange, Valérie-Anne; Gète, Maud; Leblond, Matthieu; Pasteur, Baptiste; Piget, Quentin; Sage, Mickaël; Faivre, Bruno

    2016-12-01

    Urban habitats are described as having an overall negative influence on many fitness-related traits in several bird species, but a vital function such as immunity remains poorly studied. The immune response is strongly linked to individual condition, which partly depends on resource availability and the parasitic context that often differ between urban and natural habitats. A difference between the immunity of populations dwelling in urban areas and populations from more natural habitats can, therefore, be hypothesized. We conducted a 2-year experimental study on great tits (Parus major) in urban and forest areas. We stimulated the constitutive immunity of nestlings and assessed both the inflammatory response by measuring the plasma levels of haptoglobin, an inflammatory marker, and its activation cost through the loss of body mass. In addition, we checked the nestlings for ectoparasites and assessed haemosporidian prevalence in adults. Nestlings from urban sites produced relatively less haptoglobin and lost more body mass than those from forest sites, which suggests that the activation of constitutive immunity is more costly for birds living in urban sites than for those living in the forest. We detected no ectoparasite in birds in both habitats. However, urban adults showed lower haemosporidian prevalence than forest ones, suggesting a reduced exposure to these parasites and their vectors in towns. Overall, our study provides evidence for an immune difference between urban and forest populations. Because immunity is crucial for organism fitness, it is of prime interest to identify causes and processes at the origin of this difference.

  9. The gut microbiota regulates bone mass in mice

    PubMed Central

    Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes

    2012-01-01

    The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806

  10. Factors Associated with Missed Vaccination during Mass Immunization Campaigns

    PubMed Central

    Winch, Peter J.; Burnham, Gilbert

    2009-01-01

    Achieving a high percentage of vaccination coverage with polio vaccine, while necessary, is not sufficient to eliminate or eradicate polio. The existence of pockets of under-vaccinated children has allowed outbreaks of polio in countries that have achieved high levels of vaccination coverage and in countries with no cases for many years. In a literature review, 35 articles were identified that described factors associated with missed vaccination in mass immunization campaigns. An annotated bibliography was developed for each article; these were then coded using the AnSWR program, and codes were organized into three larger thematic categories. These thematic areas were: (a) organization and implementation of mass campaigns; (b) population characteristics; and (c) knowledge and practices of caretakers. If these factors were geographically clustered, it was suspected that these clusters might have higher likelihood of becoming pockets of unvaccinated children. Immunization programme managers can target resources to identify if such clusters exist. If so, they can then ensure supervision of vaccination efforts in those sites and take further action, if indicated, to prevent or mitigate pockets of unvaccinated children. PMID:19507751

  11. Determinants and short-term physiological consequences of PHA immune response in lesser kestrel nestlings.

    PubMed

    Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi

    2014-08-01

    Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis. © 2014 Wiley Periodicals, Inc.

  12. Mass spectrometry based structural analysis and systems immunoproteomics strategies for deciphering the host response to endotoxin.

    PubMed

    Khan, Mohd M; Ernst, Orna; Sun, Jing; Fraser, Iain D C; Ernst, Robert K; Goodlett, David R; Nita-Lazar, Aleksandra

    2018-06-24

    One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4 (TLR4)/myeloid differentiation factor-2 (MD2) complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress, and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry (MS)-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, MS-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications (PTMs). Copyright © 2018. Published by Elsevier Ltd.

  13. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina)

    PubMed Central

    2018-01-01

    The acute phase response (APR) is the first line of defense of the vertebrate immune system against pathogens. Mounting an immune response is believed to be energetically costly but direct measures of metabolic rate during immune challenges contradict this assumption. The energetic cost of APR for birds is higher than for rodents, suggesting that this response is less expensive for mammals. However, the particularly large increase in metabolic rate after APR activation for a piscivorous bat (Myotis vivesi) suggests that immune response might be unusually costly for bats. Here we quantified the energetic cost and body mass change associated with APR for the nectarivorous Pallas’s long-tongued bat (Glossophaga soricina). Activation of the APR resulted in a short-term decrease in body mass and an increase in resting metabolic rate (RMR) with a total energy cost of only 2% of the total energy expenditure estimated for G. soricina. This increase in RMR was far from the large increase measured for piscivorous bats; rather, it was similar to the highest values reported for birds. Overall, our results suggest that the costs of APR for bats may vary interspecifically. Measurement of the energy cost of vertebrate immune response is limited to a few species and further work is warranted to evaluate its significance for an animal’s energy budget. PMID:29888121

  14. Costs of polio immunization days in China: implications for mass immunization campaign strategies.

    PubMed

    Zhang, J; Yu, J J; Zhang, R Z; Zhang, X L; Zhou, J; Wing, J S; Schnur, A; Wang, K A

    1998-01-01

    Ten provinces of China were selected to estimate the cost per immunization of the 1994-95 national immunization days (NIDs) at five levels (e.g. province, prefecture, county, township and village). Personnel costs accounted for the largest overall share of costs (39 per cent), followed by publicity and promotion costs (27 per cent), and logistic costs (15 per cent). Without consideration of vaccine costs, the major part of NID expenses were shouldered at the township level, which paid for 47 per cent of all incremental costs, while county and village level covered 28 per cent and 18 per cent respectively. Estimation of average costs per immunization was 2.86 RMB yuan, or $0.34, including vaccine costs, buildings and equipment amortization and salaries at all levels. The factors affecting average cost of NID included the output volume, socio-economic development and geographic features. Various approaches were recommended: to intensify the productivity of time and staff, to employ alternative inexpensive manpower resources, to make the best use of publicity and social promotion, the expansion of the age groups and utilization of multi-intervention strategies. Good planning at township level was a decisive factor to ensure an effective NID conducted in an efficient manner. The average cost of China's NID was the lowest among all mass immunization campaigns ever documented. Much of the reduced average cost was attributable to economies of scale.

  15. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    PubMed

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and resistance to natural enemies.

  16. Alternatives to conventional vaccines--mediators of innate immunity.

    PubMed

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  17. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.

    PubMed

    Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S

    2001-08-01

    Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the human immunodeficiency virus-infected patients. The association between muscle mass and bone density remained significant, controlling for body mass index, hormonal status, and age (P = 0.048) in multivariate regression analysis. These data indicate that both hormonal and body composition factors contribute to reduced bone density in women with acquired immune deficiency syndrome wasting. Anabolic strategies to increase muscle mass may be useful to increase bone density among osteopenic women with acquired immune deficiency syndrome wasting.

  18. Higher Tetanus Toxoid Immunity 2 Years After PsA-TT Introduction in Mali

    PubMed Central

    Basta, Nicole E.; Borrow, Ray; Berthe, Abdoulaye; Onwuchekwa, Uma; Dembélé, Awa Traoré Eps; Almond, Rachael; Frankland, Sarah; Patel, Sima; Wood, Daniel; Nascimento, Maria; Manigart, Olivier; Trotter, Caroline L.; Greenwood, Brian; Sow, Samba O.

    2015-01-01

    Background. In 2010, mass vaccination with a then-new meningococcal A polysaccharide–tetanus toxoid protein conjugate vaccine (PsA-TT, or MenAfriVac) was undertaken in 1- to 29-year-olds in Bamako, Mali. Whether vaccination with PsA-TT effectively boosts tetanus immunity in a population with heterogeneous baseline tetanus immunity is not known. We assessed the impact of PsA-TT on tetanus toxoid (TT) immunity by quantifying age- and sex-specific immunity prior to and 2 years after introduction. Methods. Using a household-based, age-stratified design, we randomly selected participants for a prevaccination serological survey in 2010 and a postvaccination survey in 2012. TT immunoglobulin G (IgG) antibodies were quantified and geometric mean concentrations (GMCs) pre- and postvaccination among all age groups targeted for vaccination were compared. The probability of TT IgG levels ≥0.1 IU/mL (indicating short-term protection) and ≥1.0 IU/mL (indicating long-term protection) by age and sex was determined using logistic regression models. Results. Analysis of 793 prevaccination and 800 postvaccination sera indicated that while GMCs were low pre–PsA-TT, significantly higher GMCs in all age–sex strata were observed 2 years after PsA-TT introduction. The percentage with short-term immunity increased from 57.1% to 88.4% (31.3-point increase; 95% confidence interval [CI], 26.6–36.0;, P < .0001) and with long-term immunity increased from 20.0% to 58.5% (38.5-point increase; 95% CI, 33.7–43.3; P < .0001) pre- and postvaccination. Conclusions. Significantly higher TT immunity was observed among vaccine-targeted age groups up to 2 years after Mali's PsA-TT mass vaccination campaign. Our results, combined with evidence from clinical trials, strongly suggest that conjugate vaccines containing TT such as PsA-TT should be considered bivalent vaccines because of their ability to boost tetanus immunity. PMID:26553691

  19. The effect of immunization on measles incidence in the Democratic Republic of Congo: Results from a model of surveillance data.

    PubMed

    Doshi, Reena H; Shidi, Calixte; Mulumba, Audry; Eckhoff, Philip; Nguyen, Catherine; Hoff, Nicole A; Gerber, Sue; Okitolonda, Emile; Ilunga, Benoit Kebela; Rimoin, Anne W

    2015-11-27

    Measles continues to be a leading cause of vaccine-preventable disease mortality among children under five despite a safe and efficacious vaccine being readily available. While global vaccination coverage has improved tremendously, measles outbreaks persist throughout sub-Saharan Africa. Since 2010, the Democratic Republic of Congo (DRC) has seen a resurgence of measles outbreaks affecting all 11 provinces. These outbreaks are mainly attributed to gaps in routine immunization (RI) coverage compounded with missed supplementary immunization activities (SIAs). We utilized national passive surveillance data from DRC's Integrated Disease Surveillance and Response (IDSR) system to estimate the effect of immunization on measles incidence in DRC. We investigated the decline in measles incidence post-immunization with one dose of measles containing vaccine (MCV1) with and without the addition of supplementary immunization activities (SIAs) and outbreak response immunization (ORI) campaigns. Measles case counts by health zone were obtained from the IDSR system between January 1, 2010 and December 31, 2013. The impact of measles immunization was modeled using a random effects multi-level model for count data with RI coverage levels and mass campaign activities from one year prior. The presence of an SIA (aIRR [95% CI] 0.86 [0.60-1.25]) and ORI (0.28 [0.20-0.39]) in the year prior were both associated with a decrease in measles incidence. When interaction terms were included, our results suggested that the high levels of MCV1 reported in the year prior and the presence of either mass campaign was associated with a decrease in measles incidence. Our results highlight the importance of a two-dose measles vaccine schedule and the need for a strong routine immunization program coupled with frequent SIAs. Repeated occurrences of large-scale outbreaks in DRC suggest that vaccination coverage rates are grossly overestimated and signify the importance of the evaluation and modification of measles prevention and control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Post-transplant lymphoproliferative disorder and management of residual mass post chemotherapy: Case report.

    PubMed

    Schultz, Troy D; Zepeda, Nubia; Moore, Ronald B

    2017-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a rare complication. It represents a spectrum of lymphoid proliferations which occur in the setting of immunosuppression and organ transplantation. There are no reported cases or recommendations for the treatment of residual masses post rituximab of PTLD. A patient with a long standing history of immunosuppression due to multiple kidney transplants starting in 1979, presented with a very large palpable hard abdominal mass (2004) after a fourth renal transplant. There was a past history of heavy immune suppression. CT scans revealed a conglomerate mass involving the right native kidney and two prior right sided renal allografts that crossed the midline. Biopsy of the large right retroperitoneal mass revealed large B cell lymphoma (CD 20 positive); consistent with post-transplant lymphoproliferative disorder (PTLD). Management of bulky PTLD, in a highly sensitized, heavily immune suppressed patient is not well described in the literature. The mainstay of therapy is IR and Ritixumab (R) monotherapy and combination R-CHOP. CHOP chemotherapy has an associated mortality rate of up to 38%. Radiotherapy is often considered over surgery and surgery has been most frequently used when associated with bowel complications. In this case report we describe upfront Ritiximab followed by consolidation resection and cytotoxic chemotherapy as a management strategy to reduce toxicity. The approach taken by our surgical team illustrates the benefits of disease debulking in certain cases of PTLD, by guiding further therapy and spacing and reducing chemotherapy in immune suppressed patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  2. The use of mathematical models in the epidemiological study of infectious diseases and in the design of mass immunization programmes.

    PubMed

    Nokes, D J; Anderson, R M

    1988-08-01

    The relationship between the number of people vaccinated for an infectious disease and the resulting decrease in incidence of the disease is not straightforward and linear because many independent variables determine the course of infection. However, these variables are quantifiable and can therefore by used to model the course of an infectious disease and impact of mass vaccination. Before one can construct a model, one must know for any specific infectious disease the number of individuals in the community protected by maternally derived antibodies, the number susceptible to infectious the number infected but not yet infectious (i.e., with latent infection), the number of infectious individuals, and the number of recovered (i.e., immune) individuals. Compartmental models are sets of differential equations which describe the rates of flow of individuals between these categories. Several major epidemiologic concepts comprise the ingredients of the model: the net rate of infection (i.e., incidence), the per capita rate of infection, the Force of Infection, and the basic reproductive rate of infection. When a community attains a high level of vaccination coverage, it is no longer necessary to vaccinate everyone because the herd immunity of the population protects the unvaccinated because it lowers the likelihood of their coming into contact with an infectious individual. Many infections that confer lasting immunity tend to have interepidemic periods when the number of susceptibles is too low to sustain an epidemic. Mass vacination programs reduce the net rate of transmission of the infective organism; they also increase the length of the interepidemic period. Many diseases primawrily associated with children have much more serious consequences in older people and the question arises as to at what point childhood immunization will successfully prevent the more dangerous incidence of the disease in older cohorts. Mathematical models of disease transmission enable one to predict the course of epidemics, design mass vaccination programs, and be guided as to what are the relevant data that should be collected.

  3. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    PubMed

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  4. Social marketing as a strategy to increase immunization rates.

    PubMed

    Opel, Douglas J; Diekema, Douglas S; Lee, Nancy R; Marcuse, Edgar K

    2009-05-01

    Today in the United States, outbreaks of vaccine-preventable disease are often traced to susceptible children whose parents have claimed an exemption from school or child care immunization regulations. The origins of this immunization hesitancy and resistance have roots in the decline of the threat of vaccine-preventable disease coupled with an increase in concerns about the adverse effects of vaccines, the emergence of mass media and the Internet, and the intrinsic limitations of modern medicine. Appeals to emotion have drowned out thoughtful discussion in public forums, and overall, public trust in immunizations has declined. We present an often overlooked behavior change strategy-social marketing-as a way to improve immunization rates by addressing the important roots of immunization hesitancy and effectively engaging emotions. As an example, we provide a synopsis of a social marketing campaign that is currently in development in Washington state and that is aimed at increasing timely immunizations in children from birth to age 24 months.

  5. Reflections on New York City's 1947 Smallpox Vaccination Program and Its 1976 Swine Influenza Immunization Program.

    PubMed

    Imperato, Pascal James

    2015-06-01

    In 1947, a smallpox outbreak occurred in New York City with a total of twelve cases and two deaths. In order to contain this outbreak, the New York City Department of Health launched a mass immunization campaign that over a period of some 60 days vaccinated 6.35 million people. This article examines in detail the epidemiology of this outbreak and the measures employed to contain it. In 1976, a swine influenza strain was isolated among a few recruits at a US Army training camp at Fort Dix, New Jersey. It was concluded at the time that this virus possibly represented a re-appearance of the 1918 influenza pandemic influenza strain. As a result, a mass national immunization program was launched by the federal government. From its inception, the program encountered a myriad of challenges ranging from doubts that it was even necessary to the development of Guillain-Barré paralysis among some vaccine recipients. This paper examines the planning for and implementation of the swine flu immunization program in New York City. It also compares it to the smallpox vaccination program of 1947. Despite equivalent financial and personnel resources, leadership and organizational skills, the 1976 program only immunized approximately a tenth of the number of New York City residents vaccinated in 1947. The reasons for these marked differences in outcomes are discussed in detail.

  6. Heterologous live infectious bronchitis virus vaccination in day-old commercial broiler chicks: clinical signs, ciliary health, immune responses and protection against variant infectious bronchitis viruses.

    PubMed

    Awad, Faez; Hutton, Sally; Forrester, Anne; Baylis, Matthew; Ganapathy, Kannan

    2016-01-01

    Groups of one-day-old broiler chicks were vaccinated via the oculo-nasal route with different live infectious bronchitis virus (IBV) vaccines: Massachusetts (Mass), 793B, D274 or Arkansas (Ark). Clinical signs and gross lesions were evaluated. Five chicks from each group were humanely killed at intervals and their tracheas collected for ciliary activity assessment and for the detection of CD4+, CD8+ and IgA-bearing B cells by immunohistochemistry (IHC). Blood samples were collected at intervals for the detection of anti-IBV antibodies. At 21 days post-vaccination (dpv), protection conferred by different vaccination regimes against virulent M41, QX and 793B was assessed. All vaccination programmes were able to induce high levels of CD4+, CD8+ and IgA-bearing B cells in the trachea. Significantly higher levels of CD4+ and CD8+ expression were observed in the Mass2 + 793B2-vaccinated group compared to the other groups (subscripts indicate different manufacturers). Protection studies showed that the group of chicks vaccinated with Mass2 + 793B2 produced 92% ciliary protection against QX challenge; compared to 53%, 68% and 73% ciliary protection against the same challenge virus by Mass1 + D274, Mass1 + 793B1 and Mass3 + Ark, respectively. All vaccination programmes produced more than 85% ciliary protection against M41 and 793B challenges. It appears that the variable levels of protection provided by different heterologous live IBV vaccinations are dependent on the levels of local tracheal immunity induced by the respective vaccine combination. The Mass2 + 793B2 group showed the worst clinical signs, higher mortality and severe lesions following vaccination, but had the highest tracheal immune responses and demonstrated the best protection against all three challenge viruses.

  7. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon).

    PubMed

    Bowers, E Keith; Smith, Rebecca A; Hodges, Christine J; Zimmerman, Laura M; Thompson, Charles F; Sakaluk, Scott K

    2012-07-22

    The reproductive costs associated with the upregulation of immunity have been well-documented and constitute a fundamental trade-off between reproduction and self-maintenance. However, recent experimental work suggests that parents may increase their reproductive effort following immunostimulation as a form of terminal parental investment as prospects for future reproduction decline. We tested the trade-off and terminal investment hypotheses in a wild population of house wrens (Troglodytes aedon) by challenging the immune system of breeding females with lipopolysaccharide, a potent but non-lethal antigen. Immunized females showed no evidence of reproductive costs; instead, they produced offspring of higher phenotypic quality, but in a sex-specific manner. Relative to control offspring, sons of immunized females had increased body mass and their sisters exhibited higher cutaneous immune responsiveness to phytohaemagglutinin injection, constituting an adaptive strategy of sex-biased allocation by immune-challenged females to enhance the reproductive value of their offspring. Thus, our results are consistent with the terminal investment hypothesis, and suggest that maternal immunization can induce pronounced transgenerational effects on offspring phenotypes.

  8. Single Cell Mass Cytometry for Analysis of Immune System Functional States

    PubMed Central

    Bjornson, Zach B.; Nolan, Garry P.; Fantl, Wendy J.

    2013-01-01

    Single cell mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with antibody panels (upwards of 40) in which each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the Lanthanide series of the periodic table. Isotope labelled antibodies recognize surface markers to delineate cell types and intracellular signaling molecules to provide a measure of the network state—and thereby demarcating multiple cell state functions such as apoptosis, DNA damage and cell cycle. By measuring all these parameters simultaneously, the signaling state of an individual cell can be measured at its network state. This review will cover the basics of mass cytometry as well as outline steps already taken to allow it to stand aside traditional fluorescence based cytometry in the immunologist’s analytical arsenal in their study of immune states during infection. PMID:23999316

  9. Neurological adverse events temporally associated to mass vaccination against yellow fever in Juiz de Fora, Brazil, 1999-2005.

    PubMed

    Fernandes, Guilherme Côrtes; Camacho, Luiz Antonio Bastos; Sá Carvalho, Marilia; Batista, Maristela; de Almeida, Sonia Maria Rodrigues

    2007-04-20

    The identification of adverse events following immunization (AEFI) and their prompt investigation are important to allow a timely and scientifically based response to the users of immunization services. This article presents an analysis of notified AEFI cases between 1999 and 2005 and their temporal association with 2001 yellow fever vaccination campaign, AEFI notification attributed to yellow fever vaccination rose from 0.06 to 1.32 per 100,000 vaccinees in Brazil, between 1998 and 2000. During the 2001 yellow fever mass vaccination campaign held in Juiz de Fora, Brazil, 12 cases of aseptic meningitis were temporally associated to yellow fever vaccination, but clinical and laboratory data were not available to confirm nor deny causality. Epidemiological studies associated to enhanced surveillance and standardized protocols should take advantage of public health interventions like mass vaccination campaigns and implementation of new vaccination strategies in order to assess and investigate vaccine safety.

  10. Mass Commuting and Influenza Vaccination Prevalence in New York City: Protection in a Mixing Environment

    PubMed Central

    Levine, Burton; Wilcosky, Tim; Wagener, Diane; Cooley, Phillip

    2010-01-01

    Objective Assess influenza vaccination among commuters using mass transit in New York City (NYC). Methods We used the 2006 NYC Community Health Survey (CHS) to analyze the prevalence of influenza immunization by commuting behaviors and to understand what socioeconomic and geographic factors may explain any differences found. Results Vaccination prevalence is significantly lower for New Yorkers who commute on public transportation compared to other New Yorkers. This difference is largely attenuated after adjusting for socio-demographic characteristics and neighborhood of residence. Conclusions The analysis identified a low prevalence of immunization among commuters, and given the transmissibility in that setting, targeting commuters for vaccination campaigns may impede influenza spread. PMID:21218159

  11. Polio immunity and the impact of mass immunization campaigns in the Democratic Republic of the Congo.

    PubMed

    Voorman, Arend; Hoff, Nicole A; Doshi, Reena H; Alfonso, Vivian; Mukadi, Patrick; Muyembe-Tamfum, Jean-Jacques; Wemakoy, Emile Okitolonda; Bwaka, Ado; Weldon, William; Gerber, Sue; Rimoin, Anne W

    2017-10-09

    In order to prevent outbreaks from wild and vaccine-derived poliovirus, maintenance of population immunity in non-endemic countries is critical. We estimated population seroprevalence using dried blood spots collected from 4893 children 6-59months olds in the 2013-2014 Demographic and Health Survey in the Democratic Republic of the Congo (DRC). Population immunity was 81%, 90%, and 70% for poliovirus types 1, 2, and 3, respectively. Among 6-59-month-old children, 78% reported at least one dose of polio in routine immunization, while only 15% had three doses documented on vaccination cards. All children in the study had been eligible for at least two trivalent oral polio vaccine campaigns at the time of enrollment; additional immunization campaigns seroconverted 5.0%, 14%, and 5.5% of non-immune children per-campaign for types 1, 2, and 3, respectively, averaged over relevant campaigns for each serotype. Overall polio immunity was high at the time of the study, though pockets of low immunity cannot be ruled out. The DRC still relies on supplementary immunization campaigns, and this report stresses the importance of the quality and coverage of those campaigns over their quantity, as well as the importance of routine immunization. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The weight of obesity on the human immune response to vaccination

    PubMed Central

    Painter, Scott D.; Ovsyannikova, Inna G.; Poland, Gregory A.

    2015-01-01

    Despite the high success of protection against several infectious diseases through effective vaccines, some sub-populations have been observed to respond poorly to vaccines, putting them at increased risk for vaccine-preventable diseases. In particular, the limited data concerning the effect of obesity on vaccine immunogenicity and efficacy suggests that obesity is a factor that increases the likelihood of a poor vaccine-induced immune response. Obesity occurs through the deposition of excess lipids into adipose tissue through the production of adipocytes, and is defined as a body-mass index (BMI) ≥ 30 kg/m2. The immune system is adversely affected by obesity, and these “immune consequences” raise concern for the lack of vaccine-induced immunity in the obese patient requiring discussion of how this sub-population might be better protected. PMID:26163925

  14. Relationship of aging and nutritional status to innate immunity in tube-fed bedridden patients.

    PubMed

    Takeuchi, Yoshiaki; Tashiro, Tomoe; Yamamura, Takuya; Takahashi, Seiichiro; Katayose, Kozo; Kohga, Shin; Takase, Mitsunori; Imawari, Michio

    2017-01-01

    Aging and malnutrition are known to influence immune functions. The aim of this study was to investigate the relationship of aging and malnutrition to innate immune functions in tube-fed bedridden patients. A cross-sectional survey was performed in 71 tube-fed bedridden patients aged 50-95 years (mean age±SD, 80.2±8.5 years) with serum albumin concentrations between 2.5 and 3.5 g/dL. We evaluated associations of age and nutritional variables with natural-killer cell activity, neutrophilphagocytic activity, and neutrophil-sterilizing activity. Nutritional variables included body mass index, weightadjusted energy intake, total lymphocyte count, and serum concentrations of albumin, transferrin, prealbumin, total cholesterol, C-reactive protein, and zinc. Natural-killer cell activity, neutrophil-phagocytic activity, and neutrophil-sterilizing activity were normal or increased in 67 (94%), 63 (89%), and 69 (97%) patients, respectively. Multiple linear regression analysis with a backward elimination method showed that natural-killer cell activity correlated negatively with aging and lymphocyte counts (p<0.01 for both) but positively with body mass index and transferrin (p<0.01 for both). Neutrophil-phagocytic and neutrophil-sterilizing activities were not associated with any variables. In tube-fed bedridden patients with hypo-albuminemia, natural-killer cell activity may be associated with aging, body mass index, transferrin, and lymphocyte counts.

  15. Correlates of immune defenses in golden eagle nestlings

    USGS Publications Warehouse

    MacColl, Elisabeth; Vanesky, Kris; Buck, Jeremy A.; Dudek, Benjamin; Eagles-Smith, Collin A.; Heath, Julie A.; Herring, Garth; Vennum, Chris; Downs, Cynthia J.

    2017-01-01

    An individual's investment in constitutive immune defenses depends on both intrinsic and extrinsic factors. We examined how Leucocytozoon parasite presence, body condition (scaled mass), heterophil-to-lymphocyte (H:L) ratio, sex, and age affected immune defenses in golden eagle (Aquila chrysaetos) nestlings from three regions: California, Oregon, and Idaho. We quantified hemolytic-complement activity and bacterial killing ability, two measures of constitutive immunity. Body condition and age did not affect immune defenses. However, eagles with lower H:L ratios had lower complement activity, corroborating other findings that animals in better condition sometimes invest less in constitutive immunity. In addition, eagles with Leucocytozoon infections had higher concentrations of circulating complement proteins but not elevated opsonizing proteins for all microbes, and eagles from Oregon had significantly higher constitutive immunity than those from California or Idaho. We posit that Oregon eagles might have elevated immune defenses because they are exposed to more endoparasites than eagles from California or Idaho, and our results confirmed that the OR region has the highest rate of Leucocytozoon infections. Our study examined immune function in a free-living, long-lived raptor species, whereas most avian ecoimmunological research focuses on passerines. Thus, our research informs a broad perspective regarding the evolutionary and environmental pressures on immune function in birds.

  16. Higher Tetanus Toxoid Immunity 2 Years After PsA-TT Introduction in Mali.

    PubMed

    Basta, Nicole E; Borrow, Ray; Berthe, Abdoulaye; Onwuchekwa, Uma; Dembélé, Awa Traoré Eps; Almond, Rachael; Frankland, Sarah; Patel, Sima; Wood, Daniel; Nascimento, Maria; Manigart, Olivier; Trotter, Caroline L; Greenwood, Brian; Sow, Samba O

    2015-11-15

    In 2010, mass vaccination with a then-new meningococcal A polysaccharide-tetanus toxoid protein conjugate vaccine (PsA-TT, or MenAfriVac) was undertaken in 1- to 29-year-olds in Bamako, Mali. Whether vaccination with PsA-TT effectively boosts tetanus immunity in a population with heterogeneous baseline tetanus immunity is not known. We assessed the impact of PsA-TT on tetanus toxoid (TT) immunity by quantifying age- and sex-specific immunity prior to and 2 years after introduction. Using a household-based, age-stratified design, we randomly selected participants for a prevaccination serological survey in 2010 and a postvaccination survey in 2012. TT immunoglobulin G (IgG) antibodies were quantified and geometric mean concentrations (GMCs) pre- and postvaccination among all age groups targeted for vaccination were compared. The probability of TT IgG levels ≥0.1 IU/mL (indicating short-term protection) and ≥1.0 IU/mL (indicating long-term protection) by age and sex was determined using logistic regression models. Analysis of 793 prevaccination and 800 postvaccination sera indicated that while GMCs were low pre-PsA-TT, significantly higher GMCs in all age-sex strata were observed 2 years after PsA-TT introduction. The percentage with short-term immunity increased from 57.1% to 88.4% (31.3-point increase; 95% confidence interval [CI], 26.6-36.0;, P < .0001) and with long-term immunity increased from 20.0% to 58.5% (38.5-point increase; 95% CI, 33.7-43.3; P < .0001) pre- and postvaccination. Significantly higher TT immunity was observed among vaccine-targeted age groups up to 2 years after Mali's PsA-TT mass vaccination campaign. Our results, combined with evidence from clinical trials, strongly suggest that conjugate vaccines containing TT such as PsA-TT should be considered bivalent vaccines because of their ability to boost tetanus immunity. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  17. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time. PMID:16248789

  18. Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella).

    PubMed

    Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J

    2018-06-29

    Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Indicators of immunotoxicity in populations of cotton rats (Sigmodon hispidus) inhabiting an abandoned oil refinery.

    PubMed

    McMurry, S T; Lochmiller, R L; McBee, K; Qualls, C W

    1999-03-01

    Wildlife species inhabiting contaminated sites are often exposed to complex mixtures of chemicals, many of which have known effects on physiological and biochemical function. Although sensitivity of the immune system to chemical exposure has been documented in laboratory animal and wildlife species, little work has been conducted on feral wildlife populations inhabiting contaminated sites. Immune function was measured in populations of wild cotton rats (Sigmodon hispidus) inhabiting replicated reference and contaminated study sites at an abandoned oil refinery in Oklahoma four times from 1991 to 1992. Several measures of immunocompetence were examined including immune organ mass and cellularity, hematology, in vivo hypersensitivity, macrophage function, killer cell activity, and lymphoproliferative responsiveness. In vitro proliferation of splenocytes, either spontaneous or induced with concanavalin A (Con A), was the most consistent and reliable indicator of immunotoxicity. Spontaneous proliferation of splenocytes was 48 and 24% higher for cotton rats collected from contaminated than reference sites in September 1991 and September 1992, respectively. Likewise, Con A-induced proliferation of splenocytes ranged form 20 to 53% higher in animals collected from contaminated than reference sites in three of four collection periods. The percentage of splenocytes (mean+/-SE) staining positive for Con A receptors was lower on contaminated sites (73.7+/-1.2%) than reference sites (77.0+/-1.4%) in September 1991. Other measures of immune function including macrophage metabolism, hypersensitivity, blood cellularity, and mass and cellularity of immune organs varied between contaminated and reference sites. Copyright 1999 Academic Press.

  20. Role of Immune Aging in Susceptibility to West Nile Virus.

    PubMed

    Yao, Yi; Montgomery, Ruth R

    2016-01-01

    West Nile virus (WNV) can cause severe neuroinvasive disease in humans and currently no vaccine or specific treatments are available. As aging is the most prominent risk factor for WNV, age-related immune dysregulation likely plays an essential role in host susceptibility to infection with WNV. In this review, we summarize recent findings in effects of aging on immune responses to WNV infection. In particular, we focus on the age-dependent dysregulation of innate immune cell types-neutrophils, macrophages, and dendritic cells-in response to WNV infection, as well as age-related alterations in NK cells and γδ T cells that may associate with increased WNV susceptibility in older people. We also highlight two advanced technologies, i.e., mass cytometry and microRNA profiling, which significantly contribute to systems-level study of immune dysregulation in aging and should facilitate new discoveries for therapeutic intervention against WNV.

  1. An immune clock of human pregnancy

    PubMed Central

    Aghaeepour, Nima; Ganio, Edward A.; Mcilwain, David; Tsai, Amy S.; Tingle, Martha; Van Gassen, Sofie; Gaudilliere, Dyani K.; Baca, Quentin; McNeil, Leslie; Okada, Robin; Ghaemi, Mohammad S.; Furman, David; Wong, Ronald J.; Winn, Virginia D.; Druzin, Maurice L.; El-Sayed, Yaser Y.; Quaintance, Cecele; Gibbs, Ronald; Darmstadt, Gary L.; Shaw, Gary M.; Stevenson, David K.; Tibshirani, Robert; Nolan, Garry P.; Lewis, David B.; Angst, Martin S.; Gaudilliere, Brice

    2017-01-01

    The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling–based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2–dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies. PMID:28864494

  2. [Mass spectrometry identification and immune cross-reactivity of a minor shrimp allergen-sarcoplasmic calcium binding protein from Litopenaeus vannamei].

    PubMed

    Wang, Cai-xia; Huang, Jian-fang; Xiang, Jun-jian; Sun, Yi-fan; Lv, Si; Guo, Jie

    2012-08-01

    To identify sarcoplasmic calcium-binding protein (SCP) as a minor shrimp allergen by mass spectrometry, and to analyze the immune cross-reactivity among crustacean SCPs. The M(r); 21 000 allergen from Litopenaeus vannamei was identified by MALDI-TOF/TOF-MS. BLAST and ClustalW were used to compare amino acid sequence identity of the allergen among crustaceans. The puritifed M(r); 21 000 allergen was injected subcutaneously in mice to produce the specific polyclonal antibodies to analyze immune cross-reactivity of the allergen with proteins from 8 other species of crustaceans by Western blotting. The M(r); 21 000 shrimp allergen was identified as SCP. Sequence comparison revealed that SCP had 81%-100% amino acid identity among crustaceans. Western blotting showed that the proteins with M(r); about 21 000, corresponding to SCP from Metapenaeus ensis, Penaeus monodon, Oratosquilla oratoria, Macrobrachium rosenbergii, Procambarus clarkii, Portunus pelagicus, Charybdis feriatus, Eriocheir sinensis were recognized by polyclonal antibodies against SCP of Litopenaeus vannamei. SCP is a minor shrimp allergen, and SCPs have a high sequence homology and strong immune cross-reactivity among crustaceans, which can be used as detective, diagnostic and safe immunotherapeutic agents for subjects with shrimp allergy.

  3. Expression, purification, immunogenicity and protective efficacy of a recombinant nucleoside hydrolase from Leishmania donovani, a vaccine candidate for preventing cutaneous leishmaniasis.

    PubMed

    McAtee, C Patrick; Seid, Christopher A; Hammond, Molly; Hudspeth, Elissa; Keegan, Brian P; Liu, Zhuyun; Wei, Junfei; Zhan, Bin; Arjona-Sabido, Raul; Cruz-Chan, Vladimir; Dumonteil, Eric; Hotez, Peter J; Bottazzi, Maria Elena

    2017-02-01

    The nucleoside hydrolase gene from Leishmania donovani was cloned and expressed in Escherichia coli as a full length 36-kDa protein (LdNH36). Following lysis and extraction, the protein was purified by anion exchange and gel filtration chromatography. The purified protein had a molecular mass of approximately 36-kDa and was confirmed to be >99% pure. Using a nucleoside hydrolase assay, the protein was found to exhibit a Km of 741 ± 246 μM. Protein integrity was confirmed by lithium dodecyl sulfate polyacrylamide gel electrophoresis (LDS-PAGE), mass spectrometry (MS), and enzymatic assay. Analysis of antibody levels from immunized mice indicated that LdNH36 alone or in a stable emulsion with the Toll-like receptor-4 ligand glucopyranosyl lipid adjuvant (GLA-SE) as immunostimulant induced high levels of antigen-specific IgG antibodies. The cellular immune response indicated a T h 1 response in mice immunized with LdNH36, but only when formulated with GLA-SE. Mice immunized with the LdNH36 antigen in combination with the GLA-SE adjuvant and challenged with Leishmania mexicana showed significant reductions (>20 fold) in parasite burden, confirming the protective efficacy of this vaccine candidate. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  5. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  6. Experimental increase in baseline corticosterone level reduces oxidative damage and enhances innate immune response

    PubMed Central

    Pătraș, Laura; Pap, Péter L.; Vincze, Orsolya; Mureșan, Cosmin; Németh, József; Lendvai, Ádám Z.

    2018-01-01

    Glucocorticoid (GC) hormones are significant regulators of homeostasis. The physiological effects of GCs critically depend on the time of exposure (short vs. long) as well as on their circulating levels (baseline vs. stress-induced). Previous experiments, in which chronic and high elevation of GC levels was induced, indicate that GCs impair both the activity of the immune system and the oxidative balance. Nonetheless, our knowledge on how mildly elevated GC levels, a situation much more common in nature, might influence homeostasis is limited. Therefore, we studied whether an increase in GC level within the baseline range suppresses or enhances condition (body mass, hematocrit and coccidian infestation) and physiological state (humoral innate immune system activity and oxidative balance). We implanted captive house sparrows Passer domesticus with either 60 days release corticosterone (CORT) or control pellets. CORT-treated birds had elevated baseline CORT levels one week after the implantation, but following this CORT returned to its pre-treatment level and the experimental groups had similar CORT levels one and two months following the implantation. The mass of tail feathers grown during the initial phase of treatment was smaller in treated than in control birds. CORT implantation had a transient negative effect on body mass and hematocrit, but both of these traits resumed the pre-treatment values by one month post-treatment. CORT treatment lowered oxidative damage to lipids (malondialdehyde) and enhanced constitutive innate immunity at one week and one month post-implantation. Our findings suggest that a relatively short-term (i.e. few days) elevation of baseline CORT might have a positive and stimulatory effect on animal physiology. PMID:29432437

  7. A Novel Feeder-free System for Mass Production of Murine Natural Killer Cells In Vitro.

    PubMed

    Tang, Patrick Ming-Kuen; Tang, Philip Chiu-Tsun; Chung, Jeff Yat-Fai; Hung, Jessica Shuk Chun; Wang, Qing-Ming; Lian, Guang-Yu; Sheng, Jingyi; Huang, Xiao-Ru; To, Ka-Fai; Lan, Hui-Yao

    2018-01-09

    Natural killer (NK) cells belong to the innate immune system and are a first-line anti-cancer immune defense; however, they are suppressed in the tumor microenvironment and the underlying mechanism is still largely unknown. The lack of a consistent and reliable source of NK cells limits the research progress of NK cell immunity. Here, we report an in vitro system that can provide high quality and quantity of bone marrow-derived murine NK cells under a feeder-free condition. More importantly, we also demonstrate that siRNA-mediated gene silencing successfully inhibits the E4bp4-dependent NK cell maturation by using this system. Thus, this novel in vitro NK cell differentiating system is a biomaterial solution for immunity research.

  8. Review of the biological effects of weightlessness on the human endocrine system

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    1993-01-01

    Studies from space flights over the past two decades have demonstrated that there are basic physiological changes in humans during space flight. These changes include cephalad fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known but the general approach has been to investigate systemic and hormonal changes. However, data from the 1973-1974 Skylabs, Spacelab 3 (SL-3), Spacelab D-I (SL-DI), and now the new SLS-1 missions support a more basic biological response to microgravity that may occur at the tissue, cellular, and molecular level. This report summarizes ground-based and SLS-1 experiments that examined the mechanism of loss of red blood cell mass in humans, the loss of bone mass and lowered osteoblast growth under space flight conditions, and loss of immune function in microgravity.

  9. Effect of maternal immunization with oral poliovirus vaccine on neonatal immunity.

    PubMed

    Linder, N; Handsher, R; Fruman, O; Shiff, E; Ohel, G; Reichman, B; Dagan, R

    1994-11-01

    During the summer of 1988, an outbreak of poliomyelitis caused by poliovirus 1 occurred in Israel, during which a national mass immunization campaign with oral poliovirus was undertaken. This prospective study was undertaken to assess the effect of maternal oral poliovirus immunization during the third trimester of pregnancy on neonatal immunity against poliovirus. Cord blood specimens of 88 neonates, born 2 to 7 weeks after maternal immunization, were examined for antipoliovirus antibodies and compared with 100 samples obtained from neonates 7 months before the outbreak. Blood samples were also obtained from the 62 mothers of neonates who had been immunized 2 to 5 weeks before delivery. Sera were tested for neutralizing antibodies to the 3 poliovirus types using a microneutralization technique. The geometric mean titer to poliovirus type 1 was significantly higher in neonates whose mothers were immunized during pregnancy (87.1) than in the offspring of the nonvaccinated group (53.0), P < 0.05. Two to 3 weeks after immunization, geometric mean titers against all 3 poliovirus types were higher in maternal blood than in cord blood whereas 4 to 5 weeks after vaccination a significant difference was found for type 3 only. Although oral poliovirus immunization during pregnancy resulted in higher neonatal antibody titers to poliovirus type 1, the proportion of newborns with titers of < 1:8 to the 3 poliovirus types did not change significantly.

  10. Using Lean Six Sigma Methodology to Improve a Mass Immunizations Process at the United States Naval Academy.

    PubMed

    Ha, Chrysanthy; McCoy, Donald A; Taylor, Christopher B; Kirk, Kayla D; Fry, Robert S; Modi, Jitendrakumar R

    2016-06-01

    Lean Six Sigma (LSS) is a process improvement methodology developed in the manufacturing industry to increase process efficiency while maintaining product quality. The efficacy of LSS application to the health care setting has not been adequately studied. This article presents a quality improvement project at the U.S. Naval Academy that uses LSS to improve the mass immunizations process for Midshipmen during in-processing. The process was standardized to give all vaccinations at one station instead of giving a different vaccination at each station. After project implementation, the average immunizations lead time decreased by 79% and staffing decreased by 10%. The process was shown to be in control with a capability index of 1.18 and performance index of 1.10, resulting in a defect rate of 0.04%. This project demonstrates that the LSS methodology can be applied successfully to the health care setting to make sustainable process improvements if used correctly and completely. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  11. Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.

    PubMed

    Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng

    2013-11-01

    It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.

  12. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  13. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly.

    PubMed

    Therry, L; Nilsson-Örtman, V; Bonte, D; Stoks, R

    2014-01-01

    Although a growing number of studies have documented the evolution of adult dispersal-related traits at the range edge of poleward-expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight-related traits) between replicated core and edge populations of the poleward-moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade-offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude-specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward-expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco-evolutionary dynamics at the expansion front. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  14. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    PubMed

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  16. Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus).

    PubMed

    Ogada, Pamella Akoth; Kiirika, Leonard Muriithi; Lorenz, Christin; Senkler, Jennifer; Braun, Hans-Peter; Poehling, Hans-Michael

    2017-02-01

    Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F. occidentalis larvae after 24 h exposure to TSWV. Two-dimensional isoelectric focusing/sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-IEF/SDS/PAGE) combined with mass spectrometry (MS), were used to identify proteins that were differentially expressed upon viral infection. High numbers of proteins were abundantly expressed in F. occidentalis exposed to TSWV (73%) compared to the non-exposed (27%), with the majority functionally linked to the innate immune system such as: signaling, stress response, defense response, translation, cellular lipids and nucleotide metabolism. Key proteins included: 70 kDa heat shock proteins, Ubiquitin and Dermcidin, among others, indicative of a responsive pattern of the vector's innate immune system to viral infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A mass vaccination campaign targeting adults and children to prevent typhoid fever in Hechi; Expanding the use of Vi polysaccharide vaccine in Southeast China: A cluster-randomized trial

    PubMed Central

    Yang, Jin; Acosta, Camilo J; Si, Guo-ai; Zeng, Jun; Li, Cui-yun; Liang, Da-bin; Ochiai, R Leon; Page, Anne-Laure; Danovaro-Holliday, M Carolina; Zhang, Jie; Zhou, Bao-de; Liao, He-zhuang; Wang, Ming-liu; Tan, Dong-mei; Tang, Zhen-zhu; Gong, Jian; Park, Jin-Kyung; Ali, Mohammad; Ivanoff, Bernard; Liang, Gui-chen; Yang, Hong-hui; Pang, Tikki; Xu, Zhi-yi; Donner, Allan; Galindo, Claudia M; Dong, Bai-qing; Clemens, John D

    2005-01-01

    Background One of the goals of this study was to learn the coverage, safety and logistics of a mass vaccination campaign against typhoid fever in children and adults using locally produced typhoid Vi polysaccharide (PS) and group A meningococcal PS vaccines in southern China. Methods The vaccination campaign targeted 118,588 persons in Hechi, Guangxi Province, aged between 5 to 60 years, in 2003. The study area was divided into 107 geographic clusters, which were randomly allocated to receive one of the single-dose parenteral vaccines. All aspects regarding vaccination logistics, feasibility and safety were documented and systematically recorded. Results of the logistics, feasibility and safety are reported. Results The campaign lasted 5 weeks and the overall vaccination coverage was 78%. On average, the 30 vaccine teams gave immunizations on 23 days. Vaccine rates were higher in those aged ≤ 15 years (90%) than in adolescents and young adults (70%). Planned mop-up activities increased the coverage by 17%. The overall vaccine wastage was 11%. The cold chain was maintained and documented. 66 individuals reported of adverse events out of all vaccinees, where fever (21%), malaise (19%) and local redness (19%) were the major symptoms; no life-threatening event occurred. Three needle-sharp events were reported. Conclusion The mass immunization proved feasible and safe, and vaccine coverage was high. Emphasis should be placed on: injection safety measures, community involvement and incorporation of mop-up strategies into any vaccination campaign. School-based and all-age Vi mass immunizations programs are potentially important public health strategies for prevention of typhoid fever in high-risk populations in southern China. PMID:15904514

  18. Effects of small increases in corticosterone levels on morphology, immune function, and feather development.

    PubMed

    Butler, Michael W; Leppert, Lynda L; Dufty, Alfred M

    2010-01-01

    Stressors encountered during avian development may affect an individual's phenotype, including immunocompetence, growth, and feather quality. We examined effects of simulated chronic low-level stress on American kestrel (Falco sparverius) nestlings. Continuous release of corticosterone, a hormone involved in the stress response, can model chronic stress in birds. We implanted 13-d-old males with either corticosterone-filled implants or shams and measured their growth, immune function, and feather coloration. We found no significant differences between groups at the end of the weeklong exposure period in morphometrics (mass, tarsus, wing length, and asymmetry), immunocompetence (cutaneous immunity, heterophil/lymphocyte ratio, and humoral immunity), or feather coloration. One week subsequent to implant removal, however, differences were detected. Sham-implanted birds had significantly longer wings and a reduced level of cutaneous immune function compared with those of birds given corticosterone-filled implants. Therefore, increases of only 2 ng/mL in basal corticosterone titer can have small but measurable effects on subsequent avian development.

  19. Postmenopausal Osteoporosis: The Role of Immune System Cells

    PubMed Central

    Faienza, Maria Felicia; Ventura, Annamaria; Marzano, Flaviana; Cavallo, Luciano

    2013-01-01

    In the last years, new evidences of the relationship between immune system and bone have been accumulated both in animal models and in humans affected by bone disease, such as rheumatoid arthritis, bone metastasis, periodontitis, and osteoporosis. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue with a subsequent increase in bone fragility and susceptibility to fractures. The combined effects of estrogen deprivation and raising of FSH production occurring in menopause cause a marked stimulation of bone resorption and a rapid bone loss which is central for the onset of postmenopausal osteoporosis. This review focuses on the role of immune system in postmenopausal osteoporosis and on therapeutic strategies targeting osteoimmunology pathways. PMID:23762093

  20. World Epidemiology Review, Number 91

    DTIC Science & Technology

    1978-02-09

    50 LIBYA 53 MALAYSIA 54 MEXICO 54 MOZAMBIQUE 55 NEW ZEALAND 57 NIGERIA. 58 a - [III - INT - 134] CONTENTS (Continued) Page...Editorial: "Mass Immunization"] [Text] Afghanistan was declared a small- pox free country at the begin- ning of this year after the assessment and...Afghanistan and inter- national organisations. For eradication of small- pox mass immunisation was a major weapon and the program was implemented in most

  1. Timing of Maternal Immunization Affects Immunological and Behavioral Outcomes of Adult Offspring in Siberian Hamsters (Phodopus sungorus)

    PubMed Central

    French, Susannah S.; Chester, Emily M.; Demas, Gregory E.

    2016-01-01

    Maternal influences are an important contributing factor to offspring survival, development, and behavior. Common environmental pathogens can induce maternal immune responses and affect subsequent development of offspring. There are likely sensitive periods during pregnancy when animals are particularly vulnerable to environmental disruption. Here we characterize the effects of maternal immunization across pregnancy and postpartum on offspring physiology and behavior in Siberian hamsters (Phodopus sungorus). Hamsters were injected with the antigen keyhole limpet hemocyanin (KLH) 1) prior to pairing with a male (pre-mating), 2) at separation (post-mating), 3) at mid-pregnancy, or 4) after birth (lactation). Maternal food intake, body mass, and immunity were monitored throughout gestation, and litters were measured weekly for growth until adulthood when social behavior, hormone concentrations, and immune responses were determined. We found that immunizations altered maternal immunity throughout pregnancy and lactation. The effects of maternal treatment differed between male and female offspring. Aggressive behavior was enhanced in offspring of both sexes born to mothers treated post-mating and thus early in pregnancy relative to other stages. In contrast, maternal treatment and maternal stage differentially affected innate immunity in males and females. Offspring cortisol, however, was unaffected by maternal treatment. Collectively, these data demonstrate that maternal immunization affects offspring physiology and behavior in a time-dependent and sex-specific manner. More broadly, these findings contribute to our understanding of the effects of maternal immune activation, whether it be from environmental exposure or immunization, on immunological and behavioral responses of offspring. PMID:27320639

  2. A Survey of Parental Perception and Pattern of Action in Response to Influenza-like Illness in Their Children: Including Healthcare Use and Vaccination in Korea

    PubMed Central

    2017-01-01

    Seasonal influenza is a significant cause of morbidity and mortality of children in Korea. However, few data are available on parental perception and action toward childhood influenza. This study aimed to characterize parental perception and patterns of action in response to influenza and influenza-like illnesses (ILIs), including vaccination and healthcare use. This prospective study involved a random survey of parents whose children were aged 6–59 months. The survey was conducted in October 2014. The study included 638 parents of 824 children younger than 6 years. Most parental information of influenza came from mass media (28.2%) and social media (15.5%). The factor that most often motivated parents to vaccinate their children against influenza was promotion of the government or mass media (36.6%). Negative predictors of immunization included safety concerns about influenza vaccination (28.1%) and mistrust in the vaccine's effectiveness (23.3%). Therefore, correct information about influenza and vaccination from mass media will be one of the cornerstones for implementing a successful childhood immunization program and reducing morbidity and mortality in Korea. Furthermore, to enroll younger children in vaccination programs, and to minimize coverage gaps, public concerns about vaccine safety should be resolved. The demographic data in the present study will be used to provide a deeper insight into a parental perception and will help health care providers increase influenza immunization rate. PMID:28049230

  3. Demonstration of the salmonid humoral response to Renibacterium salmoninarum using a monoclonal antibody against salmonid immunoglobulin

    USGS Publications Warehouse

    Bartholomew, J.L.; Arkoosh , M.R.; Rohovec, J.S.

    1991-01-01

    The specificity of the antibody response of salmonids to Renibacterium salmoninarum antigens was demonstrated by western blotting techniques that utilized a monoclonal antibody against salmonid immunoglobulin. In this study, the specificity of the response in immunized chinook salmon Oncorhynchus tshawytschawas compared with the response in naturally infected chinook salmon and coho salmon O. kisutch, and immunized rabbits. The antibody response in immunized salmon and rabbits and the naturally infected fish was primarily against the 57–58kilodalton protein complex. In addition to recognizing these proteins in the extracellular fraction and whole-cell preparations, antibody from the immunized salmon and rabbits detected four proteins with lower molecular masses. Western blotting techniques allow identification of the specific antigens recognized and are a useful tool for comparing the immunogenicity of different R. salmoninarumpreparations. Immunofluorescent techniques with whole bacteria were less sensitive than western blotting in detecting salmonid anti-R. salmoninarumantibody.

  4. Vaccination coverage survey versus administrative data in the assessment of mass yellow fever immunization in internally displaced persons--Liberia, 2004.

    PubMed

    Huhn, Gregory D; Brown, Jennifer; Perea, William; Berthe, Adama; Otero, Hansel; LiBeau, Genevieve; Maksha, Nuhu; Sankoh, Mohammed; Montgomery, Susan; Marfin, Anthony; Admassu, Mekonnen

    2006-02-06

    Yellow fever (YF) is a mosquito-borne vaccine-preventable disease with high mortality. In West Africa, low population immunity increases the risk of epidemic transmission. A cluster survey was conducted to determine the effectiveness of a mass immunization campaign using 17D YF vaccine in internally displaced person (IDP) camps following a reported outbreak of YF in Liberia in February 2004. Administrative data of vaccination coverage were reviewed. A cluster sample size was determined among 17,384 shelters using an 80% vaccination coverage threshold. A questionnaire eliciting demographic information, household size, and vaccination status was distributed to randomly selected IDPs. Data were analyzed to compare vaccination coverage rates of administrative versus survey data. Among 87,000 persons estimated living in IDP camps, administrative data recorded 49,395 (57%) YF vaccinated persons. A total of 237 IDPs were surveyed. Of survey respondents, 215 (91.9%, 95% CI 88.4-95.4) reported being vaccinated during the campaign and 196 (83.5%, 95% CI 78.6-88.5) possessed a valid campaign vaccination card. The median number of IDPs living in a shelter was 4 (range, 1-8) and 69,536 persons overall were estimated to be living in IDP camps. Coverage rates from a rapid survey exceeded 90% by self-report and 80% by evidence of a vaccination card, indicating that the YF immunization campaign was effective. Survey results suggested that administrative data overestimated the camp population by at least 20%. An emergency, mop-up vaccination campaign was avoided. Coverage surveys can be vital in the evaluation of emergency vaccination campaigns by influencing both imminent and future immunization strategies.

  5. Functional Transcriptomics of Wild-Caught Lutzomyia intermedia Salivary Glands: Identification of a Protective Salivary Protein against Leishmania braziliensis Infection

    PubMed Central

    Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.

    2013-01-01

    Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705

  6. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection.

    PubMed

    de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I

    2013-01-01

    Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.

  7. Immunogenicity of influenza A(H1N1)pdm09 vaccine in patients with diabetes mellitus: with special reference to age, body mass index, and HbA1c.

    PubMed

    Egawa, Yumi; Ohfuji, Satoko; Fukushima, Wakaba; Yamazaki, Yuko; Morioka, Tomoaki; Emoto, Masanori; Maeda, Kazuhiro; Inaba, Masaaki; Hirota, Yoshio

    2014-01-01

    Subjects with diabetes mellitus are considered to be at high risk of influenza infection and influenza-associated complications. To evaluate the immunogenicity of the influenza A(H1N1)pdm09 vaccine among these subjects, we performed a prospective cohort study and measured hemagglutination inhibition antibody titers at baseline and 3 weeks after vaccination in 49 patients. No serious adverse events were reported. We were able to perform analyses for 48 patients, after excluding one patient with suspected infection. The vaccine induced a rise of about 9-fold in the mean antibody level. The sero-response proportion was 79%, and the sero-protection proportion was 73%. Patients with older age and lower body mass index tended to show lower immune response. Multivariate analysis indicated an independent negative effect of hemoglobin A1c level on the sero-protection proportion. A single A(H1N1)pdm09 vaccination achieved a sufficient level of immunity among diabetic patients, but both clinicians and patients should be aware of the potential for reductions in immune response.

  8. A Design Method for Topologically Insulating Metamaterials

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara

    Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.

  9. Active Immunization—Some Present-Day Problems

    PubMed Central

    1941-01-01

    Diphtheria.—Immunization is safe and effective. Compulsory measures are indicated, especially for the younger age-groups. The Schick test may be reserved for selected groups and to control modified methods. Proper spacing of doses of prophylactics and periodic reinoculation will ensure a high level of immunity. It is important to beware of “one-shot” methods. Indiscriminate swabbing is to be discouraged; high carrier rates are an indication for widespread diphtheria prophylaxis. Enteric fever.—Mass immunization is desirable in many areas, although there is no justification for compulsion except for people exposed to special risks. In deciding upon dosage of vaccine, more attention should be paid to physical state and body-weight. After the primary course, very small periodic doses (for example o.i.c.c) are worthy of trial. Vaccine can be given during an epidemic without increasing the chances of infection. Tetanus.—Two doses of toxoid spaced by six weeks give useful immunity. Women give significantly higher titres than men. A third dose of i.o.c.c. after a long interval—seven to nine months—often produces a dramatic rise in circulating antitoxin, and counteracts any tendency to waning immunity. Smallpox.—As vaccination has not been made compulsory in this country, infection by virulent strains from the continent may tax the resources of the public health services. Whooping-cough.—The large number of injections of vaccine usually recommended is a deterrent to mass immunization. Research into the possibility of fewer doses and wider spacing is indicated. Other diseases are considered briefly. Combined immunization.—It may be useful to combine diphtheria T.A.F. and tetanus toxoid, also tetanus toxoid and T.A.B. vaccine. T.A.F. plus T.A.B. is probably contra-indicated for adults on account of severe reactions. Diphtheria A.P.T. should not be mixed with tetanus toxoid as it may go into solution and become ineffective. Sterilization of syringes and needles.—An intensive inoculation campaign is no excuse for slip-shod methods. PMID:19992328

  10. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis using purified recombinant immunogenic proteins.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Prescott, John F

    2009-09-01

    This study identified and assessed secreted proteins of Clostridium perfringens additional to those previously described for their ability to protect broiler chickens against necrotic enteritis (NE). Secreted proteins of virulent and avirulent C. perfringens were electrophoretically separated and reacted with serum of chickens immune to NE. Three immunoreactive protein bands unique to the virulent C. perfringens were identified by mass spectrometry as the toxin C. perfringens large cytotoxin (TpeL), endo-beta-N-acetylglucosaminidase (Naglu), and phosphoglyceromutase (Pgm). The genes encoding Naglu and Pgm proteins were cloned, and their gene products were purified as histidine-tagged recombinant proteins from Escherichia coli and used in immunizing chickens. Immunized and nonimmunized control broiler chickens were then challenged with two different strains (CP1, CP4) of C. perfringens and assessed for the development of NE. Of the two immunogens, Pgm immunization showed significant protection of broiler chickens against experimental NE, although protection reduced as challenge severity increased. However, birds immunized with Naglu were protected from challenge only with strain CP4. Birds immunized with these proteins had antigen-specific antibodies when tested in an enzyme-linked immunosorbent assay. In conclusion, this study demonstrated the partial efficacy of additional secreted proteins in immunity of broiler chickens to NE. The study also showed that there may be differences in the protective ability of immunogens depending on the infecting C. perfringens strain.

  11. Mexico's immunization programme gets results.

    PubMed

    1994-04-01

    With a decline of almost 60% over the past decade in the mortality of children under age 5 years old to the current rate of 33 child deaths/1000 live births, Mexico has joined the 20 countries listed by UNICEF as making the most progress in reducing child mortality since 1980. Much of this progress can be attributed to Mexico's immunization program, which has brought the proportion of fully immunized children under age 5 years to 94% over the past 5 years. Mexico's president has been instrumental in the program's success, having a personal interest in childhood vaccination and supervising the twice-yearly immunization coverage surveys. Even though presidential elections are being held this year, the immunization program should remain strong regardless of who wins because all of Mexico's political parties have pledged to remain committed to immunization. Awareness in the population about the need for vaccination is maintained with the help of the mass media, especially radio and television. The country's enthusiasm for vaccination seems to be paying off in terms of declining child mortality and the eradication of wild poliovirus. The immunization program reaches all but 2-3% of Mexico's children, despite some logistical difficulties and resistance to vaccines among certain religious groups such as the Mennonites and Jehovah's witnesses.

  12. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Immunological hazards from nutritional imbalance in athletes.

    PubMed

    Shephard, R J; Shek, P N

    1998-01-01

    This review examines the influences of nutritional imbalance on immune function of competitive athletes, who may adopt an unusual diet in an attempt to enhance performance. A major increase in body fat can have adverse effects on immune response. In contrast, a negative energy balance and reduction of body mass are likely to impair immune function in an already thin athlete. A moderate increase in polyunsaturated fat enhances immune function, but excessive consumption can be detrimental. Since endurance exercise leads to protein catabolism, an athlete may need 2.0 g/kg protein rather than the 0.7-1.0 g/kg recommended for a sedentary individual. Both sustained exercise and overtraining reduce plasma glutamine levels, which may contribute to suppressed immune function postexercise. A large intake of carbohydrate counters glutamine depletion but may also modify immune responses by altering the secretion of glucose-regulating hormones. Vitamins are important to immune function because of their antioxidant role. However, the clinical benefits of vitamin C supplementation are not enhanced by the use of more complex vitamin mixtures, and excessive vitamin E can have negative effects. Iron, selenium, zinc, calcium, and magnesium ion all influence immune function. Supplements may be required after heavy sweating, but an excessive intake of iron facilitates bacterial growth. In making dietary recommendations to athletes, it is important to recognize that immune response can be jeopardized not only by deficiencies but also by excessive intake of certain nutrients. The goal should be a well-balanced diet.

  14. A 1-Year-Old with Mycobacterium tuberculosis Endocarditis with Mass Spectrometry Analysis of Cardiac Vegetation Composition.

    PubMed

    Sass, Laura A; Ziemba, Keegan J; Heiser, Elizabeth A; Mauriello, Clifford T; Werner, Alice L; Aguiar, Maria A; Nyalwidhe, Julius O; Cunnion, Kenji M

    2016-03-01

    In this study, we report the first case of Mycobacterium tuberculosis endocarditis in an immunocompetent child born in the United States. Mass spectrometry of the vegetation identified coagulation, humoral immune proteins, neutrophil granule proteins, and histones. Few neutrophils on histopathology suggest that neutrophil extracellular traps may contribute to tuberculous endocardiac mass formation. © The Author 2014. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Low-dose intradermal and intramuscular vaccination against hepatitis B.

    PubMed

    Bryan, J P; Sjogren, M H; Perine, P L; Legters, L J

    1992-03-01

    Hepatitis B and its sequelae are global problems preventable by immunization. Expense limits the use of hepatitis B vaccines, but low-dose intradermal immunization has been evaluated as a cost-saving strategy in numerous studies. With few exceptions, low-dose intradermal plasma-derived vaccines have elicited protective levels of antibody in 82%-100% of young healthy adults--a proportion similar to that noted with full-dose regimens; peak levels of antibody to hepatitis B surface antigen (HBsAg) are lower with reduced doses, however. Although children respond well to low-dose intradermal immunization, this procedure is technically difficult in neonates and should not be used for those born to HBsAg-positive mothers. For persons at high risk, antibody to HBsAg must be assessed after immunization to determine the need for a booster dose. A fourth dose 1-2 years after the initial series substantially increases antibody concentrations. In low intradermal doses, recombinant vaccine elicits lower rates of seroconversion than plasma-derived vaccine. However, low intramuscular doses of recombinant vaccine give favorable results. In short, low-dose intradermal or intramuscular immunization offers protection against hepatitis B at significant savings and may be useful for mass immunization of populations at high risk.

  16. Multivariate immune defences and fitness in the wild: complex but ecologically important associations among plasma antibodies, health and survival

    PubMed Central

    Nussey, Daniel H.; Watt, Kathryn A.; Clark, Abigail; Pilkington, Jill G.; Pemberton, Josephine M.; Graham, Andrea L.; McNeilly, Tom N.

    2014-01-01

    Despite our rapidly advancing mechanistic understanding of vertebrate immunity under controlled laboratory conditions, the links between immunity, infection and fitness under natural conditions remain poorly understood. Antibodies are central to acquired immune responses, and antibody levels circulating in vivo reflect a composite of constitutive and induced functional variants of diverse specificities (e.g. binding antigens from prevalent parasites, self tissues or novel non-self sources). Here, we measured plasma concentrations of 11 different antibody types in adult females from an unmanaged population of Soay sheep on St Kilda. Correlations among antibody measures were generally positive but weak, and eight of the measures independently predicted body mass, strongyle parasite egg count or survival over the subsequent winter. These independent and, in some cases, antagonistic relationships point to important multivariate immunological heterogeneities affecting organismal health and fitness in natural systems. Notably, we identified a strong positive association between anti-nematode immunoglobulin (Ig) G antibodies in summer and subsequent over-winter survival, providing rare evidence for a fitness benefit of helminth-specific immunity under natural conditions. Our results highlight both the evolutionary and ecological importance and the complex nature of the immune phenotype in the wild. PMID:24500168

  17. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  18. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    DTIC Science & Technology

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  19. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows.

    PubMed

    Zhao, Yuliang; Li, Mo; Sun, Yanfeng; Wu, Wei; Kou, Guanqun; Guo, Lingling; Xing, Danning; Wu, Yuefeng; Li, Dongming; Zhao, Baohua

    2017-08-01

    In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH 50 ]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH 50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH 50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Minimal-change nephropathy and malignant thymoma.

    PubMed

    Varsano, S; Bruderman, I; Bernheim, J L; Rathaus, M; Griffel, B

    1980-05-01

    A 56-year-old man had fever, precordial pain, and a mediastinal mass. The mass disappeared two months later and the patient remained asymptomatic for 2 1/2 years. At that time a full-blown nephrotic syndrome developed, with minimal-change glomerulopathy. The chest x-ray film showed the reappearance of a giant mediastinal mass. On biopsy of the mass, malignant thymoma was diagnosed. Association between minimal-change disease and Hodgkin's disease is well known, while the association with malignant thymoma has not been previously reported. The relationship between malignant thymoma and minimal-change disease is discussed, and a possible pathogenic mechanism involving cell-mediated immunity is proposed.

  1. Human schistosomiasis in the post mass drug administration era.

    PubMed

    Mutapi, Francisca; Maizels, Rick; Fenwick, Alan; Woolhouse, Mark

    2017-02-01

    Profound changes are occurring in the epidemiology of schistosomiasis, a neglected tropical disease caused by a chronic infection with parasitic helminths of the genus Schistosoma. Schistosomiasis currently affects 240 million people worldwide, mostly in sub-Saharan Africa. The advent and proliferation of mass drug administration (MDA) programmes using the drug praziquantel is resulting in substantial increases in the number of people, mainly children aged 6-14 years, being effectively treated, approaching the point where most people in endemic areas will receive one or more treatments during their lifetimes. Praziquantel treatment not only cures infection but also frees the host from the powerful immunomodulatory action of the parasites. The treatment simultaneously enhances exposure to key parasite antigens, accelerating the development of protective acquired immunity, which would take many years to develop naturally. At a population level, these changes constitute a substantial alteration to schistosome ecology in that the parasites are more likely to be exposed not only to praziquantel directly but also to hosts with altered immune phenotypes. Here, we consider the consequences of this for schistosome biology, immunoepidemiology, and public health. We anticipate that there could be substantial effects on chronic pathology, natural immunity, vaccine development strategies, immune disorders, and drug efficacy. This makes for a complex picture that will only become apparent over decades. We recommend careful monitoring and assessment to accompany the roll-out of MDA programmes to ensure that the considerable health benefits to populations are achieved and sustained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 78 FR 43281 - Medicare Program; Revisions to Payment Policies under the Physician Fee Schedule, Clinical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ..., Independent Laboratory, Pathology, Radiation Oncology, and Radiation Therapy Centers are projected to have a... Mass immunization roster biller. 74 Radiation therapy centers. 87 All other suppliers (e.g., drug and...

  3. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  4. Organizing the Cellular and Molecular Heterogeneity in High Grade Serous Ovarian Cancer by Mass Cytometry

    DTIC Science & Technology

    2015-10-01

    expressed and the intensity by IHC and CyTOF (E-cadherin, vimentin, CD45, pAKT, FAP and p53). The examples show Figure 1: IHC of E-cadherin and...into CyTOF panels. Markers CD45, FAP and CD31 from the tumor antibody panel allow us to enumerate tumor, immune and stroma/angiogenic compartments...compartment as CD45-/CD31-/ FAP -, the immune compartment as CD45+/CD31-/ FAP . Data analysis of tumor compartment As with our pilot experiments from years 1 and

  5. Biophysical determinants of toluene diisocyanate antigenicity associated with exposure and asthma.

    PubMed

    Ye, Young-Min; Kim, Cheol-Woo; Kim, Hyung-Ryul; Kim, Hyun-Mi; Suh, Chang-Hee; Nahm, Dong-Ho; Park, Hae-Sim; Redlich, Carrie A; Wisnewski, Adam V

    2006-10-01

    Toluene diisocyanate (TDI), a widely used aromatic diisocyanate with the potential to cause asthma, reacts with albumin in the airway fluid, which acts as a carrier protein for chemical presentation to the immune system. Structural elucidation of TDI-albumin conjugates is crucial to understanding the human immune response to TDI exposure. Investigate the dependence of TDI's antigenicity on the biophysics of exposure and its association with TDI asthma. Toluene diisocyanate-albumin conjugates were generated by exposing albumin to TDI in liquid or vapor phase (liquid or vapor TDI-albumin, respectively). Conjugates were characterized by native gel electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry, and used as antigens in ELISA assays for serum specific-IgE and IgG. The physical phase of TDI (vapor vs liquid) affects the formation of TDI-albumin conjugates, with measurable differences in the amount of TDI per albumin molecule, migration in native gels, matrix-assisted laser desorption/ionization-mass spectrometry mass/charge spectra, and antigenicity. Vapor TDI-albumin conjugates were recognized by IgE from 44% of subjects with TDI asthma, whereas liquid TDI-albumin conjugates are recognized by IgE from only 17% of these patients. A significant (P < .05) association between TDI exposure and vapor TDI-albumin specific serum IgG was also observed. Biophysics of TDI exposure substantially affects formation of TDI-albumin conjugates recognized by the immune system in association with exposure and asthma. The data suggest that serology may help identify TDI asthmatics and exposed workers if the appropriate form of TDI is used as the antigenic basis for analysis.

  6. Implementation of Mass Cytometry as a Tool for Mechanism of Action Studies in Inflammatory Bowel Disease.

    PubMed

    Tyler, Christopher J; Pérez-Jeldres, Tamara; Ehinger, Erik; Capaldo, Brian; Karuppuchamy, Thangaraj; Boyer, Joshua D; Patel, Derek; Dulai, Parambir; Boland, Brigid S; Lannigan, Joanne; Eckmann, Lars; Ernst, Peter B; Sandborn, William J; Ho, Samuel B; Rivera-Nieves, Jesús

    2018-06-08

    Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.

  7. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  8. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  9. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity*

    PubMed Central

    Smith, Ryan C.; King, Jonas G.; Tao, Dingyin; Zeleznik, Oana A.; Brando, Clara; Thallinger, Gerhard G.; Dinglasan, Rhoel R.

    2016-01-01

    The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host. PMID:27624304

  10. Synergizing Radiation Therapy and Immunotherapy for Curing Incurable Cancers: Opportunities and Challenges

    PubMed Central

    Hodge, James W.; Guha, Chandan; Neefjes, Jacques; Gulley, James L.

    2012-01-01

    The combination of radiation therapy and immunotherapy holds particular promise as a strategy for cancer therapeutics. There is evidence that immunotherapy is most beneficial alone when employed early in the disease process or in combination with standard therapies (e.g., radiation) later in the disease process. Indeed, radiation may act synergistically with immunotherapy to enhance immune responses, inhibit immunosuppression, and/or alter the phenotype of tumor cells, thus rendering them more susceptible to immune-mediated killing. Furthermore, as monotherapies, both immunotherapy and radiation may be insufficient to eliminate tumor masses. However, following immunization with a cancer vaccine, the destruction of even a small percentage of tumor cells by radiation could result in cross-priming and presentation of tumor antigens to the immune system, thereby potentiating antitumor responses. Learning how to exploit radiation-induced changes to tumor-cell antigens, and how to induce effective immune responses to these cumulatively immunogenic stimuli, is an exciting frontier in cancer therapy research. This review examines a) mechanisms by which many forms of radiation therapy can induce or augment antitumor immune responses and b) preclinical systems that demonstrate that immunotherapy can be effectively combined with radiation therapy. Finally, we review current clinical trials where standard-of-care radiation therapy is being combined with immunotherapy. PMID:18777956

  11. Intra-nasal infection of macaques with Yellow Fever (YF) vaccine strain 17D: a novel and economical approach for YF vaccination in man.

    PubMed

    Niedrig, M; Stolte, N; Fuchs, D; Hunsmann, G; Stahl-Hennig, C

    1999-03-05

    Investigating new and simple application routes for YF vaccine, four groups of 4-6 rhesus monkeys were vaccinated with live attenuated 17D YF-vaccine. In two groups the vaccine was administered either as spray into the oral cavity, or as an encapsulated form directly into the stomach. Only one out of eight animals developed a humoral immune response against 17D. In the third group receiving the vaccine intranasally by spray and in the fourth group serving as control all ten monkeys developed an immune response. From all except one of these seroconverted monkeys virus could be detected either by virus reisolation or RT-PCR. All these animals showed a serological immune response in immunofluorescence and neutralisation test. Parallel to viremia, an increase of neopterin as an unspecified immune activation marker could be demonstrated for these animals. Intra-nasal application of 17D-vaccine seems to be a good alternative to subcutaneous immunisation in mass vaccination campaigns.

  12. The diphtheria vaccine debacle of 1940 that ushered in comprehensive childhood immunization in the United Kingdom.

    PubMed

    Mortimer, P P

    2011-04-01

    In January 1940 British Ministry of Health circular 1307 proposed the introduction of mass childhood diphtheria immunization. This was a policy reversal after a decade during which opportunities for diphtheria prophylaxis were ignored, or resisted on grounds of cost. Diphtheria toxoid was to be the first of many centrally funded childhood immunizations in the UK and it set a pattern that has now held good for over 70 years. The circumstances in 1940 were particularly fortuitous, and diphtheria toxoid has since given successive generations of children a lifetime's protection from the disease; but difficulties have been experienced in introducing and evaluating some of the more recent immunizations, and in maintaining and justifying them in the face of parental scepticism and academic or pressure-group opposition, however ill-founded this may have been. The task of decision-making with regard to new candidate vaccines demands a careful balancing against the costs of the expected benefits during the recipient's lifespan.

  13. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    PubMed

    Hess, Jessica A; Zhan, Bin; Torigian, April R; Patton, John B; Petrovsky, Nikolai; Zhan, Tingting; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2016-07-01

    In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.

  14. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapymore » with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.« less

  15. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment

    PubMed Central

    Phillips, Dennis R.

    2017-01-01

    The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms. PMID:28199361

  16. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment.

    PubMed

    Phillips, Dennis R; Clark, Kevin D

    2017-01-01

    The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.

  17. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    PubMed

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  18. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2013-09-30

    ion modes. The resulting chromatograms were then processed using XCMS (alignment and peak picking ). The data were processed with in-house...UHPLC liquid chromatography Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry ( MS ). A standard method was developed for rapid analysis...extraction protocols and then implemented LC- MS / MS analyses on our Thermo Fisher Scientific TSQ Vantage triple quadrupole mass spectrometer. This

  19. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  20. Coping with Crisis.

    ERIC Educational Resources Information Center

    Akenhead, James; Andreani, Alan

    2002-01-01

    School officials put a crisis communications plan into action after two Ohio students died and a third became critically ill from meningitis in May 2001. A mass immunization program prevented a major outbreak, and rumor control helped calm the public's fears. Recounts things learned from the experience. (MLF)

  1. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine.

    PubMed

    Mordmüller, Benjamin; Surat, Güzin; Lagler, Heimo; Chakravarty, Sumana; Ishizuka, Andrew S; Lalremruata, Albert; Gmeiner, Markus; Campo, Joseph J; Esen, Meral; Ruben, Adam J; Held, Jana; Calle, Carlos Lamsfus; Mengue, Juliana B; Gebru, Tamirat; Ibáñez, Javier; Sulyok, Mihály; James, Eric R; Billingsley, Peter F; Natasha, K C; Manoj, Anita; Murshedkar, Tooba; Gunasekera, Anusha; Eappen, Abraham G; Li, Tao; Stafford, Richard E; Li, Minglin; Felgner, Phil L; Seder, Robert A; Richie, Thomas L; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G

    2017-02-23

    A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 10 4 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 10 3 (group I) or 1.28 × 10 4 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 10 4 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.

  2. Population immunity to measles virus and the effect of HIV-1 infection after a mass measles vaccination campaign in Lusaka, Zambia: a cross-sectional survey.

    PubMed

    Lowther, Sara A; Curriero, Frank C; Kalish, Brian T; Shields, Timothy M; Monze, Mwaka; Moss, William J

    2009-03-21

    Measles control efforts are hindered by challenges in sustaining high vaccination coverage, waning immunity in HIV-1-infected children, and clustering of susceptible individuals. Our aim was to assess population immunity to measles virus after a mass vaccination campaign in a region with high HIV prevalence. 3 years after a measles supplemental immunisation activity (SIA), we undertook a cross-sectional survey in Lusaka, Zambia. Households were randomly selected from a satellite image. Children aged 9 months to 5 years from selected households were eligible for enrolment. A questionnaire was administered to the children's caregivers to obtain information about measles vaccination history and history of measles. Oral fluid samples were obtained from children and tested for antibodies to measles virus and HIV-1 by EIA. 1015 children from 668 residences provided adequate specimens. 853 (84%) children had a history of measles vaccination according to either caregiver report or immunisation card. 679 children (67%) had antibodies to measles virus, and 64 (6%) children had antibodies to HIV-1. Children with antibodies to HIV-1 were as likely to have no history of measles vaccination as those without antibodies to HIV-1 (odds ratio [OR] 1.17, 95% CI 0.57-2.41). Children without measles antibodies were more likely to have never received measles vaccine than those with antibodies (adjusted OR 2.50, 1.69-3.71). In vaccinated children, 33 (61%) of 54 children with antibodies to HIV-1 also had antibodies to measles virus, compared with 568 (71%) of 796 children without antibodies to HIV-1 (p=0.1). 3 years after an SIA, population immunity to measles was insufficient to interrupt measles virus transmission. The use of oral fluid and satellite images for sampling are potential methods to assess population immunity and the timing of SIAs.

  3. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes

    PubMed Central

    Tai, Ningwen; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  4. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  5. Tyrosine sulfation in a Gram-negative bacterium

    PubMed Central

    Han, Sang-Wook; Lee, Sang-Won; Bahar, Ofir; Schwessinger, Benjamin; Robinson, Michelle R.; Shaw, Jared B.; Madsen, James A.; Brodbelt, Jennifer S.; Ronald, Pamela C.

    2015-01-01

    Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry (UVPD) to demonstrate that RaxST catalyzes sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity). These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications extending to host immune response and bacterial cell-cell communication system. PMID:23093190

  6. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    PubMed

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    PubMed Central

    Hewitson, James P.; Filbey, Kara J.; Esser-von Bieren, Julia; Camberis, Mali; Schwartz, Christian; Murray, Janice; Reynolds, Lisa A.; Blair, Natalie; Robertson, Elaine; Harcus, Yvonne; Boon, Louis; Huang, Stanley Ching-Cheng; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Voehringer, David; Le Gros, Graham; Harris, Nicola; Maizels, Rick M.

    2015-01-01

    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations. PMID:25816012

  8. Lessons from Immune 1-3: what did we learn and what do we need to do in the future?

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith

    2004-01-01

    Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.

  9. Effects of deceleration on the humoral antibody response in rats

    NASA Technical Reports Server (NTRS)

    Barone, R. P.; Caren, L. D.; Oyama, J.

    1985-01-01

    Effects of hypergravity, simulated by chronic centrifugation, followed by a return to normal G (deceleration) on the immune system of rats were investigated. Two groups of male rats (28 days at 2.1 G, and 3.1 G) were compared to the control group (1.0 G). The animals were immunized by i.p. injections of sheep red blood cells on days 29, 42, and 57, and bled on days 36, 47, and 62. While the centrifuged rats ate and gainedsignificantly less than the control rats, the antibody titers and the organ/body mass ratios for the adrenal glands, kidneys, lungs, heart, and thymus were unaffected by gravity exposures, as were the values of the hematocrit and the white blood cell counts. It is concluded that deceleration does not adversely affect these particular aspects of the immune system.

  10. A shot in the rear, not a shot in the dark: application of a mass clinic framework in a public health emergency.

    PubMed

    Erwin, Paul Campbell; Sheeler, Lorinda; Lott, John M

    2009-01-01

    An outbreak of foodborne hepatitis A infection compelled two regional health departments in eastern Tennessee to implement an emergency mass clinic for providing hepatitis immune serum globulin (ISG) to several thousand potentially exposed people. For the mass clinic framework, we utilized the smallpox post-event clinic plans of the Centers for Disease Control and Prevention (CDC), although the plans had only been exercised for smallpox. Following CDC's guidelines for staffing and organizing the mass clinic, we provided 5,038 doses of ISG during a total of 24 hours of clinic operation, using 3,467 person-hours, or 1.45 ISG doses per person-hour-very close to the 1.58 doses per person-hour targeted in CDC's smallpox post-event clinic plans. The mass clinic showed that CDC's smallpox post-event clinic guidelines were feasible, practical, and adaptable to other mass clinic situations.

  11. AIDS Knowledge: The Media and the Biology Teacher.

    ERIC Educational Resources Information Center

    Vener, Arthur M.; Krupka, Lawrence R.

    1988-01-01

    Reports on a study to determine the level of knowledge college students possessed about Acquired Immune Deficiency Syndrome. Concluded that overall enhancement of knowledge occurred among young adults and that mass media was partially responsible. Lists biological terms necessary for understanding the disease. (RT)

  12. Major depressive disorder is a risk factor for low bone mass, central obesity, and other medical conditions

    PubMed Central

    Cizza, Giovanni

    2011-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748

  13. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    PubMed

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  14. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.

    PubMed

    Srivastava, Atul; Gowda, Devegowda Vishakante; Madhunapantula, SubbaRao V; Shinde, Chetan G; Iyer, Meenakshi

    2015-04-01

    Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  15. Construction of a recombinant baculovirus expressing swine hepatitis E Virus ORF2 and preliminary research on its immune effect.

    PubMed

    Yang, Z; Hu, Y; Yuan, P; Yang, Y; Wang, K; Xie, L Y; Huang, S L; Liu, J; Ran, L; Song, Z H

    2018-03-01

    In the swine hepatitis E virus (HEV), open reading frame 2 (ORF2) is rich in antigenic determinants and neutralizing epitopes that could induce immune protection. We chose the Bac-to-Bac® Baculovirus Expression System to express fragments containing the critical neutralizing antigenic sites within the HEV ORF2 protein of pigs to obtain a recombinant baculovirus. The fragment of swine HEV ORF2 region (1198-1881bp) was cloned into vector pFastBacTM. A recombinant baculovirus, rBacmid-ORF2, was obtained after transposition and transfection. The molecular mass of the recombinant protein was 26 kDa. Mice were immunized by the intraperitoneal and oral routes with cell lysates of recombinant baculovirus rBacmid-ORF2. Serum and feces of the mice were collected separately at 0, 14, 28, and 42 d after immunization and the antibody levels of IgG and secretory IgA against swine HEV were determined using an enzyme-linked immunosorbent assay. The results suggested that rBacmid-ORF2 induced antibodies of the humoral and mucosal immune responses in mice and that the oral route was significantly superior to the intraperitoneal route. This is the first study to demonstrate that that recombinant baculovirus swine HEV ORF2 could induce humoral and mucosal immune responses in mice. Copyright© by the Polish Academy of Sciences.

  16. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination.

    PubMed

    Kongsgaard, Michael; Bassi, Maria R; Rasmussen, Michael; Skjødt, Karsten; Thybo, Søren; Gabriel, Mette; Hansen, Morten Bagge; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Buus, Soren; Stryhn, Anette

    2017-04-06

    Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.

  17. Wild immunology assessed by multidimensional mass cytometry.

    PubMed

    Japp, Alberto Sada; Hoffmann, Kerstin; Schlickeiser, Stephan; Glauben, Rainer; Nikolaou, Christos; Maecker, Holden T; Braun, Julian; Matzmohr, Nadine; Sawitzki, Birgit; Siegmund, Britta; Radbruch, Andreas; Volk, Hans-Dieter; Frentsch, Marco; Kunkel, Desiree; Thiel, Andreas

    2017-01-01

    A great part of our knowledge on mammalian immunology has been established in laboratory settings. The use of inbred mouse strains enabled controlled studies of immune cell and molecule functions in defined settings. These studies were usually performed in specific-pathogen free (SPF) environments providing standardized conditions. In contrast, mammalians including humans living in their natural habitat are continuously facing pathogen encounters throughout their life. The influences of environmental conditions on the signatures of the immune system and on experimental outcomes are yet not well defined. Thus, the transferability of results obtained in current experimental systems to the physiological human situation has always been a matter of debate. Studies elucidating the diversity of "wild immunology" imprintings in detail and comparing it with those of "clean" lab mice are sparse. Here, we applied multidimensional mass cytometry to dissect phenotypic and functional differences between distinct groups of laboratory and pet shop mice as a source for "wild mice". For this purpose, we developed a 31-antibody panel for murine leukocyte subsets identification and a 35-antibody panel assessing various cytokines. Established murine leukocyte populations were easily identified and diverse immune signatures indicative of numerous pathogen encounters were classified particularly in pet shop mice and to a lesser extent in quarantine and non-SPF mice as compared to SPF mice. In addition, unsupervised analysis identified distinct clusters that associated strongly with the degree of pathogenic priming, including increased frequencies of activated NK cells and antigen-experienced B- and T-cell subsets. Our study unravels the complexity of immune signatures altered under physiological pathogen challenges and highlights the importance of carefully adapting laboratory settings for immunological studies in mice, including drug and therapy testing. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  18. Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila.

    PubMed

    Zhang, Zuobing; Chen, Bojian; Yuan, Lin; Niu, Cuijuan

    2015-03-01

    Chinese soft-shelled turtle, Pelodiscus sinensis, is widely cultured in East and Southeast Asian countries. It frequently encounters the stress of abrupt temperature changes, which leads to mass death in most cases. However, the mechanism underlying the stress-elicited death remains unknown. We have suspected that the stress impaired the immune function of Chinese soft-shelled turtle, which could result in the mass death, as we noticed that there was a clinical syndrome of infection in dead turtles. To test our hypothesis, we first performed bioinformatic annotation of several pro-inflammatory molecules (IL-1β, TNFα, IL-6, IL-12β) of Chinese soft-shelled turtle. Then, we treated the turtles in six groups, injected with Aeromonas hydrophila before acute cold stress (25 °C) and controls, after acute cold stress (15 °C) and controls as well as after the temperature was restored to 25 °C and controls, respectively. Subsequently, real-time PCR for several pro-inflammatory cytokines (IL-1β, TNFα, IL-6, IL-12β, IL-8 and IFNγ) was performed to assess the turtle immune function in spleen and intestine, 24 hours after the injection. We found that the mRNA expression levels of the immune molecules were all enhanced after acute cold stress. This change disappeared when the temperature was restored back to 25 °C. Our results suggest that abrupt temperature drop did not suppress the immune function of Chinese soft-shelled turtle in response to germ challenge after abrupt temperature drop. In contrast, it may even increase the expression of various cytokines at least, within a short time after acute cold stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enhancement of islet engraftment and achievement of long-term islet allograft survival by Toll-like receptor 4 blockade.

    PubMed

    Giovannoni, Laurianne; Muller, Yannick D; Lacotte, Stéphanie; Parnaud, Géraldine; Borot, Sophie; Meier, Raphaël P H; Lavallard, Vanessa; Bédat, Benoît; Toso, Christian; Daubeuf, Bruno; Elson, Greg; Shang, Limin; Morel, Philippe; Kosco-Vilbois, Marie; Bosco, Domenico; Berney, Thierry

    2015-01-01

    Toll-like receptors are key players in sterile inflammation phenomena and can link the innate and adaptive immune systems by enhancing graft immunogenicity. They are also considered mediators of types 1 and 2 diabetes development. The aim of the present study was to assess the role of Toll-like receptor-4 (TLR4) in mediating the inflammatory and immune responses to pancreatic islets, thereby promoting inflammatory destruction and immune rejection of islet grafts. Experiments were conducted in murine and human in vitro systems and in vivo murine islet transplant models, using species-specific anti-TLR4 monoclonal antibodies. In vitro, mixed lymphocyte-islet reaction experiments were performed to assess T-cell activation and proliferation. In vivo, both a syngeneic (B6-to-B6) marginal mass islet transplant model to assess the impact of TLR4 blockade on islet engraftment and an allogeneic (DBA1-to-B6) model were used. In vitro TLR4 blockade decreased lipopolysaccharide-mediated β-cell apoptosis and T-cell activation and proliferation against allogeneic islets. In vivo, TLR4 blockade resulted in significantly better syngeneic marginal mass islet engraftment and in indefinite allogeneic islet graft survival. Tolerance was not observed because donor-specific skin graft rechallenge in nonrejecting animals resulted in rejection of both skin and islets, but without accelerated rejection as compared to naive animals. Taken together, our data indicate that TLR4 blockade leads to a significant improvement of syngeneic islet engraftment and of allogeneic islet graft survival. A mechanism of graft accommodation with concurrent inhibition of donor-specific immune memory is likely to be involved.

  20. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    PubMed Central

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines. PMID:25746201

  1. Single-cell systems level analysis of human Toll-Like-Receptor activation defines a chemokine signature in Systemic Lupus Erythematosus

    PubMed Central

    O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.

    2015-01-01

    Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552

  2. Sex-specific effect of juvenile diet on adult disease resistance in a field cricket.

    PubMed

    Kelly, Clint D; Tawes, Brittany R

    2013-01-01

    Food limitation is expected to reduce an individual's body condition (body mass scaled to body size) and cause a trade-off between growth and other fitness-related traits, such as immunity. We tested the condition-dependence of growth and disease resistance in male and female Gryllus texensis field crickets by manipulating diet quality via nutrient content for their entire life and then subjecting individuals to a host resistance test using the live bacterium Serratia marcescens. As predicted, crickets on a high-quality diet eclosed more quickly, and at a larger body size and mass. Crickets on a high-quality diet were not in better condition at the time of eclosion, but they were in better condition 7-11 days after eclosion, with females also being in better condition than males. Despite being in better condition, however, females provided with a high-quality diet had significantly poorer disease resistance than females on a low-quality diet and in poor condition. Similarly, males on low- and high-quality diets did not differ in their disease resistance, despite differing in their body condition. A sex difference in disease resistance under diet-restriction suggests that females might allocate resources toward immunity during development if they expect harsh environmental conditions as an adult or it might suggest that females allocate resources toward other life history activities (i.e. reproduction) when food availability increases. We do not know what immune effectors were altered under diet-restriction to increase disease resistance, but our findings suggest that increased immune function might provide an explanation for the sexually-dimorphic increase in longevity generally observed in diet-restricted animals.

  3. Identification of Group B Streptococcal Sip Protein, Which Elicits Cross-Protective Immunity

    PubMed Central

    Brodeur, Bernard R.; Boyer, Martine; Charlebois, Isabelle; Hamel, Josée; Couture, France; Rioux, Clément R.; Martin, Denis

    2000-01-01

    A protein of group B streptococci (GBS), named Sip for surface immunogenic protein, which is distinct from previously described surface proteins, was identified after immunological screening of a genomic library. Immunoblots using a Sip-specific monoclonal antibody indicated that a protein band with an approximate molecular mass of 53 kDa which did not vary in size was present in every GBS strain tested. Representatives of all nine GBS serotypes were included in the panel of strains. Cloning and sequencing of the sip gene revealed an open reading frame of 1,305 nucleotides coding for a polypeptide of 434 amino acid residues, with a calculated pI of 6.84 and molecular mass of 45.5 kDa. Comparison of the nucleotide sequences from six different strains confirmed with 98% identity that the sip gene is highly conserved among GBS isolates. N-terminal amino acid sequencing also indicated the presence of a 25-amino-acid signal peptide which is cleaved in the mature protein. More importantly, immunization with the recombinant Sip protein efficiently protected CD-1 mice against deadly challenges with six GBS strains of serotypes Ia/c, Ib, II/R, III, V, and VI. The data presented in this study suggest that this highly conserved protein induces cross-protective immunity against GBS infections and emphasize its potential as a universal vaccine candidate. PMID:10992461

  4. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers.

    PubMed

    Shen, Xuejiao; Yi, Dan; Ni, Xueqin; Zeng, Dong; Jing, Bo; Lei, Mingxia; Bian, Zhengrong; Zeng, Yan; Li, Tao; Xin, Jinge

    2014-04-01

    Examples of probiotics that can promote host health by improving its intestinal microbial balance and intestinal immunity belong to the genus Lactobacillus. Bursin (BS) is a peptide isolated from the bursa of Fabricius for use as an adjuvant for a variety of immunogens. To investigate the synergistic effects of Lactobacillus plantarum (LP) dietary supplementation and BS immunization on production performance, immune characteristics, antioxidant status, and intestinal microflora in broilers, we randomly allocated 200 1-day-old broilers of mixed sex into 4 treatments in a 2 × 2 factorial arrangement (LP-/BS-, LP-/BS+, LP+/BS-, LP+/BS+) for 42 days. BS immunization enhanced immune response by increasing serum total immunoglobulin G concentration and interleukin-6 concentration, promoted antioxidant capacity by increasing catalase activities in serum and liver and by decreasing serum malondialdehyde (MDA) content at 42 days of age (DOA), and enriched intestinal microflora diversity. LP supplementation enhanced immune response by increasing interleukin-2 concentration at 42 DOA; promoted antioxidant capacity by increasing liver catalase activities, increasing glutathione peroxidase activities in serum and liver at 21 DOA, and decreasing serum MDA content at 42 DOA; promoted intestinal microflora composition by decreasing total aerobes and Escherichia coli counts at 21 DOA, by increasing total anaerobes count at 21 DOA, and by increasing Lactobacillus spp. and Bifidobacterium spp. counts at both 21 and 42 DOA. The interactions between BS and LP had a significant effect on daily body mass gain and feed conversion ratio in the starter period (1-21 DOA); on interleukin-2 concentration and liver MDA content at 21 DOA; and on thymus index, peripheral lymphocyte proliferation, and E. coli counts at 42 DOA. Overall, these data suggest that the combination of LP dietary supplementation and BS immunization promoted the production performance, immune characteristics, antioxidant status, and intestinal microflora of broilers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, June T., E-mail: spectj@uw.edu; Department of Medicine, School of Medicine, University of Washington, Seattle, WA; De Roos, Anneclaire J., E-mail: ajd335@drexel.edu

    Background: Polychlorinated biphenyl (PCB) exposure has been associated with non-Hodgkin lymphoma in several studies, and the immune system is a potential mediator. Objectives: We analyzed associations of plasma PCBs with immune function measures. We hypothesized that higher plasma PCB concentrations are associated with lower immune function cross-sectionally, and that increases in PCB concentrations over a one year period are associated with decreases in immune function. Methods: Plasma PCB concentrations and immune function [natural killer (NK) cell cytotoxicity and PHA-induced T-lymphocyte proliferation (PHA-TLP)] were measured at baseline and one year in 109 postmenopausal overweight women participating in an exercise intervention studymore » in the Seattle, Washington (USA) area. Mixed models, with adjustment for body mass index and other potential confounders, were used to estimate associations of PCBs with immune function cross-sectionally and longitudinally. Results: Associations of PCBs with immune function measures differed across groups of PCBs (e.g., medium- and high-chlorinated and dioxin-like [mono-ortho-substituted]) and by the time frame for the comparison (cross-sectional vs. longitudinal). Higher concentrations of medium- and high-chlorinated PCBs were associated with higher PHA-TLP cross-sectionally but not longitudinally. The mean decrease in 0.5 µg/mL PHA-TLP/50.0 pmol/g-lipid increase in dioxin-like PCBs over one year was 51.6 (95% confidence interval 2.7, 100.5; P=0.039). There was no association between plasma PCBs and NK cytotoxicity. Conclusions: These results do not provide strong evidence of impaired cellular immunity from PCB exposure. Larger longitudinal studies with greater variability in PCB exposures are needed to further examine temporal associations of PCBs with immune function. - Highlights: • Plasma PCBs and immune function were measured in 109 women at baseline and one year. • Immune measures included T lymphocyte proliferation (TLP) and NK cell cytotoxicity. • Higher-chlorinated PCBs were positively associated with TLP in cross-section. • An increase in dioxin-like PCBs was associated with a decrease in TLP over one year. • We did not find strong evidence of impaired cellular immunity from PCB exposure.« less

  6. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    PubMed Central

    Freitak, Dalial; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2007-01-01

    Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores. PMID:18154650

  7. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    PubMed

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Uncovering potential “herbal probiotics” in Juzen-taiho-to through the study of associated bacterial populations

    PubMed Central

    Montenegro, Diego; Kalpana, Kriti; Chrissian, Christine; Sharma, Ashutosh; Takaoka, Anna; Iacovidou, Maria; Soll, Clifford E.; Aminova, Olga; Heguy, Adriana; Cohen, Lisa; Shen, Steven

    2014-01-01

    Juzen-taiho-to (JTT) is an immune-boosting formulation of ten medicinal herbs. It is used clinically in East Asia to boost the human immune functions. The active factors in JTT have not been clarified. But, existing evidence suggests that lipopolysaccharide (LPS)-like factors contribute to the activity. To examine this possibility, JTT was subjected to a series of analyses, including high resolution mass spectrometry, which suggested the presence of structural variants of LPS. This finding opened a possibility that JTT contains immune-boosting bacteria. As the first step to characterize the bacteria in JTT, 16S ribosomal RNA sequencing was carried out for Angelica sinensis (dried root), one of the most potent immunostimulatory herbs in JTT. The sequencing revealed a total of 519 bacteria genera in A. sinensis. The most abundant genus was Rahnella, which is widely distributed in water and plants. The abundance of Rahnella appeared to correlate with the immunostimulatory activity of A. sinensis. In conclusion, the current study provided new pieces of evidence supporting the emerging theory of bacterial contribution in immune-boosting herbs. PMID:25547935

  9. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    PubMed

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  10. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  11. Experimental mixed infection of Leishmania (Leishmania) amazonensis and Leishmania (L.) infantum in hamsters (Mesocricetus auratus).

    PubMed

    DE Lima Celeste, Jordanna Luíza; Venuto Moura, Ana Paula; França-Silva, João Carlos; Matos DE Sousa, Gabriela; Oliveira Silva, Soraia; Norma Melo, Maria; Luiz Tafuri, Wagner; Carvalho Souza, Carolina; Monteiro DE Andrade, Hélida

    2017-08-01

    In South America, visceral leishmaniasis is frequently caused by Leishmania infantum and, at an unknown frequency, by Leishmania amazonensis. Therefore, mixed infections with these organisms are possible. Mixed infections might affect the clinical course, immune response, diagnosis, treatment and epidemiology of the disease. Here we describe the clinical course of mixed infections with L. amazonensis and L. infantum in a hamster model. We show that mixed infections are associated with more severe clinical disease than infection with L. amazonensis or L. infantum alone. In spleens with mixed infections, L. infantum outcompeted L. amazonensis in the tissue, but not in culture from tissue. We found increased levels of IgG in animals infected with L. infantum. Although more than 30 bands were revealed in a Western blot, the highest immunogenicity was observed with proteins having molecular masses of 95 and 90 kDa, whereas proteins with molecular masses of lower than 50 kDa were reactive frequently with serum from hamsters infected with L. amazonensis, and proteins with molecular masses of 80 and 70 kDa were reactive only with serum from hamsters infected with L. infantum. This finding has important implications regarding the biology of Leishmania and humoral immune responses to infections with these organisms.

  12. Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy

    PubMed Central

    Fragiadakis, Gabriela K.; Baca, Quentin J.; Gherardini, Pier Federico; Ganio, Edward A.; Gaudilliere, Dyani K.; Tingle, Martha; Lancero, Hope L.; McNeil, Leslie S.; Spitzer, Matthew H.; Wong, Ronald J.; Shaw, Gary M.; Darmstadt, Gary L.; Sylvester, Karl G.; Winn, Virginia D.; Carvalho, Brendan; Lewis, David B.; Stevenson, David K.; Nolan, Garry P.; Aghaeepour, Nima; Angst, Martin S.; Gaudilliere, Brice L.

    2016-01-01

    Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus are critical for the maintenance of pregnancy and the delivery of an immuno-competent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyper-responsiveness of CD4+ and CD8+ T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPKAPK2, rpS6, and CREB phosphorylation in fetal Tbet+CD4+ T cells, CD8+ T cells, B cells and CD56loCD16+ NK cells and decreased ERK1/2, MAPKAPK2, and STAT1 phosphorylation in fetal intermediate and non-classical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes. PMID:27793998

  13. Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy.

    PubMed

    Fragiadakis, Gabriela K; Baca, Quentin J; Gherardini, Pier Federico; Ganio, Edward A; Gaudilliere, Dyani K; Tingle, Martha; Lancero, Hope L; McNeil, Leslie S; Spitzer, Matthew H; Wong, Ronald J; Shaw, Gary M; Darmstadt, Gary L; Sylvester, Karl G; Winn, Virginia D; Carvalho, Brendan; Lewis, David B; Stevenson, David K; Nolan, Garry P; Aghaeepour, Nima; Angst, Martin S; Gaudilliere, Brice L

    2016-12-01

    Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus is critical for the maintenance of pregnancy and the delivery of an immunocompetent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyperresponsiveness of CD4 + and CD8 + T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation in fetal Tbet + CD4 + T cells, CD8 + T cells, B cells, and CD56 lo CD16 + NK cells and decreased ERK1/2, MAPK-activated protein kinase 2, and STAT1 phosphorylation in fetal intermediate and nonclassical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Immune changes in humans concomitant with space flights of up to 10 days duration

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R.

    1993-01-01

    The time relation of various classes of in-flight human physiological changes is illustrated. Certain problems, such as neurovestibular, fluid, and electrolyte imbalances tend to occur early in a flight, followed by stabilization at some microgravity equilibrium level. Cardiovascular dysfunctions and erythrocyte mass losses appear to follow a similar pattern, although the significant changes occur later in flight. Bone and calcium changes and radiation effects are thought to progressively worsen with time, whereas the time course of immune change is yet to be fully understood. Significant immunologic changes in cosmonauts and astronauts during and after space flight have been documented as have microbiological changes. Thus, space flight can be expected to effect a blunting of the human cellular immune mechanism concomitant with a relative increase in potentially pathogenic microorganisms. This combination would seem to increase the probability of infectious disease events in flight.

  15. Integrating Neglected Tropical Disease and Immunization Programs: The Experiences of the Tanzanian Ministry of Health

    PubMed Central

    Mwingira, Upendo John; Means, Arianna Rubin; Chikawe, Maria; Kilembe, Bernard; Lyimo, Dafrossa; Crowley, Kathryn; Rusibamayila, Neema; Nshala, Andreas; Mphuru, Alex

    2016-01-01

    Global health practitioners are increasingly advocating for the integration of community-based health-care platforms as a strategy for increasing the coverage of programs, encouraging program efficiency, and promoting universal health-care goals. To leverage the strengths of compatible programs and avoid geographic and temporal duplications in efforts, the Tanzanian Ministry of Health and Social Welfare coordinated immunization and neglected tropical disease programs for the first time in 2014. Specifically, a measles and rubella supplementary vaccine campaign, mass drug administration (MDA) of ivermectin and albendazole, and Vitamin A were provisionally integrated into a shared community-based delivery platform. Over 21 million people were targeted by the integrated campaign, with the immunization program and MDA program reaching 97% and 93% of targeted individuals, respectively. The purpose of this short report is to share the Tanzanian experience of launching and managing this integrated campaign with key stakeholders. PMID:27246449

  16. Subacute sclerosing panencephalitis (SSPE) the story of a vanishing disease.

    PubMed

    Gadoth, Natan

    2012-10-01

    Subacute sclerosing panencephalitis (SSPE), is a devastating "slow virus" brain disease which affects young children who had measles some 6-7 years earlier. Although, the pandemic of SSPE during 1960-1980's was almost eradicated due to mass immunization, the disease is still taking the life of young children in countries where measles immunization is incomplete and in world regions where genetic polymorphism to this particular infection is present. The present review was written for the fortunate young generation of pediatricians and pediatric neurologists who probably have not seen a case of SSPE during their career, and for those who work in counties where the disease has not been eradicated. It is also a reminder that with full coverage of measles immunization this devastating disease can be fully eradicated. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mule, S.J.; Lomax, P.; Gross, S.J.

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation.

  18. Excess body mass is associated with T cell differentiation indicative of immune aging in children

    USDA-ARS?s Scientific Manuscript database

    Obesity has been associated with accelerated biological ageing and immunosenescence. As the prevalence of childhood obesity is increasing, we wanted to determine if associations between obesity and immunosenescence would manifest in children. We studied 123 Mexican American adolescents aged 10–14 (m...

  19. Weakness in the band: Nutrient imbalance and immunodeficiency in mass-migrating cannibalistic katydids

    USDA-ARS?s Scientific Manuscript database

    Mormon crickets (Anabrus simplex) form large migratory bands that march over rangeland in the western United States in search of nutrients. Immune defense is particularly relevant to survival in migratory bands, but little is known about the role of nutrition in insect immunocompetence, particularly...

  20. Active optical cable for intrasatellite communications

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cano, D.; Navasquillo, O.; Esteban, M. A.

    2017-11-01

    DAS Photonics and Airbus Defence and Space (Spain) have been working for more than six years in the concept of an Active Optical Cable (AOC) for copper cable substitution. The main advantages that AOC offers are significant mass and size saving, better flexibility and routing of the cable and immunity to EMI.

  1. Compact tunable and reconfigurable microwave photonic filter for satellite payloads

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Yoosefi, O.

    2017-11-01

    The trend towards the photonic processing of electrical signals at microwave frequencies for satellite payloads is increasing at a breathtaking pace, mainly spurred by prospects of wide electrical bandwidth operation, low mass and volume, reduced electrical noise levels, immunity to electromagnetic interferences and resistance to both temperature and radiation.

  2. Identification of Antigens of Pathogenic Free-Living Amoebae by Protein Immunoblotting with Rabbit Immune and Human Sera

    DTIC Science & Technology

    1994-09-01

    development of immunoreactive bands was restricted to molecular masses of greater than 18.5 kDa for Naegleria , Hartmannella, and Vahlkampfia antigens. Two...detected between representative species of the three subgroups of Acanthamoeba. Naegleria antigen was likewise serologically distinct, as were

  3. Lactose in Human Breast Milk an Inducer of Innate Immunity with Implications for a Role in Intestinal Homeostasis

    PubMed Central

    Printz, Gordana; Yoshio, Hiroyuki; Alvelius, Gunvor; Lagercrantz, Hugo; Strömberg, Roger; Jörnvall, Hans; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2013-01-01

    Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant. PMID:23326523

  4. Just-in-time training of dental responders in a simulated pandemic immunization response exercise.

    PubMed

    Colvard, Michael D; Hirst, Jeremy L; Vesper, Benjamin J; DeTella, George E; Tsagalis, Mila P; Roberg, Mary J; Peters, David E; Wallace, Jimmy D; James, James J

    2014-06-01

    The reauthorization of the Pandemic and All-Hazards Preparedness Act in 2013 incorporated the dental profession and dental professionals into the federal legislation governing public health response to pandemics and all-hazard situations. Work is now necessary to expand the processes needed to incorporate and train oral health care professionals into pandemic and all-hazard response events. A just-in-time (JIT) training exercise and immunization drill using an ex vivo porcine model system was conducted to demonstrate the rapidity to which dental professionals can respond to a pandemic influenza scenario. Medical history documentation, vaccination procedures, and patient throughput and error rates of 15 dental responders were evaluated by trained nursing staff and emergency response personnel. The average throughput (22.33/hr) and medical error rates (7 of 335; 2.08%) of the dental responders were similar to those found in analogous influenza mass vaccination clinics previously conducted using certified public health nurses. The dental responder immunization drill validated the capacity and capability of dental professionals to function as a valuable immunization resource. The ex vivo porcine model system used for JIT training can serve as a simple and inexpensive training tool to update pandemic responders' immunization techniques and procedures supporting inoculation protocols.

  5. Immunotherapy and gene therapy as novel treatments for cancer

    PubMed Central

    Rangel-Sosa, Martha Montserrat; Aguilar-Córdova, Estuardo

    2017-01-01

    Abstract The immune system interacts closely with tumors during the disease development and progression to metastasis. The complex communication between the immune system and the tumor cells can prevent or promote tumor growth. New therapeutic approaches harnessing protective immunological mechanisms have recently shown very promising results. This is performed by blocking inhibitory signals or by activating immunological effector cells directly. Immune checkpoint blockade with monoclonal antibodies directed against the inhibitory immune receptors CTLA-4 and PD-1 has emerged as a successful treatment approach for patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 antibody which demonstrated good results when administered to patients with melanoma. Gene therapy has also shown promising results in clinical trials. Particularly, Herpes simplex virus (HSV)-mediated delivery of the HSV thymidine kinase (TK) gene to tumor cells in combination with ganciclovir (GCV) may provide an effective suicide gene therapy for destruction of glioblastomas, prostate tumors and other neoplasias by recruiting tumor-infiltrating lymphocytes into the tumor. The development of new treatment strategies or combination of available innovative therapies to improve cell cytotoxic T lymphocytes trafficking into the tumor mass and the production of inhibitory molecules blocking tumor tissue immune-tolerance are crucial to improve the efficacy of cancer therapy. PMID:29213157

  6. Immunotoxicity of trenbolone acetate in Japanese quail

    USGS Publications Warehouse

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  7. Safety and Serological Response to a Matrix Gene-deleted Rabies Virus-based Vaccine Vector in Dogs

    PubMed Central

    McGettigan, James P.; David, Frederic; Figueiredo, Monica Dias; Minke, Jules; Mebatsion, Teshome; Schnell, Matthias J.

    2014-01-01

    Dogs account for the majority of human exposures and deaths due to rabies virus (RABV) worldwide. In this report, we show that a replication-deficient RABV-based vaccine in which the matrix gene is deleted (RABV- M) is safe and induces rapid and potent VNA titers after a single inoculation in dogs. Average VNA titers peaked at 3.02 or 5.11 International Units (IU/ml) by 14 days post-immunization with a single dose of 106 or 107 focus forming units (ffu), respectively, of RABV- M. By day 70 post immunization, all dogs immunized with either dose of vaccine showed VNA titers >0.5 IU/ml, the level indicative of a satisfactory immunization. Importantly, no systemic or local reactions were noted in any dog immunized with RABV- M. The elimination of dog rabies through mass vaccination is hindered by limited resources, requirement for repeat vaccinations often for the life of a dog, and in some parts of the world, inferior vaccine quality. Our preliminary safety and immunogenicity data in dogs suggest that RABV- M might complement currently used inactivated RABV-based vaccines in vaccination campaigns by helping to obtain 100% response in vaccinated dogs, thereby increasing overall vaccination coverage. PMID:24508037

  8. Adverse effects of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine in 6- to 7-year-old children.

    PubMed

    Wei, Sung-Hsi; Chao, Yen-Nan; Huang, Song-En; Lee, Tsuey-Feng; Chang, Luan-Yin

    2011-02-01

    Although the safety profile of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccines in adolescents and adults has been documented, few data have reported about their adverse events in children. Healthy 6- to 7-year-old children who were immunized with Tdap vaccine were evaluated for adverse events on Days 1, 2, 4, and 7 postimmunization. Information of sex, body mass index (BMI), and previous diphtheria-pertussis-tetanus (DPT) immunization history was obtained and evaluated for the association with the adverse events. A total of 243 6- to 7-year-old children were immunized with Tdap. Among the 243 children immunized, remarkable adverse events included redness more than or equal to 10 mm in 47 (19%) children, induration more than or equal to 10 mm in 57 (23%), tenderness in 130 (53%), and fever in 12 (5%). Redness and induration resolved in 7 days and fever resolved on Day 4. The adverse events were not associated with gender, BMI above the mean value, or the type of fourth DPT immunization. Adverse events after Tdap vaccination were mild and dissolved within 7 days in 6- to 7-year-old children. Copyright © 2011. Published by Elsevier B.V.

  9. Active Immunization Against hIAPP Oligomers Ameliorates the Diabetes- Associated Phenotype in a Transgenic Mice Model.

    PubMed

    Bram, Yaron; Peled, Sivan; Brahmachari, Sayanti; Harlev, Michael; Gazit, Ehud

    2017-10-25

    Type 2 diabetes is characterized by insulin tolerance in target cells followed by a reduction of pancreatic β-cell mass. Islet amyloid polypeptide oligomeric assemblies were shown to contribute to β-cell apoptosis by forming discrete pores that destabilize the cellular membrane. We previously characterized α-helical cytotoxic islet amyloid polypeptide oligomers which interact with cell membranes, following a complete internalization that leads to cellular apoptosis. Moreover, antibodies which bind the oligomers and neutralize the cytotoxicity were exclusively identified in the serum of type 2 diabetes patients. Here, we examined the usage of the newly characterized oligomers as an active immunization agent targeting amyloid self- assembly in a diabetes-associated phenotype transgenic mice model. Immunized transgenic mice showed an increase in hIAPP-antibody serum titer as well as improvement in diabetes-associated parameters. Lower fasting blood glucose levels, higher insulin, and lower islet amyloid polypeptide accumulation were observed. Furthermore, antibodies derived from the immunized mice reduced hIAPP oligomers cytotoxicity towards β-cells in a dose-dependent manner. This study highlights the significance of targeting the early amyloid self-assembly events for potential disease management. Furthermore, it demonstrates that α-helical oligomers conformers are valid epitope for the development of future immunization therapy.

  10. Outer Membrane Vesicles from Neisseria Meningitidis (Proteossome) Used for Nanostructured Zika Virus Vaccine Production.

    PubMed

    Martins, Paula; Machado, Daisy; Theizen, Thais Holtz; Guarnieri, João Paulo Oliveira; Bernardes, Bruno Gaia; Gomide, Gabriel Piccirillo; Corat, Marcus Alexandre Finzi; Abbehausen, Camilla; Módena, José Luiz Proença; Melo, Carlos Fernando Odir Rodrigues; Morishita, Karen Noda; Catharino, Rodrigo Ramos; Arns, Clarice Weis; Lancellotti, Marcelo

    2018-05-29

    The increase of Zika virus (ZIKV) infections in Brazil in the last two years leaves a prophylactic measures on alert for this new and emerging pathogen. Concerning of our positive experience, we developed a new prototype using Neisseria meningitidis outer membrane vesicles (OMV) on ZIKV cell growth in a fusion of OMV in the envelope of virus particles. The fusion of nanoparticles resulting from outer membrane vesicles of N. meningitidis with infected C6/36 cells line were analyzed by Nano tracking analysis (NTA), zeta potential, differential light scattering (DLS), scan and scanning transmission eletronic microscopy (SEM and STEM) and high resolution mass spectometry (HRMS) for nanostructure characterization. Also, the vaccination effects were viewed by immune response in mice protocols immunization (ELISA and inflammatory chemokines) confirmed by Zika virus soroneutralization test. The results of immunizations in mice showed that antibody production had a titer greater than 1:160 as compared to unvaccinated mice. The immune response of the adjuvant and non-adjuvant formulation activated the cellular immune response TH1 and TH2. In addition, the serum neutralization was able to prevent infection of virus particles in the glial tumor cell model (M059J). This research shows efficient strategies without recombinant technology or DNA vaccines.

  11. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor associated antigens: a new view of cancer immunosurveillance

    PubMed Central

    Iheagwara, Uzoma K.; Beatty, Pamela L.; Van, Phu T.; Ross, Ted M.; Minden, Jonathan S.; Finn, Olivera J.

    2014-01-01

    Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAA have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAA; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry, we identified numerous molecules, some of which are known TAA, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against GAPDH, Histone H4, HSP90, Malate Dehydrogenase 2 and Annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Lastly, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control. PMID:24778322

  12. A Simulated Heat Wave Has Diverse Effects on Immune Function and Oxidative Physiology in the Corn Snake (Pantherophis guttatus).

    PubMed

    Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W

    Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.

  13. Oral Vaccination of Fish – Antigen Preparations, Uptake, and Immune Induction

    PubMed Central

    Mutoloki, Stephen; Munang’andu, Hetron Mweemba; Evensen, Øystein

    2015-01-01

    The oral route offers the most attractive approach of immunization of fish for a number of reasons: the ease of administration of antigens, it is less stressful than parenteral delivery and in principle, it is applicable to small and large sized fish; it also provides a procedure for oral boosting during grow-out periods in cages or ponds. There are, however, not many commercial vaccines available at the moment due to lack of efficacy and challenges associated with production of large quantities of antigens. These are required to stimulate an effective immune response locally and systemically, and need to be protected against degradation before they reach the sites where immune induction occurs. The hostile stomach environment is believed to be particularly important with regard to degradation of antigens in certain species. There is also a poor understanding about the requirements for proper immune induction following oral administration on one side, and the potential for induction of tolerance on the other. To what extent primary immunization via the oral route will elicit both local and systemic responses is not understood in detail. Furthermore, to what extent parenteral delivery will protect mucosal/gut surfaces and vice-versa is also not fully understood. We review the work that has been done on the subject and discuss it in light of recent advances that include mass production of antigens, including the use of plant systems. Different encapsulation techniques that have been developed in the quest to protect antigens against digestive degradation, as well as to target them for appropriate immune induction are also highlighted. PMID:26539192

  14. The Immune Phenotype of Three Drosophila Leukemia Models.

    PubMed

    Arefin, Badrul; Kunc, Martin; Krautz, Robert; Theopold, Ulrich

    2017-07-05

    Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene ( Ras V12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia. Copyright © 2017 Arefin et al.

  15. High resting metabolic rate among Amazonian forager-horticulturalists experiencing high pathogen burden

    PubMed Central

    Gurven, Michael D.; Trumble, Benjamin C.; Stieglitz, Jonathan; Yetish, Gandhi; Cummings, Daniel; Blackwell, Aaron D.; Beheim, Bret; Kaplan, Hillard S.; Pontzer, Herman

    2016-01-01

    Objectives Resting metabolic rate (RMR) reflects energetic costs of homeostasis and accounts for 60-75% of total energy expenditure (TEE). Lean mass and physical activity account for much RMR variability, but the impact of prolonged immune activation from infection on human RMR is unclear in naturalistic settings. We evaluate the effects of infection on mass-corrected RMR among Bolivian forager-horticulturalists, and assess whether RMR declines more slowly with age than in hygienic sedentary populations, as might be expected if older adults experience high pathogen burden. Materials and Methods RMR was measured by indirect calorimetry (Fitmate MED, Cosmed) in 1,300 adults aged 20-90 and TEE was measured using doubly labeled water (n= 40). Immune biomarkers, clinical diagnoses and anthropometrics were collected by the Tsimane Health and Life History Project. Results Tsimane have higher RMR and TEE than people in sedentary industrialized populations. Tsimane RMR is 18-47% (women) and 22-40% (men) higher than expected using six standard prediction equations. Tsimane mass-corrected TEE is similarly elevated compared to Westerners. Elevated leukocytes and helminths are associated with excess RMR in multivariate regressions, and jointly result in a predicted excess RMR of 10-15%. After age 40, RMR declines by 69 kcal/decade (p<0.0001). Controlling for lean mass and height accounts for 71% of age-related RMR decline, and adding indicators of infection minimally affects the age slope. The residual level of age-related decline from age 40 is 1.2% per decade. Conclusion High pathogen burden may lead to higher metabolic costs, which may be offset by smaller body mass or other energy-sparing mechanisms. PMID:27375044

  16. Improving polio vaccination during supplementary campaigns at areas of mass transit in India

    PubMed Central

    2010-01-01

    Background In India, children who are traveling during mass immunization campaigns for polio represent a substantial component of the total target population. These children are not easily accessible to health workers and may thus not receive vaccine. Vaccination activities at mass transit sites (such as major intersections, bus depots and train stations), can increase the proportion of children vaccinated but the effectiveness of these activities, and factors associated with their success, have not been rigorously evaluated. Methods We assessed data from polio vaccination activities in Jyotiba Phule Nagar district, Uttar Pradesh, India, conducted in June 2006. We used trends in the vaccination results from the June activities to plan the timing, locations, and human resource requirements for transit vaccination activities in two out of the seven blocks in the district for the July 2006 supplementary immunization activity (SIA). In July, similar data was collected and for the first time vaccination teams also recorded the proportion of children encountered each day who were vaccinated (a new monitoring system). Results In June, out of the 360,937 total children vaccinated, 34,643 (9.6%) received vaccinations at mass transit sites. In the July SIA, after implementation of a number of changes based on the June monitoring data, 36,475 children were vaccinated at transit sites (a 5.3% increase). Transit site vaccinations in July increased in the two intervention blocks from 18,194 to 21,588 (18.7%) and decreased from 16,449 to 14,887 (9.5%) in the five other blocks. The new monitoring system showed the proportion of unvaccinated children at street intersection transit sites in the July campaign decreased from 24% (1,784/7,405) at the start of the campaign to 3% (143/5,057) by the end of the SIA, consistent with findings from the more labor-intensive post-vaccination coverage surveys routinely performed by the program. Conclusions Analysis of vaccination data from transit sites can inform program management changes leading to improved outcomes in polio immunization campaigns. The number of vaccinated children encountered should be routinely recorded by transit teams and may provide a useful, inexpensive alternative mechanism to assess program coverage. PMID:20459824

  17. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response.

    PubMed

    Roberts, Mark L; Buchanan, Katherine L; Evans, Matthew R; Marin, Raul H; Satterlee, Daniel G

    2009-10-01

    The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birds' humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

  18. The Duration of Intestinal Immunity After an Inactivated Poliovirus Vaccine Booster Dose in Children Immunized With Oral Vaccine: A Randomized Controlled Trial.

    PubMed

    John, Jacob; Giri, Sidhartha; Karthikeyan, Arun S; Lata, Dipti; Jeyapaul, Shalini; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Mani, Mohanraj; Hanusha, Janardhanan; Raman, Uma; Moses, Prabhakar D; Abraham, Asha; Bahl, Sunil; Bandyopadhyay, Ananda S; Ahmad, Mohammad; Grassly, Nicholas C; Kang, Gagandeep

    2017-02-15

    In 2014, 2 studies showed that inactivated poliovirus vaccine (IPV) boosts intestinal immunity in children previously immunized with oral poliovirus vaccine (OPV). As a result, IPV was introduced in mass campaigns to help achieve polio eradication. We conducted an open-label, randomized, controlled trial to assess the duration of the boost in intestinal immunity following a dose of IPV given to OPV-immunized children. Nine hundred healthy children in Vellore, India, aged 1-4 years were randomized (1:1:1) to receive IPV at 5 months (arm A), at enrollment (arm B), or no vaccine (arm C). The primary outcome was poliovirus shedding in stool 7 days after bivalent OPV challenge at 11 months. For children in arms A, B, and C, 284 (94.7%), 297 (99.0%), and 296 (98.7%), respectively, were eligible for primary per-protocol analysis. Poliovirus shedding 7 days after challenge was less prevalent in arms A and B compared with C (24.6%, 25.6%, and 36.4%, respectively; risk ratio 0.68 [95% confidence interval: 0.53-0.87] for A versus C, and 0.70 [0.55-0.90] for B versus C). Protection against poliovirus remained elevated 6 and 11 months after an IPV boost, although at a lower level than reported at 1 month. CTRI/2014/09/004979. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. The Duration of Intestinal Immunity After an Inactivated Poliovirus Vaccine Booster Dose in Children Immunized With Oral Vaccine: A Randomized Controlled Trial

    PubMed Central

    John, Jacob; Giri, Sidhartha; Karthikeyan, Arun S; Lata, Dipti; Jeyapaul, Shalini; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Mani, Mohanraj; Hanusha, Janardhanan; Raman, Uma; Moses, Prabhakar D; Abraham, Asha; Bahl, Sunil; Bandyopadhyay, Ananda S; Ahmad, Mohammad; Grassly, Nicholas C; Kang, Gagandeep

    2017-01-01

    Abstract Background In 2014, 2 studies showed that inactivated poliovirus vaccine (IPV) boosts intestinal immunity in children previously immunized with oral poliovirus vaccine (OPV). As a result, IPV was introduced in mass campaigns to help achieve polio eradication. Methods We conducted an open-label, randomized, controlled trial to assess the duration of the boost in intestinal immunity following a dose of IPV given to OPV-immunized children. Nine hundred healthy children in Vellore, India, aged 1–4 years were randomized (1:1:1) to receive IPV at 5 months (arm A), at enrollment (arm B), or no vaccine (arm C). The primary outcome was poliovirus shedding in stool 7 days after bivalent OPV challenge at 11 months. Results For children in arms A, B, and C, 284 (94.7%), 297 (99.0%), and 296 (98.7%), respectively, were eligible for primary per-protocol analysis. Poliovirus shedding 7 days after challenge was less prevalent in arms A and B compared with C (24.6%, 25.6%, and 36.4%, respectively; risk ratio 0.68 [95% confidence interval: 0.53–0.87] for A versus C, and 0.70 [0.55–0.90] for B versus C). Conclusions Protection against poliovirus remained elevated 6 and 11 months after an IPV boost, although at a lower level than reported at 1 month. Clinical Trials Registration CTRI/2014/09/004979. PMID:28003352

  20. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.

    PubMed

    Kelly, C D; Neyer, A A; Gress, B E

    2014-02-01

    Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  1. Measles Vaccine.

    PubMed

    Griffin, Diane E

    2018-03-01

    Measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine. The current measles virus (MeV) vaccine was developed empirically by attenuation of wild-type (WT) MeV by in vitro passage in human and chicken cells and licensed in 1963. Additional passages led to further attenuation and the successful vaccine strains in widespread use today. Attenuation is associated with decreased replication in lymphoid tissue, but the molecular basis for this restriction has not been identified. The immune response is age dependent, inhibited by maternal antibody (Ab) and involves induction of both Ab and T cell responses that resemble the responses to WT MeV infection, but are lower in magnitude. Protective immunity is correlated with levels of neutralizing Ab, but the actual immunologic determinants of protection are not known. Because measles is highly transmissible, control requires high levels of population immunity. Delivery of the two doses of vaccine needed to achieve >90% immunity is accomplished by routine immunization of infants at 9-15 months of age followed by a second dose delivered before school entry or by periodic mass vaccination campaigns. Because delivery by injection creates hurdles to sustained high coverage, there are efforts to deliver MeV vaccine by inhalation. In addition, the safety record for the vaccine combined with advances in reverse genetics for negative strand viruses has expanded proposed uses for recombinant versions of measles vaccine as vectors for immunization against other infections and as oncolytic agents for a variety of tumors.

  2. No Evidence for a Trade-Off between Reproductive Investment and Immunity in a Rodent

    PubMed Central

    Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua

    2012-01-01

    Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11–13) and small litter size (2–3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival. PMID:22649512

  3. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  4. Radioimmunoassay for colchicine: synthesis and properties of three haptens.

    PubMed

    Pontikis, R; Scherrmann, J M; Nguyen, H N; Boudet, L; Pichat, L

    1980-01-01

    For the development of radioimmunoassay procedures for colchicine, three haptens, N-ethylamino-colchiceinamide, 4-formylchochicine - (O-carboxymethyl) oxime and 4-hydroxymethylcolchicine O-hemisuccinic acid were synthetized and characterized by mass and proton magnetic resonance spectrometries. The conjugates obtained by coupling the haptens to bovine serum albumin were employed to immunize rabbits and goats.

  5. Validation of a chicken ileal explant culture for measurement of mucosal inflammation induced by lipopolysaccharide

    USDA-ARS?s Scientific Manuscript database

    Gut mucosa holds a single layer of epithelial cells and the largest mass of lymphoid tissue in the body. While epithelial cell cultures are widely used to assess intestinal barrier functions, they have limitations to study cellular interactions with other cells, in particular those of the immune sys...

  6. Differential Responses upon Inhalation Exposure to Biodiesel versus Diesel Exhaust on Oxidative Stress, Inflammatory and Immune Outcomes

    EPA Science Inventory

    Biodiesel (BD) exhaust may have reduced adverse health effects due to lower mass emissions and reduced production of hazardous compounds compared to diesel exhaust. To investigate this possibility, we compared adverse effects in lungs and liver of BALB/cJ mice after inhalation ex...

  7. The distinct proteome of placental malaria parasites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, Michal; Hixson, Kim K.; Anderson, Lori

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IEmore » from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.« less

  8. Mass Measles Vaccination Campaign in Aila Cyclone-Affected Areas of West Bengal, India: An In-depth Analysis and Experiences.

    PubMed

    Mallik, Sarmila; Mandal, Pankaj Kumar; Ghosh, Pramit; Manna, Nirmalya; Chatterjee, Chitra; Chakrabarty, Debadatta; Bagchi, Saumendra Nath; Dasgupta, Samir

    2011-12-01

    Disaster-affected populations are highly vulnerable to outbreaks of measles. Therefore, a mass vaccination against measles was conducted in Aila cyclone-affected blocks of West Bengal, India in July 2009. The objectives of the present report were to conduct an in depth analysis of the campaign, and to discuss the major challenges. A block level micro-plan, which included mapping of the villages, health facilities, temporary settlements of disaster-affected population, communications available, formation of vaccination team, information education communication, vaccine storage, waste disposal, surveillance for adverse events following immunization, supervision and monitoring was developed. The rate of six months to five years old children, who were vaccinated by measles vaccine, was 70.7% and that of those who received one dose of vitamin A was 71.3%. Wastage factor for vaccine doses and auto-disable syringes were 1.09 and 1.07, respectively. Only 13 cases of adverse events following immunization were reported. An average of 0.91 puncture-proof containers per vaccination session was used. Despite the major challenges faced due to difficult to reach areas, inadequate infrastructure, manpower and communication, problems of vaccine storage and transport, the campaign achieved a remarkable success regarding measles vaccine coverage, improvements of cold chain infrastructure, formulating an efficient surveillance and reporting system for adverse events following immunization, building self-confidence of the stakeholders, and developing a biomedical waste disposal system.

  9. Mass Measles Vaccination Campaign in Aila Cyclone-Affected Areas of West Bengal, India: An In-depth Analysis and Experiences

    PubMed Central

    Mallik, Sarmila; Mandal, Pankaj Kumar; Ghosh, Pramit; Manna, Nirmalya; Chatterjee, Chitra; Chakrabarty, Debadatta; Bagchi, Saumendra Nath; Dasgupta, Samir

    2011-01-01

    Disaster-affected populations are highly vulnerable to outbreaks of measles. Therefore, a mass vaccination against measles was conducted in Aila cyclone-affected blocks of West Bengal, India in July 2009. The objectives of the present report were to conduct an in depth analysis of the campaign, and to discuss the major challenges. A block level micro-plan, which included mapping of the villages, health facilities, temporary settlements of disaster-affected population, communications available, formation of vaccination team, information education communication, vaccine storage, waste disposal, surveillance for adverse events following immunization, supervision and monitoring was developed. The rate of six months to five years old children, who were vaccinated by measles vaccine, was 70.7% and that of those who received one dose of vitamin A was 71.3%. Wastage factor for vaccine doses and auto-disable syringes were 1.09 and 1.07, respectively. Only 13 cases of adverse events following immunization were reported. An average of 0.91 puncture-proof containers per vaccination session was used. Despite the major challenges faced due to difficult to reach areas, inadequate infrastructure, manpower and communication, problems of vaccine storage and transport, the campaign achieved a remarkable success regarding measles vaccine coverage, improvements of cold chain infrastructure, formulating an efficient surveillance and reporting system for adverse events following immunization, building self-confidence of the stakeholders, and developing a biomedical waste disposal system. PMID:23115416

  10. Immune complex-based vaccine for pig protection against parvovirus.

    PubMed

    Roić, B; Cajavec, S; Ergotić, N; Lipej, Z; Madić, J; Lojkić, M; Pokrić, B

    2006-02-01

    The insoluble immune complexes (ICs) were prepared under the conditions of double immunodiffusion in gel, using the suspension of the ultrasound treated PK-15 cell-line infected with porcine parvovirus (PPV) containing both viral particles and viral proteins, as well as pig or rabbit anti-PPV polyclonal immune sera. The immunodiffusion performed in an agarose gel allows only viral subunits with a molecular mass equal to or less than 1000 kDa, rather than the viral particles, to diffuse through the gel and reach the point where the immunoprecipitate is to be formed. The immunoprecipitation under the conditions of the diffusion ensures the optimal, i.e. equimolar ratio of both immunoprecipitating components, antibody/antigen in the IC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the Western blot analyses showed the ICs were composed of two proteins, a protein in which molecular mass corresponded to the VP2 of the PPV and a protein with a molecular mass of the IgG. This suggests that the ICs are mainly composed of the VP2 antigen and IgG class antibodies. The potency of the IC-vaccines prepared in the form of a water-in-oil-in-water emulsion was compared with that of a commercially available, inactivated oil vaccine. The vaccination of gilts, 6 weeks before mating, with the IC containing allogeneic pig antibodies, resulted in the development of high and long-lasting anti-PPV antibody titres, similar to those generated by the licenced vaccine (P > 0.01). The content of the virus material administered by the IC was twice lower than that in the licenced vaccine. Neither systemic nor local reactions were observed in the gilts during the period of the trial with the IC vaccine. The number of viable piglets per litter varied between 9 and 12 and no signs of the PPV infection were detected. Rabbits were used as one of the alternative laboratory animal models accepted for the testing of the vaccine against the PPV. The rabbit humoral immune response generated by the IC containing the allogeneic antibodies were higher than that generated by the ICs containing the xenogeneic pig antibodies. It was similar to that generated by two-times higher content of the virus material administered by a commercially available vaccine. The IC-based vaccines belong to non-replicating, subunit vaccines, which are both ecologically convenient and the safest vaccines of all.

  11. Associations between male testosterone and immune function in a pathogenically stressed forager-horticultural population

    PubMed Central

    Trumble, Benjamin C; Blackwell, Aaron D; Stieglitz, Jonathan; Thompson, Melissa Emery; Suarez, Ivan Maldonado; Kaplan, Hillard; Gurven, Michael

    2016-01-01

    Objectives Despite well-known fitness advantages to males who produce and maintain high endogenous testosterone levels, such phenotypes may be costly if testosterone-mediated investment in reproductive effort trade-off against investment in somatic maintenance. Previous studies of androgen-mediated trade-offs in human immune function find mixed results, in part because most studies either focus on a few indicators of immunity, are confounded by phenotypic correlation, or are observational. Here the association between male endogenous testosterone and 13 circulating cytokines are examined before and after ex vivo antigen stimulation with phytohaemagglutinin (PHA) and lipopolysaccharides (LPS) in a high pathogen population of Bolivian forager-horticulturalists. Materials and Methods A Milliplex 13-plex cytokine panel measured cytokine concentration in whole blood samples from 109 Tsimane men aged 40–89 (median=50 years) before and after antigen stimulation with PHA and LPS. Urinary testosterone was measured via enzyme immunoassay; demographic and anthropometric data were collected as part of the Tsimane Health and Life History Project. Results Higher endogenous testosterone was associated with down-regulated responses in all cytokines after PHA stimulation (but significantly in only 2/13 cytokines), controlling for age and body mass index. In contrast, testosterone was not significantly associated with down-regulation of cytokines after LPS stimulation. MANOVAs indicate that men with higher testosterone showed reduced cytokine responses to PHA compared to LPS (p=0.0098). Discussion Endogenous testosterone appears to be immunomodulatory rather than immunosuppressive. Potentially costlier forms of immune activation like those induced by PHA (largely T-cell biased immune activation) are down-regulated in men with higher testosterone, but testosterone has less impact on potentially less costly immune activation following LPS stimulation (largely B-cell mediated immunity). PMID:27465811

  12. Tetanus antibody titers and duration of immunity to clinical tetanus infections in free-ranging rhesus monkeys (Macaca mulatta).

    PubMed

    Kessler, Matthew J; Berard, John D; Rawlins, Richard G; Bercovitch, Fred B; Gerald, Melissa S; Laudenslager, Mark L; Gonzalez-Martinez, Janis

    2006-07-01

    Prior to 1985 tetanus was a major cause of mortality in the free-ranging colony of rhesus monkeys on Cayo Santiago, accounting for almost a quarter of annual deaths. In 1985 and 1986 all animals (except infants) received primary and booster doses, respectively, of tetanus toxoid. In subsequent years primary immunizations were given to all yearlings, and boosters were administered to all 2-year-old animals during the annual capture of the colony. The main objectives of the tetanus immunization program were to reduce the pain and suffering caused by tetanus infections and to decrease mortality in the colony. Other objectives were to evaluate the efficacy of the two-dose tetanus toxoid immunization protocol and to determine whether additional boosters might be required to provide adequate long-term protection against tetanus infections. The immediate effect of the mass immunization program was the elimination of clinical tetanus infections in the population and a 42.2% reduction in the overall mortality rate. Since the immunization program began, no cases of tetanus have been observed in the colony, except in two unimmunized infants, and it has not been necessary to give tertiary injections of tetanus toxoid to maintain protection against infection. A sample collected in 2004 of the original cohort of monkeys immunized in 1985 and 1986 showed that 93.3% (14/15) had protective tetanus antibody titers (>0.01 IU/ml) at the ages of 20-23 years, which is close to the life expectancy of the Cayo Santiago rhesus macaques. Two intramuscular doses of tetanus toxoid provided long-term, if not lifelong, protection against tetanus for rhesus monkeys living in a tropical clime where tetanus is enzootic and the risk of infection is great. (c) 2005 Wiley-Liss, Inc.

  13. Effects of immunization against alpha-inhibin using two adjuvants on daily sperm production and hormone concentrations in ram lambs.

    PubMed

    Voge, J L; Parker, J B; Wheaton, J E

    2009-11-01

    Twenty-five ram lambs were immunized against alpha-inhibin peptide emulsified in Freund's adjuvant (FRA), Emulsigen (EML) containing an oligodeoxynucleotide as an immunostimulant, or adjuvant without alpha-inhibin antigen (control). Four immunizations were administered during an 85-d period, after which testes were obtained for determination of daily sperm production (DSP) and histological evaluation. alpha-Inhibin antibody (Ab) titers were 70-fold greater in lambs treated with FRA than in EML-treated ram lambs. alpha-Inhibin immunization had no effect on testes weight or on plasma concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Mean DSP/g tended (P=0.1) to be greater in alpha-inhibin-immunized (EML=17.6x10(6); FRA=15.8x10(6)) ram lambs than in control animals (14.4x10(6)). One of the 8 control ram lambs had an elevated DSP/g, which was a statistical outlier. Without data from this lamb, DSP/g was increased (P<0.01) in alpha-inhibin-immunized ram lambs by 28% over controls. No association was found between the titer of alpha-inhibin Ab developed and DSP/g. Histologically, the percentage of testicular area occupied by seminiferous tubules differed (P=0.01) by treatment and was greatest (82%) in EML-treated ram alpha-inhibin-immunized lambs and lowest (74%) in control animals. Percentage tubular area and DSP/g were correlated (r=0.57, P=0.003). Findings show that (1) the extent of the increase in DSP/g is not dependent on the titer of alpha-inhibin Ab; (2) the increase in DSP/g is achieved through an increase in the mass of seminiferous tubules; and (3) FRA elicits a greater alpha-inhibin Ab titer than EML containing an oligodeoxynucleotide.

  14. Intestinal helminth co-infection and associated factors among tuberculosis patients in Arba Minch, Ethiopia.

    PubMed

    Alemu, Getaneh; Mama, Mohammedaman

    2017-01-13

    Helminths affect the outcome of tuberculosis by shifting cell mediated immune response to humoral and by total suppression of the host immune system. On the reverse, Mycobacterium infection favors immune escape of helminths. Therefore assessing helminth co-infection rate and predisposing factors in tuberculosis patients is mandatory to set strategies for better case management. Facility based cross-sectional study was conducted in Arba Minch to assess the prevalence and associated factors of intestinal helminths among pulmonary tuberculosis patients from January to August, 2016. A structured questionnaire was used to capture data about socio-demographic characteristics, clinical history and possible risk factors for intestinal helminth infections. Height and weight were measured to calculate body-mass index. Appropriate amount of stool was collected and processed by direct saline and formol-ether concentration techniques following standard protocols. All the data were analyzed using SPSS version 20.0. A total of 213 (57.3% male and 42.7% female) pulmonary tuberculosis patients were participated in the study. The overall co-infection rate of intestinal parasites was 26.3%. The infection rate of intestinal helminths account 24.4% and that of intestinal protozoa was 6.1%. Ascaris lumbricoides accounted the highest frequency of 11.3%. Living in rural residence (AOR = 3.175, 95% CI: 1.102-9.153, p = 0.032), Eating vegetables/ fruits without washing or peeling off (AOR = 2.208, 95% CI: 1.030-4.733, p = 0.042) and having body-mass index <18.5 (AOR = 3.511, 95% CI: 1.646-7.489, p = 0.001) were associated with intestinal helminth infection. The infection rate by intestinal helminths was 24.4%. Ascaris lumbricoides was the most prevalent helminth. Residence, habit of washing vegetables/fruits before use and body-mass index were associated factors with intestinal helminthiasis. Therefore health care providers should screen and treat TB patients for intestinal helminthiasis in order to ensure good prognosis.

  15. Pollen Lipidomics: Lipid Profiling Exposes a Notable Diversity in 22 Allergenic Pollen and Potential Biomarkers of the Allergic Immune Response

    PubMed Central

    Bashir, Mohamed Elfatih H.; Lui, Jan Hsi; Palnivelu, Ravishankar; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background/Aim Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. Methodology/Principal Findings We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. Conclusions/Significance Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the immunopathogenesis of allergy. Pollen lipids vary greatly among allergenic species and contain many molecules that have stimulatory or regulatory effects on immune responses. PMID:23469025

  16. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    PubMed Central

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  17. Feliform carnivores have a distinguished constitutive innate immune response

    PubMed Central

    Heinrich, Sonja K.; Wachter, Bettina; Aschenborn, Ortwin H. K.; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á.

    2016-01-01

    ABSTRACT Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323

  18. [The influence of probiotic fermented milk product on colon microbiota, hematological parameters and cell immunity in rats].

    PubMed

    Kuznetsova, G G; Trushina, É N; Muatafina, O K; Cherkashin, A V; Batishcheva, S Iu; Semenikhina, V F; Sheveleva, S A

    2012-01-01

    Influence of probiotic fermented milk product on the intestinal microbiota, hematological parameters and immune status of the experiment in vivo at Wistar rats was studied. It was shown, that entering of probiotic strains of Bifidobacterium bifidum 791, Bifidobacterium longum B-379M and Lactobacillus acidophilus NK1 u Streptococcus thermophilus in composition fermented milk products in the total quantity of 2,1 x 10(7) CFU/ sm3 in digestive tract within three weeks has a positive influence on the resident of colon microbiota. Significant increasing of population levels of Bifidobacterium, Enterobacteriaceae with normal biochemical properties, registered a strong tendency to increase the content of Lactobacteria, which led to a decreasing the number of potential pathogenic transient flora with pathogenic factors. Monitoring of body mass in experimental animals has shown that including of fermented milk product with probiotic strains in diet has a positive influence on the feed uptake. Probiotic properties of the product also have stimulated effect on the immune status of the rat: improvements in cell immunity (increasing the relative amount of T-helper cells, immuneregulatory index) and hematological parameters (increase

  19. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.

    PubMed

    Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping

    2016-12-01

    Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.

  20. A review of measles supplementary immunization activities and the implications for Pacific Island countries and territories.

    PubMed

    Clements, C John; Soakai, Taniela Sunia; Sadr-Azodi, Nahad

    2017-02-01

    Standard measles control strategies include achieving high levels of measles vaccine coverage using routine delivery systems, supplemented by mass immunization campaigns as needed to close population immunity gaps. Areas covered: This review looks at how supplementary immunization activities (SIAs) have contributed to measles control globally, and asks whether such a strategy has a place in Pacific Islands today. Expert commentary: Very high coverage with two doses of measles vaccine seems to be the optimal strategy for controlling measles. By 2015, all but two Pacific Islands had introduced a second dose in the routine schedule; however, a number of countries have not yet reached high coverage with their second dose. The literature and the country reviews reported here suggest that a high coverage SIA combined with one dose of measles vaccine given in the routine system will also do the job. The arguments for and against the use of SIAs are complex, but it is clear that to be effective, SIAs need to be well designed to meet specific needs, must be carried out effectively and safely with very high coverage, and should, when possible, carry with them other public health interventions to make them even more cost-effective.

  1. Uncovering potential 'herbal probiotics' in Juzen-taiho-to through the study of associated bacterial populations.

    PubMed

    Montenegro, Diego; Kalpana, Kriti; Chrissian, Christine; Sharma, Ashutosh; Takaoka, Anna; Iacovidou, Maria; Soll, Clifford E; Aminova, Olga; Heguy, Adriana; Cohen, Lisa; Shen, Steven; Kawamura, Akira

    2015-02-01

    Juzen-taiho-to (JTT) is an immune-boosting formulation of ten medicinal herbs. It is used clinically in East Asia to boost the human immune functions. The active factors in JTT have not been clarified. But, existing evidence suggests that lipopolysaccharide (LPS)-like factors contribute to the activity. To examine this possibility, JTT was subjected to a series of analyses, including high resolution mass spectrometry, which suggested the presence of structural variants of LPS. This finding opened a possibility that JTT contains immune-boosting bacteria. As the first step to characterize the bacteria in JTT, 16S ribosomal RNA sequencing was carried out for Angelica sinensis (dried root), one of the most potent immunostimulatory herbs in JTT. The sequencing revealed a total of 519 bacteria genera in A. sinensis. The most abundant genus was Rahnella, which is widely distributed in water and plants. The abundance of Rahnella appeared to correlate with the immunostimulatory activity of A. sinensis. In conclusion, the current study provided new pieces of evidence supporting the emerging theory of bacterial contribution in immune-boosting herbs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.

    PubMed

    Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef

    2017-08-03

    The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. GENETIC VARIANTS, IMMUNE FUNCTION AND RISK OF PRE-ECLAMPSIA AMONG AMERICAN INDIANS

    PubMed Central

    Best, Lyle G.; Nadeau, Melanie; Davis, Kylie; Lamb, Felicia; Bercier, Shellee; Anderson, Cindy M.

    2011-01-01

    Objective To determine the prevalence in an American Indian population of genetic variants with putative effects on immune function and determine if they are associated with pre-eclampsia. Methods In a study of 66 cases and 130 matched controls, six single nucleotide polymorphisms (SNP) with either previously demonstrated or postulated modulating effects on the immune system were genotyped. Allele frequencies and various genetic models were evaluated by conditional logistic regression in both univariate and multiply adjusted models. Results Although most genetic variants lacked evidence of association with pre-eclampsia, the minor allele of the CRP related, rs1205 SNP in a dominant model with adjustment for age at delivery, nulliparity and body mass index, exhibited an odds ratio of 0.259 (95% CI of 0.08 – 0.81, p=0.020) in relation to severe pre-eclampsia (48 cases). The allelic prevalence of this variant was 46.1% in this population. Conclusion Of the six SNPs related to immune function in this study, a functional variant in the 3'UTR of the CRP gene was shown to be associated with severe pre-eclampsia in an American Indian population. PMID:22004660

  4. Effects of inbreeding on potential and realized immune responses in Tenebrio molitor.

    PubMed

    Rantala, Markus J; Viitaniemi, Heidi; Roff, Derek A

    2011-06-01

    Although numerous studies on vertebrates suggest that inbreeding reduces their resistance against parasites and pathogens, studies in insects have found contradictory evidence. In this study we tested the effect of 1 generation of brother-sister mating (inbreeding) on potential and realized immune responses and other life-history traits in Tenebrio molitor. We found that inbreeding reduced adult mass, pre-adult survival and increased development time, suggesting that inbreeding reduced the condition of the adults and thus potentially made them more susceptible to physiological stress. However, we found no significant effect of inbreeding on the potential immune response (encapsulation response), but inbreeding reduced the realized immune response (resistance against the entomopathogenic fungi, Beauveria bassiana). There was a significant family effect on encapsulation response, but no family effect on the resistance against the entomopathogenic fungi. Given that this latter trait showed significant inbreeding depression and that the sample size for the family-effect analysis was small it is likely that the lack of a significant family effect is due to reduced statistical power, rather than the lack of a heritable basis to the trait. Our study highlights the importance of using pathogens and parasites in immunoecological studies.

  5. Leptin-based Adjuvants: An Innovative Approach to Improve Vaccine Response

    PubMed Central

    White, Sarah J.; Taylor, Matthew J.; Hurt, Ryan; Jensen, Michael D.; Poland, Gregory A.

    2013-01-01

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥ 30 kg/m2) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin’s role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. PMID:23370154

  6. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    PubMed

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  7. An oral microjet vaccination system elicits antibody production in rabbits.

    PubMed

    Aran, Kiana; Chooljian, Marc; Paredes, Jacobo; Rafi, Mohammad; Lee, Kunwoo; Kim, Allison Y; An, Jeanny; Yau, Jennifer F; Chum, Helen; Conboy, Irina; Murthy, Niren; Liepmann, Dorian

    2017-03-08

    Noninvasive immunization technologies have the potential to revolutionize global health by providing easy-to-administer vaccines at low cost, enabling mass immunizations during pandemics. Existing technologies such as transdermal microneedles are costly, deliver drugs slowly, and cannot generate mucosal immunity, which is important for optimal immunity against pathogens. We present a needle-free microjet immunization device termed MucoJet, which is a three-dimensional microelectromechanical systems-based drug delivery technology. MucoJet is administered orally, placed adjacent to the buccal tissue within the oral cavity, and uses a self-contained gas-generating chemical reaction within its two-compartment plastic housing to produce a high-pressure liquid jet of vaccine. We show that the vaccine jet ejected from the MucoJet device is capable of penetrating the buccal mucosal layer in silico, in porcine buccal tissue ex vivo, and in rabbits in vivo. Rabbits treated with ovalbumin by MucoJet delivery have antibody titers of anti-ovalbumin immunoglobulins G and A in blood serum and buccal tissue, respectively, that are three orders of magnitude higher than rabbits receiving free ovalbumin delivered topically by a dropper in the buccal region. MucoJet has the potential to accelerate the development of noninvasive oral vaccines, given its ability to elicit antibody production that is detectable locally in the buccal tissue and systemically via the circulation. Copyright © 2017, American Association for the Advancement of Science.

  8. Poliomyelitis eradication in China: 1953-2012.

    PubMed

    Yu, Wen-Zhou; Wen, Ning; Zhang, Yong; Wang, Hai-Bo; Fan, Chun-Xiang; Zhu, Shuang-Li; Xu, Wen-Bo; Liang, Xiao-Feng; Luo, Hui-Ming; Li, Li

    2014-11-01

    Poliomyelitis has historically been endemic in China and has been considered an important cause of disability and death. We reviewed strategies and measures of poliomyelitis control and eradication from 1953 to 2012. Data from notifiable disease and routine immunization reporting systems and acute flaccid paralysis (AFP) surveillance were analyzed. About 20 000 poliomyelitis cases were reported annually in the prevaccine era. During 1965-1977, live, attenuated oral poliomyelitis vaccine (OPV) was administered to children through annual mass campaigns in the winter, and the number of poliomyelitis cases started to decline. A cold chain system was established during 1982, and OPV coverage increased during the early stage of the Expanded Programme on Immunization, from 1978 to 1988. Between 1989 and 1999, routine immunization was strengthened, supplementary immunization activities (SIAs) were conducted, and the AFP surveillance system was established. China reported a last indigenous poliomyelitis case in 1994 and was certified as free of polio in 2000. To maintain its polio-free status, China kept >90% coverage of 3 doses of OPV, conducted SIAs in high-risk areas, and maintained high-quality of AFP surveillance. China succeeded in stopping the outbreak in Xinjiang in 2011. China's polio-free status was achieved and maintained through strengthening routine immunization and implementing SIAs and AFP surveillance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Inducible factors with antimicrobial activity after immune challenge in the haemolymph of Red Palm Weevil (Insecta).

    PubMed

    Mastore, Maristella; Binda Rossetti, Simona; Giovannardi, Stefano; Scarì, Giorgio; Brivio, Maurizio F

    2015-05-01

    Insects are capable of innate immune responses elicited after microbial infection. In this process, the receptor-mediated recognition of foreign bodies and the subsequent activation of immunocompetent cells lead to the synthesis ex novo of a peptide pool with antimicrobial activity. We investigated the inducible immune response of a coleopteran, Rhynchophorus ferrugineus, challenged with both Gram-negative and Gram-positive bacteria. After immunization, we evaluated the presence of antimicrobial peptides using either biochemical analyses or microbiological techniques. The antimicrobial properties of the newly synthesized protein pool, detectable in haemolymph fractions of low molecular mass, showed strong antibacterial activity against various bacterial strains (Escherichia coli, Pseudomonas sp. OX1, Bacillus subtilis and Micrococcus luteus). In addition to the preliminary study of the mechanism of action of the pool of antimicrobial peptides, we also investigated its effects on bacterial cell walls by means of fluorescence microscopy and scanning electron microscopy. The data suggest that the main effects seem to be directed at destabilizing and damaging the bacterial wall. This study provides data that help us to understand some aspects of the inducible innate immunity in a system model that lacks anticipatory responses. However, the weevil has finely tuned its defensive strategies to counteract effectively microbial infection. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Stability of Cellular Immune Parameters over 12 Weeks in Patients with Major Depression or Somatoform Disorder and in Healthy Controls.

    PubMed

    Krause, Daniela; Stapf, Theresa M; Kirnich, Verena B; Hennings, Anika; Riemer, Sabine; Chrobok, Agnieszka; Fries, Daniel R; Pedrosa Gil, Francisco; Rief, Winfried; Schwarz, Markus J; Schmidmaier, Ralf

    2018-06-12

    Cellular immune status in major depression (MD) patients differs from that in somatoform disorder (SFD) patients and healthy controls (HC). It is still questionable whether the patterns of immune parameters remain stable over time. Therefore, we studied lymphocyte and monocyte cell counts and neopterin levels in peripheral blood of MD and SFD patients and HC over 12 weeks and tested for correlations between biochemical and psychometric parameters. Thirty-nine patients with MD, 27 with SFD, and 51 HC were recruited. Peripheral blood was drawn at four visits, at 4-week intervals. We assessed the total cell count of B lymphocytes, natural killer (NK) cells, T lymphocyte subpopu-lations, and monocytes by flow cytometry, and neopterin serum levels by ELISA. Psychometric parameters were measured with questionnaires. Counts of lymphocytes, monocytes, and neopterin were stable in the SFD and HC groups. In the MD group, total CD3+, CD3+CD8+, NK cells, and CD3+CD25+ T cells showed inhomogeneous variances in Friedman tests, particularly in females. Neopterin correlated with depressed mood in MD patients, and with body mass index in HC. Cellular immune parameters are stable in HC and SFD. Our results may indicate influences of MD and gender on some cellular immune parameters. This may need to be considered in future immunological studies. © 2018 S. Karger AG, Basel.

  11. Comparing the health and social protection effects of measles vaccination strategies in Ethiopia: An extended cost-effectiveness analysis.

    PubMed

    Driessen, Julia; Olson, Zachary D; Jamison, Dean T; Verguet, Stéphane

    2015-08-01

    Vaccination coverage rates often mask wide variation in access, uptake, and cost of providing vaccination. Financial incentives have been effective at creating demand for social services in a variety of settings. Using methods of extended cost-effectiveness analysis, we compare the health and economic implications of three different vaccine delivery strategies for measles vaccination in Ethiopia: i) routine immunization, ii) routine immunization with financial incentives, and iii) mass campaigns, known as supplemental immunization activities (SIAs). We examine annual birth cohorts of almost 3,000,000 births over a ten year period, exploring variation in these outcomes based on economic status to understand how various options may improve equity. SIAs naturally achieve higher levels of vaccine coverage, but at higher costs. Routine immunization combined with financial incentives bolsters demand among more economically vulnerable households. The relative appeal of routine immunization with financial incentives and SIAs will depend on the policy environment, including short-term financial limitations, time horizons, and the types of outcomes that are desired. While the impact of financial incentives has been more thoroughly studied in other policy arenas, such as education, consideration of this approach alongside standard vaccination models such as SIAs is timely given the dialog around measles eradication. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response.

    PubMed

    Banerjee, Soumya; Perelson, Alan S; Moses, Melanie

    2017-11-01

    Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially other zoonotic diseases. The major contribution of this work is a computational framework for infectious disease modelling at the within-host level that leverages data from multiple species. This is likely to be of interest to modellers of infectious diseases that jump species barriers and infect multiple species. Our method can be used to computationally determine the competency of a host to infect mosquitoes that will sustain WNV and other zoonotic diseases. We find that smaller passerine species are more competent in spreading the disease than larger non-passerine species. This suggests the role of host phylogeny as an important determinant of within-host pathogen replication. Ultimately, we view our work as an important step in linking within-host viral dynamics models to between-host models that determine spread of infectious disease between different hosts. © 2017 The Author(s).

  13. Identification of Fungal T Cell Epitopes by Mass Spectrometry-Based Proteomics.

    PubMed

    Roschitzki, Bernd; LeibundGut-Landmann, Salomé

    2017-01-01

    CD4 + T cells play a key role in host defense against many fungal infections. T cells are also implicated in vaccine immunity to fungi. To date, only a small number of fungal antigens have been identified. Knowing the antigenic determinants of fungi-specific T cells greatly facilitates the detection, enumeration and characterizes the antifungal T cells and it constitutes an important step toward the design and development of vaccination strategies. This chapter describes a method of MHC-II ligand elution and mass spectrometric analysis to identify naturally processed and presented fungal peptide epitopes.

  14. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  15. EGFR-specific nanoprobe biodistribution in mouse models

    NASA Astrophysics Data System (ADS)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  16. HLA-DR allele reading register shifting is associated with immunity induced by SERA peptide analogues.

    PubMed

    Salazar, Luz Mary; Bermúdez, Adriana; Patarroyo, Manuel E

    2008-07-18

    SERA protein is a leading candidate molecule to be included in an antimalarial vaccine. Conserved high activity binding peptides (HABP) binding to red blood cells (RBC) have been identified in this protein. One of them (6762) localising in the 18-kDa C-terminal fragment was used to induce protective immunity with negative result. Critical RBC binding residues (assessed by glycine-analogue scanning) were replaced by others having the same mass, volume and surface but different polarity, rendering some of them immunogenic as assessed by antibody production against the parasite or its proteins and protection-inducing against challenge with a highly infectious Aotus monkey-adapted Plasmodium falciparum strain. A shift in binding to purified HLA-DR allelic molecules from the same haplotype and in their reading register was found, suggesting that modified molecules had adopted a different (1)H NMR 3D structure allowing a better fit into the MHCII-pept-TCR complex, thereby representing a new mechanism for inducing immune protection.

  17. Seroprevalence of hepatitis B and factors potentially associated in a population-based study in Medellin, Colombia.

    PubMed

    Cadavid-Betancur, David A; Ospina, Marta C; Hincapié-Palacio, Doracelly; Bernal-Restrepo, Luz M; Buitrago-Giraldo, Seti; Perez-Toro, Olga; Santacruz-Sanmartín, Eduardo; Lenis-Ballesteros, Viviana; Almanza-Payares, Rita; Díaz, Francisco J

    2017-09-05

    The seroprevalence of hepatitis B (HB) and of potentially associated factors in Medellin, Colombia, were investigated 17years after the start of universal vaccination. Biological and sociodemographic data from a population survey with a multistage random sampling were analyzed in 6-64year old individuals. HB surface antigen, total HB core antibodies and HB surface antibodies, and in some cases IgM antibodies to HB core antigen, were tested in 2077 samples. Factors potentially associated with and natural, and vaccine immunity relative to susceptibility (absence of any marker) were analyzed using a multinomial logistic regression. The prevalence of serological patterns was: chronic infection 0.20% (95% CI 0.11-0.71), vaccine immunity 25.10% (95% CI 21.72-28.83) and natural immunity 2.60% (95% CI 1.80-3.74). No markers were detected in 71.30% (95% CI 67.70-74.83) of the individuals and evidence of recent infection was not detected. Relative to the absence of markers, natural immunity was potentially associated with age (6-17years and 41-64years) and sleeping less than 6 hours, while vaccine immunity was associated with age (6-17years), reporting vaccination against HB, belonging to high socioeconomic strata, home ownership and being obese, after adjusting for other variables. These results may be a population effect of mass vaccination. It is recommended to complete the vaccination schedule and to study in detail, persistence of antibodies and the role of obesity and socioeconomic strata in the vaccine immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Multifaceted Analysis of Immune-Endocrine-Metabolic Alterations in Patients with Pulmonary Tuberculosis

    PubMed Central

    Santucci, Natalia; D'Attilio, Luciano; Kovalevski, Leandro; Bozza, Verónica; Besedovsky, Hugo; del Rey, Adriana; Bay, María Luisa; Bottasso, Oscar

    2011-01-01

    Our study investigated the circulating levels of factors involved in immune-inflammatory-endocrine-metabolic responses in patients with tuberculosis with the aim of uncovering a relation between certain immune and hormonal patterns, their clinical status and in vitro immune response. The concentration of leptin, adiponectin, IL-6, IL-1β, ghrelin, C-reactive protein (CRP), cortisol and dehydroepiandrosterone (DHEA), and the in vitro immune response (lymphoproliferation and IFN-γ production) was evaluated in 53 patients with active untreated tuberculosis, 27 household contacts and 25 healthy controls, without significant age- or sex-related differences. Patients had a lower body mass index (BMI), reduced levels of leptin and DHEA, and increased concentrations of CRP, IL-6, cortisol, IL-1β and nearly significant adiponectin values than household contacts and controls. Within tuberculosis patients the BMI and leptin levels were positively correlated and decreased with increasing disease severity, whereas higher concentrations of IL-6, CRP, IL-1β, cortisol, and ghrelin were seen in cases with moderate to severe tuberculosis. Household contacts had lower DHEA and higher IL-6 levels than controls. Group classification by means of discriminant analysis and the k-nearest neighbor method showed that tuberculosis patients were clearly different from the other groups, having higher levels of CRP and lower DHEA concentration and BMI. Furthermore, plasma leptin levels were positively associated with the basal in vitro IFN-γ production and the ConA-driven proliferation of cells from tuberculosis patients. Present alterations in the communication between the neuro-endocrine and immune systems in tuberculosis may contribute to disease worsening. PMID:22022605

  19. Male Bovine GH Transgenic Mice Have Decreased Adiposity With an Adipose Depot-Specific Increase in Immune Cell Populations

    PubMed Central

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R.; List, Edward O.; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J.

    2015-01-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner. PMID:25521584

  20. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations.

    PubMed

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E

    2015-05-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.

  1. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion.

    PubMed

    Shi, Rui; Hong, Liu; Wu, Daocheng; Ning, Xiaoxuan; Chen, Yu; Lin, Tao; Fan, Daiming; Wu, Kaichun

    2005-02-01

    CpG oligodeoxynucleotides (CpG ODN) have been shown to have potent adjuvant activity for a wide range of antigens. Of particular interest is their improved activity when closely associated with the antigen. The purpose of this study is to construct a nanovaccine coencapsulated with a gastric cancer specific antigen MG7 mimotope peptide and adjuvant CpG ODN 1645 using new nanotechnology as nanoemulsion and evaluate its immunocompetence. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. BALB/c mice were immunized and the in vivo effectiveness was evaluated using tumor challenge assay. It was shown that the tumor masses formed in the mice immunized with coencapsulated nanovaccine (0.0825 g) markedly smaller (P < 0.01) than those formed in the mice immunized with nanovaccine encapsulated with antigen peptide alone (0.4465 g). A tumor inhibiting rate as high as 82.5% of the coencapsulated nanovaccine was obtained, while nanovaccine encapsulated with peptide only could not achieve the same effect (28.5%) (P < 0.01). Enzyme-linked immunospot assay (ELISPOT) showed that immunization using MG7 mimotope peptide coencapsulated with CpG ODN within the same nanoemulsion enhanced the frequency of splenocytes secreting IFN-gamma significantly (P < 0.01) when compared with immunization using MG7 peptide encapsulated in nanoemulsion alone (197spots/1 x 10(6) vs. 73 spots/1 x 10(6)). Cellular ELISA indicated that serum titer of antibody against MG7-Ag was significantly higher (P < 0.01) in mice immunized with coencapsulation form nanovaccine (0.7884) than that in the group immunized with nanovaccine encapsulated with MG7 peptide alone (0.3616). Using intracellular flow cytometric analysis, it was found that the IFN-gamma response was contributed by CD4+ T-cells. Our experiments suggest that a vaccinal approach using nano-delivery system carrying in tumoral epitope and CpG ODN as adjuvant may have important implications for cancer therapy.

  2. Prevalence of risk factors for acquiring measles during the 2011 outbreak in Quebec and impact of the province-wide school-based vaccination campaign on population immunity.

    PubMed

    Billard, Marie-Noëlle; De Serres, Gaston; Gariépy, Marie-Claude; Boulianne, Nicole; Toth, Eveline; Landry, Monique; Skowronski, Danuta M

    2017-01-01

    A large measles outbreak occurred in Quebec, Canada, in 2011. Although nearly two-thirds of the cases occurred in only two health districts, a mass vaccination campaign targeting all Quebec elementary and high school students without valid two-dose history was undertaken to prevent future outbreaks. We compared rates of non-vaccination and age at first measles vaccine dose among students in the two most-affected districts and the rest of the province and estimated the improvement in overall student measles immunity due to the mass school-based vaccination campaign. Data were extracted from the provincial vaccination registry for students in kindergarten to grade 11 during the 2011/2012 school year. A telephone survey was conducted in three sub-groups: students whose first measles vaccine dose recorded in the vaccination registry was received during the 2011 school vaccination campaign; students with no dose recorded in the registry whose parents refused receipt during the school campaign; and students with no dose recorded in the registry and no information about parental consent/refusal during the school campaign. Neither the prevalence of being non-vaccinated nor a younger age at first pediatric dose were higher in the two most-affected districts versus the rest of the province. The school campaign vaccinated nearly 8% of all students including 7% who previously received at least one dose. Before the outbreak, 3% of students were not vaccinated and one-third of these (1%/3%) were vaccinated during the campaign. The campaign likely increased the absolute school population immunity by just 1.7%. The concentration of measles cases in the two most-affected health districts during the large Quebec outbreak is not explained by more students who were unvaccinated or who had received their first vaccine dose at a younger age. The vaccination campaign reached one-third of unvaccinated students and only marginally improved population immunity.

  3. Long-term patterns of immune investment by wild deer mice infected with Sin Nombre virus.

    PubMed

    Lehmer, Erin M; Jones, Jeremy D; Bego, Mariana G; Varner, Johanna M; Jeor, Stephen St; Clay, Christine A; Dearing, M Denise

    2010-01-01

    Immunocompetence of animals fluctuates seasonally, However, there is little consensus on the cause of these fluctuations. Some studies have suggested that these patterns are influenced by changes in reproductive condition, whereas others have suggested that differences result from seasonal variations in energy expenditures. The objective of our study was to examine these contrasting views of immunity by evaluating seasonal patterns of immune response and reproduction in wild populations of deer mice Peromyscus maniculatus exposed to Sin Nombre virus (SNV). Over three consecutive fall (September, October, November) and three consecutive spring (March, April, May) sampling periods, we used titration enzyme-linked immunosorbent assay (ELISA) to quantify virus-specific antibody production in 48 deer mice infected with SNV. Levels of reproductive hormones were quantified using ELISA. SNV antibody titers reached their lowest level during November (geometric mean titer [GMT] = 420) and their highest levels during September (GMT = 5,545) and May (GMT = 3,582), suggesting that the immune response of deer mice to SNV has seasonal patterns. The seeming decrease in antibody titer over winter coupled with the consistency in body masses suggests that during winter, immunocompetence may be compromised to offset the energetic costs of maintenance functions, including those associated with maintaining body mass. Deer mice showed distinct sex-based differences in SNV antibody production, with males producing higher antibody titers (GMT = 3,333) than females (GMT = 1,477). Levels of reproductive hormones do not appear to influence antibody production in either males or females, as there was no correlation between estradiol concentrations and SNV antibody titer in female deer mice (r² = 0.26), nor was there a significant relationship between levels of testosterone and SNV antibody titers in males (r² = 0.28). Collectively, this study demonstrates that immunocompetence of wild deer mice is seasonally variable; however, reproduction is not the primary stressor responsible for this variation. Rather, the data suggest that deer mice may compromise immunocompetence during winter to offset other maintenance costs during this period.

  4. Safety and effectiveness of a single and repeat intramuscular injection of a GnRH vaccine (GonaCon™) in adult female domestic cats.

    PubMed

    Vansandt, L M; Kutzler, M A; Fischer, A E; Morris, K N; Swanson, W F

    2017-04-01

    Sterilization is a key strategy to reduce the number of domestic cats entering and killed in shelters each year. However, surgical sterilization is expensive and labour-intensive and cannot fully address the 70 million free-roaming cats estimated to exist in the United States. GonaCon™ is a gonadotropin-releasing hormone vaccine originally developed for use as a wildlife immunocontraceptive. An earlier formulation was tested in domestic cats and found to be safe and effective for long-term contraception. However, the current Environmental Protection Agency (EPA)-registered formulation consists of a different antigen-carrier protein and increased antigen concentration and has never been tested in cats. A pilot study was undertaken to evaluate the short-term safety of a single GonaCon immunization, assess the consequences of vaccinated cats receiving an accidental second GonaCon injection and determine the humoral immune response to immunization. During Phase 1, cats in Group A (n = 3) received a single intramuscular injection of GonaCon and Group B (n = 3) received a single intramuscular injection of saline. During Phase 2, Group A received a second GonaCon injection and Group B received their initial GonaCon injection. All cats developed GnRH antibodies within 30 days of vaccine administration. The endpoint titre (1:1,024,000) was similar among all cats, and levels remained high throughout the duration of the study. Four cats developed a sterile, painless, self-limiting mass at the site of injection. The mean number of days to mass development was 110.3 (range, 18-249 days). In conclusion, this preliminary study suggests that the EPA-registered GonaCon formulation is safe for continued testing in domestic cats, an accidental revaccination should not increase the risk of a vaccine reaction and the EPA-registered formulation effectively elicits a strong humoral immune response. © 2016 Blackwell Verlag GmbH.

  5. Development of a chicken ileal explant culture model for measurement of gut inflammation induced by lipopolysaccharide

    USDA-ARS?s Scientific Manuscript database

    Gut mucosa holds a single layer of epithelial cells and the largest mass of lymphoid tissue in the body. While epithelial cell culture is widely used to assess intestinal barrier functions, it has limitations for studying cellular interactions with other cells, in particular those of the immune syst...

  6. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex.

    PubMed

    Laqueyrerie, A; Militzer, P; Romain, F; Eiglmeier, K; Cole, S; Marchal, G

    1995-10-01

    Effective protection against a virulent challenge with Mycobacterium tuberculosis is induced mainly by previous immunization with living attenuated mycobacteria, and it has been hypothesized that secreted proteins serve as major targets in the specific immune response. To identify and purify molecules present in culture medium filtrate which are dominant antigens during effective vaccination, a two-step selection procedure was used to select antigens able to interact with T lymphocytes and/or antibodies induced by immunization with living bacteria and to counterselect antigens interacting with the immune effectors induced by immunization with dead bacteria. A Mycobacterium bovis BCG 45/47-kDa antigen complex, present in BCG culture filtrate, has been previously identified and isolated (F. Romain, A. Laqueyrerie, P. Militzer, P. Pescher, P. Chavarot, M. Lagranderie, G. Auregan, M. Gheorghiu, and G. Marchal, Infect. Immun. 61:742-750, 1993). Since the cognate antibodies recognize the very same antigens present in M. tuberculosis culture medium filtrates, a project was undertaken to clone, express, and sequence the corresponding gene of M. tuberculosis. An M. tuberculosis shuttle cosmid library was transferred in Mycobacterium smegmatis and screened with a competitive enzyme-linked immunosorbent assay to detect the clones expressing the proteins. A clone containing a 40-kb DNA insert was selected, and by means of subcloning in Escherichia coli, a 2-kb fragment that coded for the molecules was identified. An open reading frame in the 2,061-nucleotide sequence codes for a secreted protein with a consensus signal peptide of 39 amino acids and a predicted molecular mass of 28,779 Da. The gene was referred to as apa because of the high percentages of proline (21.7%) and alanine (19%) in the purified protein. Southern hybridization analysis of digested total genomic DNA from M. tuberculosis (reference strains H37Rv and H37Ra) indicated that the apa gene was present as a single copy on the genome. The N-terminal identity or homology of the M. tuberculosis and M. bovis BCG purified molecules and their similar global and deduced amino acid compositions demonstrated the perfect correspondence between the molecular and chemical analyses. The presence of a high percentage of proline (21.7%) was confirmed and explained the apparent higher molecular mass (45/47 kDa) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis resulting from the increased rigidity of molecules due to proline residues.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Celiac Disease Associated with a Benign Granulomatous Mass Demonstrating Self-Regression after Initiation of a Gluten-Free Diet.

    PubMed

    Tiwari, Abhinav; Sharma, Himani; Qamar, Khola; Khan, Zubair; Darr, Umar; Renno, Anas; Nawras, Ali

    2017-01-01

    Celiac disease is a chronic immune-mediated enteropathy in which dietary gluten induces an inflammatory reaction predominantly in the duodenum. Celiac disease is known to be associated with benign small bowel thickening and reactive lymphadenopathy that often regresses after the institution of a gluten-free diet. A 66-year-old male patient with celiac disease presented with abdominal pain and diarrheal illness. Computerized tomography of the abdomen revealed a duodenal mass. Endoscopic ultrasound-guided fine needle aspiration of the mass revealed bizarre stromal cells which represent a nonspecific tissue reaction to inflammation. This inflammatory mass regressed after the institution of a gluten-free diet. This case report describes a unique presentation of celiac disease in the form of a granulomatous self-regressing mass. Also, this is the first reported case of bizarre stromal cells found in association with celiac disease. In addition to lymphoma and small bowel adenocarcinoma, celiac disease can present with a benign inflammatory mass, which should be serially monitored for resolution with a gluten-free diet.

  8. Associations between physical activity and susceptibility to cancer: possible mechanisms.

    PubMed

    Shephard, R J; Shek, P N

    1998-11-01

    Physical activity is associated with a reduced risk of all-cause and colonic cancers, and it seems to exert a weaker effect on the risk of breast, lung and reproductive tract tumours. This review examines possible mechanisms behind the observed associations. Restriction of physical activity by pre-existing disease may contribute to the association with lung cancers, but seems a less likely explanation for other types of tumour. Indirect associations through activity-related differences in body build or susceptibility to trauma seem of minor importance. Potential dietary influences include overall energy balance and energy expenditure, the intake and/or bioavailability of minerals, antioxidant vitamins and fibre, and the relative proportions of protein and fat ingested. Links between regular exercise and other facets of lifestyle that influence cancer risks are not very strong, although endurance athletes are not usually smokers, and regular leisure activity is associated with a high socioeconomic status which tends to reduce exposure to airborne carcinogens, both at work and at home. Overall susceptibility to cancer shows a 'U'-shaped relationship to body mass index (mass/height2) reflecting, in part, the adverse influences of cigarette smoking and a tall body build for those with low body mass indices and, in part, the adverse effect of obesity at the opposite end of the body mass index distribution. Obesity seems a major component in the exercise-cancer relationship, with a particular influence on reproductive tract tumours; it alters the pathways of estradiol metabolism, decreases estradiol binding and facilitates the synthesis of estrogens. Among the hormonal influences on cancer risk, insulin-like growth factors promote tumour development and exercise-mediated increases in cortisol and prostaglandin levels may depress cellular components of immune function. However, the most important change is probably the suppression of the gonadotropic axis. Apparent gender differences in the benefits associated with regular exercise reflect gender differences in the hormonal milieu and also a failure to adapt activity questionnaires to traditional patterns of physical activity in females. The immune system is active at various stages of tumour initiation, growth and metastasis. However, acute and chronic changes in immune response induced by moderate exercise are rather small, and their practical importance remains debatable. At present, the oncologist is confronted by a plethora of interesting hypotheses, and further research is needed to decide which are of practical importance.

  9. Increased naive CD4+ and B lymphocyte subsets are associated with body mass loss and drive relative lymphocytosis in anorexia nervosa patients.

    PubMed

    Elegido, Ana; Graell, Montserrat; Andrés, Patricia; Gheorghe, Alina; Marcos, Ascensión; Nova, Esther

    2017-03-01

    Anorexia nervosa (AN) is an atypical form of malnutrition with peculiar changes in the immune system. We hypothesized that different lymphocyte subsets are differentially affected by malnutrition in AN, and thus, our aim was to investigate the influence of body mass loss on the variability of lymphocyte subsets in AN patients. A group of 66 adolescent female patients, aged 12-17 years, referred for their first episode of either AN or feeding or eating disorders not elsewhere classified were studied upon admission (46 AN-restricting subtype, 11 AN-binge/purging subtype, and 9 feeding or eating disorders not elsewhere classified). Ninety healthy adolescents served as controls. White blood cells and lymphocyte subsets were analyzed by flow cytometry. Relationships with the body mass index (BMI) z score were assessed in linear models adjusted by diagnostic subtype and age. Leukocyte numbers were lower in AN patients than in controls, and relative lymphocytosis was observed in AN-restricting subtype. Lower CD8 + , NK, and memory CD8 + counts were found in eating disorder patients compared with controls. No differences were found for CD4 + counts or naive and memory CD4 + subsets between the groups. Negative associations between lymphocyte percentage and the BMI z score, as well as between the B cell counts, naive CD4 + percentage and counts, and the BMI z score, were found. In conclusion, increased naive CD4 + and B lymphocyte subsets associated with body mass loss drive the relative lymphocytosis observed in AN patients, which reflects an adaptive mechanism to preserve the adaptive immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of 96 Weeks of Rosuvastatin on Bone, Muscle, and Fat in HIV-Infected Adults on Effective Antiretroviral Therapy.

    PubMed

    Erlandson, Kristine M; Jiang, Ying; Debanne, Sara M; McComsey, Grace A

    2016-04-01

    Heightened inflammation and immune activation are associated with lower bone mineral density (BMD) and lean body mass (LBM) among HIV-infected persons. We hypothesized that a reduction in inflammation with rosuvastatin would be associated with improvements in BMD and LBM. HIV-infected participants on stable antiretroviral therapy without statin indication and with heightened immune activation (≥19% CD8(+)CD38(+)HLA-DR(+) T cells) or inflammation (hsCRP ≥2 mg/liter) were randomized to rosuvastatin 10 mg daily or placebo for 96 weeks. Among 72 participants randomized to rosuvastatin and 75 to placebo, there were no significant differences in the relative changes in BMD (p > 0.29) or in fat (p ≥ 0.19). A trend toward increased LBM (p = 0.059) was seen in the rosuvastatin arm without differences in creatinine kinase or self-reported physical activity (p ≥ 0.10). In a multivariable regression model, rosuvastatin was associated with a significant positive effect on LBM after adjusting for age, sex, race, smoking status, and detectable HIV-1 viral load. Higher baseline sCD163 correlated with increases in LBM from weeks 0 to 96 (p = 0.023); greater changes in total and leg lean mass were seen among statin users with higher compared to lower baseline IP-10 levels (LBM 1.8 vs. -0.3%; p = 0.028 and leg lean mass 2.9 vs. -1.7%; p = 0.012). Rosuvastatin is associated with an absence of toxicity on BMD and a potential benefit on LBM over 96 weeks of therapy. The preservation of LBM in the rosuvastatin arm over the 2 years of the study is of major clinical relevance in delaying loss of muscle mass with aging.

  11. Body mass index and prevalence of skin diseases in adults with untreated coeliac disease.

    PubMed

    Zingone, F; Bucci, C; Tortora, R; Santonicola, A; Cappello, C; Franzese, M D; Passananti, V; Ciacci, C

    2009-01-01

    Coeliac disease (CD) is associated with immune-mediated skin diseases such as dermatitis herpetiformis and others. The objective of the study was to investigate the relation of body mass index (BMI), as an index of absorptive status, with the prevalence of skin diseases in adults with untreated CD. Anthropometry, gastro-intestinal symptoms, nutritional indices and immune-mediated skin diseases (dermatitis herpetiformis, psoriasis, aphthosis and alopecia) at diagnosis were analysed. 223 men and 924 women with untreated CD (aged 20-60 years) were included, the commonest skin disease was dermatitis herpetiformis (18.4 and 6.9%, respectively), the rarest one was alopecia (1.8 and 2.1%). The BMI was positively associated with male gender, age at diagnosis and nutritional indices, negatively with diarrhoea and dyspepsia (p < 0.001). A BMI difference of 3.5 (1 standard deviation) was related to an excess prevalence of dermatitis herpetiformis (odds ratio, OR = 1.46, 95% confidence interval, CI = 1.23-1.72) and of psoriasis (OR = 1.40, 95% CI = 1.10-1.79) but not of other immunological disorders. Findings were similar in analyses by gender or age group and controlled for gender and age. The relation of BMI to dermatitis herpetiformis was linear over the whole BMI range, also excluding overweight patients. The relation of BMI to psoriasis was flat for low-to-normal BMI and explained only by overweight patients. In CD at diagnosis, the BMI is positively related to the prevalence of dermatitis herpetiformis and psoriasis, not to that of other immune-mediated skin diseases. Copyright 2009 S. Karger AG, Basel.

  12. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis

    PubMed Central

    Zhao, Xiaoyan; Okeke, Nwora Lance; Sharpe, Orr; Batliwalla, Franak M; Lee, Annette T; Ho, Peggy P; Tomooka, Beren H; Gregersen, Peter K; Robinson, William H

    2008-01-01

    Introduction There is increasing evidence that autoantibodies and immune complexes (ICs) contribute to synovitis in rheumatoid arthritis (RA), yet the autoantigens incorporated in ICs in RA remain incompletely characterised. Methods We used the C1q protein to capture ICs from plasma derived from human RA and control patients. Antibodies specific for immunoglobulin were used to detect ICs, and fibrinogen antibodies were used to detect fibrinogen-containing ICs. RA and control plasma were separated by liquid chromatography, and fractions then characterised by ELISA, immunoblotting and mass spectrometry. Immunohistochemical staining was performed on rheumatoid synovial tissue. Results C1q-immunoassays demonstrated increased levels of IgG (p = 0.01) and IgM (p = 0.0002) ICs in plasma derived from RA patients possessing anti-cyclic citrullinated peptide (CCP+) autoantibodies as compared with healthy controls. About one-half of the anti-CCP+ RA possessed circulating ICs containing fibrinogen (p = 0.0004). Fractionation of whole RA plasma revealed citrullinated fibrinogen in the high molecular weight fractions that contained ICs. Positive correlations were observed between fibrinogen-containing ICs and anti-citrullinated fibrinogen autoantibodies, anti-CCP antibody, rheumatoid factor and certain clinical characteristics. Immunohistochemical staining demonstrated co-localisation of fibrinogen, immunoglobulin and complement component C3 in RA pannus tissue. Mass spectrometry analysis of immune complexes immunoprecipitated from RA pannus tissue lysates demonstrated the presence of citrullinated fibrinogen. Conclusion Circulating ICs containing citrullinated fibrinogen are present in one-half of anti-CCP+ RA patients, and these ICs co-localise with C3 in the rheumatoid synovium suggesting that they contribute to synovitis in a subset of RA patients. PMID:18710572

  13. Spray vaccination: a method for the immunization of fish

    USGS Publications Warehouse

    Gould, R.W.; O'Leary, P. J.; Garrison, R. L.; Rohovec, J.S.; Fryer, J.L.

    1978-01-01

    The use of immunizing agents is emerging as a complement to other methods of disease control and has been used successfully both experimentally and commercially (FRYER et al., 1977). Two problems exist in the development of fish vaccines: first, to provide efficacious preparations; and second, to provide economic methods for mass vaccination. Vaccines for fish have been delivered by several methods to include: parenteral injection; orally, through incorporation of vaccines into the animal's diet; hyperosmotic infiltration, by placing fish in a hyperosmotic solution followed by a vaccine bath; direct immersion into vaccine suspensions; or by direct addition of vaccine to water in which fish are held (CORBEL, 1975; AMEND, 1976; AMEND and FENDER, 1976; SCHACTE, 1976; ANTIPA and AMEND, 1977; CROY and AMEND, 1977; FRYER, et al., 1977). Each of these techniques has its inherent advantages and disadvantages. Although intraperitoneal injection appears to be most effective, this method is time consuming and stresses the fish being vaccinated. Oral administration is perhaps the most desirable method of vaccine delivery, but in some cases has not provided high levels of resistance (GUNNELS, et al., 1976). Hyperosmotic infil tration and direct immersion are used to vac cinate small fish but may not be economical with larger animals. Addition of vaccine to water has been used experimentally only with an attenuated viral vaccine (FRYER et al., 1976). This report describes another method for mass immunization of fish. A bacterin against Vibrio anguillarum was administered by spraying fish with antigens prepared by selected methods. This technique provided a fast efficacious means of administering vibrio bacterin. 

  14. Controlling cholera in the Ouest Department of Haiti using oral vaccines.

    PubMed

    Kirpich, Alexander; Weppelmann, Thomas A; Yang, Yang; Morris, John Glenn; Longini, Ira M

    2017-04-01

    Following the 2010 cholera outbreak in Haiti, a plan was initiated to provide massive improvements to the sanitation and drinking water infrastructure in order to eliminate cholera from the island of Hispaniola by 2023. Six years and a half billion dollars later, there is little evidence that any substantial improvements have been implemented; with increasing evidence that cholera has become endemic. Thus, it is time to explore strategies to control cholera in Haiti using oral cholera vaccines (OCVs). The potential effects of mass administration of OCVs on cholera transmission were assessed using dynamic compartment models fit to cholera incidence data from the Ouest Department of Haiti. The results indicated that interventions using an OCV that was 60% effective could have eliminated cholera transmission by August 2012 if started five weeks after the initial outbreak. A range of analyses on the ability of OCV interventions started January 1, 2017 to eliminate cholera transmission by 2023 were performed by considering different combinations of vaccine efficacies, vaccine administration rates, and durations of protective immunity. With an average of 50 weeks for the waiting time to vaccination and an average duration of three years for the vaccine-induced immunity, all campaigns that used an OCV with a vaccine efficacy of at least 60% successfully eliminated cholera transmission by 2023. The results of this study suggest that even with a relatively wide range of vaccine efficacies, administration rates, and durations of protective immunity, future epidemics could be controlled at a relatively low cost using mass administration of OCVs in Haiti.

  15. Leptin-based adjuvants: an innovative approach to improve vaccine response.

    PubMed

    White, Sarah J; Taylor, Matthew J; Hurt, Ryan T; Jensen, Michael D; Poland, Gregory A

    2013-03-25

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥30 kg/m(2)) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin's role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.

  17. Rubella seronegativity in antenatal screening - Is it influenced by the introduction of universal childhood rubella immunization?

    PubMed

    Lao, Terence T; Sahota, Daljit S; Law, Lai-Wa; Leung, Tak-Yeung

    2015-09-11

    This study examined the impact of rubella immunization, implemented in Hong Kong in phases since 1978, on antenatal rubella serological status in Chinese women. In a retrospective cohort study, the incidence of antenatal rubella seronegative status in our parturients managed from 1998 to 2013 was analyzed by their year-of-birth as follows: <1965 (no childhood immunization), 1965-1982 (single dose at Primary 6), and ≥1983 (two doses at age 12 months and 12 years), adjusting for other factors including age, parity, body mass index, place-of-birth status and hepatitis B surface antigen (HBsAg) status. Rubella seronegativity decreased from 12.9%, 10.5%, to 9.8% respectively, and correlated inversely (P<0.001) with year-of-birth cohorts. Despite similar demographic profiles, this correlation was found only in Hong-Kong-born women (from 12.6%, 7.5% to 6.5% respectively), who also had significant lower incidences of rubella seronegativity (OR 0.73, 0.31 and 0.29 respectively) and HBsAg seropositivity (OR 1.09, 0.63 and 0.48 respectively) than China-born women. On regression analysis, rubella seronegativity was actually significantly increased following the implementation of immunization (aOR 1.20) while it was the reverse for non-residents (aOR 0.61). Although rubella seronegativity decreased with immunization, the effect was less than expected when adjusted for other risk factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    PubMed Central

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  19. Strategies and challenges for eliciting immunity against avian influenza virus in birds.

    PubMed

    Swayne, David E; Kapczynski, Darrell

    2008-10-01

    Vaccines and vaccination have emerged during the past two decades as essential tools in avian influenza (AI) control for poultry, because they increase resistance to infection, prevent illness and death, reduce virus replication and shed from respiratory and alimentary tracts, and reduce virus transmission to birds and mammals, including humans. Such protection in birds is primarily mediated by homosubtypic humoral immunity against the hemagglutinin protein, but cell-mediated and innate immunity contribute to protection in some bird species. The immune response to the neuraminidase protein can contribute to protection, but immunity to the viral internal proteins is generally not protective. Although, some preliminary studies with M2e protein in chickens suggest partial protection may be achievable. Historically, the H5 subtype AI vaccines have demonstrated broad homosubtypic protection, primarily against H5 high-pathogenicity (HP) AI viruses isolated in the early stages of outbreaks. However, as H5 viruses have become endemic and outbreaks prolonged, some drift variants with resistance to earlier H5 AI vaccines have emerged in Central America, China, Egypt, and Indonesia. How widespread such drift variants are will remain unknown until more detailed genetic and antigenic analyses are conducted on field isolates. Future vaccines will utilize biotechnology to produce new AI vaccine seed strains using HA genes more closely matching circulating field viruses. In addition, newer technologies for AI vaccines will improve vaccine coverage by using mass application technologies for example by drinking water, by spray, or via injection in ovo or at the hatchery.

  20. Frailty and sarcopenia: The potential role of an aged immune system.

    PubMed

    Wilson, Daisy; Jackson, Thomas; Sapey, Elizabeth; Lord, Janet M

    2017-07-01

    Frailty is a common negative consequence of ageing. Sarcopenia, the syndrome of loss of muscle mass, quality and strength, is more common in older adults and has been considered a precursor syndrome or the physical manifestation of frailty. The pathophysiology of both syndromes is incompletely described with multiple causes, inter-relationships and complex pathways proposed. Age-associated changes to the immune system (both immunesenescence, the decline in immune function with ageing, and inflammageing, a state of chronic inflammation) have been suggested as contributors to sarcopenia and frailty but a direct causative role remains to be established. Frailty, sarcopenia and immunesenescence are commonly described in older adults but are not ubiquitous to ageing. There is evidence that all three conditions are reversible and all three appear to share common inflammatory drivers. It is unclear whether frailty, sarcopenia and immunesenescence are separate entities that co-occur due to coincidental or potentially confounding factors, or whether they are more intimately linked by the same underlying cellular mechanisms. This review explores these possibilities focusing on innate immunity, and in particular associations with neutrophil dysfunction, inflammation and known mechanisms described to date. Furthermore, we consider whether the age-related decline in immune cell function (such as neutrophil migration), increased inflammation and the dysregulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway in neutrophils could contribute pathogenically to sarcopenia and frailty. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    PubMed

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  2. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows.

    PubMed

    Ardia, Daniel R; Pérez, Jonathan H; Clotfelter, Ethan D

    2010-06-22

    Nest microclimate can have strong effects that can carry over to later life-history stages. We experimentally cooled the nests of tree swallows (Tachycineta bicolor). Females incubating in cooled nests reduced incubation time and allowed egg temperatures to drop, leading to extended incubation periods. We partially cross-fostered nestlings to test carry-over effects of cooling during incubation on nestling innate constitutive immunity, assessed through bacteria killing ability (BKA) of blood. Nestlings that had been cooled as eggs showed a lower ability to kill bacteria than control nestlings, regardless of the treatment of their foster mother. However, there was no effect of treatment of rearing females on nestling BKA in control nestlings, even though cooled females made significantly fewer feeding visits than did control females. This suggests that the effect of cooling occurred during incubation and was not due to carry-over effects on nestling condition. Nestlings that were exposed to experimental cooling as embryos had lower residual body mass and absolute body mass at all four ages measured. Our results indicate that environmental conditions and trade-offs experienced during one stage of development can have important carry-over effects on later life-history stages.

  3. The Human Colostrum Whey Proteome Is Altered in Gestational Diabetes Mellitus

    PubMed Central

    2015-01-01

    Proteomics of human milk has been used to identify the comprehensive cargo of proteins involved in immune and cellular function. Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and breast milk components. The objective of the current study was to examine the effect of GDM on the expression of proteins in the whey fraction of human colostrum. Colostrum was collected from women who were diagnosed with (n = 6) or without (n = 12) GDM at weeks 24–28 in pregnancy. Colostral whey was analyzed for protein abundances using high-resolution, high-mass accuracy liquid chromatography tandem mass spectrometry. A total of 601 proteins were identified, of which 260 were quantified using label free spectral counting. Orthogonal partial least-squares discriminant analysis identified 27 proteins that best predict GDM. The power law global error model corrected for multiple testing was used to confirm that 10 of the 27 proteins were also statistically significantly different between women with versus without GDM. The identified changes in protein expression suggest that diabetes mellitus during pregnancy has consequences on human colostral proteins involved in immunity and nutrition. PMID:25338220

  4. Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determinated by multiparametric single cell mass cytometry analysis.

    PubMed

    Kadić, Elma; Moniz, Raymond J; Huo, Ying; Chi, An; Kariv, Ilona

    2017-02-02

    Comprehensive understanding of cellular immune subsets involved in regulation of tumor progression is central to the development of cancer immunotherapies. Single cell immunophenotyping has historically been accomplished by flow cytometry (FC) analysis, enabling the analysis of up to 18 markers. Recent advancements in mass cytometry (MC) have facilitated detection of over 50 markers, utilizing high resolving power of mass spectrometry (MS). This study examined an analytical and operational feasibility of MC for an in-depth immunophenotyping analysis of the tumor microenvironment, using the commercial CyTOF™ instrument, and further interrogated challenges in managing the integrity of tumor specimens. Initial longitudinal studies with frozen peripheral blood mononuclear cells (PBMCs) showed minimal MC inter-assay variability over nine independent runs. In addition, detection of common leukocyte lineage markers using MC and FC detection confirmed that these methodologies are comparable in cell subset identification. An advanced multiparametric MC analysis of 39 total markers enabled a comprehensive evaluation of cell surface marker expression in fresh and cryopreserved tumor samples. This comparative analysis revealed significant reduction of expression levels of multiple markers upon cryopreservation. Most notably myeloid derived suppressor cells (MDSC), defined by co-expression of CD66b + and CD15 + , HLA-DR dim and CD14 - phenotype, were undetectable in frozen samples. These results suggest that optimization and evaluation of cryopreservation protocols is necessary for accurate biomarker discovery in frozen tumor specimens.

  5. Effects of interaction between temperature conditions and copper exposure on immune defense and other life-history traits of the blow fly Protophormia terraenovae.

    PubMed

    Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J

    2014-01-01

    Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.

  6. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus.

    PubMed

    Wiley, Clayton A; Bhardwaj, Nitin; Ross, Ted M; Bissel, Stephanie J

    2015-09-01

    History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes. © 2015 International Society of Neuropathology.

  7. Feliform carnivores have a distinguished constitutive innate immune response.

    PubMed

    Heinrich, Sonja K; Wachter, Bettina; Aschenborn, Ortwin H K; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á

    2016-05-15

    Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. © 2016. Published by The Company of Biologists Ltd.

  8. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling.

    PubMed

    Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-09

    Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.

  9. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling

    PubMed Central

    Puente-Marin, Sara; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio

    2018-01-01

    Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation. PMID:29642539

  10. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model

    PubMed Central

    Hess, Jessica A.; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M.; Bottazzi, Maria Elena; Hotez, Peter J.; Klei, Thomas R.; Lustigman, Sara; Abraham, David

    2014-01-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunization protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. PMID:24907553

  11. Is Serum Prostate-specific Antigen a Diagnostic Marker for Benign and Malignant Breast Tumors in Women.

    PubMed

    Razavi, Seyed Hasan Emami; Ghajarzadeh, Mahsa; Abdollahi, Alireza; Taran, Ludmila; Shoar, Saeed; Omranipour, Ramesh

    2015-06-01

    Breast cancer is the most common cancer in women. Prostrate-specific antigen (PSA) is a marker of prostate gland malignancy which has been considered in cases with breast cancer in recent years. The goal of this study was to determine total and free PSA levels in cases with malignant and benign breast lesions. Ninety women with histological proved malignant breast masses and 90 with benign breast masses were enrolled. Total and free PSA levels along with histological grade and conditions of vascular and perinural invasion, status of hormonal tumor receptors, immune-histo-chemistry markers recorded for all cases. Total and free PSA levels were assessed after treatment in cases with malignant masses. Total and free PSA levels were significantly higher in cases with malignant masses. The best cut off point for total PSA to differentiate benign and malignant masses was 0.31 and the best cut off point for free PSA to differentiate benign and malignant masses was 0.19. After treatment, mean free PSA level was significantly lower than free PSA before treatment (0.23 vs 0.3, p<0.001). Serum PSA level could be applied for differentiating benign and malignant breast masses.

  12. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    PubMed Central

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  13. Acute intraperitoneal lipopolysaccharide influences the immune system in the absence of gut dysbiosis.

    PubMed

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    There is bidirectional communication between the immune system and the gut microbiome, however the precise mechanisms regulating this crosstalk are not well understood. Microbial-associated molecular patterns (MAMPs) within the gut, including lipopolysaccharide (LPS) that produces a quick and robust activation of the immune system, may be one way by which these interactions occur. Endogenous levels of LPS in the gut are low enough that they do not usually cause disease, although, in times of increased LPS loads, they may be capable of increasing vulnerability of the gut to pathogenic bacteria. Furthermore, chronic, low-grade inflammation can have lasting effects on the gut, but the effects of acute inflammation on gut communities have not been thoroughly assessed. In this study, we first investigated whether a single modest dose of LPS administered to adult male and female Siberian hamsters (Phodopus sungorus) activated the immune system by measuring levels of circulating cortisol and the proinflammatory cytokine TNF-α in the liver compared with saline-treated animals. We then investigated whether this same acute dose of LPS altered the microbiome 48 h after treatment. We found that, although LPS increased cortisol and liver cytokine levels, and produced changes in food intake and body mass in both sexes, immunological changes were independent of gut dysbiosis 48 h after LPS injection. These data suggest that an acute immune activation may not be capable of altering the gut microbiome in healthy individuals. It is likely, however, that this type of immune challenge may have other physiological impacts on the gut's vulnerability, and future studies will investigate these relationships further. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Genome-wide DNA Methylation Changes in a Mouse Model of Infection-Mediated Neurodevelopmental Disorders.

    PubMed

    Richetto, Juliet; Massart, Renaud; Weber-Stadlbauer, Ulrike; Szyf, Moshe; Riva, Marco A; Meyer, Urs

    2017-02-01

    Prenatal exposure to infectious or inflammatory insults increases the risk of neurodevelopmental disorders. Using a well-established mouse model of prenatal viral-like immune activation, we examined whether this pathological association involves genome-wide DNA methylation differences at single nucleotide resolution. Prenatal immune activation was induced by maternal treatment with the viral mimetic polyriboinosinic-polyribocytidylic acid in middle or late gestation. Following behavioral and cognitive characterization of the adult offspring (n = 12 per group), unbiased capture array bisulfite sequencing was combined with subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitative real-time polymerase chain reaction analyses to quantify DNA methylation changes and transcriptional abnormalities in the medial prefrontal cortex of immune-challenged and control offspring. Gene ontology term enrichment analysis was used to explore shared functional pathways of genes with differential DNA methylation. Adult offspring of immune-challenged mothers displayed hyper- and hypomethylated CpGs at numerous loci and at distinct genomic regions, including genes relevant for gamma-aminobutyric acidergic differentiation and signaling (e.g., Dlx1, Lhx5, Lhx8), Wnt signaling (Wnt3, Wnt8a, Wnt7b), and neural development (e.g., Efnb3, Mid1, Nlgn1, Nrxn2). Altered DNA methylation was associated with transcriptional changes of the corresponding genes. The epigenetic and transcriptional effects were dependent on the offspring's age and were markedly influenced by the precise timing of prenatal immune activation. Prenatal viral-like immune activation is capable of inducing stable DNA methylation changes in the medial prefrontal cortex. These long-term epigenetic modifications are a plausible mechanism underlying the disruption of prefrontal gene transcription and behavioral functions in subjects with prenatal infectious histories. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Vaccination of plasmid DNA encoding ORF81 gene of CJ strains of KHV provides protection to immunized carp.

    PubMed

    Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2014-06-01

    In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.

  16. Perspectives of Immunization Program Managers on 2009-10 H1N1 Vaccination in the United States: A National Survey

    PubMed Central

    Seib, Katherine; Wells, Katelyn; Hannan, Claire; Orenstein, Walter A.; Whitney, Ellen A. S.; Hinman, Alan R.; Berkelman, Ruth L.; Omer, Saad B.

    2012-01-01

    Abstract In June and July 2010, we conducted a national internet-based survey of 64 city, state, and territorial immunization program managers (IPMs) to assess their experiences in managing the 2009-10 H1N1 influenza vaccination campaign. Fifty-four (84%) of the managers or individuals responsible for an immunization program responded to the survey. To manage the campaign, 76% indicated their health department activated an incident command system (ICS) and 49% used an emergency operations center (EOC). Forty percent indicated they shared the leadership of the campaign with their state-level emergency preparedness program. The managers' perceptions of the helpfulness of the emergency preparedness staff was higher when they had collaborated with the emergency preparedness program on actual or simulated mass vaccination events within the previous 2 years. Fifty-seven percent found their pandemic influenza plan helpful, and those programs that mandated that vaccine providers enter data into their jurisdiction's immunization information system (IIS) were more likely than those who did not mandate data entry to rate their IIS as valuable for facilitating registration of nontraditional providers (42% vs. 25%, p<0.05) and tracking recalled influenza vaccine (50% vs. 38%, p<0.05). Results suggest that ICS and EOC structures, pandemic influenza plans, collaborations with emergency preparedness partners during nonemergencies, and expanded use of IIS can enhance immunization programs' ability to successfully manage a large-scale vaccination campaign. Maintaining the close working relationships developed between state-level immunization and emergency preparedness programs during the H1N1 influenza vaccination campaign will be especially important as states prepare for budget cuts in the coming years. PMID:22360580

  17. Variations of immune parameters in the lined seahorse Hippocampus erectus after infection with enteritis pathogen of Vibrio parahaemolyticus.

    PubMed

    Lin, Tingting; Zhang, Dong; Liu, Xin; Xiao, Dongxue

    2016-03-01

    Enteritis has been increasingly recognized as one of the major obstacles for the lined seahorse Hippocampus erectus mass culture success. In the present study, the intestinal bacteria strains of the lined seahorses H. erectus suffered from enteritis were isolated, then their pathogenicities were confirmed by artificial infection, and one pathogenic bacteria strain named DS3 was obtained. The median lethal dose (LD50) of strain DS3 for 10 days was determined. The seahorses with different infection levels of uninfected (control), early stage of infection (ESI) and late stage of infection (LSI) were respectively sampled at 0, 3, 6 and 9 days post infection, and 12 immune parameters in the plasma were analyzed. The strain DS3 identified with a biochemical test combined with a molecular method was Vibrio parahaemolyticus, and its LD50 for 10 days was 1.3 × 10(3) cfu/fish. Six parameters including monocytes/leucocytes, leucocytes phagocytic rate, interleukin-2, interferon-α, lysozyme and immunoglobulin M exhibited a generally similar variation trend: highest in the control, second in the ESI and lowest in the LSI throughout the entire experiment. In view of the infection level of V. parahaemolyticus to H. erectus is largely decided by the seahorse's own immune capacity, therefore, these immune parameters were high in the non- or slightly infected seahorses, and low in the severely infected individuals may be an indicator for immune level. These immune parameters may be reliable indicators for the juvenile and broodstock quality assessment. Moreover, clarification of the enteritis pathogen also provides guidances for targeted medicine choice for the lined seahorse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A cross-reactive monoclonal antibody to nematode haemoglobin enhances protective immune responses to Nippostrongylus brasiliensis.

    PubMed

    Nieuwenhuizen, Natalie E; Meter, Jeanne M; Horsnell, William G; Hoving, J Claire; Fick, Lizette; Sharp, Michael F; Darby, Matthew G; Parihar, Suraj P; Brombacher, Frank; Lopata, Andreas L

    2013-01-01

    Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection. Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four -HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens. The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection.

  19. Safety and Immunogenicity of a Mycoplasma ovipneumoniae bacterin for domestic sheep (Ovis aries).

    PubMed

    Ziegler, Jessie C; Lahmers, Kevin K; Barrington, George M; Parish, Steven M; Kilzer, Katherine; Baker, Katherine; Besser, Thomas E

    2014-01-01

    Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1) live M. ovipneumoniae (50 ug protein); 2) killed M. ovipneumoniae (50 ug whole cell protein) in oil adjuvant; and 3) killed M. ovipneumoniae (250 ug whole cell protein) in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA) (experiments 1-3) and serum growth inhibition (Experiment 3). Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs.

  20. Safety and Immunogenicity of a Mycoplasma ovipneumoniae Bacterin for Domestic Sheep (Ovis aries)

    PubMed Central

    Ziegler, Jessie C.; Lahmers, Kevin K.; Barrington, George M.; Parish, Steven M.; Kilzer, Katherine; Baker, Katherine; Besser, Thomas E.

    2014-01-01

    Background Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. Methods The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1) live M. ovipneumoniae (50 ug protein); 2) killed M. ovipneumoniae (50 ug whole cell protein) in oil adjuvant; and 3) killed M. ovipneumoniae (250 ug whole cell protein) in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA) (experiments 1–3) and serum growth inhibition (Experiment 3). Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. Results and Conclusions Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs. PMID:24752006

  1. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    PubMed

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effect of nutrient density on production performance, egg quality and humoral immune response of brown laying (Dahlem Red) hens in the tropics.

    PubMed

    Panda, Arun Kumar; Rao, Savaram Venkata Rama; Raju, Mantena Venkata Lakshmi Narasimha; Niranjan, Matam; Reddy, Maddula Ramkoti

    2012-02-01

    A study was conducted to evaluate the effect of various concentrations of metabolizable energy (ME) with graded incremental levels of crude protein (CP) and essential amino acids (lysine and methionine) on production performance, egg quality and humoral immune response of Dahlem Red laying hens. Four experimental diets based on maize-soybean meal-deoiled rice bran were prepared. Diet 1 was fed as a control diet containing 2,600 kcal ME/kg, 15% CP, 0.75% Lys and 0.36% Met, and in the other three diets (D2, D3 and D4), concentrations of the above nutrients were increased by 2.5%, 5.0% and 7.5%, respectively. The levels of Ca (3.5%) and available P (0.32) were constant in all the diets. Each diet was offered ad libitum from 28 to 40 weeks of age to eight replicates containing six birds in each replicate. The egg production, egg weight and egg mass (in grams of egg per hen per day) were not affected by increasing the nutrient density up to 7.5% (2,795 kcal ME/kg diet) compared to the control group (2,600 ME/kg diet). However, feed consumption and feed efficiency (in grams of egg per gram of feed) were influenced by the variation in the nutrient density of diets. As the nutrient density increased by 5% (2,730 ME/kg diet), birds consumed significantly (P < 0.001) less feed. The birds in the 7.5% higher density group produced significantly (P < 0.05) higher egg mass per unit feed consumption compared to the control diet. Increasing nutrient density up to 7.5% had no effect on relative weight of albumen, yolk or shell. The Haugh unit, yolk colour and shell thickness were also not affected due to variation in the nutrient density. The humoral immune response measured at 34 and 40 weeks was progressively improved by increasing the nutrient density up to 5%. Increasing the nutrient density beyond 5% in the diet had no further influence on the humoral immune response. Based on the results of the present study, it can be concluded that Dahlem Red laying hens required 2,795 kcal/kg ME, 16% CP, 0.8% lysine and 0.4% methionine for eliciting optimum performance and immune response during 28 to 40 weeks of age.

  3. Seroprevalence of rubella in Colombia: a birth-year cohort analysis

    PubMed Central

    Hincapie-Palacio, Doracelly; Lenis Ballesteros, Viviana; Ospina, Martha Ospina; Toro, Olga Lucía Pérez; Díaz, Francisco J

    2013-01-01

    OBJECTIVE To estimate the seroprevalence of rubella and associated factors. METHODS Population-based seroprevalence study in a random sample of 2,124 individuals, aged six to 64 years, representative by age, sex and area in Medellín, Colombia, 2009. Biological and socioeconomic variables were analyzed for their association with serum protection against rubella, according to birth-year cohort; those born before (1954-1990) and after (1991-2003) the introduction of universal immunization. Titer of IgG antibodies against the rubella virus was detected using a high sensitivity (AxSYM®Rubella IgG – Abbott Laboratories) and a high specificity test (VIDAS RUB IgG II®– BioMerieux Laboratories). Proportions and weighted averages derived from a complex sample, including a correction factor for differences in gender participation, were estimated. Association with protection for groups of biological and social variables according to birth cohort was analyzed using a logistic regression model. RESULTS Titers of IgG antibodies were higher in those born before (mean 110 UI/ml, 95%CI 100.5;120.2) compared to those born after (mean 64 UI/ml; 95%CI 54.4;72.8; p = 0.000) the introduction of mass immunization. The proportion of protection increased from 88.9% in those born 1990-1994, to 89.2% in those born 1995-1999 and to 92.1% in those born between 2000 and 2003, possibly due to boosters being administered from 1998 onwards. In those born before the introduction of the immunization, seroprotection was associated with previous contact with cases (OR 2.6; 95%CI 1.1;5.9), self- perceived health status (OR 2.5; 95%CI 1.05;6.0), educational level (OR 0.2; 95%CI 0.08;0.8) and years of residence in the neighborhood (RD 0,96; 95%CI 0.98;1.0) after adjusting for all variables. In those born after, serum protection was associated with effective sleep time (OR 1,4; 95%CI 1.09;1.8) and self-perceived health status (OR 5.5; 95%CI 1.2;23.8). CONCLUSIONS The seroprevalence profile changed with the mass immunization plan, with higher titers of IgG antibodies in those born before the start of the immunization. It is recommended that the level of long-term protection be monitored and concerted action taken to improve potentially associated socioeconomic conditions. PMID:24626546

  4. Effect of in ovo exposure to an organochlorine mixture extracted from double crested cormorant eggs (Phalacrocorax auritus) and PCB 126 on immune function of juvenile chickens

    USGS Publications Warehouse

    Lavoie, E.T.; Wiley, F.; Grasman, K.A.; Tillitt, D.E.; Sikarskie, J.G.; Bowerman, W.W.

    2007-01-01

    Organochlorine (OC) contaminants including polychlorinated biphenyls (PCBs) and p, p'-dichlorodiphenyldichloroethylene (DDE) have been associated with immune modulation in wild fish-eating birds from the Great Lakes. The objective of this study was to evaluate the immune function of juvenile chickens after in ovo exposure to PCB 126 or an environmentally relevant OC mixture extracted from eggs of double crested cormorants (Phalacrocorax auritus) from Green Bay, Lake Michigan, USA. Fertile white leghorn chicken (Gallus domesticus) eggs were injected before incubation with 0.55-1.79 ng TCDD equivalents (TEQ)/egg PCB 126 and 1.2-4.9 ng TEQs/egg of cormorant egg extract into the air cell in two separate experiments. After hatching, the immune function was tested using in vivo phytohemagglutinin (PHA) skin response in 11-day-old chicks, antibody titers to immunization with sheep red blood cells (SRBC) in 28-day-old chicks, and, at necropsy, thymus and bursal mass and cellularity. PCB 126 decreased antibody titers at all doses and decreased the thymus and bursa index but not cellularity at 1.79 ng TEQ/egg. The cormorant egg extract caused no significant alterations in immune function even though it has been demonstrated as immunotoxic in chicken embryos. However, twofold to threefold increases in total anti-SRBC titers in 28-day-old chicks exposed to 1.2 or 2.4 ng TEQ/egg of cormorant extract were similar to elevations in anti-SRBC titer observed in Caspian tern (Sterna caspia) chicks from a highly OC-contaminated site in Saginaw Bay, Lake Huron. Posthatch exposure to OC through fish consumption in addition to in ovo OC exposure might be associated with the immune modulation reported in wild birds. Chicks in this study might have begun to compensate for embryonic immunotoxicity by the ages at which we studied them. ?? 2007 Springer Science+Business Media, LLC.

  5. Immune Activity, Body Condition and Human-Associated Environmental Impacts in a Wild Marine Mammal

    PubMed Central

    Brock, Patrick M.; Hall, Ailsa J.; Goodman, Simon J.; Cruz, Marilyn; Acevedo-Whitehouse, Karina

    2013-01-01

    Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage. PMID:23840603

  6. DNA-based adaptive immunity protect host from infection-associated periodontal bone resorption via recognition of Porphyromonas gingivalis virulence component.

    PubMed

    Han, Xiaozhe; LaRosa, Karen B; Kawai, Toshihisa; Taubman, Martin A

    2014-01-03

    Porphyromonas gingivalis (Pg) is one of a constellation of oral organisms associated with human chronic periodontitis. While adaptive immunity to periodontal pathogen proteins has been investigated and is an important component of periodontal bone resorption, the effect of periodontal pathogen DNA in eliciting systemic and mucosal antibody and modulating immune responses has not been investigated. Rowett rats were locally injected with whole genomic Pg DNA in alum. Escherichia coli (Ec) genomic DNA, Fusobacterium nucleatum (Fn) genomic DNA, and saline/alum injected rats served as controls. After various time points, serum IgG and salivary IgA antibody to Ec, Fn or Pg were detected by ELISA. Serum and salivary antibody reactions with Pg surface antigens were determined by Western blot analyses and the specific antigen was identified by mass spectrometry. Effects of genomic DNA immunization on Pg bacterial colonization and experimental periodontal bone resorption were also evaluated. Sera from Pg DNA, Ec DNA and Fn DNA-injected rats did not react with Ec or Fn bacteria. Serum IgG antibody levels to Pg and Pg surface extracts were significantly higher in animals immunized with Pg DNA as compared to the control groups. Rats injected with Pg DNA demonstrated a strong serum IgG and salivary IgA antibody reaction solely to Pg fimbrillin (41kDa), the major protein component of Pg fimbriae. In the Pg DNA-immunized group, the numbers of Pg bacteria in oral cavity and the extent of periodontal bone resorption were significantly reduced after Pg infection. This study suggests that infected hosts may select specific genes from whole genomic DNA of the periodontal pathogen for transcription and presentation. The results indicate that the unique gene selected can initiate a host protective immune response to the parent bacterium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens.

    PubMed

    Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V; Ovchinnikova, Tatiana V

    2017-01-01

    Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The safety of maternal immunization

    PubMed Central

    Regan, Annette K.

    2016-01-01

    ABSTRACT Maternal vaccination offers the opportunity to protect pregnant women and their infants against potentially serious disease. As both pregnant women and their newborns are vulnerable to severe illness, the potential public health impact of mass maternal vaccination programs is remarkable. Several high-income countries recommend seasonal influenza and acellular pertussis vaccines, and many developing countries recommend immunization against tetanus during pregnancy. There is a significant amount of literature supporting the safety of vaccination during pregnancy. As other vaccines are newly introduced for pregnant women, routine systems for monitoring vaccine safety in pregnant women are needed. To facilitate meta-analyses and comparison across systems and studies, future research and surveillance initiatives should utilize the same criteria for defining adverse events following immunization among pregnant women. At least 2 areas require further exploration: 1) identification of pregnancy outcomes associated with concomitant and closely spaced vaccines; 2) evaluation of possible improvement in birth outcomes associated with maternal vaccination. Given the public health impact of maternal vaccination, the existing evidence supporting the safety of vaccination during pregnancy should be used to reassure pregnant women and their providers and improve vaccine uptake in pregnancy. PMID:27541370

  9. Innovations in communication technologies for measles supplemental immunization activities: lessons from Kenya measles vaccination campaign, November 2012

    PubMed Central

    Mbabazi, William B; Tabu, Collins W; Chemirmir, Caleb; Kisia, James; Ali, Nasra; Corkum, Melissa G; Bartley, Gene L

    2015-01-01

    Background To achieve a measles free world, effective communication must be part of all elimination plans. The choice of communication approaches must be evidence based, locally appropriate, interactive and community owned. In this article, we document the innovative approach of using house visits supported by a web-enabled mobile phone application to create a real-time platform for adaptive management of supplemental measles immunization days in Kenya. Methods One thousand nine hundred and fifty-two Red Cross volunteers were recruited, trained and deployed to conduct house-to-house canvassing in 11 urban districts of Kenya. Three days before the campaigns, volunteers conducted house visits with a uniform approach and package of messages. All house visits were documented using a web-enabled mobile phone application (episurveyor®) that in real-time relayed information collected to all campaign management levels. During the campaigns, volunteers reported daily immunizations to their co-ordinators. Post-campaign house visits were also conducted within 4 days, to verify immunization of eligible children, assess information sources and detect adverse events following immunization. Results Fifty-six per cent of the 164 643 households visited said that they had heard about the planned 2012 measles vaccination campaign 1–3 days before start dates. Twenty-five per cent of households were likely to miss the measles supplemental dose if they had not been reassured by the house visit. Pre- and post-campaign reasons for refusal showed that targeted communication reduced misconceptions, fear of injections and trust in herbal remedies. Daily reporting of immunizations using mobile phones informed changes in service delivery plans for better immunization coverage. House visits were more remembered (70%) as sources of information compared with traditional mass awareness channels like megaphones (41%) and radio (37%). Conclusions In high-density settlements, house-to-house visits are easy and more penetrative compared with traditional media approaches. Using mobile phones to document campaign processes and outputs provides real time evidence for service delivery planning to improve immunization coverage. PMID:24920218

  10. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    PubMed

    Chew, Valerie; Lee, Yun Hua; Pan, Lu; Nasir, Nurul J M; Lim, Chun Jye; Chua, Camillus; Lai, Liyun; Hazirah, Sharifah Nur; Lim, Tony Kiat Hon; Goh, Brian K P; Chung, Alexander; Lo, Richard H G; Ng, David; Filarca, Rene L F; Albani, Salvatore; Chow, Pierce K H

    2018-02-13

    Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8 + T cells, CD56 + NK cells and CD8 + CD56 + NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB + CD8 + T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8 + and CD4 + T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1 + /Tim-3 + CD8 + T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (84th, Washington, DC, August 5-8, 2001). Law Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Law section of the proceedings contains the following 6 selected papers: "Is the Public Interest Meaningless? Levels of Meaning and Ambiguity in the Public Interest Standard" (Philip M. Napoli); "An 'Unholy Alliance': The Law of Media Ride-Alongs" (Karen M. Markin); "Is Internet Service Provider Immunity Growing? An…

  12. Cytoprotection: Immune and Matrix Modulation of Tissue Repair

    DTIC Science & Technology

    2013-04-01

    circumstances, including long bone fractures , crush injuries, surgery, and compartment syndrome. Loss of muscle mass accounts for much of the...ischemia, focal necrosis, and inflammation induced by islet embolism , and (4) acute inflammatory reactions that involve platelet Figure 4. Response to...Salvay et al. (37) demonstrated that islets implanted onto the epididymal fat pads of STZ-treated mice were more effective at reversing diabetes when

  13. Estrogen Metabolism and Prostate Cancer Risk: A Prospective Study

    DTIC Science & Technology

    2005-05-01

    growth hormone concentrations in blood and the risk for prostate cancer: A case- control study. Prostate. 2005- Jan 21 ( Electronic publication ahead... cigarette smoking status, education, body mass index (BMI), and waist to hip ratio (WHRATIO). The beverage specific analyses were further mutually adjusted...affecting the metabolism of detoxification enzymes, impairment of immune system and depression of DNA repair enzymes (31). It remains unclear to what

  14. [Epidemiological surveillance over the organization and performance of immunoprophylaxis in the Russian Federation].

    PubMed

    Mel'nikova, A A; Onishchenko, G G; Smolenskiĭ, V Iu

    2010-01-01

    Vaccine prophylaxis is the most accessible and economic way of protecting and promoting the population's health, which is the most important part of prophylactic direction of modern medicine. The accumulated experience of mass immunization suggests the ability of a vaccine to cause 80, 96, and 92% reductions in the number of disease cases, the rate of admissions, and mortality rates, respectively.

  15. Does Prolonged Enteral Feeding With Supplemental Omega-3 Fatty Acids Impact on Recovery Post-esophagectomy: Results of a Randomized Double-Blind Trial.

    PubMed

    Healy, Laura A; Ryan, Aoife; Doyle, Suzanne L; Ní Bhuachalla, Éadaoin Bríd; Cushen, Samantha; Segurado, Ricardo; Murphy, Thomas; Ravi, Narayanasamy; Donohoe, Claire L; Reynolds, John V

    2017-11-01

    This randomized controlled trial (RCT) hypothesized that prolonged enteral nutrition (EN) with supplemental eicosapentanoic acid (EPA), an omega-3 fatty acid with immune and anabolic properties, may impact on clinical and nutritional outcomes. Esophagectomy is associated with significant weight loss and catabolism, and negatively impacts quality of life (QL). Strategies to counter sustained catabolism have therapeutic rationale. This multicenter, double-blind, placebo-controlled RCT was powered on a 5% difference in lean body mass (LBM) at 1 month. Patients were randomly assigned to receive either EN-EPA (2.2 g EPA/day) (n = 97) or isocaloric isonitrogenous standard EN (EN-S) (n = 94), preoperatively (5 days orally), and postoperatively via a jejunostomy until 1 month postdischarge. Assessments perioperatively, and at 1, 3, and 6 months included weight, body mass index (BMI), body composition, muscle strength, cytokines, complications, and QL. The median (range) nutrition support was for 51 (36 to 78) days, and overall compliance was 96%. For the entire cohort, a significant (P < 0.005) decrease in weight (-7.4 ± 6.6 kg), BMI (-2.6 ± 2.2 kg/m), LBM (-2.5 ± 8.7 kg), and fat mass (-3.4 ± 5.8 kg) was evident from preoperatively to 6 months. The mean (±SD) loss of LBM (kg) at 1 month was -3.7 ± 8.7 in the EN-S group, compared with -5.6 ± 12.1 in the EN-EPA group (P = 0.355). Per-protocol analysis revealed no difference between the EN-EPA and EN-S in any clinical, nutritional, functional, QL or immune parameter at any time point. The thesis that EPA impacts on anabolism, immune function, and clinical outcomes post-esophagectomy was not supported. Compliance with home EN was excellent, but weight, muscle, and fat loss was significant in 30% of patients, highlighting the complexity of postoperative weight loss.

  16. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus.

    PubMed

    Peeters, Ben; Tonnis, Wouter F; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-11-12

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is, however, problematic in emergency situations, e.g. during outbreaks in poultry, as there are currently no mass application methods to effectively vaccinate large numbers of birds within a short period of time. To evaluate the suitability of needle-free pulmonary immunization for mass vaccination of poultry against HPAI H5N1, we performed a proof-of-concept study in which we investigated whether non-adjuvanted spray-freeze-dried (SFD) whole inactivated virus (WIV) can be used as a dry powder aerosol vaccine to immunize chickens. Our results show that chickens that received SFD-WIV vaccine as aerosolized powder directly at the syrinx (the site of the tracheal bifurcation), mounted a protective antibody response after two vaccinations and survived a lethal challenge with HPAI H5N1. Furthermore, both the number of animals that shed challenge virus, as well as the level of virus shedding, were significantly reduced. Based on antibody levels and reduction of virus shedding, pulmonary vaccination with non-adjuvanted vaccine was at least as efficient as intratracheal vaccination using live virus. Animals that received aerosolized SFD-WIV vaccine by temporary passive inhalation showed partial protection (22% survival) and a delay in time-to-death, thereby demonstrating the feasibility of the method, but indicating that the efficiency of vaccination by passive inhalation needs further improvement. Altogether our results provide a proof-of-concept that pulmonary vaccination using an SFD-WIV powder vaccine is able to protect chickens from lethal HPAI challenge. If the efficacy of pulmonary vaccination by passive inhalation can be improved, this method might be suitable for mass application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cytokine responses in relation to age, gender, body mass index, Mycobacterium tuberculosis infection, and otitis media among Inuit in Greenland.

    PubMed

    Nielsen, Nina O; Soborg, Bolette; Børresen, Malene; Andersson, Mikael; Koch, Anders

    2013-01-01

    To evaluate the cytokine response pattern in Inuit in Greenland in relation to age, gender, body mass index (BMI), Mycobacterium tuberculosis infection (MTI), and otitis media (OM) to assess whether Inuit may have signs of impaired immune responsiveness to infection. A cross-sectional health assessment was conducted among inhabitants of Maniitsoq, West Greenland, in 2009, and several health outcomes were measured. The prevalence of MTI, overweight, and obesity was assessed among 263 school children and 137 adults, and OM was assessed among the children. Cytokine responses were measured in whole blood cultures after stimulation with phytohemagglutinin or purified protein derivative (PPD). Associations between cytokine concentrations, age, gender, BMI, MTI, and OM were estimated by linear regression. Adults had generally higher cytokine concentrations than children. Children with MTI had 2.7 times higher interleukin (IL)-10 concentrations than those without (P = 0.01), and girls had 80% higher IL-10 than boys (P < 0.01) after phytohemagglutinin stimulation. Interferon (IFN)γ and tumor necrosis factor (TNF) concentrations were strongly elevated among children (P(IFNγ) < 0.001 and P(TNF) < 0.001) and adults (P(IFNγ) < 0.001 and P(TNF) <0.01) with MTI compared to those without after PPD stimulation. Adult women had significantly lower IFNγ (P = 0.03) and TNF (P = 0.04) concentrations than men. TNF was positively correlated with BMI in children (P = 0.01), and IL-10 was positively correlated with BMI in adults (P = 0.0004) after PPD stimulation. We found cytokine patterns similar to those reported from other immune competent study populations. Therefore, the study does not support the suggestion that Inuit may have impaired immune reactivity to infection. Copyright © 2012 Wiley Periodicals, Inc.

  18. Cathepsin L is an immune-related protein in Pacific abalone (Haliotis discus hannai)--Purification and characterization.

    PubMed

    Shen, Jian-Dong; Cai, Qiu-Feng; Yan, Long-Jie; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Ke, Caihuan; Cao, Min-Jie

    2015-12-01

    Cathepsin L, an immune-related protein, was purified from the hepatopancreas of Pacific abalone (Haliotis discus hannai) by ammonium sulfate precipitation and column chromatographies of SP-Sepharose and Sephacryl S-200 HR. Purified cathepsin L appeared as two bands with molecular masses of 28.0 and 28.5 kDa (namely cathepsin La and Lb) on SDS-PAGE under reducing conditions, suggesting that it is a glycoprotein. Peptide mass fingerprinting (PMF) analysis revealed that peptide fragments of 95 amino acid residues was high similarity to cathepsin L of pearl oyster (Pinctada fucata). The optimal temperature and pH of cathepsin L were 35 °C and pH 5.5. Cathepsin L was particularly inhibited by cysteine proteinase inhibitors of E-64 and leupeptin, while it was activated by metalloproteinase inhibitors EDTA and EGTA. The full-length cathepsin L cDNA was further cloned from the hepatopancreas by rapid PCR amplification of cDNA ends (RACE). The open reading frame of the enzyme was 981 bp, encoding 327 amino acid residues, with a conserved catalytic triad (Cys134, His273 and Asn293), a potential N-glycosylation site and conserved ERFNIN, GNYD, and GCGG motifs, which are characteristics of cathepsin L. Western blot and proteinase activity analysis revealed that the expression and enzyme activity of cathepsin L were significantly up-regulated in hepatopancreas at 8 h following Vibrio parahaemolyticus infection, demonstrating that cathepsin L is involved in the innate immune system of abalone. Our present study for the first time reported the purification, characterization, molecular cloning, and tissue expression of cathepsin L in abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of inbreeding and temperature stress on life history and immune function in a butterfly.

    PubMed

    Franke, K; Fischer, K

    2013-03-01

    Theory predicts that inbreeding depression should be more pronounced under environmental stress due to an increase in the expression of recessive deleterious alleles. If so, inbred populations may be especially vulnerable to environmental change. Against this background, we here investigate effects of inbreeding, temperature stress and its interactions with inbreeding in the tropical butterfly Bicyclus anynana. We use a full-factorial design with three levels of inbreeding (F = 0/0.25/0.38) and three temperature treatments (2 h exposure to 1, 27 or 39 °C). Despite using relatively low levels of inbreeding significant inbreeding depression was found in pupal mass, pupal time, thorax mass, abdomen fat content, egg hatching success and fecundity. However, stress resistance traits (heat tolerance, immune function) were not affected by inbreeding and interactions with temperature treatments were virtually absent. We thus found no support for an increased sensitivity of inbred individuals to environmental stress, and suspect that such patterns are restricted to harsher conditions. Our temperature treatments evidently imposed stress, significantly reducing longevity, fecundity, egg hatching success and haemocyte numbers, while fat content, protein content and lysozyme activity remained unaffected. Males and females differed in all traits measured except pupal time, protein content and phenoloxidase (PO) activity. Correlation analyses revealed, among others, a trade-off between PO and lysozyme activity, and negative correlations between fat content and several other traits. We stress that more data are needed on the effects of inbreeding, temperature variation and sexual differences on insect immune function before more general conclusions can be drawn. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  20. Prognostic Significance of Circulating Immune Complexes in Cancer Patients

    PubMed Central

    Dass, Tushar Kanti; Ashok, Ashok

    1991-01-01

    Circulating immune complexes (CIC) were estimated in 100 cancer patients and 25 healthy control volunteers by means of the polyethylene glycol (PEG) precipitation test and latex agglutination inhibition (LAI) test. Pathological levels of CIC were found in 47% of the patients by PEG precipitation test and in 59% of the patients by LAI test; both tests were positive in 33% of the patients. Consequently, the use of the two assays resulted in 73% seropositivity for CIC. The PEG precipitation test detects antigen‐antibody complexes formed in the ratio of 2:1 (Ag2Ab), while the LAI test could detect immune complexes formed over an extended range of antigen‐antibody ratio including complexes as small as SS. CIC values were significantly higher by combined assays (P < 0.001) as compared to individual assays (P < 0.01) when compared with the control group. It was found that 75% of post‐operative follow‐up patients became seronegative for CIC in the combined assays, whereas the 25% of post‐operative patients who remained seropositive for CIC showed recurrence within three months after surgery. Immune‐complex deposition was demonstrated on malignant cells in vitro by direct immunofluorescence studies in 73.3% of patients, while 60% of patients revealed complement‐fixing antigen‐antibody complexes. It was found that 20% of patients showing positive immunofluorescence with anti‐C3‐antisera had decreased levels of CIC. Complement‐mediated cytotoxic injury results in reduction of tumor cell mass and subsequent decrease in CIC. Necrotizing and leucocytoclastic vasculitis in the tumor mass was initiated by raised CIC levels in vivo in 71% of patients. Necrosis of malignant tumors was seen in 58% of patients, and hemorrhage in 36% of patients. These changes were considered to be an aftermath of immuno‐complex vasculitis initiated by CIC. PMID:1752784

  1. Distinct Immunomodulation of Bone Marrow-Derived Dendritic Cell Responses to Lactobacillus plantarum WCFS1 by Two Different Polysaccharides Isolated from Lactobacillus rhamnosus LOCK 0900

    PubMed Central

    Jachymek, Wojciech; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2014-01-01

    The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies. PMID:25107979

  2. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 5 - Biotherapeutics and Disinfectants.

    PubMed

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed knowledge gaps in foot-and-mouth disease (FMD) research. Findings are reported in a series of papers, and in this article, we consider biotherapeutics and disinfectants. The study took the form of a literature review (2011-2015) combined with research updates collected in 2014 from 33 institutes from across the world. Findings were used to identify priority areas for future FMD research. While vaccines will remain the key immunological intervention used against FMD virus (FMDV) for the foreseeable future, it takes a few days for the immune system to respond to vaccination. In an outbreak situation, protection could potentially be provided during this period by the application of rapid, short-acting biotherapeutics, aiming either to stimulate a non-specific antiviral state in the animal or to specifically inhibit a part of the viral life cycle. Certain antiviral cytokines have been shown to promote rapid protection against FMD; however, the effects of different immune-modulators appear to vary across species in ways and for reasons that are not yet understood. Major barriers to the effective incorporation of biotherapeutics into control strategies are cost, limited understanding of their effect on subsequent immune responses to vaccines and uncertainty about their potential impact if used for disease containment. Recent research has highlighted the importance of environmental contamination in FMDV transmission. Effective disinfectants for FMDV have long been available, but research is being conducted to further develop methods for quantitatively evaluating their performance under field, or near-field, conditions. During outbreaks in South Korea in 2010 there was public concern about potential environmental contamination after the mass use of disinfectant and mass burial of culled stock; this should be considered during outbreak contingency planning. © 2016 Blackwell Verlag GmbH.

  3. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg.

    PubMed

    Chalamaiah, M; Hemalatha, R; Jyothirmayi, T; Diwan, Prakash V; Bhaskarachary, K; Vajreswari, A; Ramesh Kumar, R; Dinesh Kumar, B

    2015-02-01

    The aim of this study was to prepare protein hydrolysates from underutilized common carp (Cyprinus carpio) egg and to investigate their immunomodulatory effects in vivo. Common carp (Cyprinus carpio) egg (roe) was hydrolysed by pepsin, trypsin, and Alcalase. Chemical composition (proximate, amino acid, mineral and fatty acid compositions) and molecular mass distribution of the three hydrolysates were determined. The carp egg protein hydrolysates (CEPHs) were evaluated for their immunomodulatory effects in BALB/c mice. CEPHs (0.25, 0.5 and 1 g/kg body weight) were orally administered daily to female BALB/c mice (4-6 wk, 18-20 g) for a period of 45 d. After 45 d, mice were sacrificed and different tissues were collected for the immunologic investigations. The three hydrolysates contained high protein content (64%-73%) with all essential amino acids, and good proportion of ω-3 fatty acids, especially docosahexaenoic acid. Molecular mass analysis of hydrolysates confirmed the conversion of large-molecular-weight roe proteins into peptides of different sizes (5-90 kDa). The three hydrolysates significantly enhanced the proliferation of spleen lymphocytes. Pepsin hydrolysate (0.5 g/kg body weight) significantly increased the splenic natural killer cell cytotoxicity, mucosal immunity (secretory immunoglobulin A) in the gut and level of serum immunoglobulin A. Whereas Alcalase hydrolysate induced significant increases in the percentages of CD4+ and CD8+ cells in spleen. The results demonstrate that CEPHs are able to improve the immune system and further reveal that different CEPHs may exert differential influences on the immune function. These results indicate that CEPHs could be useful for several applications in the health food, pharmaceutical, and nutraceutical industries. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Microeconomic evaluation of a mass preventive immunisation campaign against meningococcal meningitis and yellow fever in Senegal in 1997].

    PubMed

    da Silva, Alfred; Parent du Châtelet, Isabelle; Beckr Gaye, Abou; Dompnier, Jean-Pierre; Seck, Ibrahima

    2003-01-01

    Large epidemics of group A meningococcal meningitis occurred in 1995 and 1996 in several countries of the Sub-Saharan Africa zone known as the "meningitis belt", and more particularly in West Africa. Most of these countries affected by the epidemics met difficulties to set up the strategy recommended by the World Health Organization and which includes: Epidemiological surveillance and epidemic incidence threshold calculation to detect early meningitis epidemics and emergency vaccination campaigns with meningococcal A + C polysaccharide vaccine, if possible within the 4-to-6 weeks following the moment the threshold is reached. In this context of epidemics, notably in Mali, and in front of the risk of resurgence of yellow fever, the Ministry of Health of Senegal decided to conduct mass preventive immunization campaigns in 1997 against meningo- coccal meningitis and yellow fever in the districts located in the eastern part of the country and where emergency vaccination would have been difficult in case of epidemic because these area are difficult to reach. A short-term microeconomic evaluation of additional costs that are necessary to organize one of these mass preventive immunization campaigns was conducted in 1997 in the Matam District, in the Northeast part of Senegal. The method rested on value attribution and accounting procedure. The cost was defined as the monetary value of all mobilized resources to product the campaign corresponding to a plurality of charges and representing all of the effective expenses and donations. During this campaign, 85,925 people were vaccinated and a total number of 163,981 doses of both polysaccharide A + C meningococcal and yellow fever vaccines were administered within 3 weeks. Four intervention strategies were involved: Three for vaccination (mobile, fixed and outreach strategy) and one for coordination, information and training. The total cost of the campaign was 55,322.75 euros. Vaccines and solvents represented 60% of the total cost of the campaign, materiel for injection and safety of injection 26%, vaccination staff 7%, and logistics 7%. The mean cost was 0.34 euro per administered dose and 0.64 euro per vaccinee. The mean cost per administered dose of meningococcal vaccine was 0.44 euro. The mean cost of preventive meningococcal immunization was not higher than the mean cost of meningococcal vaccination during mass emergency immunization campaigns in other countries. The addition of yellow fever antigen brought down the campaign mean cost by 0.11 euro and it allowed economies of scales. Direct unit costs per administered dose were higher when people were vaccinated through the outreach strategy (0.35 euro) than when fixed and mobile strategies were used (0.318 and 0.323 euro, respectively). Costs related to transportation and staff were proportionally higher for the outreach strategy. Direct unit costs per administered dose were higher when vaccinations were done in rural areas (0.32 euro) than when done in urban areas (0.31 euro). Direct unit costs increased when the size of target communities decreased (in communities with less than 100 people to vaccinate versus 0.38 euro in communities with more than 2,000 people to vaccinate). This study allowed us to set up a method to measure, describe and analyze the costs of a mass preventive campaign. It demonstrated the economic impact of using multiple antigens during a single preventive campaign.

  5. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.

    PubMed

    van Unen, Vincent; Höllt, Thomas; Pezzotti, Nicola; Li, Na; Reinders, Marcel J T; Eisemann, Elmar; Koning, Frits; Vilanova, Anna; Lelieveldt, Boudewijn P F

    2017-11-23

    Mass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively explored with a stepwise increase in detail up to the single-cell level. We apply HSNE to a study on gastrointestinal disorders and three other available mass cytometry data sets. We find that HSNE efficiently replicates previous observations and identifies rare cell populations that were previously missed due to downsampling. Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the analysis of massive high-dimensional data sets.

  6. Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: pollution 'hotspots' in relation to mass mortality events of marine mammals.

    PubMed

    Handoh, Itsuki C; Kawai, Toru

    2014-08-30

    Marine mammals in the past mass mortality events may have been susceptible to infection because their immune systems were suppressed through the bioaccumulation of environmental pollutants such as polychlorinated biphenyls (PCBs). We compiled mortality event data sets of 33 marine mammal species, and employed a Finely-Advanced Transboundary Environmental model (FATE) to model the exposure of the global fish community to PCB congeners, in order to define critical exposure levels (CELs) of PCBs above which mass mortality events are likely to occur. Our modelling approach enabled us to describe the mass mortality events in the context of exposure of higher-trophic consumers to PCBs and to identify marine pollution 'hotspots' such as the Mediterranean Sea and north-western European coasts. We demonstrated that the CELs can be applied to quantify a chemical pollution Planetary Boundary, under which a safe operating space for marine mammals and humanity can exist. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Outbreak of measles in a non-immunizing population, Alberta 2013.

    PubMed

    Kershaw, T; Suttorp, V; Simmonds, K; St Jean, T

    2014-06-12

    An outbreak of measles was declared in southern Alberta on October 18, 2013, after a case had been reported to the local public health unit in a non-immunized teenager with recent travel to the Netherlands. The teenager had had contact with a large number of unimmunized people while infectious; therefore, the risk of spread was high. The potential for an outbreak of measles in this area had been identified by the lead Medical Officer of Health for South Zone, and planning for an outbreak had begun in August 2013. Several public health measures were implemented to control the outbreak: mass immunization clinics; an outbreak dose of measles mumps and rubella (MMR) vaccine for infants 6-12 months old; communication within the affected and surrounding communities; a dedicated measles hotline; a Mobile Measles Assessment Team; and a Measles Assessment Centre. A total of 42 confirmed cases were identified during the outbreak between October 16 and November 25. Just over half the cases were male (52.4%). The average age was 12 (range < 1 to 24 years) and the median age 13 years. There was one hospitalization, and no deaths occurred. All cases were unimmunized. Cases were located in five communities immediately surrounding Lethbridge. All but two cases were epidemiologically linked within 10 households. The planning that occurred before the outbreak was essential in containing the outbreak to 10 households. To prevent future outbreaks of measles, exploring strategies for increasing immunization coverage rates in unimmunized populations is essential. When immunization acceptance is not uniform, other public health strategies should be planned for and implemented in order to prevent additional spread.

  8. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  9. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with eithermore » receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.« less

  10. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    PubMed

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative. Copyright © 2015 Chua et al.

  11. [Clinical effectiveness and economical evaluation of preventive vaccination].

    PubMed

    Vaz Carneiro, António; Belo, Ana Isabel; Gouveia, Miguel; Costa, João; Borges, Margarida

    2011-01-01

    The value of mass vaccination as a preventive measure for infectious diseases is one of the most important advances of modern Medicine. The impact on incidence of several infectious diseases, until recently responsible for significant morbidity and mortality at world level, is well proved in a series of high quality epidemiological studies. In this scientific review we aimed firstly to briefly resume the history of mass vaccination and its scientists, responsible for synthesis and marketing of these drugs. In second place we present a group of a few disease preventable by vaccines as well as the Portuguese National Vaccination Plan and its benefits. In third place we identified groups of subjects in which a well structured vaccination plan is particularly important, as well as the correspondent diseases to be covered by vaccination. Fourthly, we discussed the ethical considerations of vaccination, and its tensions between subject autonomy and society advantages in com pulsive programs. Fifthly, we analyzed clinical effectiveness of vaccines through the concept of herd immunity, clinical evaluation of immune response to vaccines and some examples of systematic reviews on three relevant diseases (influenza, meningococcal and pneumococcal infections). In sixth place we discussed vaccine safety presenting monitoring methods of vaccination risks, as well as discussing the public myths concerning vaccines. Finally we present a economic analysis of preventive vaccination with a review of some published literature on specific diseases. We conclude that mass vaccination is a efficacious preventive measure, as well as a economic rational choice, and that this public health intervention should be a pillar of a modern preventive system.

  12. Immunosuppression in harbour seals fed fish from the contaminated Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, P.S.; Swart, R.L. de; Timmerman, H.H.

    Environmental contaminants including dioxins and polychlorinated biphenyls have been shown to be immunotoxic in laboratory animals, but little information exists as to their possible effect on mammals in the natural environment. Recent virus-induced mass mortalities among marine mammals occupying high trophic levels have led to much speculation regarding a possible contributory role of pollutants in these events. The authors undertook a two-year captive feeding experiment with harbor seals, Phoca vitulina, where one group was fed herring from the contaminated Baltic Sea and a second group was fed relatively uncontaminated herring from the Atlantic Ocean. During the course of the experiment,more » they regularly sampled blood and undertook a series of immune function tests. They observed a significant impairment of natural killer cell activity and T-lymphocyte function, in vitro, in the group of seals fed the Baltic Sea fish. In addition, seals of this group were less able to mount a specific humoral and delayed type hypersensitivity response to a protein antigen, ovalbumin, upon immunization. Increased numbers of granulocytes in this group may have reflected periodic bacterial infections as a consequence of impaired immune function. Their results suggest that pollutants accumulated through the food chain in contaminated marine waters may suppress normal immune responses in marine mammals and lead to an increased susceptibility to opportunistic infection.« less

  13. Distributed delays in a hybrid model of tumor-immune system interplay.

    PubMed

    Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto

    2013-02-01

    A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.

  14. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    PubMed Central

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  15. Heavy Cannabis Use Associated With Reduction in Activated and Inflammatory Immune Cell Frequencies in Antiretroviral Therapy-Treated Human Immunodeficiency Virus-Infected Individuals.

    PubMed

    Manuzak, Jennifer A; Gott, Toni M; Kirkwood, Jay S; Coronado, Ernesto; Hensley-McBain, Tiffany; Miller, Charlene; Cheu, Ryan K; Collier, Ann C; Funderburg, Nicholas T; Martin, Jeffery N; Wu, Michael C; Isoherranen, Nina; Hunt, Peter W; Klatt, Nichole R

    2018-06-01

    Cannabis is a widely used drug in the United States, and the frequency of cannabis use in the human immunodeficiency virus (HIV)-infected population is disproportionately high. Previous human and macaque studies suggest that cannabis may have an impact on plasma viral load; however, the relationship between cannabis use and HIV-associated systemic inflammation and immune activation has not been well defined. The impact of cannabis use on peripheral immune cell frequency, activation, and function was assessed in 198 HIV-infected, antiretroviral-treated individuals by flow cytometry. Individuals were categorized into heavy, medium, or occasional cannabis users or noncannabis users based on the amount of the cannabis metabolite 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) detected in plasma by mass spectrometry. Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals. Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells. While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.

  16. A Rare Case of Retroperitoneal Follicular Dendritic Cell Sarcoma Identified by 99mTc-HYNIC-TOC SPECT/CT.

    PubMed

    Li, Yi; Xu, Xiaoping; Xu, Junyan; Huang, Dan

    2018-05-31

    Follicular dendritic cell sarcoma is a very rare neoplasm, which is not lymphoma, but originates from a type of immune cells called follicular dendritic cells. We presented a 37-year-old woman who has suffered from obstructive jaundice, weight loss and right upper abdominal pain for 2 months. The contrast CT revealed masses located in the region of pancreatic head and lots of enlarged retroperitoneal lymph nodes, both of which were enhanced on the artery phase of CT images. Meanwhile, Tc-HYNIC-TOC SPECT/CT revealed high activity in the corresponding lesions. After biopsy, the masses were pathologically confirmed as retroperitoneal follicular dendritic cell sarcoma.

  17. Wasting and stunting--similarities and differences: policy and programmatic implications.

    PubMed

    Briend, André; Khara, Tanya; Dolan, Carmel

    2015-03-01

    Wasting and stunting are often presented as two separate forms of malnutrition requiring different interventions for prevention and/or treatment. These two forms of malnutrition, however, are closely related and often occur together in the same populations and often in the same children. Wasting and stunting are both associated with increased mortality, especially when both are present in the same child. A better understanding of the pathophysiology of these two different forms of malnutrition is needed to design efficient programs. A greatly reduced muscle mass is characteristic of severe wasting, but there is indirect evidence that it also occurs in stunting. A reduced muscle mass increases the risk of death during infections and also in many other different pathological situations. Reduced muscle mass may represent a common mechanism linking wasting and stunting with increased mortality. This suggests that to decrease malnutrition-related mortality, interventions should aim at preventing both wasting and stunting, which often share common causes. Also, this suggests that treatment interventions should focus on children who are both wasted and stunted and therefore have the greatest deficits in muscle mass, instead of focusing on one or the other form of malnutrition. Interventions should also focus on young infants and children, who have a low muscle mass in relation to body weight to start with. Using mid-upper-arm circumference (MUAC) to select children in need of treatment may represent a simple way to target young wasted and stunted children efficiently in situations where these two conditions are present. Wasting is also associated with decreased fat mass. A decreased fat mass is frequent but inconsistent in stunting. Fat secretes multiple hormones, including leptin, which may have a stimulating effect on the immune system. Depressed immunity resulting from low fat stores may also contribute to the increased mortality observed in wasting. This may represent another common mechanism linking wasting and stunting with increased mortality in situations where stunting is associated with reduced fat mass. Leptin may also have an effect on bone growth. This may explain why wasted children with low fat stores have reduced linear growth when their weight-for-height remains low. It may also explain the frequent association of stunting with previous episodes of wasting. Stunting, however, can occur in the absence of wasting and even in overweight children. Thus, food supplementation should be used with caution in populations where stunting is not associated with wasting and low fat stores.

  18. Interaction of Mycoplasma hominis PG21 with Human Dendritic Cells: Interleukin-23-Inducing Mycoplasmal Lipoproteins and Inflammasome Activation of the Cell.

    PubMed

    Goret, J; Béven, L; Faustin, B; Contin-Bordes, C; Le Roy, C; Claverol, S; Renaudin, H; Bébéar, C; Pereyre, S

    2017-08-01

    Mycoplasma hominis lacks a cell wall, and lipoproteins anchored to the extracellular side of the plasma membrane are in direct contact with the host components. A Triton X-114 extract of M. hominis enriched with lipoproteins was shown to stimulate the production of interleukin-23 (IL-23) by human dendritic cells (hDCs). The inflammasome activation of the host cell has never been reported upon M. hominis infection. We studied here the interaction between M. hominis PG21 and hDCs by analyzing both the inflammation-inducing mycoplasmal lipoproteins and the inflammasome activation of the host cell. IL-23-inducing lipoproteins were determined using a sequential extraction strategy with two nondenaturing detergents, Sarkosyl and Triton X-114, followed by SDS-PAGE separation and mass spectrometry identification. The activation of the hDC inflammasome was assessed using PCR array and enzyme-linked immunosorbent assay (ELISA). We defined a list of 24 lipoproteins that could induce the secretion of IL-23 by hDCs, 5 with a molecular mass between 20 and 35 kDa and 19 with a molecular mass between 40 and 100 kDa. Among them, lipoprotein MHO_4720 was identified as potentially bioactive, and a synthetic lipopeptide corresponding to the N-terminal part of the lipoprotein was subsequently shown to induce IL-23 release by hDCs. Regarding the hDC innate immune response, inflammasome activation with caspase-dependent production of IL-1β was observed. After 24 h of coincubation of hDCs with M. homini s, downregulation of the NLRP3-encoding gene and of the adaptor PYCARD-encoding gene was noticed. Overall, this study provides insight into both protagonists of the interaction of M. hominis and hDCs. IMPORTANCE Mycoplasma hominis is a human urogenital pathogen involved in gynecologic and opportunistic infections. M. hominis lacks a cell wall, and its membrane contains many lipoproteins that are anchored to the extracellular side of the plasma membrane. In the present study, we focused on the interaction between M. hominis and human dendritic cells and examined both sides of the interaction, the mycoplasmal lipoproteins involved in the activation of the host cell and the immune response of the cell. On the mycoplasmal side, we showed for the first time that M. hominis lipoproteins with high molecular mass were potentially bioactive. On the cell side, we reported an activation of the inflammasome, which is involved in the innate immune response. Copyright © 2017 American Society for Microbiology.

  19. [Development of current smallpox vaccines].

    PubMed

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  20. Competing spreading processes on multiplex networks: awareness and epidemics.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2014-07-01

    Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev. Lett. 111, 128701 (2013).] presented an analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex networks. The results in the case in which awareness implies total immunization to the disease revealed the existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of the awareness process. Here we present a full analysis of these critical properties in the more general scenario where the awareness spreading does not imply total immunization, and where infection does not imply immediate awareness of it. We find the critical relation between the two competing processes for a wide spectrum of parameters representing the interaction between them. We also analyze the consequences of a massive broadcast of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical point, is rooted in the competition principle and holds for a large set of scenarios.

  1. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines - A systematic review.

    PubMed

    Stuurman, Anke L; Marano, Cinzia; Bunge, Eveline M; De Moerlooze, Laurence; Shouval, Daniel

    2017-03-04

    The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike.

  2. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    PubMed Central

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  3. RNA-binding proteins regulate the expression of the immune activating ligand MICB

    PubMed Central

    Nachmani, Daphna; Gutschner, Tony; Reches, Adi

    2014-01-01

    The recognition of stress-induced ligands by the activating receptor NKG2D expressed on cytotoxic lymphocytes is crucial for the prevention and containment of various diseases and is also one of the best-studied examples of how danger is sensed by the immune system. Still, however, the mechanisms leading to the expression of the NKG2D ligands are far from being completely understood. Here, we use an unbiased and systematic RNA pull-down approach combined with mass spectrometry to identify six RNA-binding proteins (RBPs) that bind and regulate the expression of MICB, one of the major stress-induced ligands of NKG2D. We further demonstrate that at least two of the identified RBPs function during genotoxic stress. Our data provide insights into stress recognition and hopefully open new therapeutic venues. PMID:24924487

  4. Changes in mouse thymus and spleen after return from the STS-135 mission in space.

    PubMed

    Gridley, Daila S; Mao, Xiao Wen; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Moldovan, Maria; Cunningham, Christopher E; Jones, Tamako A; Slater, Jerry M; Pecaut, Michael J

    2013-01-01

    Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer-related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA's Space Shuttle Program, exploration of space will undoubtedly continue.

  5. Changes in Mouse Thymus and Spleen after Return from the STS-135 Mission in Space

    PubMed Central

    Gridley, Daila S.; Mao, Xiao Wen; Stodieck, Louis S.; Ferguson, Virginia L.; Bateman, Ted A.; Moldovan, Maria; Cunningham, Christopher E.; Jones, Tamako A.; Slater, Jerry M.; Pecaut, Michael J.

    2013-01-01

    Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue. PMID:24069384

  6. Analysis of Treg cell population alterations in the peripheral blood of patients treated surgically for ovarian cancer - a preliminary report.

    PubMed

    Wicherek, Lukasz; Jozwicki, Wojciech; Windorbska, Wieslawa; Roszkowski, Krzysztof; Lukaszewska, Ewelina; Wisniewski, Michal; Brozyna, Anna Aneta; Basta, Pawel; Skret-Magierlo, Joanna; Koper, Krzysztof; Rokita, Wojciech; Dutsch-Wicherek, Magdalena

    2011-11-01

    Treg cells constitute the main cell population that enables cancer cells to evade immune surveillance. An alteration in the Treg cell population might correspond to the diminishment of the tumour mass in patients with cancer and could therefore be a useful marker of the intensity of the selective suppression of the host immune system and also of the degree of radicalism of a procedure. Certainly, it is well known that in order for anti-cancer therapy to succeed the proper immune response against cancer cells must be restored. Furthermore, monitoring the level of selective immune system suppression during cancer therapy might yield information that would support a decision to supplement standard therapy by immunotherapy or to increase the degree of radicalism of the applied therapy. We examined the Treg cell populations in the peripheral blood of a group of patients treated surgically for ovarian cancer. In each patient, the peripheral blood samples were collected both prior to and 1 day after the surgical procedure, and then again 5 days after the procedure. The presence of regulatory T cells in the samples was analyzed by means of flow cytometry. In our study, the percentages of FOXP3(+) cells in the subpopulation of CD4(+) T lymphocytes found in the peripheral blood of the patients before the surgical intervention were statistically significantly higher than those observed in the peripheral blood of these same patients after the surgical procedure. It would seem that the alteration in the Treg cell subpopulation could be a key factor in determining the status of the tumour microenvironment. Most likely, it could provide information about whether the proper level of anti-cancer immune response could be restored. The possibility of restoring the immune response may directly correspond to the degree of radicalism of the surgical intervention. © 2011 John Wiley & Sons A/S.

  7. A Cross-Reactive Monoclonal Antibody to Nematode Haemoglobin Enhances Protective Immune Responses to Nippostrongylus brasiliensis

    PubMed Central

    Nieuwenhuizen, Natalie E.; Meter, Jeanne M.; Horsnell, William G.; Hoving, J. Claire; Fick, Lizette; Sharp, Michael F.; Darby, Matthew G.; Parihar, Suraj P.; Brombacher, Frank; Lopata, Andreas L.

    2013-01-01

    Background Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection. Methodology/Principal Findings Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four –HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens. Conclusion The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection. PMID:24009787

  8. Achieving Population-Level Immunity to Rabies in Free-Roaming Dogs in Africa and Asia

    PubMed Central

    Morters, Michelle K.; McKinley, Trevelyan J.; Horton, Daniel L.; Cleaveland, Sarah; Schoeman, Johan P.; Restif, Olivier; Whay, Helen R.; Goddard, Amelia; Fooks, Anthony R.; Damriyasa, I. Made; Wood, James L. N.

    2014-01-01

    Canine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least two years to ensure communities are protected from rabies. These findings support annual mass vaccination campaigns as the most effective means to control canine rabies. PMID:25393023

  9. Vitamin D Deficiency in a Multiethnic Healthy Control Cohort and Altered Immune Response in Vitamin D Deficient European-American Healthy Controls

    PubMed Central

    Shah, Hemangi B.; Robertson, Julie M.; Fife, Dustin A.; Maecker, Holden T.; Du, Hongwu; Fathman, Charles G.; Chakravarty, Eliza F.; Scofield, R. Hal; Kamen, Diane L.; Guthridge, Joel M.; James, Judith A.

    2014-01-01

    Objective In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals. Methods Healthy individuals (n = 774) comprised of European-Americans (EA, n = 470), African–Americans (AA, n = 125), and Native Americans (NA, n = 179) were screened for 25-hydroxyvitamin D [25(OH)D] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (<11.3 ng/mL) and sufficient (>24.8 ng/mL) vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed. Results Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30) demonstrate higher rates of vitamin D deficiency (p<0.05). Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04), decreased circulating activated CD4+ (p = 0.04) and CD8+ T (p = 0.04) cell frequencies than individuals with sufficient vitamin D levels. Conclusion A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation. PMID:24727903

  10. Effects of a flavonoid-rich juice on inflammation, oxidative stress, and immunity in elite swimmers: a metabolomics-based approach.

    PubMed

    Knab, Amy M; Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Cialdella-Kam, Lynn; Henson, Dru A; Sha, Wei

    2013-04-01

    The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post-10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days.

  11. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs.

    PubMed

    Keiser, Nicholas W; Birket, Susan E; Evans, Idil A; Tyler, Scott R; Crooke, Adrianne K; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R; Stroebele, Elizabeth K; Chu, Kengyeh K; Tearney, Guillermo J; Stevens, Mark J; Harris, J Kirk; Rowe, Steven M; Engelhardt, John F

    2015-06-01

    Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography-tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals.

  13. Defective Innate Immunity and Hyperinflammation in Newborn Cystic Fibrosis Transmembrane Conductance Regulator–Knockout Ferret Lungs

    PubMed Central

    Keiser, Nicholas W.; Birket, Susan E.; Evans, Idil A.; Tyler, Scott R.; Crooke, Adrianne K.; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R.; Stroebele, Elizabeth K.; Chu, Kengyeh K.; Tearney, Guillermo J.; Stevens, Mark J.; Harris, J. Kirk; Rowe, Steven M.

    2015-01-01

    Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography–tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals. PMID:25317669

  14. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis.

    PubMed

    Tasset, Céline; Bernoux, Maud; Jauneau, Alain; Pouzet, Cécile; Brière, Christian; Kieffer-Jacquinod, Sylvie; Rivas, Susana; Marco, Yves; Deslandes, Laurent

    2010-11-18

    Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.

  15. Fermented Papaya Preparation Restores Age-Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube-Fed Patients

    PubMed Central

    Fujita, Yuhzo; Tsuno, Haruo; Nakayama, Jiro

    2017-01-01

    Tube-fed elderly patients are generally supplied with the same type of nutrition over long periods, resulting in an increased risk for micronutrient deficiencies. Dietary polyphenols promote immunity and have anti-inflammatory, anti-carcinogenic, and anti-oxidative properties. Carica papaya Linn. is rich in several polyphenols; however, these polyphenols are poorly absorbed from the digestive tract in their original polymerized form. Therefore, we determined the molecular components of a fermented Carica papaya Linn. preparation, as well as its effects on immunity and the composition of gut microbiota in tube-fed patients. Different doses of the fermented C. papaya L. preparation were administered to three groups of tube-fed patients for 30 days. Its effects on fecal microbiota composition and immunity were assessed by 16S rRNA gene sequencing and immune-marker analysis, respectively. The chemical composition of the fermented C. papaya L. preparation was analyzed by capillary electrophoresis- and liquid chromatography- time of flight mass spectrometry. The fermented C. papaya L. preparation restored peripheral blood mononuclear cell (PBMC) cytolytic activity; however, no other biomarkers of immunity were observed. Treatment with the preparation (9 g/day) significantly reduced the abundance of Firmicutes in the fecal microbiota. In particular, treatment reduced Clostridium scindens and Eggerthella lenta in most patients receiving 9 g/day. Chemical analysis identified low-molecular-weight phenolic acids as polyphenol metabolites; however, no polymerized, large-molecular-weight molecules were detected. Our study indicates that elderly patients who are tube-fed over the long-term have decreased PBMC cytolytic activity. In addition, low-molecular-weight polyphenol metabolites fermented from polymerized polyphenols restore PBMC cytolytic activity and modulate the composition of gut microbiota in tube-fed patients. PMID:28060858

  16. Protective effect of a polyvalent influenza DNA vaccine in pigs.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe; Trebbien, Ramona; Williams, James A; Vidal, Enric; Vergara-Alert, Júlia; Foz, David Solanes; Darji, Ayub; Sisteré-Oró, Marta; Segalés, Joaquim; Nielsen, Jens; Fomsgaard, Anders

    2018-01-01

    Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. By intradermal needle-free delivery to the skin, we immunized pigs with two different doses (500μg and 800μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated. Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500μg DNA) were only partially protected. The DNA vaccine elicited binding-, hemagglutination inhibitory (HI) - as well as cross-reactive neutralizing antibody activity and neuraminidase inhibiting antibodies in the immunized pigs, in a dose-dependent manner. The present data, together with the previously demonstrated immunogenicity of our influenza DNA vaccine, indicate that naked DNA vaccine technology provides a strong approach for the development of improved pig vaccines, applying realistic low doses of DNA and a convenient delivery method for mass vaccination. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. In vitro Production of IL-6 and IFN-γ is Influenced by Dietary Variables and Predicts Upper Respiratory Tract Infection Incidence and Severity Respectively in Young Adults

    PubMed Central

    Meng, Huicui; Lee, Yujin; Ba, Zhaoyong; Fleming, Jennifer A.; Furumoto, Emily J.; Roberts, Robert F.; Kris-Etherton, Penny M.; Rogers, Connie J.

    2015-01-01

    Assessment of immune responses in healthy adults following dietary or lifestyle interventions is challenging due to significant inter-individual variability. Thus, gaining a better understanding of host factors that contribute to the heterogeneity in immunity is necessary. To address this question, healthy adults [n = 36, 18–40 years old, body mass index (BMI) 20–35 kg/m2] were recruited. Dietary intake was obtained via 3-day dietary recall records, physical activity level was evaluated using the International Physical Activity Questionnaire, and peripheral blood mononuclear cells were isolated from peripheral blood. Expression of activation markers on unstimulated immune subsets was assessed by flow cytometry. T-cell proliferation and cytokine secretion was assessed following in vitro stimulation with anti-CD3 or lipopolysaccharide. Furthermore, the incidence and severity of cold or flu symptoms were obtained from self-reported upper respiratory tract infection (URTI) questionnaires. The relationship between activation marker expression on T cells and T-cell effector functions; and in vitro cytokine secretion and URTI was determined by linear or logistic regression. CD69 and CD25 expression on unstimulated T cells was significantly associated with T-cell proliferation and interleukin-2 secretion. Incidence and severity of cold or flu symptoms was significantly associated with in vitro interleukin-6 and interferon-gamma secretion, respectively. Furthermore, host factors (e.g., age, BMI, physical activity, and diet) contributed significantly to the relationship between activation marker expression and T-cell effector function, and cytokine secretion and cold and flu status. In conclusion, these results suggest that lifestyle and dietary factors are important variables that contribute to immune responses and should be included in human clinical trials that assess immune endpoints. PMID:25788896

  18. Changes in the Immune Components of Preterm Human Milk and Associations With Maternal and Infant Characteristics.

    PubMed

    Groer, Maureen; Ashmeade, Terri; Duffy, Allyson; Morse, Shannon; Zaritt, Judy

    2016-01-01

    To describe difference in cytokines, chemokines, and growth factors (CCGFs) and secretory immunoglobulin A (sIgA) in the breast milk of mothers who gave birth preterm and maternal or infant characteristics related to these immune components. A prospective, repeated-measures, one-group design. Data were collected at an 82-bed NICU in West Central Florida. Seventy-six very-low-birth-weight infants weighing less than 1,500 g and their mothers. Daily aliquots of breast milk from mothers of preterm infants were collected from the daily infants' feedings and pooled at the end of each week, and CCGFs and sIgA were measured weekly with MagPix multiplexing (Luminex, Austin, TX) and enzyme-linked immunosorbent assay. The CCGFs showed high individual variability, but the levels of most CCGFs and sIgA fell over time. Immune variables were generally greater in milk from mothers of infants smaller than 1,000 g. The breast milk of mothers of male preterm infants had significantly greater sIgA than the breast milk of mothers of female preterm infants. We found relationships between age, body mass index, parity, sIgA, and some of the CCGFs in the breast milk of women who gave birth preterm. Immune molecules declined in concentration over time in the breast milk of mothers who give birth preterm during the NICU stay, and maternal and infant factors appeared to play some role in the levels of these immune molecules. Further exploration of this relationship is warranted. Copyright © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  19. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy.

    PubMed

    Tirado-González, Irene; Freitag, Nancy; Barrientos, Gabriela; Shaikly, Valerie; Nagaeva, Olga; Strand, Magnus; Kjellberg, Lennart; Klapp, Burghard F; Mincheva-Nilsson, Lucia; Cohen, Marie; Blois, Sandra M

    2013-01-01

    Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.

  20. Aspects of Microparticle Utilization for Potentiation of Novel Vaccines: Promises and Risks

    NASA Astrophysics Data System (ADS)

    Ilyinskii, P.

    Many recombinant vaccines against novel (HIV, HCV) or ever-changing (influenza) infectious agents require the presence of adjuvants/delivery vehicles to induce strong immune responses. The necessity of their improvement led to the major effort towards development of vaccine delivery systems that are generally particulate (e.g., nano- and microparticles) and have comparable dimensions to the pathogens (viruses or bacteria). The mode of action of these adjuvants is not fully understood but implies the stimulation of the innate or antigen-specific immune responses, and/or the increase of antigen uptake or processing by antigen-presenting cells (APC). Moreover, enhancement of adjuvant activity through the use of micro- and nanoparticulate delivery systems often resulted from the synergistic effects producing immune responses stronger than those elicited by the adjuvant or delivery system alone. Among particulate adjuvants, biodegradable micro- and nanoparticles of poly(D,L-lactide-co-glycoside) (PLGA) or poly(D,L-lactide) (PLA) have been reported to enhance both humoral and cellular immune responses against an encapsulated protein antigen. Cationic and anionic polylactide co-glycolide (PLG) microparticles have been successfully used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides and are also currently tested in several vaccine applications. Another approach envisions specific targeting of APC, especially peripheral DC and exploitation of particulate systems that are small enough for lymphatic uptake (polystyrene nanobeads). Micro- and nanoparticles offer the possibility of enhancement of their uptake by appropriate cells through manipulation of their surface properties. Still, questions regarding toxicity and molecular interaction between micro- and nano-particles and immune cells, tissues and whole organisms remain to be addressed. These risks and other possible side effects should be assessed in detail especially if mass-production and massive administration of such preparations is to be considered.

  1. FmLC5, a putative galactose-binding C-type lectin with two QPD motifs from the hemocytes of Fenneropenaeus merguiensis participates in shrimp immune defense.

    PubMed

    Senghoi, Wilaiwan; Runsaeng, Phanthipha; Utarabhand, Prapaporn

    2017-11-01

    Crustaceans are deficient in adaptive immune system. They depend completely on an innate immunity to protect themselves from invading microorganisms. One kind of pattern recognition receptors that contribute roles in the innate immunity is lectin. A new C-type lectin gene designated as FmLC5 was isolated from Fenneropenaeus merguiensis. Its full-length cDNA is composed of 1526bp and one open reading frame of 852bp encoding a peptide of 284 amino acids. The deduced amino acid sequence of FmLC5 comprises a signal peptide of 20 contiguous amino acids with a molecular mass of 31.47kDa and an isoelectric point of 4.35. The primary structure of FmLC5 consists of two similar carbohydrate recognition domains (CRDs), each CRD contains a Ca 2+ binding site-2 and a QPD motif specific for galactose-binding. The FmLC5 transcripts were detected only in the hemocytes analyzed by RT-PCR and in situ hybridization. The FmLC5 expression was significantly up-regulated after challenge with Vibrio harveyi, white spot syndrome virus (WSSV) or lipopolysaccharide. RNAi-based silencing with co-injection by V. harveyi or WSSV resulted in critical suppression of the FmLC5 expression, increasing in mortality and reduction of the median lethal time. These results conclude that FmLC5 is unique putative galactose-binding C-type lectin in F. merguiensis that may contribute as receptor molecule in the immune response to defend the shrimp from pathogenic bacteria and viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    PubMed

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.

  3. The Epidemiology of IRIS in Southern India: An Observational Cohort Study

    PubMed Central

    Thambuchetty, Nisha; Mehta, Kayur; Arumugam, Karthika; Shekarappa, Umadevi G.; Idiculla, Jyothi; Shet, Anita

    2018-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is an uncommon but dynamic phenomenon seen among patients initiating antiretroviral therapy (ART). We aimed to describe incidence, risk factors, clinical spectrum, and outcomes among ART-naive patients experiencing IRIS in southern India. Among 599 eligible patients monitored prospectively between 2012 and 2014, there were 59.3% males, with mean age 36.6 ± 7.8 years. Immune reconstitution inflammatory syndrome incidence rate was 51.3 per 100 person-years (95% confidence interval: 44.5-59.2). One-third (31.4%) experienced at least 1 IRIS event, at a median of 27 days since ART initiation. Mucocutaneous infections and candidiasis were common IRIS events, followed by tuberculosis. Significant risk factors included age >40 years, body mass index <18.5 kg/m2, CD4 count <100 cells/mm3, viral load >10 000 copies/mL, hemoglobin <1 g/dL, and erythrocyte sedimentation rate >50 mm/h. Immune reconstitution inflammatory syndrome–related morality was 1.3% (8 of 599); 3 patients died of complicated diarrhea. These findings highlight the current spectrum of IRIS in South India and underscore the importance of heightened vigilance for anemia and treatment of diarrhea and candidiasis during ART initiation. PMID:28399724

  4. Mast cells in endometriosis: guilty or innocent bystanders?

    PubMed

    Kirchhoff, Dennis; Kaulfuss, Stefan; Fuhrmann, Ulrike; Maurer, Marcus; Zollner, Thomas M

    2012-03-01

    Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease characterized by growth of endometrial tissue outside the uterine cavity. Symptoms in EMS patients include severe pelvic pain, dysmenorrhea, dyspareunia and infertility. To date, medical therapies are mostly based on hormonal suppressive drugs that induce a hypoestrogenic state. Although being effective regarding the reduction of endometriotic tissue masses and pelvic pain, this treatment is accompanied by severe side effects. Since EMS is associated with chronic inflammation, novel therapeutic strategies also focus on immune modulating drugs. However, little is known about how and to what extent immune cell subsets contribute to the network of locally produced cytokines, chemokines and other mitogenic factors that modulate the growth of ectopic endometrial implants and the inflammation associated with them. Mast cells (MCs) are known to be key players of the immune system, especially during allergic reactions. However, in recent years MCs have been identified to exhibit a far broader range of functions and to be involved in host defense and wound healing responses. Here, recent reports that imply an involvement of MCs in EMS has been reviewed, while the value of novel mouse models for clarifying their contribution to the pathology of this condition has been discussed.

  5. Changes in protein expression during honey bee larval development.

    PubMed

    Chan, Queenie W T; Foster, Leonard J

    2008-10-29

    The honey bee (Apis mellifera), besides its role in pollination and honey production, serves as a model for studying the biochemistry of development, metabolism, and immunity in a social organism. Here we use mass spectrometry-based quantitative proteomics to quantify nearly 800 proteins during the 5- to 6-day larval developmental stage, tracking their expression profiles. We report that honey bee larval growth is marked by an age-correlated increase of protein transporters and receptors, as well as protein nutrient stores, while opposite trends in protein translation activity and turnover were observed. Levels of the immunity factors prophenoloxidase and apismin are positively correlated with development, while others surprisingly were not significantly age-regulated, suggesting a molecular explanation for why bees are susceptible to major age-associated bee bacterial infections such as American Foulbrood or fungal diseases such as chalkbrood. Previously unreported findings include the reduction of antioxidant and G proteins in aging larvae. These data have allowed us to integrate disparate findings in previous studies to build a model of metabolism and maturity of the immune system during larval development. This publicly accessible resource for protein expression trends will help generate new hypotheses in the increasingly important field of honey bee research.

  6. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns

    PubMed Central

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M.; Cervone, Felice; De Lorenzo, Giulia

    2015-01-01

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  7. A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF).

    PubMed

    Lai, Liyun; Ong, Raymond; Li, Juntao; Albani, Salvatore

    2015-04-01

    CyTOF enables the study of the immune system with a complexity, depth, and multidimensionality never achieved before. However, the full potential of using CyTOF can be limited by scarce cell samples. Barcoding strategies developed based on direct labeling of cells using maleimido-monoamide-DOTA (m-DOTA) provide a very useful tool. However, using m-DOTA has some inherent problems, mainly associated with signal intensity. This may be a source of uncertainty when samples are multiplexed. As an alternative or complementary approach to m-DOTA, conjugating an antibody, specific for a membrane protein present on most immune cells, with different isotopes could address the issues of stability and signal intensity needed for effective barcoding. We chose for this purpose CD45, and designed experiments to address different types of cultures and the ability to detect extra- and intra-cellular targets. We show here that our approach provides an useful alternative to m-DOTA in terms of sensitivity, specificity, flexibility, and user-friendliness. Our manuscript provides details to effectively barcode immune cells, overcoming limitations in current technology and enabling the use of CyTOF with scarce samples (for instance precious clinical samples). © 2015 The Authors. Published by Wiley Periodicals, Inc.

  8. Mass immunization with inactivated polio vaccine in conflict zones--Experience from Borno and Yobe States, North-Eastern Nigeria.

    PubMed

    Shuaibu, Faisal M; Birukila, Gerida; Usman, Samuel; Mohammed, Ado; Galway, Michael; Corkum, Melissa; Damisa, Eunice; Mkanda, Pascal; Mahoney, Frank; Wa Nganda, Gatei; Vertefeuille, John; Chavez, Anna; Meleh, Sule; Banda, Richard; Some, Almai; Mshelia, Hyelni; Umar, Al-Umra; Enemaku, Ogu; Etsano, Andrew

    2016-02-01

    The use of Inactivated Polio Vaccine (IPV) in routine immunization to replace Oral Polio Vaccine (OPV) is crucial in eradicating polio. In June 2014, Nigeria launched an IPV campaign in the conflict-affected states of Borno and Yobe, the largest ever implemented in Africa. We present the initiatives and lessons learned. The 8-day event involved two parallel campaigns. OPV target age was 0-59 months, while IPV targeted all children aged 14 weeks to 59 months. The Borno state primary health care agency set up temporary health camps for the exercise and treated minor ailments for all. The target population for the OPV campaign was 685,674 children in Borno and 113,774 in Yobe. The IPV target population for Borno was 608,964 and for Yobe 111,570. OPV coverage was 105.1 per cent for Borno and 103.3 per cent for Yobe. IPV coverage was 102.9 per cent for Borno and 99.1 per cent for Yobe. (Where we describe coverage as greater than 100 per cent, this reflects original underestimates of the target populations.) A successful campaign and IPV immunization is viable in conflict areas.

  9. Antibiotic Resistance In Neisseria Gonorrhoeae: Impact Of Ceftriaxone Resistance On Microbial Fitness And Potential Of Resistance Determinants To Spread During Mixed Infection

    DTIC Science & Technology

    2016-03-07

    14 1.4d Antibacterial Drug Resistance .......................................................................... 17 1.4d1 Modification of the...Depending upon receptor engagement, Opa-mediated interactions can either activate the innate immune system via neutrophil activation or suppress the...himself was never able to develop the antibacterial mold he had discovered into a mass-produced antibiotic for human use, efforts by scientists in

  10. JPRS Report Science & Technology USSR: Life Sciences

    DTIC Science & Technology

    1990-06-18

    water-soluble low-molecular-mass ß-l,3-ß-l,6- glucanes , suppressors present in the mycelium and zoospores of the fungus, and also in its excretions...This article studies the participation of the glucane suppressors of phytoph- thora infestans (Mont) de Bary in the suppression of various types of...potato immune response. The interac- tion of the glucanes with specific receptors on the plas- malemma of the potato cells prevents recognition by

  11. Systematic Review of the Effectiveness of Mass Media Interventions for Child Survival in Low- and Middle-Income Countries

    PubMed Central

    Naugle, Danielle A.; Hornik, Robert C.

    2014-01-01

    Through a systematic review of the literature, this article summarizes and evaluates evidence for the effectiveness of mass media interventions for child survival. To be included, studies had to describe a mass media intervention; address a child survival health topic; present quantitative data from a low- or middle-income country; use an evaluation design that compared outcomes using pre- and postintervention data, treatment versus comparison groups, or postintervention data across levels of exposure; and report a behavioral or health outcome. The 111 campaign evaluations that met the inclusion criteria included 15 diarrheal disease, 8 immunization, 2 malaria, 14 nutrition, 1 preventing mother-to-child transmission of HIV, 4 respiratory disease, and 67 reproductive health interventions. These evaluations were then sorted into weak (n = 33), moderate (n = 32), and stronger evaluations (n = 46) on the basis of the sampling method, the evaluation design, and efforts to address threats to inference of mass media effects. The moderate and stronger evaluations provide evidence that mass media-centric campaigns can positively impact a wide range of child survival health behaviors. PMID:25207453

  12. The Effect of Body Mass on the Shoe-Athlete Interaction

    PubMed Central

    Maropoulos, S.; Arabatzi, F.

    2017-01-01

    Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial heel was prototyped to fit the impact pattern of a heel-strike runner and used to measure shock attenuation by an automated drop test. Impact mass and velocity were modulated to simulate runners of various body mass and speeds. The investigation provided refined insight on running-induced impact transmission to the human body. The examined midsole system was optimized around anthropometric data corresponding to an average (normal) body mass. The results suggest that although modern footwear is capable of attenuating the shock waves occurring during foot strike, improper shoe selection could expose an athlete to high levels of peak stress that could provoke an abnormal cartilage response. The selection of a weight-specific cushioning system could provide optimum protection and could thus prolong the duration of physical exercise beneficial to maintaining a simulated immune system. PMID:28465660

  13. The Effect of Body Mass on the Shoe-Athlete Interaction.

    PubMed

    Tsouknidas, A; Pantazopoulos, M; Sagris, D; Fasnakis, D; Maropoulos, S; Arabatzi, F; Michailidis, N

    2017-01-01

    Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial heel was prototyped to fit the impact pattern of a heel-strike runner and used to measure shock attenuation by an automated drop test. Impact mass and velocity were modulated to simulate runners of various body mass and speeds. The investigation provided refined insight on running-induced impact transmission to the human body. The examined midsole system was optimized around anthropometric data corresponding to an average (normal) body mass. The results suggest that although modern footwear is capable of attenuating the shock waves occurring during foot strike, improper shoe selection could expose an athlete to high levels of peak stress that could provoke an abnormal cartilage response. The selection of a weight-specific cushioning system could provide optimum protection and could thus prolong the duration of physical exercise beneficial to maintaining a simulated immune system.

  14. Upregulation of Human Endogenous Retrovirus-K Is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension.

    PubMed

    Saito, Toshie; Miyagawa, Kazuya; Chen, Shih-Yu; Tamosiuniene, Rasa; Wang, Lingli; Sharpe, Orr; Samayoa, Erik; Harada, Daisuke; Moonen, Jan-Renier A J; Cao, Aiqin; Chen, Pin-I; Hennigs, Jan K; Gu, Mingxia; Li, Caiyun G; Leib, Ryan D; Li, Dan; Adams, Christopher M; Del Rosario, Patricia A; Bill, Matthew; Haddad, Francois; Montoya, Jose G; Robinson, William H; Fantl, Wendy J; Nolan, Garry P; Zamanian, Roham T; Nicolls, Mark R; Chiu, Charles Y; Ariza, Maria E; Rabinovitch, Marlene

    2017-11-14

    Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1β, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH. © 2017 American Heart Association, Inc.

  15. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  16. Tidal disruption of inviscid planetesimals

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.

  17. Comparative analysis of cerebrospinal fluid from the meningo-encephalitic stage of T. b. gambiense and rhodesiense sleeping sickness patients using TMT quantitative proteomics.

    PubMed

    Tiberti, Natalia; Sanchez, Jean-Charles

    2015-09-01

    The quantitative proteomics data here reported are part of a research article entitled "Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense", published by Tiberti et al., 2015. Transl. Proteomics 6, 1-9. Sleeping sickness (human African trypanosomiasis - HAT) is a deadly neglected tropical disease affecting mainly rural communities in sub-Saharan Africa. This parasitic disease is caused by the Trypanosoma brucei (T. b.) parasite, which is transmitted to the human host through the bite of the tse-tse fly. Two parasite sub-species, T. b. rhodesiense and T. b. gambiense, are responsible for two clinically different and geographically separated forms of sleeping sickness. The objective of the present study was to characterise and compare the cerebrospinal fluid (CSF) proteome of stage 2 (meningo-encephalitic stage) HAT patients suffering from T. b. gambiense or T. b. rhodesiense disease using high-throughput quantitative proteomics and the Tandem Mass Tag (TMT(®)) isobaric labelling. In order to evaluate the CSF proteome in the context of HAT pathophysiology, the protein dataset was then submitted to gene ontology and pathway analysis. Two significantly differentially expressed proteins (C-reactive protein and orosomucoid 1) were further verified on a larger population of patients (n=185) by ELISA, confirming the mass spectrometry results. By showing a predominant involvement of the acute immune response in rhodesiense HAT, the proteomics results obtained in this work will contribute to further understand the mechanisms of pathology occurring in HAT and to propose new biomarkers of potential clinical utility. The mass spectrometry raw data are available in the Pride Archive via ProteomeXchange through the identifier PXD001082.

  18. Nutritional supplementation in HIV-infected individuals in South India: a prospective interventional study.

    PubMed

    Swaminathan, S; Padmapriyadarsini, C; Yoojin, L; Sukumar, B; Iliayas, S; Karthipriya, J; Sakthivel, R; Gomathy, P; Thomas, B E; Mathew, M; Wanke, C A; Narayanan, P R

    2010-07-01

    Malnutrition in human immunodeficiency virus (HIV)-infected individuals is associated with faster disease progression, higher mortality rates, and suboptimal response to antiretroviral therapy (ART). We conducted a prospective interventional study to evaluate the effects of an oral macronutrient supplement among HIV-infected adults in South India. Patients attending Tuberculosis Research Centre clinics from June 2005 through December 2007 had baseline nutritional assessment and laboratory investigations performed. Patients at 1 center received nutritional counseling and standard care, whereas patients at 2 centers additionally received a macronutrient providing 400 cal and 15 g of protein daily. Study outcomes were changes in anthropometry, body composition, blood chemistry, and immune status at 6 months. In total, 636 ART-naive patients were enrolled in the study; 361 completed 6 months of follow-up (282 received supplements and 79 received standard care). Mean age +/- standard deviation (SD) was 31 +/- 7 years, mean weight +/- SD was 50 +/- 10 kg, and 42% were male. Significant increases in body weight, body mass index, midarm circumference, fat-free mass, and body cell mass were observed in the supplement group but not in the control group at 6 months; gains were greater in patients with CD4 cell counts <200 cells/microL. No changes were observed in lipid levels, whereas the CD4 cell count decreased in the control group. However, after adjusting for baseline differences, these changes were not statistically significantly different between the groups. Macronutrient supplementation did not result in significantly increased weight gain compared with standard care (including nutritional counseling) among patients with moderately advanced HIV disease. The effect of supplementation on specific subsets of patients and on preserving immune function needs further research.

  19. High parasite burden increases the surfacing and mortality of the manila clam (Ruditapes philippinarum) in intertidal sandy mudflats on the west coast of Korea during hot summer.

    PubMed

    Nam, Ki-Woong; Jeung, Hee-Do; Song, Jae-Hee; Park, Kwan-Ha; Choi, Kwang-Sik; Park, Kyung-Il

    2018-01-18

    Over the past few decades, mass mortality events of Manila clams have been reported from several tidal flats on the west coast of Korea during hot summers. During such mortality events, once clams simultaneously surface, they fail to re-burrow, perishing within a week. The present study aimed to identify the possible causes of the mass mortality of this clam species by investigating the Perkinsus olseni parasite burden and immune parameters of surfaced clams (SC) and normal buried clams (NBCs) when sea water or sediment temperature in the study area varied from 25 °C to 34 °C from late July through mid-August 2015. We collected 2 groups of clams distributed within a 10-m 2 area when a summer clam mortality event occurred around Seonyu-do Island on the west coast of Korea in 2015. The clams were collected 2 days after they surfaced on the sediment and still looked healthy without any gaping. The clams were transported to the laboratory, and we compared P. olseni infection intensity and cell-mediated hemocyte parameters between the NBCs and SCs. SCs showed significantly higher levels of P. olseni burden, lower condition index, and lower levels of cell-mediated immune functions than those of NBCs. Our study suggests that high P. olseni infection weakens Manila clams' resistance against thermal stress, causing them to surface. We surmise that the summer mass mortality of Manila clams on the west coast of Korea is caused by the combined effects of high P. olseni infection levels and abnormally high water temperature stress.

  20. Understanding Human-Plasmodium falciparum Immune Interactions Uncovers the Immunological Role of Worms

    PubMed Central

    Roussilhon, Christian; Brasseur, Philippe; Agnamey, Patrice; Pérignon, Jean-Louis; Druilhe, Pierre

    2010-01-01

    Background Former studies have pointed to a monocyte-dependant effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. Methods and Findings We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. Conclusion The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies. PMID:20174576

  1. Proteomic identification of the related immune-enhancing proteins in shrimp Litopenaeus vannamei stimulated with vitamin C and Chinese herbs.

    PubMed

    Qiao, Jie; Du, Zhiheng; Zhang, Yueling; Du, Hong; Guo, Lingling; Zhong, Mingqi; Cao, Jingsong; Wang, Xiuying

    2011-12-01

    Recently, strong interest has been focused on immunostimulants to reducing the diseases in shrimp aquaculture. However, information regarding to the related immune-enhancing proteins in shrimps is not available yet. In this study, vitamin C (Vc), Chinese herbs (CH), and the mixture of vitamin C and Chinese herbs (Mix) were tested for their enhancement on shrimp's immune activity. Compared with those in the control group, values of phenoloxidase (PO), superoxide dismutase (SOD) and antibacterial (Ua) activity in the Mix-treated group were improved significantly 12 or 24 days after the treatment. The cumulative mortality was also lower in the Mix-treated group after infection with Vibrio parahemolyticus. Furthermore, comparative proteomic approach was used to assess the protein expression profile in shrimps. Approximately 220-290 and 300-400 protein spots were observed in the 2-DE gels. Among them, 29 and 28 altered proteins from hemocytes and hepatopancreas, respectively, were subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. The results revealed that the main altered proteins showed high homologies with Litopenaeus vannamei hemocyanin, hemolymph clottable protein, hemoglobin beta, cytosolic MnSOD, trypsin, cathepsin I(L) and zinc proteinase Mpc1. Together, these studies found Vc and CH were suitable immunostimulants to shrimp L. vannamei, and 7 altered proteins could be involved in the enhanced immune activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Adipose tissue lymphocytes: types and roles.

    PubMed

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  3. Hypo-gravity and immune system effects

    NASA Technical Reports Server (NTRS)

    Carter, Paul D.; Barnes, Frank

    1990-01-01

    Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.

  4. Recognition of Porphyromonas gingivalis Gingipain Epitopes by Natural IgM Binding to Malondialdehyde Modified Low-Density Lipoprotein

    PubMed Central

    Turunen, S. Pauliina; Kummu, Outi; Harila, Kirsi; Veneskoski, Marja; Soliymani, Rabah; Baumann, Marc; Pussinen, Pirkko J.; Hörkkö, Sohvi

    2012-01-01

    Objective Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL. Methods and Results Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. Conclusion Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis. PMID:22496875

  5. Demographic and temporal variations in immunity and condition of polar bears (Ursus maritimus) from the southern Beaufort Sea

    USGS Publications Warehouse

    Neuman-Lee, Lorin; Terletzky, Patricia; Atwood, Todd C.; Gese, Eric; Smith, Geoffrey; Greenfield, Sydney; Pettit, John; French, Susannah

    2017-01-01

    Assessing the health and condition of animals in their natural environment can be problematic. Many physiological metrics, including immunity, are highly influenced by specific context and recent events to which researchers may be unaware. Thus, using a multifaceted physiological approach and a context-specific analysis encompassing multiple time scales can be highly informative. Ecoimmunological tools in particular can provide important indications to the health of animals in the wild. We collected blood and hair samples from free-ranging polar bears (Ursus maritimus) in the southern Beaufort Sea and examined the influence of sex, age, and reproductive status on metrics of immunity, stress, and body condition during 2013–2015. We examined metrics of innate immunity (bactericidal ability and lysis) and stress (hair cortisol, reactive oxygen species, and oxidative barrier), in relation to indices of body condition considered to be short term (urea to creatinine ratio; UC ratio) and long term (storage energy and body mass index). We found the factors of sex, age, and reproductive status of the bear were critical for interpreting different physiological metrics. Additionally, the metrics of body condition were important predictors for stress indicators. Finally, many of these metrics differed between years, illustrating the need to examine populations on a longer time scale. Taken together, this study demonstrates the complex relationship between multiple facets of physiology and how interpretation requires us to examine individuals within a specific context.

  6. Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M

    2008-08-01

    Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.

  7. Serum levels of the immune activation marker neopterin change with age and gender and are modified by race, BMI, and percentage of body fat.

    PubMed

    Spencer, Monique E; Jain, Alka; Matteini, Amy; Beamer, Brock A; Wang, Nae-Yuh; Leng, Sean X; Punjabi, Naresh M; Walston, Jeremy D; Fedarko, Neal S

    2010-08-01

    Neopterin, a GTP metabolite expressed by macrophages, is a marker of immune activation. We hypothesize that levels of this serum marker alter with donor age, reflecting increased chronic immune activation in normal aging. In addition to age, we assessed gender, race, body mass index (BMI), and percentage of body fat (%fat) as potential covariates. Serum was obtained from 426 healthy participants whose age ranged from 18 to 87 years. Anthropometric measures included %fat and BMI. Neopterin concentrations were measured by competitive ELISA. The paired associations between neopterin and age, BMI, or %fat were analyzed by Spearman's correlation or by linear regression of log-transformed neopterin, whereas overall associations were modeled by multiple regression of log-transformed neopterin as a function of age, gender, race, BMI, %fat, and interaction terms. Across all participants, neopterin exhibited a positive association with age, BMI, and %fat. Multiple regression modeling of neopterin in women and men as a function of age, BMI, and race revealed that each covariate contributed significantly to neopterin values and that optimal modeling required an interaction term between race and BMI. The covariate %fat was highly correlated with BMI and could be substituted for BMI to yield similar regression coefficients. The association of age and gender with neopterin levels and their modification by race, BMI, or %fat reflect the biology underlying chronic immune activation and perhaps gender differences in disease incidence, morbidity, and mortality.

  8. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.

    PubMed

    Bharwani, Aadil; Mian, M Firoz; Surette, Michael G; Bienenstock, John; Forsythe, Paul

    2017-01-11

    Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.

  9. Amitriptyline Usage Exacerbates the Immune Suppression Following Burn Injury.

    PubMed

    Johnson, Bobby L; Rice, Teresa C; Xia, Brent T; Boone, Kirsten I; Green, Ellis A; Gulbins, Erich; Caldwell, Charles C

    2016-11-01

    Currently, over 10% of the US population is taking antidepressants. Numerous antidepressants such as amitriptyline are known to inhibit acid sphingomyelinase (Asm), an enzyme that is known to mediate leukocyte function and homeostasis. Severe burn injury can lead to an immunosuppressive state that is characterized by decreased leukocyte function and numbers as well as increased susceptibility to infection. Based upon the intersection of these facts, we hypothesized that amitriptyline-treated, scald-injured mice would have an altered immune response to injury as compared with untreated scald mice. Prior to burn, mice were pretreated with amitriptyline. Drug- or saline-treated mice were subjected full thickness dorsal scald- or sham-injury. Immune cells from spleen, thymus, and bone marrow were subsequently harvested and characterized. We first observed that amitriptyline prior to burn injury increased body mass loss and spleen contraction. Both amitriptylinetreatment and burn injury resulted in a 40% decrease of leukocyte Asm activity. Following scald injury, we demonstrate increased reduction of lymphocyte precursors in the bone marrow and thymus, as well as mature leukocytes in the spleen in mice that were treated with amitriptyline. We also demonstrate that amitriptyline treatment prior to injury reduced neutrophil accumulation following peptidoglycan stimulus in scald-injured mice. These data show that Asm alterations can play a significant role in mediating alterations to the immune system after injury. The data further suggest that those taking antidepressants may be at a higher risk for complications following burn injury.

  10. Environmental Isolation of Circulating Vaccine-Derived Poliovirus After Interruption of Wild Poliovirus Transmission - Nigeria, 2016.

    PubMed

    Etsano, Andrew; Damisa, Eunice; Shuaib, Faisal; Nganda, Gatei Wa; Enemaku, Ogu; Usman, Samuel; Adeniji, Adekunle; Jorba, Jaume; Iber, Jane; Ohuabunwo, Chima; Nnadi, Chimeremma; Wiesen, Eric

    2016-08-05

    In September 2015, more than 1 year after reporting its last wild poliovirus (WPV) case in July 2014 (1), Nigeria was removed from the list of countries with endemic poliovirus transmission,* leaving Afghanistan and Pakistan as the only remaining countries with endemic WPV. However, on April 29, 2016, a laboratory-confirmed, circulating vaccine-derived poliovirus type 2 (cVDPV2) isolate was reported from an environmental sample collected in March from a sewage effluent site in Maiduguri Municipal Council, Borno State, a security-compromised area in northeastern Nigeria. VDPVs are genetic variants of the vaccine viruses with the potential to cause paralysis and can circulate in areas with low population immunity. The Nigeria National Polio Emergency Operations Center initiated emergency response activities, including administration of at least 2 doses of oral poliovirus vaccine (OPV) to all children aged <5 years through mass campaigns; retroactive searches for missed cases of acute flaccid paralysis (AFP), and enhanced environmental surveillance. Approximately 1 million children were vaccinated in the first OPV round. Thirteen previously unreported AFP cases were identified. Enhanced environmental surveillance has not resulted in detection of additional VDPV isolates. The detection of persistent circulation of VDPV2 in Borno State highlights the low population immunity, surveillance limitations, and risk for international spread of cVDPVs associated with insurgency-related insecurity. Increasing vaccination coverage with additional targeted supplemental immunization activities and reestablishment of effective routine immunization activities in newly secured and difficult-to-reach areas in Borno is urgently needed.

  11. Immunization with L. sigmodontis Microfilariae Reduces Peripheral Microfilaraemia after Challenge Infection by Inhibition of Filarial Embryogenesis

    PubMed Central

    Ziewer, Sebastian; Hübner, Marc P.; Dubben, Bettina; Hoffmann, Wolfgang H.; Bain, Odile; Martin, Coralie; Hoerauf, Achim; Specht, Sabine

    2012-01-01

    Background Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. Methodology/Principal Findings Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. Conclusions/Significance Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis. PMID:22413031

  12. Testing the Immunity of the Firearm Industry to Tort Litigation.

    PubMed

    Studdert, David M; Donohue, John J; Mello, Michelle M

    2017-01-01

    In the absence of congressional action to reinstate the federal ban on assault weapons, tort litigation offers an alternative strategy for regulating what have become the weapons of choice in mass shootings. However, opportunities to bring successful claims are limited. To prevail, plaintiffs must show that their suit fits within exceptions to the broad immunity from tort actions that Congress gave the firearm industry in the 2005 Protection of Lawful Commerce in Arms Act. In one particularly high-profile lawsuit, families of victims of the school shooting in Newtown, Connecticut, in 2012 sued the makers and sellers of the military-style rifle used in the attack, alleging negligence and deceptive marketing. The trial court dismissed the case on October 14, 2016, but the plaintiffs plan to appeal. We review the history of tort litigation against the firearm industry, outline the Newtown families' claims, and describe the decision.

  13. Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine.

    PubMed

    Tao, Pan; Li, Qin; Shivachandra, Sathish B; Rao, Venigalla B

    2017-01-01

    Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.

  14. The 150 most important questions in cancer research and clinical oncology series: Questions 25-30 : Edited by Chinese Journal of Cancer.

    PubMed

    2017-05-04

    To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, 6 more questions are presented as followed. Question 25: Does imprinting of immune responses to infections early in life predict future risk of childhood and adult cancers? Question 26: How to induce homogeneous tumor antigen expression in a heterogeneous tumor mass to enhance the efficacy of cancer immunotherapy? Question 27: Could we enhance the therapeutic effects of immunotherapy by targeting multiple tumor antigens simultaneously or sequentially? Question 28: Can immuno-targeting to cytokines halt cancer metastasis? Question 29: How can we dynamically and less-invasively monitor the activity of CD8 + T killer cells at tumor sites and draining lymph nodes? Question 30: How can the immune system destroy the niches for cancer initiation?

  15. THE CASE FOR A TYPHOID VACCINE PROBE STUDY AND OVERVIEW OF DESIGN ELEMENTS

    PubMed Central

    Halloran, M. Elizabeth; Khan, Imran

    2015-01-01

    Recent advances in typhoid vaccine, and consideration of support from Gavi, the Vaccine Alliance, raise the possibility that some endemic countries will introduce typhoid vaccine into public immunization programs. This decision, however, is limited by lack of definitive information on disease burden. We propose use of a vaccine probe study approach. This approach would more clearly assess the total burden of typhoid across different syndromic groups and account for lack of access to care, poor diagnostics, incomplete laboratory testing, lack of mortality and intestinal perforation surveillance, and increasing antibiotic resistance. We propose a cluster randomized trial design using a mass immunization campaign among all age groups, with monitoring over a 4-year period of a variety of outcomes. The primary outcome would be the vaccine preventable disease incidence of prolonged fever hospitalization. Sample size calculations suggest that such a study would be feasible over a reasonable set of assumptions. PMID:25912286

  16. High-dimensional single-cell analysis reveals the immune signature of narcolepsy.

    PubMed

    Hartmann, Felix J; Bernard-Valnet, Raphaël; Quériault, Clémence; Mrdjen, Dunja; Weber, Lukas M; Galli, Edoardo; Krieg, Carsten; Robinson, Mark D; Nguyen, Xuan-Hung; Dauvilliers, Yves; Liblau, Roland S; Becher, Burkhard

    2016-11-14

    Narcolepsy type 1 is a devastating neurological sleep disorder resulting from the destruction of orexin-producing neurons in the central nervous system (CNS). Despite its striking association with the HLA-DQB1*06:02 allele, the autoimmune etiology of narcolepsy has remained largely hypothetical. Here, we compared peripheral mononucleated cells from narcolepsy patients with HLA-DQB1*06:02-matched healthy controls using high-dimensional mass cytometry in combination with algorithm-guided data analysis. Narcolepsy patients displayed multifaceted immune activation in CD4 + and CD8 + T cells dominated by elevated levels of B cell-supporting cytokines. Additionally, T cells from narcolepsy patients showed increased production of the proinflammatory cytokines IL-2 and TNF. Although it remains to be established whether these changes are primary to an autoimmune process in narcolepsy or secondary to orexin deficiency, these findings are indicative of inflammatory processes in the pathogenesis of this enigmatic disease. © 2016 Hartmann et al.

  17. High-dimensional single-cell analysis reveals the immune signature of narcolepsy

    PubMed Central

    Quériault, Clémence; Krieg, Carsten; Nguyen, Xuan-Hung

    2016-01-01

    Narcolepsy type 1 is a devastating neurological sleep disorder resulting from the destruction of orexin-producing neurons in the central nervous system (CNS). Despite its striking association with the HLA-DQB1*06:02 allele, the autoimmune etiology of narcolepsy has remained largely hypothetical. Here, we compared peripheral mononucleated cells from narcolepsy patients with HLA-DQB1*06:02-matched healthy controls using high-dimensional mass cytometry in combination with algorithm-guided data analysis. Narcolepsy patients displayed multifaceted immune activation in CD4+ and CD8+ T cells dominated by elevated levels of B cell–supporting cytokines. Additionally, T cells from narcolepsy patients showed increased production of the proinflammatory cytokines IL-2 and TNF. Although it remains to be established whether these changes are primary to an autoimmune process in narcolepsy or secondary to orexin deficiency, these findings are indicative of inflammatory processes in the pathogenesis of this enigmatic disease. PMID:27821550

  18. Disseminated cryptococcosis in an immunocompetent patient.

    PubMed

    Mada, Pradeep; Nowack, Brad; Cady, Beth; Joel Chandranesan, Andrew Stevenson

    2017-07-18

    Cryptococcosis is a fungal infection which is commonly associated with immune-compromised state. Disseminated infection in immunocompetent individuals is extremely rare. We present a case of a 56-year-old African American patient who presented with unilateral knee pain and swelling and was subsequently diagnosed with cryptococcal bone mass with dissemination of infection. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response.

    PubMed

    Jones, Jana; Mirzaei, Mehdi; Ravishankar, Prathiba; Xavier, Dylan; Lim, Do Seon; Shin, Dong Hoon; Bianucci, Raffaella; Haynes, Paul A

    2016-10-28

    We performed proteomics analysis on four skin and one muscle tissue samples taken from three ancient Egyptian mummies of the first intermediate period, approximately 4200 years old. The mummies were first dated by radiocarbon dating of the accompany-\\break ing textiles, and morphologically examined by scanning electron microscopy of additional skin samples. Proteins were extracted, separated on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels, and in-gel digested with trypsin. The resulting peptides were analysed using nanoflow high-performance liquid chromatography-mass spectrometry. We identified a total of 230 unique proteins from the five samples, which consisted of 132 unique protein identifications. We found a large number of collagens, which was confirmed by our microscopy data, and is in agreement with previous studies showing that collagens are very long-lived. As expected, we also found a large number of keratins. We identified numerous proteins that provide evidence of activation of the innate immunity system in two of the mummies, one of which also contained proteins indicating severe tissue inflammation, possibly indicative of an infection that we can speculate may have been related to the cause of death.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  20. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response

    PubMed Central

    Jones, Jana; Mirzaei, Mehdi; Ravishankar, Prathiba; Xavier, Dylan; Lim, Do Seon; Shin, Dong Hoon; Bianucci, Raffaella

    2016-01-01

    We performed proteomics analysis on four skin and one muscle tissue samples taken from three ancient Egyptian mummies of the first intermediate period, approximately 4200 years old. The mummies were first dated by radiocarbon dating of the accompany-\\break ing textiles, and morphologically examined by scanning electron microscopy of additional skin samples. Proteins were extracted, separated on SDS–PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels, and in-gel digested with trypsin. The resulting peptides were analysed using nanoflow high-performance liquid chromatography–mass spectrometry. We identified a total of 230 unique proteins from the five samples, which consisted of 132 unique protein identifications. We found a large number of collagens, which was confirmed by our microscopy data, and is in agreement with previous studies showing that collagens are very long-lived. As expected, we also found a large number of keratins. We identified numerous proteins that provide evidence of activation of the innate immunity system in two of the mummies, one of which also contained proteins indicating severe tissue inflammation, possibly indicative of an infection that we can speculate may have been related to the cause of death. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644972

  1. Competing spreading processes on multiplex networks: Awareness and epidemics

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2014-07-01

    Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev. Lett. 111, 128701 (2013)., 10.1103/PhysRevLett.111.128701] presented an analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex networks. The results in the case in which awareness implies total immunization to the disease revealed the existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of the awareness process. Here we present a full analysis of these critical properties in the more general scenario where the awareness spreading does not imply total immunization, and where infection does not imply immediate awareness of it. We find the critical relation between the two competing processes for a wide spectrum of parameters representing the interaction between them. We also analyze the consequences of a massive broadcast of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical point, is rooted in the competition principle and holds for a large set of scenarios.

  2. pH1N1 - a comparative analysis of public health responses in Ontario to the influenza outbreak, public health and primary care: lessons learned and policy suggestions

    PubMed Central

    2013-01-01

    Background Ontario’s 36 Public Health Units (PHUs) were responsible for implementing the H1N1 Pandemic Influenza Plans (PIPs) to address the first pandemic influenza virus in over 40 years. It was the first under conditions which permitted mass immunization. This is therefore the first opportunity to learn and document what worked well, and did not work well, in Ontario’s response to pH1N1, and to make recommendations based on experience. Methods Our objectives were to: describe the PIP models, obtain perceptions on outcomes, lessons learned and to solicit policy suggestions for improvement. We conducted a 3-phase comparative analysis study comprised of semi-structured key informant interviews with local Medical Officers of Health (n = 29 of 36), and Primary Care Physicians (n = 20) and in Phase 3 with provincial Chief-Medical Officers of Health (n = 6) and a provincial Medical Organization. Phase 2 data came from a Pan-Ontario symposium (n = 44) comprised leaders representing: Public Health, Primary Care, Provincial and Federal Government. Results PIPs varied resulting in diverse experiences and lessons learned. This was in part due to different PHU characteristics that included: degree of planning, PHU and Primary Care capacity, population, geographic and relationships with Primary Care. Main lessons learned were: 1) Planning should be more comprehensive and operationalized at all levels. 2) Improve national and provincial communication strategies and eliminate contradictory messages from different sources. 3) An integrated community-wide response may be the best approach to decrease the impact of a pandemic. 4) The best Mass Immunization models can be quickly implemented and have high immunization rates. They should be flexible and allow for incremental responses that are based upon: i) pandemic severity, ii) local health system, population and geographic characteristics, iii) immunization objectives, and iv) vaccine supply. Conclusion “We were very lucky that pH1N1 was not more severe.” Consensus existed for more detailed planning and the inclusion of multiple health system and community stakeholders. PIPs should be flexible, allow for incremental responses and have important decisions (E.g., under which conditions Public Health, Primary Care, Pharmacists or others act as vaccine delivery agents.) made prior to a crisis. PMID:23890226

  3. Galactic Dark Matter Halos and Globular Cluster Populations. III. Extension to Extreme Environments

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Harris, Gretchen L. H.

    2017-02-01

    The total mass {M}{GCS} in the globular cluster (GC) system of a galaxy is empirically a near-constant fraction of the total mass {M}h\\equiv {M}{bary}+{M}{dark} of the galaxy across a range of 105 in galaxy mass. This trend is radically unlike the strongly nonlinear behavior of total stellar mass M ⋆ versus M h . We discuss extensions of this trend to two more extreme situations: (a) entire clusters of galaxies and (b) the ultra-diffuse galaxies (UDGs) recently discovered in Coma and elsewhere. Our calibration of the ratio {η }M={M}{GCS}/{M}h from normal galaxies, accounting for new revisions in the adopted mass-to-light ratio for GCs, now gives {η }M=2.9× {10}-5 as the mean absolute mass fraction. We find that the same ratio appears valid for galaxy clusters and UDGs. Estimates of {η }M in the four clusters we examine tend to be slightly higher than for individual galaxies, but more data and better constraints on the mean GC mass in such systems are needed to determine if this difference is significant. We use the constancy of {η }M to estimate total masses for several individual cases; for example, the total mass of the Milky Way is calculated to be {M}h=1.1× {10}12 {M}⊙ . Physical explanations for the uniformity of {η }M are still descriptive, but point to a picture in which massive dense star clusters in their formation stages were relatively immune to the feedback that more strongly influenced lower-density regions where most stars form.

  4. Sequence analysis and characterization of pyruvate kinase from Clonorchis sinensis, a 53.1-kDa homopentamer, implicated immune protective efficacy against clonorchiasis.

    PubMed

    Chen, Tingjin; Jiang, Hongye; Sun, Hengchang; Xie, Zhizhi; Ren, Pengli; Zhao, Lu; Dong, Huimin; Shi, Mengchen; Lv, Zhiyue; Wu, Zhongdao; Li, Xuerong; Yu, Xinbing; Huang, Yan; Xu, Jin

    2017-11-09

    Clonorchis sinensis, the causative agent of clonorchiasis, is classified as one of the most neglected tropical diseases and affects more than 15 million people globally. This hepatobiliary disease is highly associated with cholangiocarcinoma. As key molecules in the infectivity and subsistence of trematodes, glycolytic enzymes have been targets for drug and vaccine development. Clonorchis sinensis pyruvate kinase (CsPK), a crucial glycolytic enzyme, was characterized in this research. Differences were observed in the sequences and spatial structures of CsPK and PKs from humans, rats, mice and rabbits. CsPK possessed a characteristic active site signature (IKLIAKIENHEGV) and some unique sites but lacked the N-terminal domain. The predicted subunit molecular mass (Mr) of CsPK was 53.1 kDa. Recombinant CsPK (rCsPK) was a homopentamer with a Mr. of approximately 290 kDa by both native PAGE and gel filtration chromatography. Significant differences in the protein and mRNA levels of CsPK were observed among four life stages of C. sinensis (egg, adult worm, excysted metacercaria and metacercaria), suggesting that these developmental stages may be associated with diverse energy demands. CsPK was widely distributed in adult worms. Moreover, an intense Th1-biased immune response was persistently elicited in rats immunized with rCsPK. Also, rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. The sequences and spatial structures, molecular mass, and expression profile of CsPK have been characterized. rCsPK was indicated to be a homopentamer. Rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CsPK is worthy of further study as a promising target for drug and vaccine development.

  5. Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss

    PubMed Central

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895

  6. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  7. Co-delivery of micronized urinary bladder matrix damps regenerative capacity of minced muscle grafts in the treatment of volumetric muscle loss injuries

    PubMed Central

    Corona, Benjamin T.

    2017-01-01

    Minced muscle grafts (MG) promote de novo muscle fiber regeneration and neuromuscular strength recovery in small and large animal models of volumetric muscle loss. The most noteworthy limitation of this approach is its reliance on a finite supply of donor tissue. To address this shortcoming, this study sought to evaluate micronized acellular urinary bladder matrix (UBM) as a scaffolding to promote in vivo expansion of this MG therapy in a rat model. Rats received volumetric muscle loss injuries to the tibialis anterior muscle of their left hind limb which were either left untreated or repaired with minced muscle graft at dosages of 50% and 100% of the defect mass, urinary bladder matrix in isolation, or a with an expansion product consisting of a combination of the two putative therapies in which the minced graft is delivered at a dosage of 50% of the defect mass. Rats survived to 2 and 8 weeks post injury before functional (in vivo neuromuscular strength), histological, morphological, and biochemical analyses were performed. Rats treated with the expansion product exhibited improved neuromuscular function relative to untreated VML after an 8 week time period following injury. This improvement in functional capacity, however, was accompanied with a concomitant reduction in graft mediated regeneration, as evidenced cell lineage tracing enable by a transgenic GFP expressing donor, and a mixed histological outcome indicating coincident fibrous matrix deposition with interspersed islands of nascent muscle fibers. Furthermore, quantitative immunofluorescence and transcriptional analysis following the 2 week time point suggests an exacerbated immune response to the UBM as a possible nidus for the observed suboptimal regenerative outcome. Moving forward, efforts related to the development of a MG expansion product should carefully consider the effects of the host immune response to candidate biomaterials in order to avoid undesirable dysregulation of pro-regenerative cross talk between the immune system and myogenic processes. PMID:29040321

  8. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  9. Impact of Body Mass Index on Immunogenicity of Pandemic H1N1 Vaccine in Children and Adults

    PubMed Central

    Callahan, S. Todd; Wolff, Mark; Hill, Heather R.; Edwards, Kathryn M.; Keitel, Wendy; Atmar, Robert; Patel, Shital; Sahly, Hana El; Munoz, Flor; Paul Glezen, W.; Brady, Rebecca; Frenck, Robert; Bernstein, David; Harrison, Christopher; Jackson, Mary Anne; Swanson, Douglas; Newland, Jason; Myers, Angela; Livingston, Robyn A; Walter, Emmanuel; Dolor, Rowena; Schmader, Kenneth; Mulligan, Mark J.; Edupuganti, Srilatha; Rouphael, Nadine; Whitaker, Jennifer; Spearman, Paul; Keyserling, Harry; Shane, Andi; Eckard, Allison Ross; Jackson, Lisa A.; Frey, Sharon E.; Belshe, Robert B.; Graham, Irene; Anderson, Edwin; Englund, Janet A.; Healy, Sara; Winokur, Patricia; Stapleton, Jack; Meier, Jeffrey; Kotloff, Karen; Chen, Wilbur; Hutter, Julia; Stephens, Ina; Wooten, Susan; Wald, Anna; Johnston, Christine; Edwards, Kathryn M.; Buddy Creech, C.; Todd Callahan, S.

    2014-01-01

    Obesity emerged as a risk factor for morbidity and mortality related to 2009 pandemic influenza A (H1N1) infection. However, few studies examine the immune responses to H1N1 vaccine among children and adults of various body mass indices (BMI). Pooling data from 3 trials of unadjuvanted split-virus H1N1 A/California/07/2009 influenza vaccines, we analyzed serologic responses of participants stratified by BMI grouping. A single vaccine dose produced higher hemagglutination inhibition antibody titers at day 21 in obese compared to nonobese adults, but there were no significant differences in responses to H1N1 vaccine among children or adults of various BMI following 2 doses. PMID:24795475

  10. Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry.

    PubMed

    Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff

    2015-11-01

    Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Uncertainty and sensitivity analysis of the basic reproduction number of diphtheria: a case study of a Rohingya refugee camp in Bangladesh, November–December 2017

    PubMed Central

    Matsuyama, Ryota; Lee, Hyojung; Yamaguchi, Takayuki; Tsuzuki, Shinya

    2018-01-01

    Background A Rohingya refugee camp in Cox’s Bazar, Bangladesh experienced a large-scale diphtheria epidemic in 2017. The background information of previously immune fraction among refugees cannot be explicitly estimated, and thus we conducted an uncertainty analysis of the basic reproduction number, R0. Methods A renewal process model was devised to estimate the R0 and ascertainment rate of cases, and loss of susceptible individuals was modeled as one minus the sum of initially immune fraction and the fraction naturally infected during the epidemic. To account for the uncertainty of initially immune fraction, we employed a Latin Hypercube sampling (LHS) method. Results R0 ranged from 4.7 to 14.8 with the median estimate at 7.2. R0 was positively correlated with ascertainment rates. Sensitivity analysis indicated that R0 would become smaller with greater variance of the generation time. Discussion Estimated R0 was broadly consistent with published estimate from endemic data, indicating that the vaccination coverage of 86% has to be satisfied to prevent the epidemic by means of mass vaccination. LHS was particularly useful in the setting of a refugee camp in which the background health status is poorly quantified. PMID:29629244

  12. [Immune dysfunction and cognitive deficit in stress and physiological aging. Part II: New approaches to cognitive disorder prevention and treatment ].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.

  13. Impact of Actinobacillus pleuropneumoniae biofilm mode of growth on the lipid A structures and stimulation of immune cells.

    PubMed

    Hathroubi, Skander; Beaudry, Francis; Provost, Chantale; Martelet, Léa; Segura, Mariela; Gagnon, Carl A; Jacques, Mario

    2016-07-01

    Actinobacillus pleuropneumoniae (APP), the etiologic agent of porcine pleuropneumonia, forms biofilms on biotic and abiotic surfaces. APP biofilms confers resistance to antibiotics. To our knowledge, no studies have examined the role of APP biofilm in immune evasion and infection persistence. This study was undertaken to (i) investigate biofilm-associated LPS modifications occurring during the switch to biofilm mode of growth; and (ii) characterize pro-inflammatory cytokines expression in porcine pulmonary alveolar macrophages (PAMs) and proliferation in porcine PBMCs challenged with planktonic or biofilm APP cells. Extracted lipid A samples from biofilm and planktonic cultures were analyzed by HPLC high-resolution, accurate mass spectrometry. Biofilm cells displayed significant changes in lipid A profiles when compared with their planktonic counterparts. Furthermore, in vitro experiments were conducted to examine the inflammatory response of PAMs exposed to UV-inactivated APP grown in biofilm or in suspension. Relative mRNA expression of pro-inflammatory genes IL1, IL6, IL8 and MCP1 decreased in PAMs when exposed to biofilm cells compared to planktonic cells. Additionally, the biofilm state reduced PBMCs proliferation. Taken together, APP biofilm cells show a weaker ability to stimulate innate immune cells, which could be due, in part, to lipid A structure modifications. © The Author(s) 2016.

  14. Uncertainty and sensitivity analysis of the basic reproduction number of diphtheria: a case study of a Rohingya refugee camp in Bangladesh, November-December 2017.

    PubMed

    Matsuyama, Ryota; Akhmetzhanov, Andrei R; Endo, Akira; Lee, Hyojung; Yamaguchi, Takayuki; Tsuzuki, Shinya; Nishiura, Hiroshi

    2018-01-01

    A Rohingya refugee camp in Cox's Bazar, Bangladesh experienced a large-scale diphtheria epidemic in 2017. The background information of previously immune fraction among refugees cannot be explicitly estimated, and thus we conducted an uncertainty analysis of the basic reproduction number, R 0 . A renewal process model was devised to estimate the R 0 and ascertainment rate of cases, and loss of susceptible individuals was modeled as one minus the sum of initially immune fraction and the fraction naturally infected during the epidemic. To account for the uncertainty of initially immune fraction, we employed a Latin Hypercube sampling (LHS) method. R 0 ranged from 4.7 to 14.8 with the median estimate at 7.2. R 0 was positively correlated with ascertainment rates. Sensitivity analysis indicated that R 0 would become smaller with greater variance of the generation time. Estimated R 0 was broadly consistent with published estimate from endemic data, indicating that the vaccination coverage of 86% has to be satisfied to prevent the epidemic by means of mass vaccination. LHS was particularly useful in the setting of a refugee camp in which the background health status is poorly quantified.

  15. Identification and characterization of a phospholipid scramblase encoded by planarian Dugesia japonica.

    PubMed

    Han, Yu; Li, Ao; Gao, Lili; Wu, Weiwei; Deng, Hongkuan; Hu, Wenjing; Li, Na; Sun, Shimin; Zhang, Xiufang; Zhao, Bosheng; Liu, Baohua; Pang, Qiuxiang

    2017-02-20

    Phospholipid scramblases (PLSCRs) are the conserved calcium-binding, type II transmembrane proteins synthesized in all eukaryotic organisms. In mammals, these proteins play essential roles in various physiological processes, especially in the immune responses. However, the existence of PLSCRs and their biological functions in planarian are still unknown at present. In this study, a new member of PLSCRs was identified in planarian Dugesia japonica (D. japonica), named DjPLSCR. The sequence analysis revealed that it contains an opening reading frame consisting of 726bp encoding a putative protein of 241 amino acids with a predicted molecular mass of ~28.7kDa and an isoelectric point of 6.21. Whole-mount in situ hybridization showed that mRNAs of DjPLSCR are predominantly expressed in adult and regenerative pharynx which is an important organ of immune system in planarians. Importantly, we found that the transcription level of DjPLSCR was significantly upregulated when planarians were stimulated with the pathogen-associated molecular patterns [polyinosinic-polycytidylic acid, lipopolysaccharide, peptidoglycan and β-glucan], suggesting that DjPLSCR is involved in the immune response upon pathogen invasion. Our findings provide the first experimental insights into the characteristics and potential functions of PLSCR in planarians. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    NASA Astrophysics Data System (ADS)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  18. History of child maltreatment and telomere length in immune cell subsets: Associations with stress- and attachment-related hormones.

    PubMed

    Boeck, Christina; Krause, Sabrina; Karabatsiakis, Alexander; Schury, Katharina; Gündel, Harald; Waller, Christiane; Kolassa, Iris-Tatjana

    2018-05-01

    Experiencing maltreatment during childhood can have long-lasting consequences for both mental and physical health. Immune cell telomere length (TL) shortening might be one link between child maltreatment (CM) experiences and adverse health outcomes later in life. While the stress hormone cortisol has been associated with TL attrition, the attachment-related hormone oxytocin may promote resilience. In 15 mothers with and 15 age- and body mass index-matched mothers without CM, we assessed TL in peripheral blood mononuclear cells and selected immune cell subsets (monocytes, naive, and memory cytotoxic T cells) by quantitative fluorescence in situ hybridization, as well as peripheral cortisol and oxytocin levels. Memory cytotoxic T cells showed significantly shorter TL in association with CM, whereas TL in monocytes and naive cytotoxic T cells did not significantly differ between the two groups. Across both groups, cortisol was negatively associated with TL, while oxytocin was positively associated with TL in memory cytotoxic T cells. These results indicate that long-lived memory cytotoxic T cells are most affected by the increased biological stress state associated with CM. Keeping in mind the correlational and preliminary nature of the results, the data suggest that cortisol may have a damaging and oxytocin a protective function on TL.

  19. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    PubMed Central

    Fillmore, Thomas L.; Schepmoes, Athena A.; Clauss, Therese R.W.; Gritsenko, Marina A.; Mueller, Patricia W.; Rewers, Marian; Atkinson, Mark A.; Smith, Richard D.

    2013-01-01

    Using global liquid chromatography-mass spectrometry (LC-MS)–based proteomics analyses, we identified 24 serum proteins that were significantly variant between those with type 1 diabetes (T1D) and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses, and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins, with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects. 16 peptides were verified as having very good discriminating power, with areas under the receiver operating characteristic curve ≥0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetics) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using sera from 50 age-matched type 2 diabetic individuals, and a subset of proteins, C1 inhibitor in particular, were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with T1D from healthy controls and those with type 2 diabetes suggests that dysregulated innate immune responses may be associated with the development of this disorder. PMID:23277452

  20. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.

    PubMed

    Stokes, Margaret G M; Titball, Richard W; Neeson, Brendan N; Galen, James E; Walker, Nicola J; Stagg, Anthony J; Jenner, Dominic C; Thwaite, Joanne E; Nataro, James P; Baillie, Leslie W J; Atkins, Helen S

    2007-04-01

    Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores.

  1. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Fillmore, Thomas L.; Schepmoes, Athena A.

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins significantly variant between those with type 1 diabetes and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects, and 16 peptides were verified having very good discriminating power, with areas under the receiver operator characteristic curve ≥ 0.8. Further validation with blinded serum samples from anmore » independent cohort (10 healthy control and 10 type 1 diabetic) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using serum from 50 age matched type 2 diabetic individuals, and a subset of proteins, particularly C1 inhibitor were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with type 1 diabetes from healthy control and type 2 diabetes suggests dysregulated innate immune responses may be associated with the development of this disorder.« less

  2. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    PubMed Central

    Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali

    2017-01-01

    Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402

  3. The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle.

    PubMed

    Regoes, R R; Hottinger, J W; Sygnarski, L; Ebert, D

    2003-10-01

    In simple epidemiological models that describe the interaction between hosts with their parasites, the infection process is commonly assumed to be governed by the law of mass action, i.e. it is assumed that the infection rate depends linearly on the densities of the host and the parasite. The mass-action assumption, however, can be problematic if certain aspects of the host-parasite interaction are very pronounced, such as spatial compartmentalization, host immunity which may protect from infection with low doses, or host heterogeneity with regard to susceptibility to infection. As deviations from a mass-action infection rate have consequences for the dynamics of the host-parasite system, it is important to test for the appropriateness of the mass-action assumption in a given host-parasite system. In this paper, we examine the relationship between the infection rate and the parasite inoculum for the water flee Daphnia magna and its bacterial parasite Pasteuria ramosa. We measured the fraction of infected hosts after exposure to 14 different doses of the parasite. We find that the observed relationship between the fraction of infected hosts and the parasite dose is largely consistent with an infection process governed by the mass-action principle. However, we have evidence for a subtle but significant deviation from a simple mass-action infection model, which can be explained either by some antagonistic effects of the parasite spores during the infection process, or by heterogeneity in the hosts' susceptibility with regard to infection.

  4. Identification and characterization of the related immune-enhancing proteins in crab Scylla paramamosain stimulated with rhubarb polysaccharides.

    PubMed

    Cao, Jingsong; Wang, Zehuan; Zhang, Yueling; Qu, Fengliang; Guo, Lingling; Zhong, Mingqi; Li, Shengkang; Zou, Haiying; Chen, Jiehui; Wang, Xiuying

    2014-02-01

    Recently, considerable interest has been focused on immunostimulants to reduce diseases in crab aquaculture. However, information regarding to the related immune-enhancing proteins in crabs is not available yet. In this study, rhubarb polysaccharides were tested for enhancement of the immune activity in crab Scylla paramamosain. Compared with those in the control group, values of, phenoloxidase (PO), alkaline phosphatase (AKP) and alkaline phosphatasein (ACP) activity in the, experimental group were improved significantly 4 d after the treatment. Furthermore, 15 and 17 altered proteins from haemocytes and hepatopancreas, respectively, were found in rhubarb polysaccharide-treated crabs using 2-DE approach. Of these, hemocyanin, chymotrypsin, cryptocyanin, C-type lectin receptor, and ferritin protein were identified by mass spectrometry. In addition, RT-PCR, analysis showed that the mRNA levels of hemocyanin and chymotrypsin increased about 2.4- and 1.4-fold in the experiment group. Moreover, the hemocyanin gene in S. paramamosain (SpHMC) was, cloned and characterized. SpHMC contains one open reading frame of 2022 bp and encodes a polypeptide of 673 amino acids. It is clustered into one branch along with crab hemocyanin in a phylogenetic tree. The mRNA transcripts of SpHMC were detected mainly in the tissues of, hepatopancreas, hemocyte and intestines, and its levels were up-regulated significantly in hemocytes, of S. paramamosain treated with Vibrio parahemolyticus, Beta streptococcus or poly I:C for 6-48 h. Taken together, these studies found 5 related immune-enhancing proteins and a novel heomcyanin homologue with potential pathogen-resistant activities in crab. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Vaccines against malaria-still a long way to go.

    PubMed

    Matuschewski, Kai

    2017-08-01

    Several species of Plasmodium cause a broad spectrum of human disease that range from nausea and fever to severe anemia, cerebral malaria, and multiorgan failure. In malaria-endemic countries, continuous exposure to Plasmodium sporozoite inoculations and subsequent blood infections elicit only partial and short-lived immunity, which gradually develops over many years of parasite exposure and multiple clinical episodes. The ambitious goal of malaria vaccinology over the past 70 years has been to develop an immunization strategy that mounts protection superior to naturally acquired immunity. Herein, three principal concepts in evidence-based malaria vaccine development are compared. Feasible leads are typically stand-alone subunit vaccine approaches that block Plasmodium parasite life cycle progression or parasite/host interactions, and they constitute the majority of candidates in preclinical research and early clinical testing. Integrated approaches incorporate malaria antigen(s) into licensed or emerging pediatric vaccine formulations. This strategy can complement the malaria control portfolio even if the antimalarial component is only partially effective and has led to the development of the only candidate vaccine to date, namely RTS,S-AS01. Experimental whole parasite vaccine approaches have been repeatedly shown to elicit sterile and lasting protection against identical parasite strains, but mass production, proof of broad protection against different parasite strains, and routes of vaccine delivery remain significant translational road blocks. Global access to an effective and affordable malaria vaccine will critically depend on innovative translational research that builds on a better molecular understanding of Plasmodium biology and host immunity. © 2017 Federation of European Biochemical Societies.

  6. Epigenetic changes in localized gastric cancer: the role of RUNX3 in tumor progression and the immune microenvironment

    PubMed Central

    Ibarrola-Villava, Maider; Peña-Chilet, María; Mongort, Cristina; Martinez-Ciarpaglini, Carolina; Navarro, Lara; Gambardella, Valentina; Castillo, Josefa; Roselló, Susana; Navarro, Samuel; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Gastric cancer (GC) pathogenesis involves genetic, epigenetic and environmental factors. Epigenetic alterations, such as DNA methylation are considered pivotal in the inactivation of tumor-related genes. We assessed a methylation panel of 5 genes to study their association to GC progression and microsatellite instability (MSI), and studied the role of RUNX3 in GC pathogenesis and the tumor immune microenvironment. The methylation status of 47 promoter-CpG islands was studied through MALDI-TOF mass spectrometry analysis in 35 Microsatellite stable (MSS) GC, 26 MSI, and 18 cancer-free samples (CFS), and 6 MSS GC and 4 MSI GC cell lines. We also studied RUNX3 expression by immunohistochemistry (IHC) in 40 samples, and validated differences in methylation levels between tumor, normal, and immune tissue in 14 additional samples. Unsupervised hierarchical clustering of methylation levels revealed no distinct subgroups between MSI and MSS samples or cell lines. CFSs clustered together showing higher levels of RUNX3 methylation compared to GC samples. RUNX3 showed protein silencing in cancer and normal mucosa, compared to inflammatory peritumoural infiltrate in almost all cases, showing a non-lymphocytic predominant pattern and being correlated with epigenetic silencing. Our results show aberrant promoter's methylation in APC, CDH1, CDKN2A, MLH1 and RUNX3 associated with GC, as well as a non-lymphocytic predominant infiltrate with high expression of RUNX3. Deep study of RUNX3 inflammation signaling could help in understanding inflammation and immune activation in the tumor microenvironment. PMID:27566570

  7. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks.

    PubMed

    Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T

    2018-02-01

    When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.

  8. The immune adjuvant response of polysaccharides from Atractylodis macrocephalae Koidz in chickens vaccinated against Newcastle disease (ND).

    PubMed

    Zhao, Xiaona; Sun, Wenjing; Zhang, Shijie; Meng, Guangju; Qi, Chunhua; Fan, Wentao; Wang, Yuge; Liu, Jianzhu

    2016-05-05

    Build on our previous research, polysaccharides from the rhizome of Atractylodis macrocephalae Koidz (RAMPS), RAMPStp and RAMPS60c were prepared and the structural characterization and immune response of ND vaccine in chicken were investigated. Immune organ index, Lymphocyte proliferation, antibody titers, cell cycle distribution, and percentages of CD4(+) and CD8(+) cells were determined. GPC analysis showed that the Mn of RAMPS with two peaks were 1.29×10(5) and 1.74×10(3), respectively. GC-MS analysis revealed that RAMPS was composed of glucose, mannose, arabinose, galactose, xylose, d-Ribose and rhamnose, with mass percentages of 66.39%, 21.24%, 5.64%, 2.65%, 2.30%, 1.15% and 0.64%, respectively. NMR spectroscopic analysis demonstrated that a preliminary structure of RAMPS was proposed as 1,3-linked β-d-Galp and 1,6-linked β-d-Galpresidues. In vivo test showed that RAMPStp and RAMPS60c could promote peripheral lymphocytes proliferation and entering into S and G2/M phases, enhance serum HI antibody titer and effectively improve the percentages of CD4(+) and CD8(+) T cells in chickens vaccinated with ND vaccine at most time points. The actions of RAMPStp and RAMPS60c were stronger than that of Lev, and RAMPStp presented the best efficacy. These results indicated that RAMPStp and RAMPS60c characterize of the immune-enhancing activity and RAMPStp possessed the strongest activity. It would be anticipated as a component of new-type immunopotentiator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    PubMed

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Antibody status to poliomyelitis, measles, rubella, diphtheria and tetanus, Ontario, 1969-70: deficiencies discovered and remedies required.

    PubMed

    MacLeod, D R; Ing, W K; Belcourt, R J; Pearson, E W; Bell, J S

    1975-10-04

    A serologic survey was made in 15 health unit areas, testing some 5000 individuals in the age groups 4 to 6, 11 to 13, 15 to 17 and 23 to 45 years. Two types of serious deficiency were found. Only 65% of children 4 to 6 years old had antibodies to all three types of poliovirus, the antibodies being due almost entirely to immunization with Salk vaccine. Even in children who had had six or more doses only 74% had antibodies to the three types. The high percentage of students 11 to 13 and 15 to 17 years old with poliovirus antibodies can be attributed largely to natural infection and to Sabin vaccine in the mass campaign of 1962, as well as to Salk vaccine. In children who had received Sabin vaccine as well as Salk vaccine a very high level of immunity was found. The immunity of the school-age population will decline to an insufficient level unless Sabin vaccine is used after immunization with Salk vaccine. Of children 4 to 6 years old 18% had no diphtheria antitoxin and 6% had no tetanus antitoxin. Even in those who had had six or more doses of the antigens 5% had no diphtheria antitoxin and 1 to 2% had no tetanus antitoxin. This apparently refractory state is probably due to the use of unadsorbed toxoids, and it is clear that adsorbed toxoids should be used. In the adults, diphtheria antitoxin was found in only 55% and tetanus antitoxin in only 38%.

  11. [Surveillance system for adverse events following immunization against yellow fever in Burkina Faso in 2008. Good practice recommendations].

    PubMed

    Yaméogo, T M; Breugelmans, J G; Kambou, J L; Badolo, O; Tiendrebéogo, S; Traoré, E; Avokey, F; Yactayo, S

    2009-08-01

    Yellow fever (YF) remains a public health problem in Africa. In 2007 and 2008, Togo, Senegal, Mali and Burkina Faso became the first countries to implement mass YF immunization campaigns within the framework of the Yellow Fever Initiative. The goal of this initiative led by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) with the support of The Global Alliance for Vaccines and Immunization (GAVI) is to organize mass YF immunization campaigns in 12 African countries at high risk forYF transmission between 2006 and 2013. A total of 290 million USD have been allocated for vaccination of 180 million people with the highly effective attenuated 17DYF vaccine. Working in partnership with the WHO, the 12 member states are to identify and target high risk areas with the dual aim of preventing epidemics and increasing immunization coverage. Surveillance of adverse events following immunization (AEFI) is a mandatory component for organization of these campaigns. Purpose. The purpose of this article is to describe the AEFI surveillance system implemented in Burkina Faso in 2008. Methods. The strategy used in Burkina Faso was based on a combination of regular passive surveillance and active surveillance. General guidelines and related operational processes were established including reporting forms, investigation forms, and procedures for collection, storage and transport of biological specimens. Classification of cases was based on clearly defined criteria. Any patient meeting the defined criteria and requiring hospitalization was considered as a serious case. In addition to case definition criteria, serious cases were tracked according to presented signs and symptoms using a line-listing form at two university hospital centers in Ouagadougou and one regional hospital center. Emergency room admission records and patient charts were examined during the surveillance period (30 days after the end of the immunization campaign) and on-duty hospital staff were interviewed. The Ministry of Health appointed an 11-member National Expert Committee (NEC) to investigate and judge the status of reported cases. After eliminating coincidental events, program errors, and undetermined cases, vaccination was established as the suspected cause. Suspected cases were classified as viserotrophic or neurotrophic AEFI and recorded as probable cases pending confirmation by virologic studies. An AEFI center with a duly mandated coordinator was designated to coordinate the activities of the different teams involved and to serve as an interface for the expert committee. Detection and investigation teams were formed at each of the hospital locations. A national laboratory as well as an international virology laboratory were designated as reference centers for performance of further testing. Results. Between November 28, 2008, and December 9, 2008, a total 7,566,218 people (aged 9 months and older) excluding pregnant women, critically ill patients, and individuals allergic to eggs, were immunized in 37 of the 63 districts in Burkina Faso. Administrative vaccination coverage was 102.3%. Systematic line-listing at the 3 hospital centers accounted for most of the suspected serious AEFIs identified from reported cases. During the AEFI surveillance period, the NEC met once a week to discuss the suspected serious AEFI. Some cases were excluded and others were designated for further testing. At least one biological specimen was available for all retained cases. Each case benefited from laboratory testing to achieve differential clinical diagnosis as well as from virological testing (results pending). Conclusion. Experiences in Burkina Faso demonstrates the value of active surveillance and of systematic line listing. However, the duration of case investigation and data management was at least six months. To improve AEFI surveillance in future campaigns, several measures can be recommended. Planning should begin well in advance with appropriate funding. Training should be given to raise awareness at all levels of the health system. Mechanisms should be developed for systematic and timely collection and processing of biological samples and data at national level.

  12. A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus: Genomic characterization and transcriptional profiling during bacterial infections.

    PubMed

    Godahewa, G I; Perera, N C N; Lee, Sukkyoung; Kim, Myoung-Jin; Lee, Jehee

    2017-09-05

    Cathepsin Z (CTSZ) is lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. Hence, CTSZ is also acknowledged as an acute-phase protein in host immunity. In this study, we sought to identify the CTSZ homolog from disk abalone (AbCTSZ) and characterize it at the molecular, genomic, and transcriptional levels. AbCTSZ encodes a protein with 318 amino acids and a molecular mass of 36kDa. The structure of AbCTSZ reveals amino acid sequences that are characteristic of the signal sequence, pro-peptide, peptidase-C1 papain family cysteine protease domain, mini-loop, HIP motif, N-linked glycosylation sites, active sites, and conserved Cys residues. A pairwise comparison revealed that AbCTSZ shared the highest amino acid homology with its molluscan counterpart from Crassostrea gigas. A multiple alignment analysis revealed the conservation of functionally crucial elements of AbCTSZ, and a phylogenetic study further confirmed a proximal evolutionary relationship with its invertebrate counterparts. Further, an analysis of AbCTSZ genomic structure revealed seven exons separated by six introns, which differs from that of its vertebrate counterparts. Quantitative real time PCR (qPCR) detected the transcripts of AbCTSZ in early developmental stages and in eight different tissues. Higher levels of AbCTSZ transcripts were found in trochophore, gill, and hemocytes, highlighting its importance in the early development and immunity of disk abalone. In addition, we found that viable bacteria (Vibrio parahaemolyticus and Listeria monocytogenes) and bacterial lipopolysaccharides significantly modulated AbCTSZ transcription. Collectively, these lines of evidences suggest that AbCTSZ plays an indispensable role in the innate immunity of disk abalone. Copyright © 2017. Published by Elsevier B.V.

  13. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar).

    PubMed

    Reyes, Miguel; Ramírez, Cesar; Ñancucheo, Ivan; Villegas, Ricardo; Schaffeld, Guillermo; Kriman, Luis; Gonzalez, Javier; Oyarzun, Patricio

    2017-01-23

    DNA vaccination has emerged as a promising tool against infectious diseases of farmed fish. Oral delivery allows stress-free administration that is ideal for mass immunization and of paramount importance for infectious pancreatic necrosis (IPN) and other viral disease that affect young salmonids and cause economic losses in aquaculture worldwide. We describe the development and in vivo assessment of an "in-feed" formulation strategy for oral immunization with liposomal DNA vaccines, by delivering a vaccine construct coding for an immunogenic region of the VP2 capsid protein. A challenge against IPNV was carried out to determine the vaccine efficacy, by comparing the mortality of pre-smolt Atlantic salmons immunized and non-immunized with the oral vaccine. The antibody response (ELISA) and hematological parameters after immunization were examined, as well as the vaccine effect on the growth and internal structures of fry salmons (histological analysis). The vaccine distribution in the experimental tank after oral administration was investigated by HPLC and PCR amplification. The oral vaccine induced detectable levels of VP2-specific antibodies and conferred significant protection following IPNV challenge, with relative percent survivals (RPS) of 58.2%, for single dose (1mg pDNA /kg fish ⋅d), and 66% for double dose (2mg pDNA /kg fish ⋅d). We further provide evidence in favour of the vaccine safety to fish and demonstrated absence of pDNA in the tank water, but presence of vaccine residues in faeces and unconsumed feed sediments (solid wastes). The delivery platform for liposomal DNA vaccination via feed was successfully proved against IPNV in Atlantic salmon, showing the oral vaccine to be immunogenic and safe for fish, and providing significant protection after oral administration. The "in-feed" technology for oral DNA vaccination holds potential to be applied against IPNV and other pathogens that currently threaten the aquaculture worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection.

    PubMed

    Palmer, Clovis; Hampartzoumian, Taline; Lloyd, Andrew; Zekry, Amany

    2008-08-01

    Adipose tissue releases pro-inflammatory and anti-inflammatory mediators, including adiponectin, which elicit a broad range of metabolic and immunological effects. The study aim was to determine in subjects infected with chronic hepatitis C virus (HCV) the effects of total adiponectin and its high-molecular-weight (HMW) and low-molecular-weight isoforms on HCV-specific immune responses. Serum levels of total adiponectin and its isoforms were determined by immunoassay. The ex vivo effect of adiponectin on the HCV-specific T-cell response was examined by interferon gamma (IFN-gamma) enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay cytokine assays. The role of the mitogen-activated protein kinase (MAPK) signaling pathway in mediating the adiponectin effect on T cells was also evaluated. We found that serum levels of total and HMW adiponectin were significantly decreased in subjects with chronic HCV and increased body mass index (BMI) compared with HCV-infected lean subjects. The presence of an anti-HCV specific immune response was strongly associated with lower BMI (P = 0.004) and higher serum total (P = 0.01) and HMW (P = 0.02) adiponectin. In ex vivo assays, total adiponectin and the HMW adiponectin isoform enhanced HCV-specific IFN-gamma production (P = 0.02 and 0.03, respectively). Adiponectin-R1 receptors were expressed on T cells and monocytes. In depletion experiments, the IFN-gamma response to adiponectin was entirely dependent on the simultaneous presence of both CD4 and CD8 T cells, and to a lesser extent, natural killer cells. Selective inhibition of p38MAPK activity by SB203580 abrogated the IFN-gamma response to adiponectin, whereas extracellular signal-regulated kinase 1/2 inhibition by PD98059 did not affect the response. In chronic HCV, a reciprocal association exists between BMI, adiponectin, and the anti-HCV immune responses, emphasizing the important role played by adiposity in regulating the immune response in HCV infection.

  15. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Hung, Yao-Ching; Lin, Wei-Hsu; Huang, Guewha Steven

    2010-05-01

    To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.

  16. Lipopolysaccharide-specific binding C-type lectin with one CRD domain from Fenneropenaeus merguiensis (FmLC4) functions as a pattern recognition receptor in shrimp innate immunity.

    PubMed

    Utarabhand, Prapaporn; Thepnarong, Supattra; Runsaeng, Phanthipha

    2017-10-01

    In crustaceans, an innate immune system is solely required because they lack an adaptive immunity. One kind of pattern recognition receptors (PRRs) that plays a particular role in the innate immunity of aquatic shrimp is lectin. A new diverse C-type lectin (FmLC4) was cloned from the hepatopancreas of Fenneropenaeus merguiensis by using RT-PCR and 5' and 3' rapid amplification of cDNA ends approaches. A full-length FmLC4 cDNA comprises 706 bp with an open reading frame of 552 bp, encoding a peptide of 184 amino acids. The predicted primary sequence of FmLC4 consists of a signal peptide of 19 amino acids, a molecular mass of 20.4 kDa, an isoelectric point of 5.13, one carbohydrate recognition domain with a QPD motif and a Ca 2+ binding site as well as a double-loop characteristic supported by two conserved disulfide bonds. The FmLC4 mRNA expression was found only in the hepatopancreas of normal shrimp and significantly up-regulated upon challenge the shrimp with Vibrio harveyi or white spot syndrome virus (WSSV). Recombinant FmLC4 (rFmLC4) could agglutinate various bacterial strains with Ca 2+ -dependence. Lipopolysaccharide (LPS) could specifically inhibit the agglutinating activity and potently bind to rFmLC4, indicating that FmLC4 was LPS-specific binding C-type lectin. Moreover, rFmLC4 itself displayed the in vivo effective clearance of the pathogenic bacterium V. harveyi. Altogether, FmLC4 may serve as LPS-specific PRR to recognize opportunistic bacterial and viral pathogens, and thus to play a role in the immune defense of aquatic shrimp via the binding and agglutination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of mass media on the utilization of antenatal care services among women of rural community in Nepal.

    PubMed

    Acharya, Dilaram; Khanal, Vishnu; Singh, Jitendra Kumar; Adhikari, Mandira; Gautam, Salila

    2015-08-12

    Antenatal care has several benefits for expecting mothers and birth outcomes; yet many mothers do not utilise this service in Nepal. Mass media may play an important role in increasing the use of antenatal care and other maternal health services. However, the effect of mass media on increasing health service utilisation has remained an under studied area in Nepal. The aim of this study was to investigate the impact of mass media on the utilisation of antenatal care services in rural Nepal. A community-based cross-sectional study was conducted in Sinurjoda Village Development Committee of Dhanusha District, Nepal. A total of 205 mothers of children aged under 1 year were selected using systematic random sampling. Logistic regression was employed to examine the association between selected antenatal care services and mass media exposure after adjusting for other independent variables. A majority of mothers were exposed to mass media. Radio was accessible to most (60.0%) of the participants followed by television (43.41%). Mothers exposed to mass media were more likely to attending antenatal visits [Odds ratio (OR) 6.28; 95% CI (1.01-38.99)], taking rest and sleep during pregnancy [OR 2.65; 95% CI (1.13-6.26)], and receiving TT immunization [OR 5.12; 95% CI (1.23-21.24)] than their non-exposed counterparts. The study reported a positive influence of mass media on the utilisation of antenatal care services in Nepal. Therefore, further emphasis should be given to increase awareness of women of rural Nepal through mass media to improve utilisation of antenatal care services in Nepal.

  18. Cross-Reactivity of Antibodies against Leptospiral Recurrent Uveitis-Associated Proteins A and B (LruA and LruB) with Eye Proteins

    PubMed Central

    Verma, Ashutosh; Kumar, Pawan; Babb, Kelly; Timoney, John F.; Stevenson, Brian

    2010-01-01

    Infection by Leptospira interrogans has been causally associated with human and equine uveitis. Studies in our laboratories have demonstrated that leptospiral lipoprotein LruA and LruB are expressed in the eyes of uveitic horses, and that antibodies directed against LruA and LruB react with equine lenticular and retinal extracts, respectively. These reactivities were investigated further by performing immunofluorescent assays on lenticular and retinal tissue sections. Incubation of lens tissue sections with LruA-antiserum and retinal sections with LruB-antiserum resulted in positive fluorescence. By employing two-dimensional gel analyses followed by immunoblotting and mass spectrometry, lens proteins cross-reacting with LruA antiserum were identified to be α-crystallin B and vimentin. Similarly, mass spectrometric analyses identified β-crystallin B2 as the retinal protein cross-reacting with LruB-antiserum. Purified recombinant human α-crystallin B and vimentin were recognized by LruA-directed antiserum, but not by control pre-immune serum. Recombinant β-crystallin B2 was likewise recognized by LruB-directed antiserum, but not by pre-immune serum. Moreover, uveitic eye fluids contained significantly higher levels of antiibodies that recognized α-crystallin B, β-crystallin B2 and vimentin than did normal eye fluids. Our results indicate that LruA and LruB share immuno-relevant epitopes with eye proteins, suggesting that cross-reactive antibody interactions with eye antigens may contribute to immunopathogenesis of Leptospira-associated recurrent uveitis. PMID:20689825

  19. Mass media effect on vaccines uptake during silent polio outbreak.

    PubMed

    Sagy, Iftach; Novack, Victor; Gdalevich, Michael; Greenberg, Dan

    2018-03-14

    During 2013, isolation of a wild type 1 poliovirus from routine sewage sample in Israel, led to a national OPV campaign. During this period, there was a constant cover of the outbreak by the mass media. To investigate the association of media exposure and OPV and non-OPV vaccines uptake during the 2013 silent polio outbreak in Israel. We received data on daily immunization rates during the outbreak period from the Ministry of Health (MoH). We conducted a multivariable time trend analysis to assess the association between daily media exposure and vaccines uptake. Analysis was stratified by ethnicity and socio-economic status (SES). During the MoH supplemental immunization activity, 138,799 OPV vaccines were given. There was a significant association between media exposure and OPV uptake, most prominent in a lag of 3-5 days from the exposure among Jews (R.R 1.79C.I 95% 1.32-2.41) and high SES subgroups (R.R 1.71C.I 95% 1.27-2.30). These subgroups also showed increased non-OPV uptake in a lag of 3-5 days from the media exposure, in all vaccines except for MMR. Lower SES and non-Jewish subgroups did not demonstrate the same association. Our findings expand the understanding of public behaviour during outbreaks. The public response shows high variability within specific subgroups. These findings highlight the importance of tailored communication strategies for each subgroup. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis

    PubMed Central

    Blewett, Nathan H.; Iben, James R.; Gaidamakov, Sergei

    2017-01-01

    ABSTRACT Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3′ exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass. PMID:28223366

  1. Cannabinoid administration attenuates the progression of simian immunodeficiency virus.

    PubMed

    Molina, Patricia E; Winsauer, Peter; Zhang, Ping; Walker, Edith; Birke, Leslie; Amedee, Angela; Stouwe, Curtis Vande; Troxclair, Dana; McGoey, Robin; Varner, Kurt; Byerley, Lauri; LaMotte, Lynn

    2011-06-01

    Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component in marijuana, is FDA approved to ameliorate AIDS-associated wasting. Because cannabinoid receptors are expressed on cells of the immune system, chronic Δ(9)-THC use may impact HIV disease progression. We examined the impact of chronic Δ(9)-THC administration (0.32 mg/kg im, 2 × daily), starting 28 days prior to inoculation with simian immunodeficiency virus (SIV(mac251); 100 TCID(50)/ml, iv), on immune and metabolic indicators of disease during the initial 6 month asymptomatic phase of infection in rhesus macaques. SIV(mac251) inoculation resulted in measurable viral load, decreased lymphocyte CD4(+)/CD8(+) ratio, and increased CD8(+) proliferation. Δ(9)-THC treatment of SIV-infected animals produced minor to no effects in these parameters. However, chronic Δ(9)-THC administration decreased early mortality from SIV infection (p = 0.039), and this was associated with attenuation of plasma and CSF viral load and retention of body mass (p = NS). In vitro, Δ(9)-THC (10 μm) decreased SIV (10 TCID(50)) viral replication in MT4-R5 cells. These results indicate that chronic Δ(9)-THC does not increase viral load or aggravate morbidity and may actually ameliorate SIV disease progression. We speculate that reduced levels of SIV, retention of body mass, and attenuation of inflammation are likely mechanisms for Δ(9)-THC-mediated modulation of disease progression that warrant further study.

  2. Cross-reactivity of antibodies against leptospiral recurrent uveitis-associated proteins A and B (LruA and LruB) with eye proteins.

    PubMed

    Verma, Ashutosh; Kumar, Pawan; Babb, Kelly; Timoney, John F; Stevenson, Brian

    2010-08-03

    Infection by Leptospira interrogans has been causally associated with human and equine uveitis. Studies in our laboratories have demonstrated that leptospiral lipoprotein LruA and LruB are expressed in the eyes of uveitic horses, and that antibodies directed against LruA and LruB react with equine lenticular and retinal extracts, respectively. These reactivities were investigated further by performing immunofluorescent assays on lenticular and retinal tissue sections. Incubation of lens tissue sections with LruA-antiserum and retinal sections with LruB-antiserum resulted in positive fluorescence. By employing two-dimensional gel analyses followed by immunoblotting and mass spectrometry, lens proteins cross-reacting with LruA antiserum were identified to be alpha-crystallin B and vimentin. Similarly, mass spectrometric analyses identified beta-crystallin B2 as the retinal protein cross-reacting with LruB-antiserum. Purified recombinant human alpha-crystallin B and vimentin were recognized by LruA-directed antiserum, but not by control pre-immune serum. Recombinant beta-crystallin B2 was likewise recognized by LruB-directed antiserum, but not by pre-immune serum. Moreover, uveitic eye fluids contained significantly higher levels of antiibodies that recognized alpha-crystallin B, beta-crystallin B2 and vimentin than did normal eye fluids. Our results indicate that LruA and LruB share immuno-relevant epitopes with eye proteins, suggesting that cross-reactive antibody interactions with eye antigens may contribute to immunopathogenesis of Leptospira-associated recurrent uveitis.

  3. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.

    PubMed

    Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi

    2015-12-01

    The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structure of insoluble immune complexes as studied by spectroturbidimetry and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.; Burygin, Gennadii L.; Matora, Larisa Y.; Shchyogolev, Sergei Y.; Khlebtsov, Nikolai G.

    2004-07-01

    We describe two variants of a method for determining the average composition of insoluble immune complex particles (IICP). The first variant is based on measuring the specific turbidity (the turbidity per unit mass concentration of the dispersed substance) and the average size of IICP determined from dynamic light scattering (DLS). In the second variant, the wavelength exponent (i.e., the slope of the logarithmic turbidity spectrum) is used in combination with specific turbidity measurements. Both variants allow the average biopolymer volume fraction to be determined in terms of the average refractive index of IICP. The method is exemplified by two experimental antigen+antibody systems: (i) lipopolysaccharide-protein complex (LPPC) of Azospirillum brasilense Sp245+rabbit anti-LPPC; and (ii) human IgG (hIgG)+sheep anti-hIgG. Our measurements by the two methods for both types of systems gave, on the average, the same result: the volume fraction of the IICP biopolymers is about 30%; accordingly, the volume fraction of buffer solvent is 70%.

  5. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    PubMed

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  6. [Entomological investigation following the re-emergence of yellow fever in 2008 in Abidjan area (Côte d'Ivoire)].

    PubMed

    Konan, Y L; Koné, A B; Ekra, K D; Doannio, J M C; Odéhouri, K P

    2009-06-01

    In April 2008, Abidjan was again faced with another case of yellow fever after the epidemic of 2001 causing mass immunization campaign. In order to evaluate the extent of amaril virus circulation and the risk for local people, an entomological investigation was carried out by the Ministry of Health and Public Hygiene of Côte d'Ivoire. At "Entent" area of Treichville, Breteau index was estimated at 34, recipient index at 20% and house index at 25%. Those indexes were respectively 53, 21 and 31% at "Vridi canal" of Port Bouet. In the both neighborhood, Aedes aegypti accounted for more than 80% of mosquitoes caught and more than 90% of mosquitoes adults obtained from larval breeding. This new situation of epidemic risk could be explained by several factors including the reception of 70% of forced migration people caused by the crisis in the country occurred in 2002, the probable drop of preventive immunization, the environment deterioration creating of more breeding sites of Ae. aegypti.

  7. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    PubMed Central

    Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172

  8. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Vitamin K3 suppressed inflammatory and immune responses in a redox-dependent manner.

    PubMed

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K; Khan, Nazir M; Patwardhan, Raghavendra S; Kohli, Vineet; Sainis, Krishna B

    2011-08-01

    Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.

  10. Association between Elevated C-Reactive Protein and Manic Polarity in Acute Psychiatric Inpatients with Affective Symptomatology.

    PubMed

    Zohar, Nitzan; Hochman, Eldar; Katz, Nachum; Krivoy, Amir; Weizman, Abraham; Barzilay, Ran

    2018-06-14

    The interplay between the immune system and behaviour is of increasing interest in psychiatry research. Specifically, accumulating data points to a link between inflammation and psychopathology, including affective symptomatology. We investigated the association between inflammation and affective polarity in psychiatric inpatients who were hospitalized due to an affective exacerbation. Data was collected retrospectively and comparisons were made between manic and depressed patients. C-reactive protein (CRP), a general laboratory marker of immune activation and inflammation, was used as a non-specific inflammatory biomarker. Age, smoking and body mass index were considered covariates. Manic polarity (n = 89) was associated with statistically significant elevated CRP levels compared to depressed polarity (n = 44, 56%; p = 0.036), after controlling for covariates. No differences were observed in CRP levels across Diagnostic and Statistical Manual of Mental Disorders-IV Edition-Text Revised psychiatric diagnoses. These findings suggest a transdiagnostic association between inflammation and manic polarity in affective inpatients. © 2018 S. Karger AG, Basel.

  11. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status.

    PubMed

    Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin

    2017-07-11

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells ( p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.

  12. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status

    PubMed Central

    Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin

    2017-01-01

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause. PMID:28696349

  13. CYTOPATHIC EFFECT OF THE ATYPICAL PNEUMONIA ORGANISM IN CULTURES OF HUMAN TISSUE

    PubMed Central

    Eaton, Monroe D.; Farnham, Ann E.; Levinthal, Jeana D.; Scala, Anthony R.

    1962-01-01

    Eaton, Monroe D. (Harvard Medical School, Boston, Mass.), Ann E. Farnham, Jeana D. Levinthal, and Anthony R. Scala. Cytopathic effect of the atypical pneumonia organism in cultures of human tissue. J. Bacteriol. 84:1330–1337. 1962.—Three strains of the atypical pneumonia agent were adapted to grow in continuous cell cultures of human amnion or human embryonic lung, with production of initial increased acidity followed by destruction of the cells. Evidence is presented that cytopathic effects of the organism were associated with intracellular growth and formation of microcolonies. Clumps of organisms stained specifically with fluorescein-labeled antibody, and showed distinctive tinctorial reactions with the May Grünwald-Giemsa stain. The cytopathic effect was prevented by fresh serum from a rabbit immunized with an egg-passage strain of the atypical pneumonia agent. Heating the immune serum to 56 C for 30 min abolished the neutralizing effect. The significance of heat-labile serum constituents in killing or inhibition of mycoplasma is discussed. Images PMID:16561984

  14. Reaching Hard-to-Reach Individuals: Nonselective Versus Targeted Outbreak Response Vaccination for Measles

    PubMed Central

    Minetti, Andrea; Hurtado, Northan; Grais, Rebecca F.; Ferrari, Matthew

    2014-01-01

    Current mass vaccination campaigns in measles outbreak response are nonselective with respect to the immune status of individuals. However, the heterogeneity in immunity, due to previous vaccination coverage or infection, may lead to potential bias of such campaigns toward those with previous high access to vaccination and may result in a lower-than-expected effective impact. During the 2010 measles outbreak in Malawi, only 3 of the 8 districts where vaccination occurred achieved a measureable effective campaign impact (i.e., a reduction in measles cases in the targeted age groups greater than that observed in nonvaccinated districts). Simulation models suggest that selective campaigns targeting hard-to-reach individuals are of greater benefit, particularly in highly vaccinated populations, even for low target coverage and with late implementation. However, the choice between targeted and nonselective campaigns should be context specific, achieving a reasonable balance of feasibility, cost, and expected impact. In addition, it is critical to develop operational strategies to identify and target hard-to-reach individuals. PMID:24131555

  15. Culture and the Immune System: Cultural Consonance in Social Support and C-reactive Protein in Urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2016-06-01

    In this article, we examine the distribution of a marker of immune system stimulation-C-reactive protein-in urban Brazil. Social relationships are associated with immunostimulation, and we argue that cultural dimensions of social support, assessed by cultural consonance, are important in this process. Cultural consonance is the degree to which individuals, in their own beliefs and behaviors, approximate shared cultural models. A measure of cultural consonance in social support, based on a cultural consensus analysis regarding sources and patterns of social support in Brazil, was developed. In a survey of 258 persons, the association of cultural consonance in social support and C-reactive protein was examined, controlling for age, sex, body mass index, low-density lipoprotein cholesterol, depressive symptoms, and a social network index. Lower cultural consonance in social support was associated with higher C-reactive protein. Implications of these results for future research are discussed. © 2016 by the American Anthropological Association.

  16. Ligand-independent TLR signals generated by ectopic overexpression of MyD88 generate local and systemic anti-tumor immunity

    PubMed Central

    Hartman, Zachary C.; Osada, Takuya; Glass, Oliver; Yang, Xiao Y.; Lei, Gang-jun; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Although critical for initiating and regulating immune responses, the therapeutic use of individual cytokines as anti-cancer immunotherapeutic agents has achieved only modest clinical success. Consequently, many current strategies have focused on the use of specific immunotherapeutic agonists that engage individual receptors of innate immune networks, such as the Toll Like-Receptor (TLR) system, each resulting in specific patterns of gene expression, cytokine production and inflammatory outcome. However, these immunotherapeutics are constrained by variable cellular TLR expression and responsiveness to particular TLR agonists, as well as the specific cellular context of different tumors. We hypothesized that overexpression of MyD88, a pivotal regulator of multiple TLR signaling pathways, could circumvent these constraints and mimic coordinated TLR signaling across all cell types in a ligand independent fashion. To explore this hypothesis, we generated an adenoviral vector expressing MyD88 and demonstrate that Ad-MyD88 infection elicits extensive Th1-specific transcriptional and secreted cytokine signatures in all murine and human cell types tested in vitro and in vivo. Importantly, in vivo intratumoral injection of Ad-MyD88 into established tumor masses enhanced adaptive immune responses and inhibited local tumor immunosuppression, resulting in significantly inhibited local and systemic growth of multiple tumor types. Finally, Ad-MyD88 infection of primary human dendritic cells, tumor associated fibroblasts, and colorectal carcinoma cells elicited significant Th1-type cytokine responses, resulting in enhanced tumor cell lysis and expansion of human tumor antigen-specific T-cells. Thus, Ad-MyD88 initiated robust anti-tumor activity in established murine tumor microenvironments and in human contexts, suggesting its potential effectiveness as a clinical immunotherapeutic strategy. PMID:20823152

  17. Bordetella pertussis Naturally Occurring Isolates with Altered Lipooligosaccharide Structure Fail To Fully Mature Human Dendritic Cells

    PubMed Central

    Brummelman, Jolanda; Veerman, Rosanne E.; Hamstra, Hendrik Jan; Deuss, Anna J. M.; Schuijt, Tim J.; Sloots, Arjen; Kuipers, Betsy; van Els, Cécile A. C. M.; van der Ley, Peter; Mooi, Frits R.; Han, Wanda G. H.

    2014-01-01

    Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones. PMID:25348634

  18. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Comparative Proteomic Analysis Reveals Activation of Mucosal Innate Immune Signaling Pathways during Cholera

    PubMed Central

    LaRocque, Regina C.; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M.; Sarracino, David; Karlsson, Elinor K.; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R.; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T.; Calderwood, Stephen B.; Qadri, Firdausi

    2015-01-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. PMID:25561705

  20. Direct fed microbial supplementation repartitions host energy to the immune system.

    PubMed

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P < 0.05) was measured in DFMD fed broilers. In contrast, the respiration rate of the thymus in those broilers was increased (P < 0.05). The PBMC from DFMD fed broilers had increased ATP concentrations and exhibited increased ATP turnover (P < 0.01). To determine if the increased energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P < 0.05) and an increase in total IgA (P < 0.05). Collectively, these data indicate that supplementation with the direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  1. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  2. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails

    NASA Astrophysics Data System (ADS)

    El-Tarabany, Mahmoud Salah

    2016-07-01

    The aim of this study was to investigate the effect of temperature-humidity index (THI) level on productive parameters, welfare, and immunity in Japanese quails. One hundred and eighty (180) birds of Japanese quail, 14 weeks old, were used. Birds were divided randomly into three equal groups, control (at low THI, less than 70), H1 (at moderate THI, 70-75), and H2 (at high THI, 76-80). Birds in the control group had higher body weight (281.2 g, p = 0.001), egg mass (745 g, p = 0.001), fertility (85.4 %, p = 0.039), hatchability (80.4 %, p = 0.001), and immune response titer to Newcastle disease virus ( p = 0.031), compared with H2 group. Furthermore, the thermoneutral group had higher internal egg quality score [albumen height (5.14 mm, p = 0.001), yolk height (10.88 mm, p = 0.015), yolk index (42.32 %, p = 0.039), and Haugh unit (92.67, p = 0.001)]. Nevertheless, there were no significant differences in fertility percentage, immune response, and corticosterone concentration between control and H1 group. Birds in the H2 group had the lowest total leucocytic count and lymphocyte percentage ( p = 0.001 and 0.020, respectively) but the highest H/L ratio (0.83, p = 0.001). Corticosterone concentration was lower in control and H1 groups (5.49 and 6.41 ng/mL, respectively, p = 0.024) than that in H2 group. Japanese quail exposed to heat stress revealed drop in production and immunological parameters, as well as a detrimental effects on welfare. Thus, practical approaches might be used to reduce the detrimental effects of greater THI level.

  3. Age-Associated Decline in Dendritic Cell Function and the Impact of Mediterranean Diet Intervention in Elderly Subjects.

    PubMed

    Clements, Sarah J; Maijo, Monica; Ivory, Kamal; Nicoletti, Claudio; Carding, Simon R

    2017-01-01

    Aging is accompanied by increased susceptibility to infection and age-associated chronic diseases. It is also associated with reduced vaccine responses, which is often attributed to immunosenescence and the functional decline of the immune system. Immunosenescence is characterized by a chronic, low-grade, inflammatory state termed inflammaging. Habitants of Mediterranean (MED) regions maintain good health into old age; often attributed to MED diets. Adoption of a MED-diet by elderly subjects, in Norfolk (UK), may improve immune responses of these individuals and in particular, dendritic cell (DC) function. A total of 120 elderly subjects (65-79 years old) recruited onto the Nu-AGE study, a multicenter European dietary study specifically addressing the needs of the elderly, across five countries, and were randomized to the control or MED-diet groups, for one year. Blood samples were taken pre- and post-intervention for DC analysis and were compared with each other, and to samples obtained from 45 young (18-40 years old) subjects. MED-diet compliance was assessed using high performance liquid chromatography-with tandem mass spectrometry analysis of urine samples. Immune cell and DC subset numbers and concentrations of secreted proteins were determined by flow cytometric analysis. As expected, reduced myeloid DC numbers were observed in blood samples from elderly subjects compared with young. The elevated secretion of the adipokine, resistin, after ex vivo stimulation of peripheral blood mononuclear cells from elderly subjects, was significantly reduced after MED-diet intervention. This study provides further evidence of numerical and functional effects of aging on DCs. The MED-diet showed potential to impact on the aging immune cells investigated and could provide an economical approach to address problems associated with our aging population.

  4. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice.

    PubMed

    Fenske, Rachel J; Cadena, Mark T; Harenda, Quincy E; Wienkes, Haley N; Carbajal, Kathryn; Schaid, Michael D; Laundre, Erin; Brill, Allison L; Truchan, Nathan A; Brar, Harpreet; Wisinski, Jaclyn; Cai, Jinjin; Graham, Timothy E; Engin, Feyza; Kimple, Michelle E

    2017-06-01

    The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response. Copyright © 2017 Endocrine Society.

  5. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    PubMed

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Motivating consumers for National Programme on Immunization (NPI) and Oral Rehydration Therapy (ORT) in Nigeria.

    PubMed

    Ekerete, P P

    1997-01-01

    The Expanded Programme on Immunization (EPI) (changed to National Programme on Immunization (NPI) in 1996) and Oral Rehydration Therapy (ORT) were launched in Nigeria in 1979. The goal of EPI was Universal Childhood Immunization (UCI) 1990, that is, to vaccinate 80% of all children age 0-2 years by 1990, and 80% of all pregnant women were also expected to be vaccinated with Tetanus Toxoid Vaccine. The Oral Rehydration Therapy was designed to teach parents with children age 0-5 years how to prepare and use a salt-sugar solution to rehydrate children dehydrated by diarrhoea. Nigeria set up Partners-in-Health to mobilize and motivate mothers to accept the programme. In 1990 a National coverage survey was conducted to assess the level of attainment. The results show that some states were able to reach the target and some were not. It therefore became necessary to evaluate the contribution of those promotional elements adopted by Partners-in-Health to motivate mothers to accept the programme. The respondents were therefore asked to state the degree to which these elements motivated them to accept the programme. The data were collected and processed through a Likert rating scale and t-test procedure for test of significance between two sample means. The study revealed that some elements motivated mothers very strongly, others strongly, and most moderately or low, with health workers as major sources of motivation. The study also revealed that health workers alone can not sufficiently motivate mothers without the help of religious leaders, traditional leaders and mass media, etc. It was therefore recommended that health workers should be intensively used along with other promotional elements to promote the NPI/ORT programme in Nigeria.

  7. Concholepas concholepas Ferritin H-like subunit (CcFer): Molecular characterization and single nucleotide polymorphism associated to innate immune response.

    PubMed

    Chávez-Mardones, Jacqueline; Valenzuela-Muñoz, Valentina; Núñez-Acuña, Gustavo; Maldonado-Aguayo, Waleska; Gallardo-Escárate, Cristian

    2013-09-01

    Ferritin has been identified as the principal protein of iron storage and iron detoxification, playing a pivotal role for the cellular homeostasis in living organisms. However, recent studies in marine invertebrates have suggested its association with innate immune system. In the present study, one Ferritin subunit was identified from the gastropod Concholepas concholepas (CcFer), which was fully characterized by Rapid Amplification of cDNA Ends technique. Simultaneously, a challenge test was performed to evaluate the immune response against Vibrio anguillarum. The full length of cDNA Ccfer was 1030 bp, containing 513 bp of open reading frame that encodes to 170 amino acid peptide, which was similar to the Ferritin H subunit described in vertebrates. Untranslated Regions (UTRs) were identified with a 5'UTR of 244 bp that contains iron responsive element (IRE), and a 3'UTR of 273 bp. The predicted molecular mass of deduced amino acid of CcFer was 19.66 kDa and isoelectric point of 4.92. Gene transcription analysis revealed that CcFer increases against infections with V. anguillarum, showing a peak expression at 6 h post-infection. Moreover, a single nucleotide polymorphism was detected at -64 downstream 5'UTR sequence (SNP-64). Quantitative real time analysis showed that homozygous mutant allele (TT) was significantly associated with higher expression levels of the challenged group compared to wild (CC) and heterozygous (CT) variants. Our findings suggest that CcFer is associated to innate immune response in C. concholepas and that the presence of SNPs may involve differential transcriptional expression of CcFer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    PubMed

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  9. The Meningitis Vaccine Project.

    PubMed

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  10. Upregulation of CD4+ T-Lymphocytes by Isomeric Mixture of Quercetin-3-O-Rutinoside and Quercetin-3-O-Robinobioside Isolated from Millettia aboensis.

    PubMed

    Ajaghaku, Daniel Lotanna; Akah, Peter Achunike; Ilodigwe, Emmanuel Emeka; Nduka, Sunday Odunke; Osonwa, Uduma Eke; Okoye, Festus Basden Chinedu

    2018-05-01

    Millettia aboensis (Hook. F.) Baker (Fabaceae) is popular in ethnomedicine for its acclaimed efficacy in a number of disease conditions. This study evaluated the immunomodulatory effect of the leaf extract as a possible mechanism of its ethnomedicinal uses. Humoral and cellular immune responses of Balb/c mice to tetanus toxoid and cyclophosphamide, respectively, were used to monitor immunomodulatory activities of the ethanol leaf extract and fractions of M. aboensis at 200, 300 and 400 mg/kg. Active (butanol) fraction of the extract was subjected to chromatographic purifications to isolate the active compound and the structure elucidated by a combination of 1D and 2D NMR and mass spectrometry. Stimulation of specific T-lymphocytes using intracellular cytokine staining technique was used to evaluate immune-enhancing activity of the isolated compound. The extract and fractions evoked increase in both humoral and cellular immunity. At 400 mg/kg of butanol fraction, the normalized mean secondary production of IgG1 and IgG2a antibodies were 9.0 and 7.7, respectively. Serum cytokine production by butanol fraction following secondary challenge with tetanus toxoid showed that IL-12, IL-17A and IFN-γ were expressed by 48.14, 41.37 and 38.22%, respectively. Structural elucidation of the active compound revealed presence of isomeric mixtures of quercetin-3-O-rutinoside and quercetin-3-O-robinobioside (Compound 1a/b). Compound 1a/b exhibited in vitro upregulation of specific CD4 + T-lymphocytes that were largely IFNγ releasing with up to 43.7% stimulation at 6.25 μg/mL compared to the baseline effect in DMSO vehicle control group. M. aboensis expressed strong immune-enhancing properties, which may explain its ethnopharmacological use in disease management.

  11. Impact of cage stocking density on egg laying characteristics and related stress and immunity parameters of Japanese quails in subtropics.

    PubMed

    El-Tarabany, M S

    2016-10-01

    The aim of this study was to investigate the effects of different cage stocking densities on egg production parameters, as well as related stress and immunity indices in Japanese quails under subtropical Egyptian conditions. Two hundred and sixteen birds of Japanese quail at 14th week of age were used in this experiment. The birds were divided randomly into three groups: 60, 72 and 84. Each group subdivided into 4 replicates, where the cages' floor spaces were 200 (S1 ), 167 (S2 ) and 143 (S3 ) cm(2) /bird, respectively. Birds housed at 200 cm(2) /bird (S1 ) had superior fertility (fertility % (p = 0.013) and hatchability % (p = 0.041)), egg production (egg weight (p = 0.034) and egg mass (p = 0.001)) and immunity parameters (higher geometric mean of antibody titres against Newcastle disease virus, p = 0.024). Furthermore, they had higher internal egg quality score: albumen height (p = 0.003), yolk height (p = 0.023), yolk index (p = 0.006) and Haugh unit (p = 0.035). Birds housed at 143 cm(2) /bird (S3 ) had the lowest total leucocytic count and lymphocyte % (p = 0.022), but the highest H/L ratio (p = 0.001). Corticosterone concentration was lower in S1 group (p = 0.031) than that in groups housed at higher densities. Japanese quail housed at high densities revealed drop in fertility, hatchability, production and immunity parameters, indicating a detrimental effects on both welfare and economic income. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  12. A School-Located Vaccination Adolescent Pilot Initiative in Chicago: Lessons Learned.

    PubMed

    Caskey, Rachel N; Macario, Everly; Johnson, Daniel C; Hamlish, Tamara; Alexander, Kenneth A

    2013-09-01

    Many adolescents underutilize preventive services and are underimmunized. To promote medical homes and increase immunization rates, we conceptualized and implemented a 3-year, 8-school pilot school-located vaccination collaborative program. We sought community, parent, and school nurse input the year prior to implementation. We selected schools with predominantly Medicaid-enrolled or Medicaid-eligible students to receive Vaccines For Children stock vaccines. Nurses employed by a mass immunizer delivered these vaccines at participating schools 3 times a year. Over 3 years, we delivered approximately 1800 vaccines at schools. School administrators, health centers, and neighboring private physicians generally welcomed the program. Parents did not express overt concerns about school-located vaccination. School nurses were not able to participate because of multiple school assignments. Obtaining parental consent via backpack mail was an inefficient process, and classroom incentives did not increase consent form return rate. The influenza vaccine had the most prolific uptake. The optimal time for administering vaccines was during regular school hours. Although school-located vaccination for adolescents is feasible, this is a paradigm shift for community members and thus accompanies challenges in implementation. High principal or school personnel turnover led to a consequent lack of institutional memory. It was difficult to communicate directly with parents. Because we were uncertain about the proportion of parents who received consent forms, we are exploring Internet-based and back-to-school registration options for making the consent form distribution and return process more rigorous. Securing an immunization champion at each school helped the immunization processes. Identifying a financially sustainable school-located vaccination model is critical for national expansion of school-located vaccination. © The Author 2013. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    PubMed

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Towards evidence-based vitamin D supplementation in infants: vitamin D intervention in infants (VIDI) - study design and methods of a randomised controlled double-blinded intervention study.

    PubMed

    Helve, Otto; Viljakainen, Heli; Holmlund-Suila, Elisa; Rosendahl, Jenni; Hauta-Alus, Helena; Enlund-Cerullo, Maria; Valkama, Saara; Heinonen, Kati; Räikkönen, Katri; Hytinantti, Timo; Mäkitie, Outi; Andersson, Sture

    2017-03-29

    Vitamin D is important for bone mass accrual during growth. Additionally, it is considered a requirement for a multitude of processes associated with, for example, the development of immunity. Many countries apply vitamin D supplementation strategies in infants, but the guidelines are not based on scientific evidence and aim at prevention of rickets. It remains unclear whether the recommended doses are sufficient for the wide array of other effects of vitamin D. The VIDI trial performed in Finland is the first large randomised controlled study for evaluation of the effects of different vitamin D supplemental doses in infancy on: 1. bone strength 2. infections and immunity 3. allergy, atopy and asthma 4. cognitive development 5. genetic regulation of mineral homeostasis METHODS/DESIGN: VIDI, a randomised controlled double-blinded single-centre intervention study is conducted in infants from the age of 2 weeks to 24 months. Participants, recruited at Helsinki Maternity Hospital, are randomised to receive daily either 10 μg (400 IU) or 30 μg (1 200 IU) of vitamin D3 supplementation. Both groups are assessed at 6 months of age for calcium homeostasis, and at 12 and 24 months of age for parameters associated with bone strength, growth, developmental milestones, infections, immunity, atopy-related diseases, and genetic factors involved in these functions. The study enables evaluation of short and long term effects of supplemental vitamin D on growth, immune functions and skeletal and developmental parameters in infants, and the effects of genetic factors therein. The results enable institution of evidence-based guidelines for vitamin D supplementation in infancy. ClinicalTrials.gov, NCT01723852 , registration date 6.11.2012.

  15. Immune Thrombocytopenic Purpura and Gastritis by H. pylori Associated With Type 1 Diabetes Mellitus

    PubMed Central

    Correa, Ricardo; Flores-Guevara, Igor; Espinoza Morales, Frank; Mejia, Christian R

    2016-01-01

    We present the 15th case reported worldwide and 3rd case reported in Latin America of immune thrombocytopenic purpura associated with Type 1 diabetes mellitus in Scopus, MEDLINE, and SciELO. An 11-year-old male patient of mixed ethnicity with immune thrombocytopenic purpura, Type 1 diabetes mellitus, and gastritis due to H. pylori presented to the emergency room with petechiae, ecchymosis, and gingival and conjunctival bleeding that had been worsening for the past three months. The patient had a body mass index of 18.85 kg/m2 (P75). A biochemical analysis showed 1×109 platelets/L, increased prothrombin time, increased partial thromboplastin time, and an HbA1C of 7.84% on admission. He was prescribed a single dose of intravenous methylprednisolone 750 mg in 100 mL of NaCl and daily oral 50 mg prednisolone, with intravenous 250 mg tranexamic acid every eight hours. The patient’s glycemic control was continued with the administration of insulin glargine (30 units every 24 hours) and prandial insulin glulisine (five to eight units per meal). Before admission, the patient was on a prescribed treatment of sitagliptin 50 mg and metformin 850 mg, but this was suspended in the emergency room. For the eradication of H. pylori he was prescribed amoxicillin 500 mg every eight hours, oral clarithromycin 335 mg every 12 hours, and IV omeprazole 40 mg. After 15 days, he showed disease resolution and he was discharged to his home with orders to follow-up with pediatrics, hematology, and endocrinology services. The first-line treatment for immune thrombocytopenic purpura patients with active bleeding and a platelet count < 30,000 platelets/μl is the administration of corticosteroids and inmunoglobulin. PMID:27026836

  16. Immune Thrombocytopenic Purpura and Gastritis by H. pylori Associated With Type 1 Diabetes Mellitus.

    PubMed

    Culquichicón-Sánchez, Carlos; Correa, Ricardo; Flores-Guevara, Igor; Espinoza Morales, Frank; Mejia, Christian R

    2016-02-24

    We present the 15th case reported worldwide and 3rd case reported in Latin America of immune thrombocytopenic purpura associated with Type 1 diabetes mellitus in Scopus, MEDLINE, and SciELO. An 11-year-old male patient of mixed ethnicity with immune thrombocytopenic purpura, Type 1 diabetes mellitus, and gastritis due to H. pylori presented to the emergency room with petechiae, ecchymosis, and gingival and conjunctival bleeding that had been worsening for the past three months. The patient had a body mass index of 18.85 kg/m(2) (P75). A biochemical analysis showed 1×10(9) platelets/L, increased prothrombin time, increased partial thromboplastin time, and an HbA1C of 7.84% on admission. He was prescribed a single dose of intravenous methylprednisolone 750 mg in 100 mL of NaCl and daily oral 50 mg prednisolone, with intravenous 250 mg tranexamic acid every eight hours. The patient's glycemic control was continued with the administration of insulin glargine (30 units every 24 hours) and prandial insulin glulisine (five to eight units per meal). Before admission, the patient was on a prescribed treatment of sitagliptin 50 mg and metformin 850 mg, but this was suspended in the emergency room. For the eradication of H. pylori he was prescribed amoxicillin 500 mg every eight hours, oral clarithromycin 335 mg every 12 hours, and IV omeprazole 40 mg. After 15 days, he showed disease resolution and he was discharged to his home with orders to follow-up with pediatrics, hematology, and endocrinology services. The first-line treatment for immune thrombocytopenic purpura patients with active bleeding and a platelet count < 30,000 platelets/μl is the administration of corticosteroids and inmunoglobulin.

  17. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    PubMed

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. Published by Elsevier Inc.

  18. Meningococcal vaccine introduction in Mali through mass campaigns and its impact on the health system

    PubMed Central

    Mounier-Jack, Sandra; Burchett, Helen Elizabeth Denise; Griffiths, Ulla Kou; Konate, Mamadou; Diarra, Kassibo Sira

    2014-01-01

    Objective: To evaluate the impact of the meningococcal A (MenA) vaccine introduction in Mali through mass campaigns on the routine immunization program and the wider health system. Methods: We used a mixed-methods case-study design, combining semi-structured interviews with 31 key informants, a survey among 18 health facilities, and analysis of routine health facility data on number of routine vaccinations and antenatal consultations before, during, and after the MenA vaccine campaign in December 2010. Survey and interview data were collected at the national level and in 2 regions in July and August 2011, with additional interviews in January 2012. Findings: Many health system functions were not affected—either positively or negatively—by the MenA vaccine introduction. The majority of effects were felt on the immunization program. Benefits included strengthened communication and social mobilization, surveillance, and provider skills. Drawbacks included the interruption of routine vaccination services in the majority of health facilities surveyed (67%). The average daily number of children receiving routine vaccinations was 79% to 87% lower during the 10-day campaign period than during other periods of the month. Antenatal care consultations were also reduced during the campaign period by 10% to 15%. Key informants argued that, with an average of 14 campaigns per year, mass campaigns would have a substantial cumulative negative effect on routine health services. Many also argued that the MenA campaign missed potential opportunities for health systems strengthening because integration with other health services was lacking. Conclusion: The MenA vaccine introduction interrupted routine vaccination and other health services. When introducing a new vaccine through a campaign, coverage of routine health services should be monitored alongside campaign vaccine coverage to highlight where and how long services are disrupted and to mitigate risks to routine services. PMID:25276567

  19. Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists.

    PubMed

    Kephart, Wesley C; Wachs, Taylor D; Mac Thompson, R; Brooks Mobley, C; Fox, Carlton D; McDonald, James R; Ferguson, Brian S; Young, Kaelin C; Nie, Ben; Martin, Jeffrey S; Company, Joseph M; Pascoe, David D; Arnold, Robert D; Moon, Jordan R; Roberts, Michael D

    2016-03-01

    We examined if supplementing trained cyclists (32 ± 2 year, 77.8 ± 2.6 kg, and 7.4 ± 1.2 year training) with 12 g/day (6 g/day L-Leucine, 2 g/day L-Isoleucine and 4 g/day L-Valine) of either branched-chain amino acids (BCAAs, n = 9) or a maltodextrin placebo (PLA, n = 9) over a 10-week training season affected select body composition, performance, and/or immune variables. Before and after the 10-week study, the following was assessed: (1) 4-h fasting blood draws; (2) dual X-ray absorptiometry body composition; (3) Wingate peak power tests; and (4) 4 km time-trials. No group × time interactions existed for total lean mass (P = 0.27) or dual-leg lean mass (P = 0.96). A significant interaction existed for body mass-normalized relative peak power (19 % increase in the BCAA group pre- to post-study, P = 0.01), and relative mean power (4 % increase in the BCAA group pre- to post-study, P = 0.01). 4 km time-trial time to completion approached a significant interaction (P = 0.08), as the BCAA group improved in this measure by 11 % pre- to post-study, though this was not significant (P = 0.15). There was a tendency for the BCAA group to present a greater post-study serum BCAA: L-Tryptophan ratio compared to the PLA group (P = 0.08). A significant interaction for neutrophil number existed (P = 0.04), as there was a significant 18 % increase within the PLA group from the pre- to post-study time point (P = 0.01). Chronic BCAA supplementation improves sprint performance variables in endurance cyclists. Additionally, given that BCAA supplementation blunted the neutrophil response to intense cycling training, BCAAs may benefit immune function during a prolonged cycling season.

  20. The mass media alone are not effective change agents.

    PubMed

    Ruijter, J M

    1991-01-01

    Social mobilization programs for immunization have been used by African leaders, however, coverage from 20% to 70% in capitals like Mogadishu, Maputo, and Dakar were the result of short campaigns rather than the consequence of knowledge, attitudes, and practices (KAP) improvement. One-party states relied on their network of cadres issuing decrees from the top down to enforce completion of these immunization campaigns. Sometimes resistance developed against these programs, as the military mobilized people (e.g., Somalia). These efforts became rather superficial once the temporary pressure evaporated. In Mogadishu coverage increased from 22% to 70% in 1985, and within a year it dropped back to 8% above the original level. Nigeria, Senegal, and Togo where they used regular mini campaigns had better results. Research data from Botswana, Kenya, Lesotho, Malawi, Mozambique, and Zambia were analyzed. In 1983 in Kenya 73% of health workers never advised their clients, and 82% were incompetent to do so. Data also showed that clinics provided the bulk of information to women aged 15-45 in lower income groups, but they rarely consulted village health workers. Radio and TV programs were not reaching people because radio ownership was not universal (47% in Zambia and 30% in Zimbabwe), and batteries were often not available. In addition, most people turned to the radio for entertainment. In 1989, vaccination coverage was 19% in Luanda, Angola, but only 5% of 232 respondents to an evaluation could name the immunizable diseases. An identical percentage was familiar with these diseases in a Zambian study in 1986. Media experts proposed dramas to raise interest, but innovative mass media programs of dissemination of the message advocated in the 1960s did not prove effective to bring about KAP changes. Training of health and paramedical personnel by mass organizations as initiated in Ethiopia may prove to be worthwhile.

  1. Effectiveness of mass oral cholera vaccination in Beira, Mozambique.

    PubMed

    Lucas, Marcelino E S; Deen, Jacqueline L; von Seidlein, Lorenz; Wang, Xuan-Yi; Ampuero, Julia; Puri, Mahesh; Ali, Mohammad; Ansaruzzaman, M; Amos, Juvenaldo; Macuamule, Arminda; Cavailler, Philippe; Guerin, Philippe J; Mahoudeau, Claude; Kahozi-Sangwa, Pierre; Chaignat, Claire-Lise; Barreto, Avertino; Songane, Francisco F; Clemens, John D

    2005-02-24

    New-generation, orally administered cholera vaccines offer the promise of improved control of cholera in sub-Saharan Africa. However, the high prevalence of human immunodeficiency virus (HIV) infection in many cholera-affected African populations has raised doubts about the level of protection possible with vaccination. We evaluated a mass immunization program with recombinant cholera-toxin B subunit, killed whole-cell (rBS-WC) oral cholera vaccine in Beira, Mozambique, a city where the seroprevalence of HIV is 20 to 30 percent. From December 2003 to January 2004, we undertook mass immunization of nonpregnant persons at least two years of age, using a two-dose regimen of rBS-WC vaccine in Esturro, Beira (population 21,818). We then assessed vaccine protection in a case-control study during an outbreak of El Tor Ogawa cholera in Beira between January and May 2004. To estimate the level of vaccine protection, antecedent rates of vaccination were compared between persons with culture-confirmed cholera severe enough to have prompted them to seek treatment and age- and sex-matched neighborhood controls without treated diarrhea. We assessed the effectiveness of the vaccine in 43 persons with cholera and 172 controls. Receipt of one or more doses of rBS-WC vaccine was associated with 78 percent protection (95 percent confidence interval, 39 to 92 percent; P=0.004). The vaccine was equally effective in children younger than five years of age and in older persons. A concurrently conducted case-control study designed to detect bias compared persons with treated, noncholeraic diarrhea and controls without diarrhea in the same population and found no protection associated with receipt of the rBS-WC vaccine. The rBS-WC vaccine was highly effective against clinically significant cholera in an urban sub-Saharan African population with a high prevalence of HIV infection. Copyright 2005 Massachusetts Medical Society.

  2. Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by Single-Cell Mass Cytometry.

    PubMed

    Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia

    2018-01-01

    Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Mass cytometry: a highly multiplexed single-cell technology for advancing drug development.

    PubMed

    Atkuri, Kondala R; Stevens, Jeffrey C; Neubert, Hendrik

    2015-02-01

    Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellular analysis principles of traditional fluorescence-based flow cytometry with the selectivity and quantitative power of inductively coupled plasma-mass spectrometry. Standard flow cytometry is limited in the number of parameters that can be measured owing to the overlap in signal when detecting fluorescently labeled antibodies. Mass cytometry uses antibodies tagged to stable isotopes of rare earth metals, which requires minimal signal compensation between the different metal tags. This unique feature enables researchers to seamlessly multiplex up to 40 independent measurements on single cells. In this overview we first present an overview of mass cytometry and compare it with traditional flow cytometry. We then discuss the emerging and potential applications of CyTOF technology in the pharmaceutical industry, including quantitative and qualitative deep profiling of immune cells and their applications in assessing drug immunogenicity, extensive mapping of signaling networks in single cells, cell surface receptor quantification and multiplexed internalization kinetics, multiplexing sample analysis by barcoding, and establishing cell ontologies on the basis of phenotype and/or function. We end with a discussion of the anticipated impact of this technology on drug development lifecycle with special emphasis on the utility of mass cytometry in deciphering a drug's pharmacokinetics and pharmacodynamics relationship. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis.

    PubMed

    Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M

    2016-06-01

    MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir.

    PubMed

    White, L A; Torremorell, M; Craft, M E

    2017-03-01

    Recent modelling and empirical work on influenza A virus (IAV) suggests that piglets play an important role as an endemic reservoir. The objective of this study is to test intervention strategies aimed at reducing the incidence of IAV in piglets and ideally, preventing piglets from becoming exposed in the first place. These interventions include biosecurity measures, vaccination, and management options that swine producers may employ individually or jointly to control IAV in their herds. We have developed a stochastic Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) model that reflects the spatial organization of a standard breeding herd and accounts for the different production classes of pigs therein. Notably, this model allows for loss of immunity for vaccinated and recovered animals, and for vaccinated animals to have different latency and infectious periods from unvaccinated animals as suggested by the literature. The interventions tested include: (1) varied timing of gilt introductions to the breeding herd, (2) gilt separation (no indirect transmission to or from the gilt development unit), (3) gilt vaccination upon arrival to the farm, (4) early weaning, and (5) vaccination strategies of sows with different timing (mass and pre-farrow) and efficacy (homologous vs. heterologous). We conducted a Latin Hypercube Sampling and Partial Rank Correlation Coefficient (LHS-PRCC) analysis combined with a random forest analysis to assess the relative importance of each epidemiological parameter in determining epidemic outcomes. In concert, mass vaccination, early weaning of piglets (removal 0-7days after birth), gilt separation, gilt vaccination, and longer periods between introductions of gilts (6 months) were the most effective at reducing prevalence. Endemic prevalence overall was reduced by 51% relative to the null case; endemic prevalence in piglets was reduced by 74%; and IAV was eliminated completely from the herd in 23% of all simulations. Importantly, elimination of IAV was most likely to occur within the first few days of an epidemic. The latency period, infectious period, duration of immunity, and transmission rate for piglets with maternal immunity had the highest correlation with three separate measures of IAV prevalence; therefore, these are parameters that warrant increased attention for obtaining empirical estimates. Our findings support other studies suggesting that piglets play a key role in maintaining IAV in breeding herds. We recommend biosecurity measures in combination with targeted homologous vaccination or vaccines that provide wider cross-protective immunity to prevent incursions of virus to the farm and subsequent establishment of an infected piglet reservoir. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry

    PubMed Central

    Deringer, James R.; Chen, Chen; Samuel, James E.; Brown, Wendy C.

    2011-01-01

    Coxiella burnetii is a Gram-negative obligate intracellular pathogen and the causative agent of Q fever in humans. Q fever causes acute flu-like symptoms and may develop into a chronic disease leading to endocarditis. Its potential as a bioweapon has led to its classification as a category B select agent. An effective inactivated whole-cell vaccine (WCV) currently exists but causes severe granulomatous/necrotizing reactions in individuals with prior exposure, and is not licensed for use in most countries. Current efforts to reduce or eliminate the deleterious reactions associated with WCVs have focused on identifying potential subunit vaccine candidates. Both humoral and T cell-mediated responses are required for protection in animal models. In this study, nine novel immunogenic C. burnetii proteins were identified in extracted whole-cell lysates using 2D electrophoresis, immunoblotting with immune guinea pig sera, and tandem MS. The immunogenic C. burnetii proteins elicited antigen-specific IgG in guinea pigs vaccinated with whole-cell killed Nine Mile phase I vaccine, suggesting a T cell-dependent response. Eleven additional proteins previously shown to react with immune human sera were also antigenic in guinea pigs, showing the relevance of the guinea pig immunization model for antigen discovery. The antigens described here warrant further investigation to validate their potential use as subunit vaccine candidates. PMID:21030434

  7. A new TRAF-like protein from B. oleracea ssp. botrytis with lectin activity and its effect on macrophages.

    PubMed

    Duarte, Christiane E M; Abranches, Monise V; Silva, Patrick F; de Paula, Sérgio O; Cardoso, Silvia A; Oliveira, Leandro L

    2017-01-01

    Lectins are involved in a wide range of biological mechanisms, like immunomodulatory agent able to activate the innate immunity. In this study, we purified and characterized a new lectin from cauliflower (Brassica oleracea ssp. botrytis - BOL) by three sequential chromatographic steps and confirmed the purity by SDS-PAGE. Additionally, we evaluated the role of the lectin in innate immunity by a phagocytosis assay, production of H 2 O 2 and NO. BOL was characterized like a non-glycosylated protein that showed a molecular mass of ∼34kDa in SDS-PAGE. Its N-terminal sequence (ETRAFREERPSSKIVTIAG) did not reveal any similarity to the other lectins; nevertheless, it showed 100% homology to a putative TRAF-like protein from Brassica rapa and Brassica napus. This is a first report of the TRAF-protein with lectinic activity. The BOL retained its complete hemagglutination activity from 4°C up to 60°C, with stability being more apparent between pH 7.0 and 8.0. Moreover, the lectin was able to stimulate phagocytosis and induce the production of H 2 O 2 and NO. Therefore, BOL can be explored as an immunomodulatory agent by being able to activate the innate immunity and favor antigen removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Transcriptomic and Proteomic Analyses Reveal Key Innate Immune Signatures in the Host Response to the Gastrointestinal Pathogen Campylobacter concisus

    PubMed Central

    Deshpande, Nandan P.; Man, Si Ming; Burgos-Portugal, Jose A.; Khattak, Faisal A.; Raftery, Mark J.; Wilkins, Marc R.; Mitchell, Hazel M.

    2014-01-01

    Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus. PMID:25486993

  9. Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis.

    PubMed

    Suman, Shashi Shekhar; Amit, Ajay; Singh, Krishn Pratap; Gupta, Parool; Equbal, Asif; Kumari, Arti; Topno, Roshan Kamal; Ravidas, Vidyananda; Pandey, Krishna; Bimal, Sanjiva; Das, Pradeep; Ali, Vahab

    2018-08-01

    Leishmaniasis is a neglected tropical disease caused by the unicellular protozoan parasite of genus Leishmania. Tryparedoxin (TXN) is a low molecular mass dithiol protein belonging to oxidoreductases super-family; which function in concert with tryparedoxin peroxidase (TXNPx) as a system in protozoan parasites including Leishmania. Leishmanial hydroperoxides detoxification cascade uses trypanothione as electron donor to reduce hydroperoxide inside the macrophages during infection. However, the mechanism by which tryparedoxin can contribute in progression of visceral leishmaniasis (VL) and its impact on host's cellular immune response during infection in Indian VL patient is unknown. In this study, we purified a ∼17 kDa recombinant cytosolic tryparedoxin (cTXN) protein of Leishmania donovani (rLdcTXN) and investigated its immunological responses in peripheral blood monocytes (PBMC) isolated from VL patients. The protein significantly enhanced the promastigotes count after 96 h of culture showing a direct correlation with parasite growth. Furthermore, stimulation of PBMC isolated from VL patients with rLdcTXN resulted in up-regulation of IL-4 and IL-10 production whereas IL-12 and IFN-γ was significantly down-regulated suggesting a pivotal role of cTXN in provoking the immune suppression during VL. Our study demonstrates the importance of cTXN protein which can potentially modulate the outcome of disease through suppressing host protective Th1 response in VL patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Vaccine-derived polioviruses.

    PubMed

    Agol, Vadim I

    2006-06-01

    The Sabin oral poliovaccine (OPV) is extremely efficacious and safe, despite its inherent genetic instability. While reversion to nearly wild-type phenotype regularly occurs soon after the onset of OPV reproduction in the gastro-intestinal tract of vaccine recipients or their contacts, this is usually not a big problem, provided the vaccine is used either for mass vaccination or in populations with a relatively high level of anti-polio immunity. However, if these conditions are not met, the vaccine viruses are likely to be converted into highly transmissible agents with a nearly wild-type level of neurovirulence. Moreover, OPV viruses may persist and evolve even in adequately immunized populations. The current strategy for the "endgame" of poliovirus eradication envisions cessation of OPV usage shortly after the last isolation of a wild poliovirus. If implemented, this strategy would result in rapid growth of non-immune human populations at the time when OPV derivatives would very likely be persisting. Therefore, the planned cessation of OPV vaccination is associated with a very high, and in the author's opinion, unacceptable risk of polio outbreaks caused by OPV derivatives. The only currently available tool to curb such outbreaks is OPV, which should have been used at a global scale. Safe discontinuation of OPV vaccination will be possible only after an efficient new vaccine or an anti-poliovirus drug is available. To achieve this goal, stimulation of poliovirus research and elimination of organizational and financial obstacles preventing it are needed.

  11. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli.

    PubMed

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-08-01

    Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans.

  12. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  13. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model.

    PubMed

    Hess, Jessica A; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2014-08-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner.

    PubMed

    Jansen, Lauren E; Amer, Luke D; Chen, Esther Y-T; Nguyen, Thuy V; Saleh, Leila S; Emrick, Todd; Liu, Wendy F; Bryant, Stephanie J; Peyton, Shelly R

    2018-05-15

    Reducing the foreign body response (FBR) to implanted biomaterials will enhance their performance in tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are increasingly popular for this application due to their low cost, ease of use, and the ability to tune their compliance via molecular weight and cross-linking densities. PEG hydrogels can elicit chronic inflammation in vivo, but recent evidence has suggested that extremely hydrophilic, zwitterionic materials and particles can evade the immune system. To combine the advantages of PEG-based hydrogels with the hydrophilicity of zwitterions, we synthesized hydrogels with comonomers PEG and the zwitterion phosphorylcholine (PC). Recent evidence suggests that stiff hydrogels elicit increased immune cell adhesion to hydrogels, which we attempted to reduce by increasing hydrogel hydrophilicity. Surprisingly, hydrogels with the highest amount of zwitterionic comonomer elicited the highest FBR. Lowering the hydrogel modulus (165 to 3 kPa), or PC content (20 to 0 wt %), mitigated this effect. A high density of macrophages was found at the surface of implants associated with a high FBR, and mass spectrometry analysis of the proteins adsorbed to these gels implicated extracellular matrix, immune response, and cell adhesion protein categories as drivers of macrophage recruitment. Overall, we show that modulus regulates macrophage adhesion to zwitterionic-PEG hydrogels, and demonstrate that chemical modifications to hydrogels should be studied in parallel with their physical properties to optimize implant design.

  15. Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

    PubMed Central

    Buskirk, Amanda D.; Templeton, Steven P.; Nayak, Ajay P.; Hettick, Justin M.; Law, Brandon F.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8+ IL-17+ (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia. PMID:23919459

  16. Expected immunizations and health protection for Hajj and Umrah 2018 -An overview.

    PubMed

    Al-Tawfiq, Jaffar A; Gautret, Philippe; Memish, Ziad A

    2017-09-01

    The annual Hajj and Umrah are one of the largest recurring religious mass gatherings across the globe drawing pilgrims from more than 185 countries. The living circumstances and activities of the pilgrims may create an environment for the occurrence and spread of communicable diseases. Each year, the Health authority of the Kingdom of Saudi Arabia, in coordination with international health authorities, updates health requirements for pilgrims. The Hajj for 2017 took place from August 24 to September 5, 2017. Here, we review the expected obligations for immunizations for the 2018 Hajj and Umrah. The Hajj and Umrah vaccine requirements include mandatory vaccinations against yellow fever, quadrivalent meningococcal polysaccharide (every 3 years) or conjugated (every 5 years) vaccines and poliomyelitis vaccine. Influenza vaccine utilizing the 2016 (Southern Hemisphere vaccine to all pilgrims) was recommended but was not obligatory for pilgrims. Ciprofloxacin is required for individuals >12 years excluding pregnant women as chemoprophylaxis to be given at the port of entry for Pilgrims coming from the meningitis belt. With the ongoing outbreaks of measles in Europe, it is recommended that all pilgrims have an updated immunization against vaccine-preventable diseases (diphtheria, tetanus, pertussis, polio, measles and mumps). The mandatory vaccines remain the same with continued vigilance for the development of any new or emerging infectious diseases. Continuing surveillance for Zika virus, cholera and MERS-CoV are ongoing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microsurgeon Hirudo medicinalis as a Natural Bioshuttle for Spontaneous Mass Vaccination against Influenza A Virus

    PubMed Central

    Samadi-Shams, Sara; Atashpaz, Sina; Khani, Sajjad

    2011-01-01

    Introduction Recent report on existence of a stem region of hemagglutinin has arisen new hopes for vaccination of influenza A as it consist of a conserve fusion peptide shared across several influenza subtypes and can be targeted by human immune system. Methods Given that traditional vaccination based on live attenuated viruses often fails to surpass such viral infection, a great deal of attention has been devoted to develop a safe yet efficient system for vaccination influenza A. We believe that a natural bioshuttle can be recruited for spontaneous mass vaccination. Results Thus, here, we hypothesize that a bioengineered transgenic Hirudo medicinalis can be considered as an alive bioshuttle for in-situ vaccination against influenza A virus. By introducing the designated gene(s) encoding the target fragment (i.e., stem region of hemagglutinin), this microsurgeon can act as a rapid microproducer of viral proteins for in-house mass vaccination through imparting the necessary proteins such as those, naturally presented in leech's saliva. Conclusion This peculiar bioshuttle can be easily exploited as a medical modality choice at home resulting in greater patient compliance. PMID:23678426

  18. Impact of Protein Supplementation and Care and Support on Body Composition and CD4 Count among HIV-Infected Women Living in Rural India: Results from a Randomized Pilot Clinical Trial

    PubMed Central

    Nyamathi, Adeline; Sinha, Sanjeev; Ganguly, Kalyan K; Ramakrishna, Padma; Suresh, P.; Carpenter, Catherine L

    2013-01-01

    Body composition in HIV-infected individuals is subject to many influences. We conducted a pilot six-month randomized trial of 68 WLA (women living with AIDS) from rural India. High protein intervention combined with education and supportive care delivered by HIV-trained village women (Asha [Activated Social Health Activist] Life [AL]) was compared to standard protein with usual care delivered by village community assistants (Usual Care [UC]). Measurements included CD4 counts, ART adherence, socio-demographics, disease characteristics (questionnaires); and anthropometry (bioimpedance analyzer). Repeated measures analysis of variance modeled associations. AL significantly gained in BMI, muscle mass, fat mass, ART adherence, and CD4 counts compared to UC, with higher weight and muscle mass gains among ART adherent (≥ 66%) participants who had healthier immunity (CD4 ≥ 450). BMI of WLA improved through high protein supplementation combined with education and supportive care. Future research is needed to determine which intervention aspect was most responsible. PMID:23370835

  19. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2011-09-30

    creatinine, calcium, ALK.phos, AST(SGOT), ALT(SGPT), total bilirubin, total protein and albumin); iron, LDH; phosphate; and uric acid . For liver function...assays AST, ALT, total bilirubin, and uric acid are most relevant, whereas for kidney function, BUN and creatinine are of particular interest. For...formic acid (for analysis in the positive ion mode) and in methanol:water 4:1 with 10 mM ammonium acetate (for the negative ion mode). FT-ICR mass

  20. Postchallenge Administration of Brincidofovir Protects Healthy and Immune-Deficient Mice Reconstituted with Limited Numbers of T Cells from Lethal Challenge with IHD-J-Luc Vaccinia Virus

    PubMed Central

    McCullough, Kevin Tyler; Cruz, Stephanie; Thomas, Antonia; Diaz, Claudia G.; Keilholz, Laurie; Grossi, Irma M.; Trost, Lawrence C.; Golding, Hana

    2015-01-01

    ABSTRACT Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 105 PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 105 T cells prior to challenge with 104 PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 105 PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated. Whole-body bioluminescence imaging was used to study the effect of brincidofovir (BCV) in normal and immune-deficient (nu/nu) mice infected with vaccinia virus, a model of smallpox. Postchallenge administration of 20 mg/kg BCV rescued normal and immune-deficient mice partially reconstituted with T cells from lethality and significantly reduced viral loads in organs. All BCV-treated mice that survived infection were protected from rechallenge without additional treatment. In immune-deficient mice, BCV extended survival. The data show that BCV controls viral replication at the site of challenge and reduces viral dissemination to internal organs, thus providing a shield for the developing adaptive immunity that clears the host of virus and builds virus-specific immunological memory. PMID:25589648

  1. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    PubMed

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P < 0.01) increased in SLE patients by LC-MS/MS. Three G3BP-exposing microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major autoantigen source and provides a new understanding of the origin of immune complexes occurring in lupus nephritis. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Plasma immune protein analysis in the orange-spotted grouper Epinephelus coioides: Evidence for altered expressions of immune factors associated with a choline-supplemented diet.

    PubMed

    Shiu, Ya-Li; Chiu, Kuo-Hsun; Huynh, Truong-Giang; Liu, Ping-Chung; Liu, Chun-Hung

    2017-06-01

    This study aimed to unravel the regulatory roles of choline in activating immune responses and disease resistance of the orange-spotted grouper Epinephelus coioides. Fish were fed a choline-supplemented diet at 1 g kg -1 of feed for 30 days. Fish fed a fish meal basal diet without choline-supplement served as controls. At the end of the feeding trial, fish were challenged with Vibrio alginolyticus. Meanwhile, plasma proteomics of fish in each group were also evaluated by two-dimensional gel electrophoresis (2-DE), and differentially expressed proteins were identified by tandem mass spectrophotometry (MS/MS), then a Western blot analysis or real-time polymerase chain reaction was used to confirm differential expressions of immune-enhancing proteins. Results showed that choline significantly increased survival of E. coioides 48 days after being injected with V. alginolyticus. From maps of plasma proteins, a comparative analysis between the control and choline groups revealed that 111 spots matched, with 26 altered expression spots in the choline group. Of these 26 spots, 16 were upregulated and 10 downregulated. After protein identification by reverse-phase nano-high-performance liquid chromatography-electrospray ionization MS/MS analysis, eight of 26 proteins were found to be immune-related proteins, all of which were upregulated, including complement 3 (C3), alpha-2-macroglobulin-P-like isoform (A2M), fibrinogen beta chain precursor (FBG), and immunoglobulin heavy constant mu (Ighm) proteins. Expression of the A2M protein and A2M enzyme activity in plasma of fish fed choline significantly increased compared to the control group. Additionally, A2M messenger (m)RNA transcripts were also upregulated in the liver and kidneys. Significantly higher C3 expressions at both the mRNA and protein levels were detected in the liver of fish in the choline group. Moreover, FBG gene expressions in the liver and kidneys significantly increased, while Ighm increased in the kidneys and spleen of fish in the choline group. Our results suggest that dietary administration of choline can protect grouper against bacterial infections through activating the complement system, thereby inducing antiprotease activity and natural antibodies that play important roles in the innate immune system of fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant.

    PubMed

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper

    2016-09-16

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the quantitative level than qualitative level. The correlation between the changes of milk proteins and the gradual maturation of the gastrointestinal tract and immune system in infants, contributes to a better understanding of the biological functions of human milk proteins for the growth and development of infants. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Radiative corrections in the (varying power)-law modified gravity

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal

    2015-06-01

    Although the (varying power)-law modified gravity toy model has the attractive feature of unifying the early- and late-time expansions of the Universe, thanks to the peculiar dependence of the scalar field's potential on the scalar curvature, the model still suffers from the fine-tuning problem when used to explain the actually observed Hubble parameter. Indeed, a more correct estimate of the mass of the scalar field needed to comply with actual observations gives an unnaturally small value. On the other hand, for a massless scalar field the potential would have no minimum and hence the field would always remain massless. What solves these issues are the radiative corrections that modify the field's effective potential. These corrections raise the field's effective mass, rendering the model free from fine-tuning, immune against positive fifth-force tests, and better suited to tackle the dark matter sector.

  5. Cryptococcus gattii Infection Presenting as an Aggressive Lung Mass.

    PubMed

    Zheng, Shuwei; Tan, Thuan Tong; Chien, Jaime Mei Fong

    2018-06-01

    Cryptococcus gattii is an endemic fungus predominantly isolated in the tropical and subtropical regions, causing predominantly pulmonary disease with a predilection for the central nervous system. Herein, we report a case of rapidly progressing C. gattii pneumonia in an immune-deficient but virologically suppressed host with underlying human immunodeficiency viral (HIV) infection, exhibiting various fungal morphologies from bronchoalveolar lavage (BAL) cytological specimens. A 51-year-old Chinese male with known HIV disease was admitted to the Singapore General Hospital for evaluation of functional decline, febrile episodes, and a left hilar mass on chest radiograph. Computed tomography (CT) showed consolidation in the apical segment of the left lower lobe. He underwent bronchoscopy and BAL. Positron emission tomography-computed tomography done 10 days after the initial CT showed approximate doubling of the pulmonary lesion. Cytological examination of the fluid revealed yeasts of varying sizes. Subsequent fungal culture from BAL fluid grew C. gattii 10 days later.

  6. [Unexpected cutaneous purpura in an infant].

    PubMed

    Luo, Yang-Yang; Wei, Zhu; Zeng, Ying-Hong; Zhou, Bin; Tang, Jian-Ping

    2016-11-01

    A two-month-old boy visited the hospital due to unexpected cutaneous purpura and thrombocytopenia for 2 days. The physical examination revealed a purple mass on the back. The soft tissue color Doppler ultrasound showed rich blood signals in the tissue, and the results of bone marrow puncture indicated an increased number of megakaryocytes. After the treatment with hormone and gamma globulin, the platelet count rapidly increased and maintained at a normal level. Meanwhile, the boy was given oral administration of propranolol. He was followed up for 4 months and the volume of the mass on the back was reduced significantly. He had a definite diagnosis of hemangioma and immune thrombocytopenia. As for the patients with hemangioma complicated by thrombocytopenia, knowledge of Kasabach-Merritt syndrome should be enhanced and there should be a clarification of the association between thrombocytopenia and hemangioma. There should also be an alertness for thrombocytopenia of other causes.

  7. [Diphtheria in the military forces: lessons and current status of prophylaxis, prospects of epidemiological control process].

    PubMed

    Belov, A B; Ogarkov, P I

    2014-01-01

    We analyzed the epidemiological situation of diphtheria in the world and in Russia and experience of mass vaccination of military personnel and civil population with diphtheria toxoid for the last 50 years. Early diagnosis of diphtheria in military personnel has a prognostic value. Authors described the peculiarities of epidemiological process of diphtheria in military personnel in 80-90 years of 20th century and organizational aspects of mass vaccination with diphtheria toxoid. Authors analyzed current problems of epidemiology and prophylaxis of diphtheria in military personnel and civil population and possible developments. According to long-term prognosis authors mentioned the increase of morbidity and came to conclusion that it is necessary enhance the epidemiological surveillance. Authors presented prospect ways of improvement of vaccination and rational approaches to immunization of military personnel under positive long-term epidemiological situation.

  8. Detection of Poliovirus Circulation by Environmental Surveillance in the Absence of Clinical Cases in Israel and the Palestinian Authority

    PubMed Central

    Manor, Y.; Handsher, R.; Halmut, T.; Neuman, M.; Bobrov, A.; Rudich, H.; Vonsover, A.; Shulman, L.; Kew, O.; Mendelson, E.

    1999-01-01

    The global eradication of poliomyelitis, believed to be achievable around the year 2000, relies on strategies which include high routine immunization coverage and mass vaccination campaigns, along with continuous monitoring of wild-type virus circulation by using the laboratory-based acute flaccid paralysis (AFP) surveillance. Israel and the Palestinian Authority are located in a geographical region in which poliovirus is still endemic but have been free of poliomyelitis since 1988 as a result of intensive immunization programs and mass vaccination campaigns. To monitor the wild-type virus circulation, environmental surveillance of sewage samples collected monthly from 25 to 30 sites across the country was implemented in 1989 and AFP surveillance began in 1994. The sewage samples were processed in the laboratory with a double-selective tissue culture system, which enabled economical processing of large number of samples. Between 1989 and 1997, 2,294 samples were processed, and wild-type poliovirus was isolated from 17 of them in four clusters, termed “silent outbreaks,” in September 1990 (type 3), between May and September 1991 (type 1), between October 1994 and June 1995 (type 1), and in December 1996 (type 1). Fifteen of the 17 positive samples were collected in the Gaza Strip, 1 was collected in the West Bank, and 1 was collected in the Israeli city of Ashdod, located close to the Gaza Strip. The AFP surveillance system failed to detect the circulating wild-type viruses. These findings further emphasize the important role that environmental surveillance can play in monitoring the eradication of polioviruses. PMID:10325305

  9. Autovaccination confers protection against Devriesea agamarum associated septicemia but not dermatitis in bearded dragons (Pogona vitticeps).

    PubMed

    Hellebuyck, Tom; Van Steendam, Katleen; Deforce, Dieter; Blooi, Mark; Van Nieuwerburgh, Filip; Bullaert, Evelien; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank; Martel, An

    2014-01-01

    Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.

  10. Autovaccination Confers Protection against Devriesea agamarum Associated Septicemia but Not Dermatitis in Bearded Dragons (Pogona vitticeps)

    PubMed Central

    Deforce, Dieter; Blooi, Mark; Van Nieuwerburgh, Filip; Bullaert, Evelien; Ducatelle, Richard; Haesebrouck, Freddy

    2014-01-01

    Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections. PMID:25479609

  11. The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity

    PubMed Central

    Bailleul, Geoffrey; Kravtzoff, Amanda; Joulin-Giet, Alix; Lecaille, Fabien; Labas, Valérie; Meudal, Hervé; Loth, Karine; Teixeira-Gomes, Ana-Paula; Gilbert, Florence B.; Coquet, Laurent; Jouenne, Thierry; Brömme, Dieter; Schouler, Catherine; Landon, Céline; Lalmanach, Gilles; Lalmanach, Anne-Christine

    2016-01-01

    Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion. PMID:27561012

  12. The use of a computerized database to monitor vaccine safety in Viet Nam.

    PubMed Central

    Ali, Mohammad; Canh, Gia Do; Clemens, John D.; Park, Jin-Kyung; von Seidlein, Lorenz; Minh, Tan Truong; Thiem, Dinh Vu; Tho, Huu Le; Trach, Duc Dang

    2005-01-01

    Health information systems to monitor vaccine safety are used in industrialized countries to detect adverse medical events related to vaccinations or to prove the safety of vaccines. There are no such information systems in the developing world, but they are urgently needed. A large linked database for the monitoring of vaccine-related adverse events has been established in Khanh Hoa province, Viet Nam. Data collected during the first 2 years of surveillance, a period which included a mass measles vaccination campaign, were used to evaluate the system. For this purpose the discharge diagnoses of individuals admitted to polyclinics and hospitals were coded according to the International Classification of Diseases (ICD)-10 guidelines and linked in a dynamic population database with vaccination histories. A case-series analysis was applied to the cohort of children vaccinated during the mass measles vaccination campaign. The study recorded 107,022 immunizations in a catchment area with a population of 357,458 and confirmed vaccine coverage of 87% or higher for completed routine childhood vaccinations. The measles vaccination campaign immunized at least 86% of the targeted children aged 9 months to 10 years. No medical event was detected significantly more frequently during the 14 days after measles vaccination than before it. The experience in Viet Nam confirmed the safety of a measles vaccination campaign and shows that it is feasible to establish health information systems such as a large linked database which can provide reliable data in a developing country for a modest increase in use of resources. PMID:16193545

  13. Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145-154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    John, Harald; Hierer, Jessica; Haas, Olga; Forssmann, Wolf-Georg

    2007-03-01

    Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.

  14. Dim light at night disrupts the short-day response in Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J

    2014-02-01

    Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Body mass index in ambulatory cerebral palsy patients.

    PubMed

    Feeley, Brian T; Gollapudi, Kiran; Otsuka, Norman Y

    2007-05-01

    Malnutrition is a common problem in children with cerebral palsy. Although malnutrition is often recognized in patients with severe cerebral palsy, it can be unrecognized in less severely affected patients. The consequences of malnutrition are serious, and include decreased muscle strength, poor immune status, and depressed cerebral functioning. Low body mass index has been used as a marker for malnutrition. The purpose of this study was to determine which patients in an ambulatory cerebral palsy patient population were at risk for low body mass index. A retrospective chart review was performed on 75 patients. Age, sex, height, weight, type of cerebral palsy, and functional status [gross motor functional classification system (GMFCS) level] was recorded from the chart. Descriptive statistics with bivariate and multivariate regression analyses were performed. Thirty-eight boys and 37 girls with an average age of 8.11 years were included in the study. Unique to our patient population, all cerebral palsy patients were independent ambulators. Patients with quadriplegic cerebral palsy had a significantly lower body mass index than those with diplegic and hemiplegic cerebral palsy. Patients with a GMFCS III had significantly lower body mass index than those with GMFCS I and II. When multivariate regression analysis to control for age and sex was performed, low body mass index remained associated with quadriplegic cerebral palsy and GMFCS III. Malnutrition is a common health problem in patients with cerebral palsy, leading to significant morbidity in multiple organ systems. We found that in an ambulatory cerebral palsy population, patients with lower functional status or quadriplegia had significantly lower body mass index, suggesting that even highly functioning ambulatory cerebral palsy patients are at risk for malnutrition.

  16. Egg size and asymmetric sibling rivalry in red-winged blackbirds.

    PubMed

    Forbes, Scott; Wiebe, Mark

    2010-06-01

    How big to make an egg is a life history decision that in birds is made coincident with a series of other similar decisions (how many eggs to have, whether to fortify them with maternally derived hormones or immune system boosters, whether to hatch the eggs synchronously or asynchronously). Though within-population variation in egg size in birds has been well studied, its adaptive significance, if any, is unclear. Here we examine within-population variation in egg size in relation to asymmetric sibling rivalry in a 17-year study of red-winged blackbirds (Agelaius phoeniceus), an altricial songbird. Egg mass showed a twofold range of variation, with roughly 80% of the variation occurring across clutches. By commencing incubation before the clutch is complete, mothers create advantaged core and disadvantaged marginal elements within their brood. Previous work on this system has shown that sibling competition is asymmetric, and that core offspring enjoy priority access to food, and as a consequence show higher growth and lower mortality than marginal offspring. Here we examine the effect of initial egg size on nestling growth and survival in relation to these competitive asymmetries. Egg mass was strongly linked to hatchling mass, and remained significantly related to the mass of both core and marginal nestlings; the effect of egg size was stronger for core offspring early in the nestling period, but the disparity between core and marginal nestlings narrowed as they approached fledging age, and slower growing marginals fell victim to brood reduction. The effect of egg mass on survival differed dramatically between core and marginal nestlings. Egg mass was significantly related to the survival of marginal but not core nestlings: below average egg mass was associated primarily with very early mortality. Asymmetric sibling competition is clearly a strong determinant of the consequences of egg size variation.

  17. Effects of nandrolone decanoate compared with placebo or testosterone on HIV-associated wasting.

    PubMed

    Gold, J; Batterham, M J; Rekers, H; Harms, M K; Geurts, T B P; Helmyr, P M E; Silva de Mendonça, J; Falleiros Carvalho, L H; Panos, G; Pinchera, A; Aiuti, F; Lee, C; Horban, A; Gatell, J; Phanuphak, P; Prasithsirikul, W; Gazzard, B; Bloch, M; Danner, S A

    2006-04-01

    Objectives Current research is unclear about the most effective pharmacological agents for managing the loss of weight and fat-free mass common in HIV/AIDS. The aim of this study was to compare nandrolone decanoate with placebo and testosterone. Methods The study was a multicentre randomized double-blind placebo-controlled trial. Three hundred and three adult HIV-positive male patients with a weight loss of 5-15% in the last 12 months, or a body mass index of 17-19 kg/m(2), or a body cell mass/height ratio lower than 13.5 kg/m, were randomly assigned to receive nandrolone decanoate (150 mg), testosterone (250 mg) or placebo intramuscularly every 2 weeks for 12 weeks. Fat-free mass, weight, immune markers and perception of treatment were the main outcome measures. Results Treatment with nandrolone resulted in significantly greater increases in fat-free mass [mean increase 1.34 kg; 95% confidence interval (CI) 0.60; 2.08 kg] and in weight (mean increase 1.48 kg; 95% CI 0.82; 2.14 kg) compared with placebo. The mean increase in weight with nandrolone of 1.00 kg (95% CI 0.27; 1.74 kg) when compared with testosterone was significant, although the difference in fat free mass did not reach significance (mean increase 0.69 kg; 95% CI-0.13; 1.51 kg). Patient perception of benefit was significantly greater in the nandrolone group when compared with both the placebo and the testosterone groups. Conclusions Treatment with nandrolone decanoate increased body weight when compared with placebo and testosterone. Nandrolone decanoate treatment resulted in greater increases in fat-free mass than placebo and demonstrated a trend for a significant increase when compared with testosterone.

  18. Maternal and child undernutrition: consequences for adult health and human capital.

    PubMed

    Victora, Cesar G; Adair, Linda; Fall, Caroline; Hallal, Pedro C; Martorell, Reynaldo; Richter, Linda; Sachdev, Harshpal Singh

    2008-01-26

    In this paper we review the associations between maternal and child undernutrition with human capital and risk of adult diseases in low-income and middle-income countries. We analysed data from five long-standing prospective cohort studies from Brazil, Guatemala, India, the Philippines, and South Africa and noted that indices of maternal and child undernutrition (maternal height, birthweight, intrauterine growth restriction, and weight, height, and body-mass index at 2 years according to the new WHO growth standards) were related to adult outcomes (height, schooling, income or assets, offspring birthweight, body-mass index, glucose concentrations, blood pressure). We undertook systematic reviews of studies from low-income and middle-income countries for these outcomes and for indicators related to blood lipids, cardiovascular disease, lung and immune function, cancers, osteoporosis, and mental illness. Undernutrition was strongly associated, both in the review of published work and in new analyses, with shorter adult height, less schooling, reduced economic productivity, and--for women--lower offspring birthweight. Associations with adult disease indicators were not so clear-cut. Increased size at birth and in childhood were positively associated with adult body-mass index and to a lesser extent with blood pressure values, but not with blood glucose concentrations. In our new analyses and in published work, lower birthweight and undernutrition in childhood were risk factors for high glucose concentrations, blood pressure, and harmful lipid profiles once adult body-mass index and height were adjusted for, suggesting that rapid postnatal weight gain--especially after infancy--is linked to these conditions. The review of published works indicates that there is insufficient information about long-term changes in immune function, blood lipids, or osteoporosis indicators. Birthweight is positively associated with lung function and with the incidence of some cancers, and undernutrition could be associated with mental illness. We noted that height-for-age at 2 years was the best predictor of human capital and that undernutrition is associated with lower human capital. We conclude that damage suffered in early life leads to permanent impairment, and might also affect future generations. Its prevention will probably bring about important health, educational, and economic benefits. Chronic diseases are especially common in undernourished children who experience rapid weight gain after infancy.

  19. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder.

    PubMed

    Thakur, Aneesh; Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Rose, Fabrice; Andersen, Peter; Christensen, Dennis; Foged, Camilla

    2018-05-31

    Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4 + T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. [Dopamine receptor signaling regulates human osteoclastogenesis].

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Tanaka, Yoshiya

    2013-01-01

    Although the central nervous system and the neurotransmitters are known to control not only the immune system but also the homeostasis of bone mass, their pathological relevance to bone disorders remains unclear. Osteoclasts in the synovium of rheumatoid arthritis (RA) play an important role in bone destruction. It is known that increased sympathetic nervous activity increases both differentiation and function of osteoclasts, which leads to bone loss. Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. We previously reported that dopamine plays an important role in IL-6-IL-17 axis and subsequent joint destruction in RA. The major source of dopamine in the synovial tissue of RA was dendritic cells (DCs) that stored and secreted dopamine. Dopamine released by DCs bounded to D1-like dopamine receptors on T cells and induced activation of cAMP and differentiation to Th17 cells via IL-6 production We here overview the interplay among the immune system, bone metabolism and neurologic system shedding light upon dopaminergic signals upon osteoclastogenesis.

  1. Health costs of reproduction are minimal despite high fertility, mortality and subsistence lifestyle.

    PubMed

    Gurven, Michael; Costa, Megan; Ben Trumble; Stieglitz, Jonathan; Beheim, Bret; Eid Rodriguez, Daniel; Hooper, Paul L; Kaplan, Hillard

    2016-07-20

    Women exhibit greater morbidity than men despite higher life expectancy. An evolutionary life history framework predicts that energy invested in reproduction trades-off against investments in maintenance and survival. Direct costs of reproduction may therefore contribute to higher morbidity, especially for women given their greater direct energetic contributions to reproduction. We explore multiple indicators of somatic condition among Tsimane forager-horticulturalist women (Total Fertility Rate = 9.1; n =  592 aged 15-44 years, n = 277 aged 45+). We test whether cumulative live births and the pace of reproduction are associated with nutritional status and immune function using longitudinal data spanning 10 years. Higher parity and faster reproductive pace are associated with lower nutritional status (indicated by weight, body mass index, body fat) in a cross-section, but longitudinal analyses show improvements in women's nutritional status with age. Biomarkers of immune function and anemia vary little with parity or pace of reproduction. Our findings demonstrate that even under energy-limited and infectious conditions, women are buffered from the potential depleting effects of rapid reproduction and compound offspring dependency characteristic of human life histories.

  2. Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species.

    PubMed

    Cuzzi, Bruno; Cescutti, Paola; Furlanis, Linda; Lagatolla, Cristina; Sturiale, Luisa; Garozzo, Domenico; Rizzo, Roberto

    2012-08-01

    Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.

  3. The Small Glutathione Peroxidase Mimic 5P May Represent a New Strategy for the Treatment of Liver Cancer.

    PubMed

    Yin, Juxin; Wang, Bingmei; Zhu, Xuejun; Qu, Xiaonan; Huang, Yi; Lv, Shaowu; Mu, Ying; Luo, Guimin

    2017-09-08

    Glutathione peroxidase (GPx) is an antioxidant protein containing selenium. Owing to the limitations of native GPx, considerable efforts have been made to develop GPx mimics. Here, a short 5-mer peptides (5P) was synthesized and characterized using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Enzyme coupled assays were used to evaluate GPx activity. The cell viability and apoptosis of H22 cells were tested, and mice bearing H22 cell-derived tumors were used to determine the effects of 5P on tumor inhibition. In comparison with other enzyme models, 5P provided a suitable substrate with proper catalytic site positions, resulting in enhanced catalytic activity. In our mouse model, 5P showed excellent inhibition of tumor growth and improved immunity. In summary, our findings demonstrated the design and synthesis of the small 5P molecule, which inhibited tumor growth and improved immunity. Notably, 5P could inhibit tumor growth without affecting normal growth. Based on these advantages, the novel mimic may have several clinical applications.

  4. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  5. Bringing influenza vaccines into the 21st century

    PubMed Central

    Settembre, Ethan C; Dormitzer, Philip R; Rappuoli, Rino

    2014-01-01

    The recent H7N9 influenza outbreak in China highlights the need for influenza vaccine production systems that are robust and can quickly generate substantial quantities of vaccines that target new strains for pandemic and seasonal immunization. Although the influenza vaccine system, a public-private partnership, has been effective in providing vaccines, there are areas for improvement. Technological advances such as mammalian cell culture production and synthetic vaccine seeds provide a means to increase the speed and accuracy of targeting new influenza strains with mass-produced vaccines by dispensing with the need for egg isolation, adaptation, and reassortment of vaccine viruses. New influenza potency assays that no longer require the time-consuming step of generating sheep antisera could further speed vaccine release. Adjuvants that increase the breadth of the elicited immune response and allow dose sparing provide an additional means to increase the number of available vaccine doses. Together these technologies can improve the influenza vaccination system in the near term. In the longer term, disruptive technologies, such as RNA-based flu vaccines and ‘universal’ flu vaccines, offer a promise of a dramatically improved influenza vaccine system. PMID:24378716

  6. Bringing influenza vaccines into the 21st century.

    PubMed

    Settembre, Ethan C; Dormitzer, Philip R; Rappuoli, Rino

    2014-01-01

    The recent H7N9 influenza outbreak in China highlights the need for influenza vaccine production systems that are robust and can quickly generate substantial quantities of vaccines that target new strains for pandemic and seasonal immunization. Although the influenza vaccine system, a public-private partnership, has been effective in providing vaccines, there are areas for improvement. Technological advances such as mammalian cell culture production and synthetic vaccine seeds provide a means to increase the speed and accuracy of targeting new influenza strains with mass-produced vaccines by dispensing with the need for egg isolation, adaptation, and reassortment of vaccine viruses. New influenza potency assays that no longer require the time-consuming step of generating sheep antisera could further speed vaccine release. Adjuvants that increase the breadth of the elicited immune response and allow dose sparing provide an additional means to increase the number of available vaccine doses. Together these technologies can improve the influenza vaccination system in the near term. In the longer term, disruptive technologies, such as RNA-based flu vaccines and 'universal' flu vaccines, offer a promise of a dramatically improved influenza vaccine system.

  7. Global practices of meningococcal vaccine use and impact on invasive disease

    PubMed Central

    Ali, Asad; Jafri, Rabab Zehra; Messonnier, Nancy; Tevi-Benissan, Carol; Durrheim, David; Eskola, Juhani; Fermon, Florence; Klugman, Keith P; Ramsay, Mary; Sow, Samba; Zhujun, Shao; Bhutta, Zulfiqar; Abramson, Jon

    2014-01-01

    A number of countries now include meningococcal vaccines in their routine immunization programs. This review focuses on different approaches to including meningococcal vaccines in country programs across the world and their effect on the burden of invasive meningococcal disease (IMD) as reflected by pre and post-vaccine incidence rates in the last 20 years. Mass campaigns using conjugated meningococcal vaccines have lead to control of serogroup C meningococcal disease in the UK, Canada, Australia, Spain, Belgium, Ireland, and Iceland. Serogroup B disease, predominant in New Zealand, has been dramatically decreased, partly due to the introduction of an outer membrane vesicle (OMV) vaccine. Polysaccharide vaccines were used in high risk people in Saudi Arabia and Syria and in routine immunization in China and Egypt. The highest incidence region of the meningitis belt initiated vaccination with the serogroup A conjugate vaccine in 2010 and catch-up vaccination is ongoing. Overall results of this vaccine introduction are encouraging especially in countries with a moderate to high level of endemic disease. Continued surveillance is required to monitor effectiveness in countries that recently implemented these programs. PMID:24548156

  8. The Final (Oral Ebola) Vaccine Trial on Captive Chimpanzees?

    PubMed Central

    Walsh, Peter D.; Kurup, Drishya; Hasselschwert, Dana L.; Wirblich, Christoph; Goetzmann, Jason E.; Schnell, Matthias J.

    2017-01-01

    Could new oral vaccine technologies protect endangered wildlife against a rising tide of infectious disease? We used captive chimpanzees to test oral delivery of a rabies virus (RABV) vectored vaccine against Ebola virus (EBOV), a major threat to wild chimpanzees and gorillas. EBOV GP and RABV GP-specific antibody titers increased exponentially during the trial, with rates of increase for six orally vaccinated chimpanzees very similar to four intramuscularly vaccinated controls. Chimpanzee sera also showed robust neutralizing activity against RABV and pseudo-typed EBOV. Vaccination did not induce serious health complications. Blood chemistry, hematologic, and body mass correlates of psychological stress suggested that, although sedation induced acute stress, experimental housing conditions did not induce traumatic levels of chronic stress. Acute behavioral and physiological responses to sedation were strongly correlated with immune responses to vaccination. These results suggest that oral vaccination holds great promise as a tool for the conservation of apes and other endangered tropical wildlife. They also imply that vaccine and drug trials on other captive species need to better account for the effects of stress on immune response. PMID:28277549

  9. The immune system: a weapon of mass destruction invented by evolution to even the odds during the war of the DNAs

    PubMed Central

    2005-01-01

    Summary: Living systems operate under interactive selective pressures. Populations have the ability to anticipate the future by generating a repertoire of elements that cope with new selective pressures. If the repertoire of such elements were transcendental, natural selection could not operate because any one of them would be too rare. This is the problem that vertebrates faced in order to deal with a vast number of pathogens. The solution was to invent an immune system that underwent somatic evolution. This required a random repertoire that was generated somatically and divided the antigenic universe into combinatorials of determinants. As a result, it became virtually impossible for pathogens to escape recognition but the functioning of such a repertoire required two new regulatory mechanisms: 1) a somatic discriminator between Not-To-Be-Ridded (‘Self’) and To-Be-Ridded (‘Non-self’) antigens, and 2) a way to optimize the magnitude and choice of the class of the effector response. The principles governing this dual regulation are analyzed in the light of natural selection. PMID:12190919

  10. Detection of antigenic proteins expressed by lymphocystis virus as vaccine candidates in olive flounder, Paralichthys olivaceus (Temminck & Schlegel).

    PubMed

    Jang, H B; Kim, Y R; Cha, I S; Noh, S W; Park, S B; Ohtani, M; Hikima, J; Aoki, T; Jung, T S

    2011-07-01

    Although the major capsid proteins (MCPs) of lymphocystis disease virus (LCDV) have been characterized, little is known about the host-derived immune response to MCPs and other LCDV antigenic proteins. To identify antigenic proteins of LCDV that could be used as vaccine candidates in olive flounder, Paralichthys olivaceus, we analysed the viral proteins responsible for its virulence by applying immuno-proteomics. LCDV proteins were separated by one-dimensional gel electrophoresis, transferred to polyvinylidene difluoride membrane, and probed with homogeneous P. olivaceus antisera elicited by LCDV natural infection and vaccination with formalin-killed LCDV. Four immune-reactive proteins were obtained at 68-, 51-, 41- and 21 kDa using antisera collected from natural infection while two proteins at 51- and 21 kDa exhibited response to antisera from vaccinated fish, indicating that the latter two proteins have vaccine potential. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray MS/MS, the 51 and 21 kDa proteins were identified as MCP and an unknown protein, respectively. © 2011 Blackwell Publishing Ltd.

  11. Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration.

    PubMed

    Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog

    2015-10-01

    The present study reports the tetanus toxoid (TT)-loaded layer-by-layer nanoassemblies (layersomes) with enhanced protection, permeation, and presentation for comprehensive oral immunization. The stable and lyophilized TT-loaded layersomes were prepared by a thin-film hydration method followed by alternate layer-by-layer coating of an electrolyte. The developed system was assessed for in vitro stability of antigen and formulation, cellular uptake, ex vivo intestinal uptake, and immunostimulatory response using a suitable experimental protocol. Layersomes improved the stability in simulated biological media as well as protected the integrity/conformation and native 3D structure of TT as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence spectroscopy, respectively. The cell culture studies demonstrated a 3.8-fold higher permeation of layersomes in Caco-2 cells and an 8.5-fold higher uptake by antigen-presenting cells (RAW 264.7). The TT-loaded layersomes elicited a complete immunostimulatory profile consisting of higher systemic (serum IgG titer), mucosal (sIgA titer), and cellular (interleukin-2 (IL-2) and interferon-γ (IFN-γ) levels) immune response after peroral administration in mice. The modified TT inhibition assay further confirmed the elicitation of complete protective levels of anti-TT antibody (>0.1 IU/mL) by layersomes. In conclusion, the proposed strategy is expected to contribute significantly in the field of stable liposome technology for mass immunization through the oral route.

  12. Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology.

    PubMed

    Gu, Jiangyong; Li, Li; Wang, Dongmei; Zhu, Wei; Han, Ling; Zhao, Ruizhi; Xu, Xiaojie; Lu, Chuanjian

    2018-06-01

    Psoriasis vulgaris is a chronic inflammatory and immune-mediated skin disease. 44 metabonomics biomarkers were identified by high-throughput liquid chromatography coupled to mass spectrometry in our previous work, but the roles of metabonomics biomarkers in the pathogenesis of psoriasis is unclear. The metabonomics biomarker-enzyme network was constructed. The key metabonomics biomarkers and enzymes were screened out by network analysis. The binding affinity between each metabonomics biomarker and target was calculated by molecular docking. A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways. Long-chain fatty acids, phospholipids, Estradiol and NADH were the most important metabonomics biomarkers. Most key enzymes belonged hydrolase, thioesterase and acyltransferase. Six proteins (TNF-alpha, MAPK3, iNOS, eNOS, COX2 and mTOR) were extensively involved in inflammatory reaction, immune response and cell proliferation, and might be drug targets for psoriasis. PI3K-Akt signaling pathway and five other pathways had close correlation with the pathogenesis of psoriasis and could deserve further research. The inflammatory reaction, immune response and cell proliferation are mainly involved in psoriasis. Network pharmacology provide a new insight into the relationships between metabonomics biomarkers and the pathogenesis of psoriasis. KEY MESSAGES   • Network pharmacology was adopted to identify key metabonomics biomarkers and enzymes.   • Six proteins were screened out as important drug targets for psoriasis.   • A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways.

  13. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    PubMed

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  14. Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes

    PubMed Central

    Ehlers, Mario R.

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763

  15. Role of T Cells in Malnutrition and Obesity

    PubMed Central

    Gerriets, Valerie A.; MacIver, Nancie J.

    2014-01-01

    Nutritional status is critically important for immune cell function. While obesity is characterized by inflammation that promotes metabolic syndrome including cardiovascular disease and insulin resistance, malnutrition can result in immune cell defects and increased risk of mortality from infectious diseases. T cells play an important role in the immune adaptation to both obesity and malnutrition. T cells in obesity have been shown to have an early and critical role in inducing inflammation, accompanying the accumulation of inflammatory macrophages in obese adipose tissue, which are known to promote insulin resistance. How T cells are recruited to adipose tissue and activated in obesity is a topic of considerable interest. Conversely, T cell number is decreased in malnourished individuals, and T cells in the setting of malnutrition have decreased effector function and proliferative capacity. The adipokine leptin, which is secreted in proportion to adipocyte mass, may have a key role in mediating adipocyte-T cell interactions in both obesity and malnutrition, and has been shown to promote effector T cell function and metabolism while inhibiting regulatory T cell proliferation. Additionally, key molecular signals are involved in T cell metabolic adaptation during nutrient stress; among them, the metabolic regulator AMP kinase and the mammalian target of rapamycin have critical roles in regulating T cell number, function, and metabolism. In summary, understanding how T cell number and function are altered in obesity and malnutrition will lead to better understanding of and treatment for diseases where nutritional status determines clinical outcome. PMID:25157251

  16. Relationship Among Viremia/Viral Infection, Alloimmunity, and Nutritional Parameters in the First Year After Pediatric Kidney Transplantation.

    PubMed

    Ettenger, R; Chin, H; Kesler, K; Bridges, N; Grimm, P; Reed, E F; Sarwal, M; Sibley, R; Tsai, E; Warshaw, B; Kirk, A D

    2017-06-01

    The Immune Development in Pediatric Transplantation (IMPACT) study was conducted to evaluate relationships among alloimmunity, protective immunity, immune development, physical parameters, and clinical outcome in children undergoing kidney transplantation. We prospectively evaluated biopsy-proven acute rejection (BPAR), de novo donor-specific antibody (dnDSA) formation, viremia, viral infection, T cell immunophenotyping, and body mass index (BMI)/weight Z scores in the first year posttransplantation in 106 pediatric kidney transplant recipients. Outcomes were excellent with no deaths and 98% graft survival. Rejection and dnDSAs occurred in 24% and 22%, respectively. Pretransplant cytomegalovirus (CMV) and Epstein-Barr virus (EBV) serologies and subsequent viremia were unrelated to BPAR or dnDSA. Viremia occurred in 73% of children (EBV, 34%; CMV, 23%; BMK viremia, 23%; and JC virus, 21%). Memory lymphocyte phenotype at baseline was not predictive of alloimmune complications. Patients who developed viral infection had lower weight (-2.1) (p = 0.028) and BMI (-1.2) (p = 0.048) Z scores at transplantation. The weight difference persisted to 12 months compared with patients without infection (p = 0.038). These data indicate that there is a high prevalence of viral disease after pediatric kidney transplantation, and underweight status at transplantation appears to be a risk factor for subsequent viral infection. The occurrence of viremia/viral infection is not associated with alloimmune events. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Dosing and efficacy of glutamine supplementation in human exercise and sport training.

    PubMed

    Gleeson, Michael

    2008-10-01

    Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans.

  18. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice.

    PubMed

    Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon

    2017-03-21

    Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.

  19. PubMed Central

    Capanna, A.; Gervasi, G.; Terracciano, E.; Zaratti, L.

    2017-01-01

    Summary Routine mass immunization programs have contributed greatly to the control of infectious diseases and to the improvement of the health of populations. Over the last decades, the rise of antivaccination movements has threatened the advances made in this field to the point that vaccination coverage rates have decreased and outbreaks of vaccine-preventable diseases have resurfaced. One of the critical points of the immunization debate revolves around the level of risk attributable to vaccination, namely the possibility of experiencing serious and possibly irreversible adverse events. Unfortunately, the knowledge about adverse events, especially rare ones, is usually incomplete at best and the attribution of a causal relationship with vaccinations is subject to significant uncertainties. The aim of this paper is to provide a narrative review of seven rare or very rare adverse events: hypotonic hyporesponsive episode, multiple sclerosis, apnea in preterm newborns, Guillain-Barré syndrome, vasculitides, arthritis/ arthralgia, immune thrombocytopenic purpura. We have selected these adverse events based on our experience of questions asked by health care workers involved in vaccination services. Information on the chosen adverse events was retrieved from Medline using appropriate search terms. The review is in the form of questions and answers for each adverse event, with a view to providing useful and actionable concepts while not ignoring the uncertainties that remain. We also highlight in the conclusion possible future improvements to adverse event detection and assessment that could help identify individuals at higher risk against the probable future backdrop of ever-greater abandonment of compulsory vaccination policies. PMID:28515627

  20. HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome.

    PubMed

    Kraemer, Thomas; Celik, Alexander A; Huyton, Trevor; Kunze-Schumacher, Heike; Blasczyk, Rainer; Bade-Döding, Christina

    2015-01-01

    The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E (∗) 01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E (∗) 01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E (∗) 01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.

Top