Sample records for mass loading capacity

  1. Predicting marching capacity while carrying extremely heavy loads.

    PubMed

    Koerhuis, Claudy L; Veenstra, Bertil J; van Dijk, Jos J; Delleman, Nico J

    2009-12-01

    The objective of this study was to establish the best prediction for endurance time of combat soldiers marching with extremely heavy loads. It was hypothesized that loads relative to individual characteristics (% maximal load carry capacity [MLCC], % body mass, % lean body mass) would better predict endurance time than load itself. Twenty-three male combat soldiers participated. MLCC was determined by increasing the load by 7.5 kg every 4 minutes until exhaustion. The marching velocity and gradient were 3 km.h(-1) and 5%, respectively. Endurance time was determined carrying 70, 80, and 90% of MLCC. MLCC was on average 102.6 kg +/- 11.6. Load expressed as % MLCC was the best predictor for endurance time (R2 = 0.45). Load expressed as % body mass, as % lean body mass, and absolute load predicted endurance time less well (R2 = 0.30, R2 = 0.24, and R2 = 0.23, respectively). On the basis of these results, it is recommended to assess the MLCC of individual combat soldiers.

  2. Ontogeny of intestinal safety factors: lactase capacities and lactose loads.

    PubMed

    O'Connor, T P; Diamond, J

    1999-03-01

    We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.

  3. Impact of kinetic mass transfer on free convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  4. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    NASA Astrophysics Data System (ADS)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs' reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).

  5. [Physical work capacity in coal miners and industrial workers].

    PubMed

    Benavides, R

    1992-10-01

    The aerobic work capacity of 220 coal miners aged 22 to 63 years with a high physical work load and 78 industrial workers aged 19 to 58 years with a relatively light work load was measured to observe if there was a relationship between the work load of these subjects and their aerobic work capacity. All the subjects were subjected to a medical examination, spirometry, chest x Rays and anthropometric measurements. Aerobic work capacity was indirectly estimated extrapolating pulse rates obtained al submaximal work loads in a bicycle ergometer to the calculated maximal cardiac frequency for age. Aerobic work capacity was not different between coal miners and industrial workers, either measured as absolute values (2.43 +/- 0.41 and 2.5 +/- 0.49 l/min respectively) or as relative values (43.2 +/- 6.9 and 43.4 +/- 8.2 ml/kg lean body mass respectively). These values decreased with age in the same proportion in both groups (0.24 l/min per decade). Lean body mass was significantly higher in industrial workers and decreased significantly with age only in coal miners. Considering published energy requirements for mine labors, none of the studied miners should work as digger and a high proportion of the other workers would be exposed to hazardous work loads to their health. The fact that over 50% of these subjects can efficiently fulfill their jobs may indicate that they have a high anaerobic work capacity. This hypothesis needs confirmation with future studies.

  6. Body composition indices of a load-capacity model: gender- and BMI-specific reference curves.

    PubMed

    Siervo, Mario; Prado, Carla M; Mire, Emily; Broyles, Stephanie; Wells, Jonathan C K; Heymsfield, Steven; Katzmarzyk, Peter T

    2015-05-01

    Fat mass (FM) and fat-free mass (FFM) are frequently measured to define body composition phenotypes. The load-capacity model integrates the effects of both FM and FFM to improve disease-risk prediction. We aimed to derive age-, gender- and BMI-specific reference curves of load-capacity model indices in an adult population (≥18 years). Cross-sectional study. Dual-energy X-ray absorptiometry was used to measure FM, FFM, appendicular skeletal muscle mass (ASM) and truncal fat mass (TrFM). Two metabolic load-capacity indices were calculated: ratio of FM (kg) to FFM (kg) and ratio of TrFM (kg) to ASM (kg). Age-standardised reference curves, stratified by gender and BMI (<25.0 kg/m2, 25.0-29.9 kg/m2, ≥30.0 kg/m2), were constructed using an LMS approach. Percentiles of the reference curves were 5th, 15th, 25th, 50th, 75th, 85th and 95th. Secondary analysis of data from the 1999-2004 National Health and Nutrition Examination Survey (NHANES). The population included 6580 females and 6656 males. The unweighted proportions of obesity in males and females were 25.5 % and 34.7 %, respectively. The average values of both FM:FFM and TrFM:ASM were greater in female and obese subjects. Gender and BMI influenced the shape of the association of age with FM:FFM and TrFM:ASM, as a curvilinear relationship was observed in female and obese subjects. Menopause appeared to modify the steepness of the reference curves of both indices. This is a novel risk-stratification approach integrating the effects of high adiposity and low muscle mass which may be particularly useful to identify cases of sarcopenic obesity and improve disease-risk prediction.

  7. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

    PubMed

    Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

  8. Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management

    NASA Astrophysics Data System (ADS)

    Tsao, J.; Li, J.; Chou, C.; Tung, C.

    2009-12-01

    Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.

  9. Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes.

    PubMed

    Shi, Liurong; Pang, Chunlei; Chen, Shulin; Wang, Mingzhan; Wang, Kexin; Tan, Zhenjun; Gao, Peng; Ren, Jianguo; Huang, Youyuan; Peng, Hailin; Liu, Zhongfan

    2017-06-14

    Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm 2 . Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell by ∼15%. We believe that the results strongly imply the important role of CVD-grown vertical graphene encapsulation in promoting the commercial application of silicon-based anodes.

  10. Study on casing treatment and stator matching on multistage fan

    NASA Astrophysics Data System (ADS)

    Wu, Chuangliang; Yuan, Wei; Deng, Zhe

    2017-10-01

    Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.

  11. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.

    PubMed

    Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W

    2017-05-10

    Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.

  12. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel

    2014-10-01

    The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.

  13. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  14. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE PAGES

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  15. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  16. Effect of added mass on treadmill performance and pulmonary function.

    PubMed

    Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R

    2015-04-01

    Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.

  17. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    PubMed

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  18. Technical and Operational Feasibility Study on Humidity Control within the U.S. Air Force Aircraft Service Shelter. Aircraft Service Shelter is an Integral Part of the F-16 Maintenance Complex

    DTIC Science & Technology

    1987-02-27

    capacity, as calculated below, was added to the high tempierature, high humzidity load. The following new parameter values were used. K2 - sass flow...was added to the low temperature load. The following new parameter values were used. SM5 - mass flow rate for 4 hour "pull down" flow rate Q - 1,280...manufactured from the same teCnical data pdciage wi tn no essential differences and that capacity data for the A.R.E. heat pump wil. closely approximate the

  19. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  20. Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos.

    PubMed

    Higham, Timothy E; Russell, Anthony P; Niklas, Karl J

    2017-06-01

    The remarkable adhesive capabilities of geckos have garnered attention from scientists and the public for centuries. Geckos are known to have an adhesive load-bearing capacity far in excess (by 100-fold or more) of that required to support their body mass or accommodate the loading imparted during maximal locomotor acceleration. Few studies, however, have investigated the ecological contexts in which geckos use their adhesive system and how this may influence its properties. Here we develop a modelling framework to assess whether their prodigious adhesive capacity ever comes under selective challenge. Our investigation is based upon observations of escape-induced aerial descents of canopy-dwelling arboreal geckos that are rapidly arrested by clinging to leaf surfaces in mid-fall. We integrate ecological observations, adhesive force measurements, and body size and shape measurements of museum specimens to conduct simulations. Using predicted bending mechanics of petioles and leaf midribs, we find that the drag coefficient of the gecko, the size of the gecko and the size of the leaf determine impact forces. Regardless of the landing surface, safety factors for geckos range from a maximum of just over 10 to a minimum of well under one, which would be the point at which the adhesive system fails. In contrast to previous research that intimates that gecko frictional adhesive capacity is excessive relative to body mass, we demonstrate that realistic conditions in nature may result in frictional capacity being pushed to its limit. The rapid arrest of the lizard from its falling velocity likely results in the maximal loading to which the adhesive system is exposed during normal activities. We suggest that such activities might be primary determinants in driving their high frictional adhesive capacity. © 2017 The Author(s).

  1. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.

    PubMed

    Marcos, Marco A; Cabaleiro, David; Guimarey, María J G; Comuñas, María J P; Fedele, Laura; Fernández, Josefa; Lugo, Luis

    2017-12-29

    This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol -1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.

  2. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets

    PubMed Central

    Marcos, Marco A.; Guimarey, María J. G.; Comuñas, María J. P.

    2017-01-01

    This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number. PMID:29286324

  3. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.

  4. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  5. Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

  6. Pie-like electrode design for high-energy density lithium–sulfur batteries

    PubMed Central

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen (David)

    2015-01-01

    Owing to the overwhelming advantage in energy density, lithium–sulfur (Li–S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a ‘pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers ‘filling' and amino-functionalized graphene ‘crust', the free-standing paper electrode (S mass loading: 3.6 mg cm−2) delivers high specific capacity of 1,314 mAh g−1 (4.7 mAh cm−2) at 0.1 C (0.6 mA cm−2) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm−2 by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm−2. PMID:26608228

  7. Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole

    PubMed Central

    Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping

    2015-01-01

    Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals. PMID:25747124

  8. Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole

    NASA Astrophysics Data System (ADS)

    Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping

    2015-03-01

    Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals.

  9. Analysis of the Thermal Loads on the KSTAR Cryogenic System

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Oh, Y. K.; Kim, W. C.; Park, Y. M.; Lee, Y. J.; Jin, S. B.; Sa, J. W.; Choi, C. H.; Cho, K. W.; Bak, J. S.; Lee, G. S.

    2004-06-01

    A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

  10. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.

    PubMed

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Xia, Jing; Wang, Xianyou; Xiang, Kaixiong; Zeng, Peng; Zhang, Yan; Jamil, Sidra

    2018-04-25

    A high sulfur loading cathode is the most crucial component for lithium-sulfur batteries (LSBs) to obtain considerable energy density for commercialization applications. The major challenges associated with high sulfur loading electrodes are poor material utilization caused via the nonconductivity of the charged product (S) and the discharged product (Li 2 S), poor stability arisen from dissolution of lithium polysulfides (LiPSs) into most organic electrolytes and pulverization, and structural damage of the electrode caused by large volumetric expansion. A multifunctional synergistic composite enables ultrahigh sulfur content for advanced LSBs, which comprises the sulfur particle encapsulated with an ion-selective polymer with conductive carbon nanotubes and dispersed around Magnéli phase Ti 4 O 7 (MS-3) by the bottom-up method. The ion-selective polymer provides a physical shield and electrostatic repulsion against the shuttling of polysulfides with negative charge, whereas it can permit the transmission of lithium ion (Li + ) through the polymer membrane, and the carbon nanotubes twined around the sulfur promote electronic conductivity and sulfur utilization as well as strong chemical adsorption of LiPSs by means of Ti 4 O 7 . Because of this hierarchical construction, the cathode possesses a lofty final sulfur loading of 72% and large sulfur areal mass loading of 3.56 mg cm -2 , which displays the large areal specific capacity of 4.22 mA h cm -2 . In the same time, it can provide excellent cyclic performance with the corresponding capacity attenuation ratio of 0.08% per cycle at 0.5 C after 300 cycles. Especially, while sulfur areal mass loading is sharply enhanced to 5.11 mg cm -2 , the MS-3 composite exhibits a large initial areal capacity of 5.04 mA h cm -2 and still keeps a high reversible capacity of 696 mA h g -1 at 300th cycle even at a 1.0 C. The design of high sulfur content cathodes is a viable approach for boosting practical commercialized application of LSBs.

  11. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for transportation and no loss of contents. (2) For flexible Large Packagings, there may be no deterioration which renders the Large Packaging unsafe for transportation and no loss of contents. (3) For the... of their capacity and to their maximum net mass, with the load being evenly distributed. (c) Test...

  12. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for transportation and no loss of contents. (2) For flexible Large Packagings, there may be no deterioration which renders the Large Packaging unsafe for transportation and no loss of contents. (3) For the... of their capacity and to their maximum net mass, with the load being evenly distributed. (c) Test...

  13. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  14. Some Remarks on Foundation Pile Testing Procedures

    NASA Astrophysics Data System (ADS)

    Rybak, Jarosław

    2017-10-01

    This work presents the review of pile capacity testing techniques. In an overview, the key points in pile designing are: determination of the appropriate computational schemes, reliable data on loads and the properties of structural materials (in particular, of the soil mass, which is marked by the greatest variability). The procedure of constructing a pile foundation should include: carrying out soil tests in the scope that ensures safe designing, selecting a piling technology that is relevant both to geotechnical conditions and expected loads, drafting a piling design together with the design of load tests, setting up a testing station for further load tests, static and/or dynamic tests of pile load capacity, preceded by supplementary soil tests when the conditions of test pile installation fail to comply with the design assumptions or when the pile length exceeds the depth of the previously investigated soil, making documentation of load capacity tests (with an additional correction of the piling design), the actual piling (ongoing analysis of pile driving logs and, if necessary, testing the piles’ integrity), drawing up the as-built documentation. Unfortunately, the design is corrected after the load test have been conducted only if the piles fail to show the designed bearing capacity. The designer is then obliged to revise the design assumptions on the basis of tests results. If the test results account for the a greater bearing capacity than necessary and it would be recommendable to limit the extent of the planned (i.e. set out in the contract) piling works, usually neither the contractor nor the designer, nor even the Construction Site Supervisor, acting for the benefit of the Investor, are willing to take on the responsibility for reducing the scope of the piling works. The necessity of conducting additional control tests before and during the implementation of the construction project is often treated by the investors as an attempt at extorting extra financial resources or at delaying the project implementation. The designer, however, has no other possibility (and often - he/she does not have required qualifications) to verify the obtained test results.

  15. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles.

    PubMed

    Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M

    2015-11-10

    Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity. Copyright © 2015. Published by Elsevier B.V.

  16. 49 CFR 178.816 - Topple test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be no loss of contents. A slight discharge (e.g., from closures or stitch holes) upon impact is not considered to be a failure, provided no further leakage occurs. [Amdt. 178-103, 59 FR 38074, July 26, 1994... than 95 percent of its capacity and to its maximum net mass, with the load being evenly distributed. (c...

  17. 49 CFR 178.816 - Topple test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be no loss of contents. A slight discharge (e.g., from closures or stitch holes) upon impact is not considered to be a failure, provided no further leakage occurs. [Amdt. 178-103, 59 FR 38074, July 26, 1994... than 95 percent of its capacity and to its maximum net mass, with the load being evenly distributed. (c...

  18. 49 CFR 178.816 - Topple test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For all flexible IBCs, there may be no loss of contents. A slight discharge (e.g., from closures or stitch holes) upon impact is not considered to be a failure, provided no further leakage occurs. [Amdt... must be filled to not less than 95 percent of its capacity and to its maximum net mass, with the load...

  19. 49 CFR 178.816 - Topple test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be no loss of contents. A slight discharge (e.g., from closures or stitch holes) upon impact is not considered to be a failure, provided no further leakage occurs. [Amdt. 178-103, 59 FR 38074, July 26, 1994... than 95 percent of its capacity and to its maximum net mass, with the load being evenly distributed. (c...

  20. 49 CFR 178.816 - Topple test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be no loss of contents. A slight discharge (e.g., from closures or stitch holes) upon impact is not considered to be a failure, provided no further leakage occurs. [Amdt. 178-103, 59 FR 38074, July 26, 1994... than 95 percent of its capacity and to its maximum net mass, with the load being evenly distributed. (c...

  1. Functionalized graphene quantum dots loaded with free radicals combined with liquid chromatography and tandem mass spectrometry to screen radical scavenging natural antioxidants from Licorice and Scutellariae.

    PubMed

    Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen

    2014-12-01

    A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Opposite effects of capacity load and resolution load on distractor processing.

    PubMed

    Zhang, Weiwei; Luck, Steven J

    2015-02-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.

  3. Opposite Effects of Capacity Load and Resolution Load on Distractor Processing

    PubMed Central

    Zhang, Weiwei; Luck, Steven J.

    2014-01-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573

  4. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation

    NASA Astrophysics Data System (ADS)

    Guan, J.; Cheng, P.; Huang, S. J.; Wu, J. M.; Li, Z. H.; You, X. D.; Hao, L. M.; Guo, Y.; Li, R. X.; Zhang, H.

    The present work investigates the feasibility of fabricating chitosan (CS)-levofloxacin (LOF) nanoparticles by ionotropic gelation technology. An orthogonal experiment was designed to optimize its preparing parameters and multi-index comprehensive weighed score analysis method was used to study the effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), mass ratio of CS to TPP, and mass ratio of CS to LOF on the properties of nanoparticles. The particles prepared under optimal condition of 2 mg/ml CS concentration, 2 mg/ml TPP concentration, 0.5:1 mass ratio of oil to water and 4:1 mass ratio of CS to TPP had 140 nm diameter, 0.95 span, 6.13% loading capacity (LC) and 24.91% encapsulation efficiency (EE). In vitro release profile showed that LOF released fast initially and then slowly with T90 occurring at 76.5 h. Future studies should focus on antibacterial and biocompatible properties in order to evaluate its potential as sustainable delivery system.

  5. Facile synthesis of a mesoporous Co3O4 network for Li-storage via thermal decomposition of an amorphous metal complex.

    PubMed

    Wen, Wei; Wu, Jin-Ming; Cao, Min-Hua

    2014-11-07

    A facile strategy is developed for mass fabrication of porous Co3O4 networks via the thermal decomposition of an amorphous cobalt-based complex. At a low mass loading, the achieved porous Co3O4 network exhibits excellent performance for lithium storage, which has a high capacity of 587 mA h g(-1) after 500 cycles at a current density of 1000 mA g(-1).

  6. 49 CFR 237.71 - Determination of bridge load capacities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Determination of bridge load capacities. 237.71... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRIDGE SAFETY STANDARDS Capacity of Bridges § 237.71 Determination of bridge load capacities. (a) Each track owner shall determine the load capacity of each of its...

  7. 49 CFR 237.71 - Determination of bridge load capacities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Determination of bridge load capacities. 237.71... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRIDGE SAFETY STANDARDS Capacity of Bridges § 237.71 Determination of bridge load capacities. (a) Each track owner shall determine the load capacity of each of its...

  8. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells.

    PubMed

    Lu, Ran; Wang, Caiyun; Wang, Xin; Wang, Yuji; Wang, Na; Chou, Joshua; Li, Tao; Zhang, Zhenting; Ling, Yunhan; Chen, Su

    2018-01-01

    Modified titanium (Ti) substrates with titanium dioxide (TiO 2 ) nanotubes have broad usage as implant surface treatments and as drug delivery systems. To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H 2 -TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H 2 -TNTs were considerably enhanced as compared with the properties of the air-TNTs ( P <0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H 2 -TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H 2 -TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups ( P <0.05). We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.

  9. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  10. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors.

    PubMed

    Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo

    2017-09-01

    The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 49 CFR 172.322 - Marine pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... freight container or portable tank loaded on a motor vehicle or rail car. This mark may be displayed in... L (1.3 gallons) or less for liquids; or (ii) A net mass of 5 kg (11 pounds) or less for solids (2...) 5 kg (11 pounds) or less net capacity for solids. (3) Except for transportation by vessel, on a bulk...

  12. 49 CFR 172.322 - Marine pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... freight container or portable tank loaded on a motor vehicle or rail car. This mark may be displayed in... L (1.3 gallons) or less for liquids; or (ii) A net mass of 5 kg (11 pounds) or less for solids (2...) 5 kg (11 pounds) or less net capacity for solids. (3) Except for transportation by vessel, on a bulk...

  13. Innovative lightweight substrate for stable optical benches and mirrors

    NASA Astrophysics Data System (ADS)

    Rugi Grond, E.; Herren, A.; Mérillat, S.; Fermé, J. J.

    2017-11-01

    High precision space optics, such as spectrometers, relay optics, and filters, require ultra stable, lightweight platforms. These equipped platforms have on one side to survive the launch loads, on the other side they have to maintain their stability also under the varying thermal loads occurring in space. Typically such platforms have their equipment (prisms, etalons, beam expanders, etc.) mounted by means of classical bonding, hydro-catalytic bonding or optical contacting. Therefore such an optical bench requires to provide an excellent flatness, minimal roughness and is usually made of the same material as the equipment it carries (glass, glass ceramics). For space systems, mass is a big penalty, therefore such optical platforms are in most cases light weighted by means of machining features (i.e. pockets). Besides of being not extremely mass efficient, such pockets reduce the load carrying capability of the base material significantly. The challenge for Oerlikon Space, in this context, was to develop, qualify and deliver such optical benches, providing a substantial mass reduction compared to actual light weighted systems, while maintaining most of the full load carrying capacity of the base material. Additionally such a substrate can find an attractive application for mirror substrates. The results of the first development and of the first test results will be presented.

  14. Biofiltration: Fundamentals, design and operations principles and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, W.J.; Loehr, R.C.

    1997-06-01

    Biofiltration is a biological air pollution control technology for volatile organic compounds (VOCs). This paper summarizes the fundamentals, design and operation, and application of the process. Biofiltration has been demonstrated to be an effective technology for VOCs from many industries. Large and full-scale systems are in use in Europe and the US. With proper design and operation, VOC removal efficiencies of 95--99% have been achieved. Important parameters for design and performance are empty-bed contact time, gas surface loading, mass loading, elimination capacity, and removal efficiency. Key design and operation factors include chemical and media properties, moisture, pH, temperature, nutrient availability,more » gas pretreatment, and variations in loading.« less

  15. Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest

    PubMed Central

    Hastings, Jeffrey L.; Krainski, Felix; Snell, Peter G.; Pacini, Eric L.; Jain, Manish; Bhella, Paul S.; Shibata, Shigeki; Fu, Qi; Palmer, M. Dean

    2012-01-01

    This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of −6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (−10 ± 22%, P = 0.169) but not with exercise (−14 ± 43%, P = 0.047) or sedentary bed rest (−24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance. PMID:22345434

  16. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    PubMed

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities.

  17. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    PubMed

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  18. Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Assresahegn, Birhanu Desalegn; Ossonon, Benjamin Diby; Bélanger, Daniel

    2018-07-01

    A silicon/graphene composite anode for lithium-ion batteries was fabricated with a high loading of Si by combining surface-modified silicon with graphene. The Si nanopowder was modified by a binder-like organic moeity (1-(bromoethyl) benzene and polyacrylic acid) grafted on the surface of hydrogenated silicon by diazonium chemistry and surface initiated atom transfer radical polymerization. The graphene was produced by electrochemical exfoliation of natural graphite. The optimum composite electrode prepared without a binder, with silicon loading as high as 85 wt% and a mass loading of 1.1 ± 0.1 mg cm-2 yielded a discharge capacity of 1020 mAh per gram of electrode mass (or 1200 mAh per gram of Si) after 586 charge/discharge cycles at a rate of 3.4 A g-1. It showed first cycle Coulombic efficiency of more than 90% in the absence of electrolyte additives at a current rate of 0.05 A g-1.

  19. Material nature versus structural nurture: the embodied carbon of fundamental structural elements.

    PubMed

    Purnell, P

    2012-01-03

    The construction industry is under considerable legislative pressure to reduce its CO(2) emissions. The current focus is on operational CO(2) emissions, but as these are compulsorily reduced, the embodied CO(2) of structural components, overwhelmingly attributable to the material from which they are manufactured, will become of greater interest. Choice of structural materials for minimal embodied CO(2) is currently based either on subjective narrative arguments, or values of embodied CO(2) per unit volume or mass. Here we show that such arguments are invalid. We found that structural design parameters (dimensions, section choice, and load capacity) for fundamental structural components (simple beams and columns) are at least as important as material choice with regard to their effect on embodied CO(2) per unit load capacity per unit dimension, which can vary over several decades within and between material choices. This result demonstrates that relying on apparently objective analyses based on embodied CO(2) per unit volume or mass will not lead to minimum carbon solutions; a formal definition of the correct functional unit for embodied CO(2) must be used. In short, there is no such thing as a green structural material.

  20. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings

  1. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.

  2. Source Listings for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wibur

    2005-01-01

    This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.

  3. Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading

    NASA Astrophysics Data System (ADS)

    Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie

    2017-09-01

    Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.

  4. Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera

    PubMed Central

    2013-01-01

    Background Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. Release from load-carrying constraints related to foraging, which took place with the evolution of food load manipulation ability, has selected against the maintenance of a powerful flight apparatus. This could be the case since investment in flight muscles may have to be traded against other life-history traits, such as reproductive investment. PMID:23805850

  5. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  6. Air Force Research Laboratory Resident Associateship Program Continuation

    DTIC Science & Technology

    2014-12-04

    2011-7/17/2012 United States Received Veremyev, Alexander Fedorovich Pasiliao, Eduardo Lewis 8/1/2012-7/31/2013 Russia Sensors Directorate Aga...mass and damping on their modal characteristics. 5 Aerodynamic loads were estimated from the wind -tunnel test data, where the angle of attack of the... Wireless Networks; Throughput Optimization for Cognitive Radio Network with Slowly Varying Channels. 2 Capacity Optimization of MIMO Links with

  7. MO-F-CAMPUS-J-04: Radiation Heat Load On the MR System of the Elekta Atlantic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Towe, S; Roberts, D; Overweg, J

    2015-06-15

    Purpose: The Elekta Atlantic system combines a digital linear accelerator system with a 1.5T Philips MRI machine.This study aimed to assess the energy deposited within the cryostat system when the radiation beam passes through the cryostat. The cryocooler on the magnet has a cooling capacity which is about 1 Watt in excess of the cryogenic heat leak into the magnet’s cold mass. A pressure-controlled heater inside the magnet balances the excess refrigeration power such that the helium pressure in the tank is kept slightly above ambient air pressure. If radiation power is deposited in the cold mass then this heatermore » will need less power to maintain pressure equilibrium and if the radiation heat load exceeds the excess cryocooler capacity the pressure will rise. Methods: An in-house CAD based Monte Carlo code based on Penelope was used to model the entire MR-Linac system to quantify the heat load on the magnet’s cold mass. These results were then compared to experimental results obtained from an Elekta Atlantic system installed in UMC-Utrecht. Results: For a field size of 25 cm x 22 cm and a dose rate of 107 mu.min-1, the energy deposited by the radiation beam led to a reduction in heater power from 1.16 to 0.73 W. Simulations predicted a reduction to 0.69 W which is in good agreement. For the worst case field size (largest) and maximum dose rate the cryostat cooler capacity was exceeded. This resulted in a pressure rise within the system but was such that continuous irradiation for over 12 hours would be required before the magnet would start blowing off helium. Conclusion: The study concluded that the Atlantic system does not have to be duty cycle restricted, even for the worst case non-clinical scenario and that there are no adverse effects on the MR system. Stephen Towe and David Roberts Both work for Elekta; Ezra Van Lanen works for Philips Healthcare; Johan Overweg works for Philips Innovative Technologies.« less

  8. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes.

    PubMed

    Sun, Zhaowei; Jin, Song; Jin, Hongchang; Du, Zhenzhen; Zhu, Yanwu; Cao, Anyuan; Ji, Hengxing; Wan, Li-Jun

    2018-06-19

    There has been a renewed interest in using lithium (Li) metal as an anode material for rechargeable batteries owing to its high theoretical capacity of 3860 mA h g -1 . Despite extensive research, modifications to effectively inhibit Li dendrite growth still result in decreased Li loading and Li utilization. As a result, real capacities are often lower than values expected, if the total mass of the electrode is taken into consideration. Herein, a lightweight yet mechanically robust carbon nanotube (CNT) paper is demonstrated as a freestanding framework to accommodate Li metal with a Li mass fraction of 80.7 wt%. The highly conductive network made of sp2-hybridized carbon effectively inhibits formation of Li dendrites and affords a favorable coulombic efficiency of >97.5%. Moreover, the Li/CNT electrode retains practical areal and gravimetric capacities of 10 mA h cm -2 and 2830 mA h g -1 (vs the mass of electrode), respectively, with 90.9% Li utilization for 1000 cycles at a current density of 10 mA cm -2 . It is demonstrated that the robust and expandable nature is a distinguishing feature of the CNT paper as compared to other 3D scaffolds, and is a key factor that leads to the improved electrochemical performance of the Li/CNT anodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Elevated Susceptibility to Diabetes in India: An Evolutionary Perspective

    PubMed Central

    Wells, Jonathan C. K.; Pomeroy, Emma; Walimbe, Subhash R.; Popkin, Barry M.; Yajnik, Chittaranjan S.

    2016-01-01

    India has rapidly become a “diabetes capital” of the world, despite maintaining high rates of under-nutrition. Indians develop diabetes at younger age and at lower body weights than other populations. Here, we interpret these characteristics in terms of a “capacity–load” model of glucose homeostasis. Specifically, we assume that glycemic control depends on whether the body’s “metabolic capacity,” referring to traits, such as pancreatic insulin production and muscle glucose clearance, is able to resolve the “metabolic load” generated by high levels of body fat, high dietary glycemic load, and sedentary behavior. We employ data from modern cohorts to support the model and the interpretation that elevated diabetic risk among Indian populations results from the high metabolic load imposed by westernized lifestyles acting on a baseline of low metabolic capacity. We attribute this low metabolic capacity to the low birth weight characteristic of Indian populations, which is associated with short stature and low lean mass in adult life. Using stature as a marker of metabolic capacity, we review archeological and historical evidence to highlight long-term declines in Indian stature associated with adaptation to several ecological stresses. Underlying causes may include increasing population density following the emergence of agriculture, the spread of vegetarian diets, regular famines induced by monsoon failure, and the undermining of agricultural security during the colonial period. The reduced growth and thin physique that characterize Indian populations elevate susceptibility to truncal obesity, and increase the metabolic penalties arising from sedentary behavior and high glycemic diets. Improving metabolic capacity may require multiple generations; in the meantime, efforts to reduce the metabolic load will help ameliorate the situation. PMID:27458578

  10. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  11. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents.

    PubMed

    Riley, Brian J; Kroll, Jared O; Peterson, Jacob A; Matyáš, Josef; Olszta, Matthew J; Li, Xiaohong; Vienna, John D

    2017-09-27

    In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I 2 (g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag 0 particles were added by soaking the aerogels in aqueous AgNO 3 solutions followed by drying and Ag + reduction under H 2 /Ar to form Ag 0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag + . During the Ag + -impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag 0 -functionalized Na-Al-Si-O aerogels were >0.5 m I m s -1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag 0 -functionalized Al-Si-O aerogel was 0.31 m I m s -1 . The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.

  12. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2003-04-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  13. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.

    PubMed

    Li, Harbin; McNulty, Steven G

    2007-10-01

    Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Fryxell, Glen E.; Robinson, Matthew J.

    This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with iodine. This dry-air aging simulated the impact of long-term exposure to process gases during process idling. The 6-month aged sample exhibited an iodine sorption capacity of 32 mass%, which was 9 mass % lower than that for an un-aged Ag0-functionalized silica aerogel. In an attempt to understand this decrease in sorption capacity, we characterized physical properties of the agedmore » samples with Brunauer-Emmett-Teller (BET) nitrogen adsorption, X-ray diffraction (XRD), and high resolution scanning electron microscopy (SEM). The results showed no impact of aging on the aerogel microstructure or the silver nanoparticles in the aerogel, including their spatial distribution and morphology.« less

  15. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  16. Load reduction test method of similarity theory and BP neural networks of large cranes

    NASA Astrophysics Data System (ADS)

    Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening

    2016-01-01

    Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, O.L.

    A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle,more » attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.« less

  18. Forced guidance and distribution of practice in sequential information processing.

    NASA Technical Reports Server (NTRS)

    Decker, L. R.; Rogers, C. A., Jr.

    1973-01-01

    Distribution of practice and forced guidance were used in a sequential information-processing task in an attempt to increase the capacity of human information-processing mechanisms. A reaction time index of the psychological refractory period was used as the response measure. Massing of practice lengthened response times while forced guidance shortened them. Interpretation was in terms of load reduction upon the response-selection stage of the information-processing system.-

  19. Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries.

    PubMed

    Shan, Xinyuan; Zhang, Shen; Zhang, Na; Chen, Yujin; Gao, Hong; Zhang, Xitian

    2018-01-15

    Three-dimensional (3D) MoS 2 @carbon fibers (CFs) hierarchical architectures are successfully synthesized via a simple hydrothermal method and subsequent annealing. MoS 2 nanoflakes are grown on the twine carbon fibers of the carbonized waste cotton cloth. The twine CFs can provide a short diffusion path for ions in electrolyte, enhance the specific surface area, and improve the conductivity of the 3D MoS 2 @CFs hierarchical architectures with high mass loading of 4.4mgcm -2 . The 3D MoS 2 @CFs hierarchical architectures as the electrode material can achieve a high reversible areal capacity (5.2mAhcm -2 at 2.5mAcm -2 ) and exhibit an excellent rate performance. In addition, CFs are prepared by simply carbonizing the waste cotton and then used as carbon source, which is low-cost and eco-friendly. We also found that the Mo nanoparticles produced during the charge/discharge process exist in the hierarchical architectures during cycling and can improve the conductivity of the entire system as well as the cycling stability. Therefore, MoS 2 @CFs nanocomposites as electrode materials manifest a significant application potential for high-performance Li-ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The role of lean body mass and physical activity in bone health in children.

    PubMed

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p < 0.05), while habitual weight-bearing PA positively influenced BMC in boys (p < 0.05). The effect of muscle in bone was not determined by PA and fitness score did not explain bone variability. Femoral neck was the bone site more closely associated with mechanical loading factors; boys with a PA > 608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  1. Load-bearing capacity of all-ceramic posterior inlay-retained fixed dental prostheses.

    PubMed

    Puschmann, Djamila; Wolfart, Stefan; Ludwig, Klaus; Kern, Matthias

    2009-06-01

    The purpose of this in vitro study was to compare the quasi-static load-bearing capacity of all-ceramic resin-bonded three-unit inlay-retained fixed dental prostheses (IRFDPs) made from computer-aided design/computer-aided manufacturing (CAD/CAM)-manufactured yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) frameworks with two different connector dimensions, with and without fatigue loading. Twelve IRFDPs each were made with connector dimensions 3 x 3 mm(2) (width x height) (control group) and 3 x 2 mm(2) (test group). Inlay-retained fixed dental prostheses were adhesively cemented on identical metal-models using composite resin cement. Subgroups of six specimens each were fatigued with maximal 1,200,000 loading cycles in a chewing simulator with a weight load of 25 kg and a load frequency of 1.5 Hz. The load-bearing capacity was tested in a universal testing machine for IRFDPs without fatigue loading and for IRFDPs that had not already fractured during fatigue loading. During fatigue testing one IRFDP (17%) of the test group failed. Under both loading conditions, IRFDPs of the control group exhibited statistically significantly higher load-bearing capacities than the test group. Fatigue loading reduced the load-bearing capacity in both groups. Considering the maximum chewing forces in the molar region, it seems possible to use zirconia ceramic as a core material for IRFDPs with a minimum connector dimension of 9 mm(2). A further reduction of the connector dimensions to 6 mm(2) results in a significant reduction of the load-bearing capacity.

  2. Analysis of Bearing Capacity Pile Foundation with Using Capwap Software for Testing Pile Driving Analyzer (pda) at Fasfel Development Project Parlimbungan Ketek Sikara-Kara Mandailing Natal District (north Sumatera)

    NASA Astrophysics Data System (ADS)

    Oberlyn Simanjuntak, Johan; Suita, Diana

    2017-12-01

    Pile foundation is one type deep foundation that serves to distribute the load of hard soil structure loading which has a high bearing capacity that is located deep enough inside the soil. To determine the bearing capacity of the pile and at the same time control the Calendring results, the Pile Driving Analyzer (PDA) test at 8 pile sections from the 84 point piling section (10% of the number sections), the results were analyzed by CAPWAP SOFTWARE, and the highest bearing capacity of Ru 177 ton and the lowest bearing capacity of 111 tons, is bigger than the plan load which load plans that is 60,9 tons. Finally the PDA safe is bearing bearing capacity of the load planning.

  3. Burning lithium in CS 2 for high-performing compact Li 2S–graphene nanocapsules for Li–S–batteries

    DOE PAGES

    Tan, Guoqiang; Xu, Rui; Xing, Zhenyu; ...

    2017-06-12

    Here, tremendous efforts have been made to design the cathode of Li–S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS 2 vapour. The obtained structure features crystalline Li 2S nanoparticles wrapped by few-layer graphene (Li 2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode designmore » enables promising electrochemical performance. More notably, at a loading of 10 mg Li2S cm –2, the electrode exhibits a high reversible capacity of 1,160 mAh g –1s, namely, an area capacity of 8.1 mAh cm –2. Li 2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li 2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g –1s as well as stable cycle performance.« less

  4. Burning lithium in CS 2 for high-performing compact Li 2S–graphene nanocapsules for Li–S–batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Xu, Rui; Xing, Zhenyu

    Here, tremendous efforts have been made to design the cathode of Li–S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS 2 vapour. The obtained structure features crystalline Li 2S nanoparticles wrapped by few-layer graphene (Li 2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode designmore » enables promising electrochemical performance. More notably, at a loading of 10 mg Li2S cm –2, the electrode exhibits a high reversible capacity of 1,160 mAh g –1s, namely, an area capacity of 8.1 mAh cm –2. Li 2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li 2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g –1s as well as stable cycle performance.« less

  5. Burning lithium in CS2 for high-performing compact Li2 S-graphene nanocapsules for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Tan, Guoqiang; Xu, Rui; Xing, Zhenyu; Yuan, Yifei; Lu, Jun; Wen, Jianguo; Liu, Cong; Ma, Lu; Zhan, Chun; Liu, Qi; Wu, Tianpin; Jian, Zelang; Shahbazian-Yassar, Reza; Ren, Yang; Miller, Dean J.; Curtiss, Larry A.; Ji, Xiulei; Amine, Khalil

    2017-07-01

    Tremendous efforts have been made to design the cathode of Li-S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS2 vapour. The obtained structure features crystalline Li2S nanoparticles wrapped by few-layer graphene (Li2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode design enables promising electrochemical performance. More notably, at a loading of 10 mgLi2S cm-2, the electrode exhibits a high reversible capacity of 1,160 mAh g-1s, namely, an area capacity of 8.1 mAh cm-2. Li2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g-1s as well as stable cycle performance.

  6. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics.

    PubMed

    He, Yapeng; Wang, Xue; Huang, Weimin; Chen, Rongling; Zhang, Wenli; Li, Hongdong; Lin, Haibo

    2018-02-01

    A hydrophobic networked PbO 2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO 2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO 2 electrode is about 2.1 times for traditional PbO 2 electrode while lower charge transfer resistance (6.78 Ω cm 2 ) could be achieved on networked PbO 2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h -1 for traditional, networked PbO 2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO 2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO 2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO 2 electrode were proposed in details accordingly based on the intermediate products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.

    PubMed

    Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin

    2016-01-15

    Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Assessment of the transportation route of oversize and excessive loads in relation to the load-bearing capacity of existing bridges

    NASA Astrophysics Data System (ADS)

    Doležel, Jiří; Novák, Drahomír; Petrů, Jan

    2017-09-01

    Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.

  9. Effects of load proportioning on the capacity of multiple-hole composite joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Chastain, P. A.

    1985-01-01

    This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.

  10. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.

    PubMed

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-03-30

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.

  11. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  12. Modal nudging in nonlinear elasticity: Tailoring the elastic post-buckling behaviour of engineering structures

    NASA Astrophysics Data System (ADS)

    Cox, B. S.; Groh, R. M. J.; Avitabile, D.; Pirrera, A.

    2018-07-01

    The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to "nudge" the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging, these findings may impact the design of structures from the micro- to the macro-scale.

  13. Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings.

    PubMed

    Walsh, Evan D; Han, Xiaogang; Lacey, Steven D; Kim, Jae-Woo; Connell, John W; Hu, Liangbing; Lin, Yi

    2016-11-02

    For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (∼10 mg/cm 2 ). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile single-step air oxidation method, and the resultant holey graphene was compacted under ambient conditions into mechanically robust monolithic shapes that can be directly used as binder-free electrodes. In comparison, pristine graphene discs under similar binder-free compression molding conditions were extremely brittle and thus not deemed useful for electrode applications. The coin cell supercapacitors, based on these holey graphene electrodes exhibited small variations in gravimetric capacitance over a wide range of areal mass loadings (∼1-30 mg/cm 2 ) at current densities as high as 30 mA/cm 2 , resulting in the near-linear increase of the areal capacitance (F/cm 2 ) with the mass loading. The prospects of the presented method for facile binder-free ultrathick graphene electrode fabrication are discussed.

  14. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    PubMed Central

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  15. UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO2/CH4, CO2/N2, and CO2/H2 Separation.

    PubMed

    Lawson, Shane; Al-Naddaf, Qasim; Krishnamurthy, Anirduh; Amour, Marc St; Griffin, Connor; Rownaghi, Ali A; Knox, James C; Rezaei, Fateme

    2018-06-06

    Honeycomb monoliths loaded with metal-organic frameworks (MOFs) are highly desirable adsorption contactors because of their low-pressure drop, rapid mass-transfer kinetics, and high-adsorption capacity. Moreover, three-dimensional (3D)-printing technology renders direct material modification a realistic and economic prospect. In this study, 3D printing was utilized to impregnate kaolin-based monolith with UTSA-16 metal formation precursor (Co), whereupon an internal growth was facilitated via a solvothermal synthesis approach. The cobalt weight loading in the kaolin support was varied systematically to optimize the MOF growth while retaining monolith mechanical integrity. The obtained UTSA-16 monolith with 90 wt % loading exhibited similar textural features and adsorption characteristics to its powder analogue while improving upon structural integrity. In comparison to previously developed 3D-printed UTSA-16 monoliths, the UTSA-16-kaolin monolith not only showed higher MOF loading but also higher compression stress, indicative of its robust structure. Furthermore, the 3D-printed UTSA-16-kaolin monolith displayed a comparable CO 2 adsorption capacity to the UTSA-16 powder (3.1 vs 3.5 mmol/g at 25 °C and 1 bar), which was proportional to its loading. Selectivity values of 49, 238, and 3725 were obtained for CO 2 /CH 4 , CO 2 /N 2 , and CO 2 /H 2 , respectively, demonstrating good separation potential of the 3D-printed MOF monolith for various gas mixtures, as determined by both equilibrium and dynamic adsorption measurements. Overall, this study provides a novel route for the fabrication of UTSA-16-loaded monoliths, which demonstrate both high MOF loading and mechanical integrity that could be readily applied to various CO 2 capture applications.

  16. Relationships of physical performance tests to military-relevant tasks in women.

    PubMed

    Szivak, Tunde K; Kraemer, William J; Nindl, Bradley C; Gotshalk, Lincoln A; Volek, Jeff S; Gomez, Ana L; Dunn-Lewis, Courtenay; Looney, David P; Comstock, Brett A; Hooper, David R; Flanagan, Shawn D; Maresh, Carl M

    2014-01-01

    This investigation sought to determine the most predictive measures of performance on a repetitive box lifting task (RBLT) and load bearing task (LBT) among 123 women (aged ±4 years, height 165±7 cm, body mass 64±10 kg). To determine the relationship of various predictors to performance on the RBLT and LBT, multiple regression analysis was conducted on body mass, height, leg cross-sectional area, upper and lower body muscular strength, lower body explosive power, upper and lower body local muscular endurance, and aerobic capacity. The mean±SD (range) number of repetitions for the RBLT was 86±23 (20-159). The mean±SD (range) time to complete the LBT was 2,054±340 seconds (1,307-3,447). The following equations were generated: RBLT (number of repetitions)=57.4+0.2(peak jump power)+0.4(number of pushups in 2 minutes)+0.15(number of repetitions during the squat endurance test)+1.39(one repetition maximal strength boxlift (kg))-0.04(2-mile run time (2MR) in seconds), R=0.81; standard error of the estimate (SEE)=14; LBT (in seconds)=1,831-4.28(number of repetitions during the squat endurance test)+0.95(2MR in seconds)-13.4(body mass), R=0.73; SEE=232. We found that the 2MR and squat endurance test were significant predictive factors for performance on both load carriage tasks. These data also imply that women's performance in combat-related tasks can be improved with training that targets muscular strength, power, and local muscular endurance in addition to aerobic capacity.

  17. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  18. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  19. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    PubMed

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    The paper presents a numerical simulation study on hydrostatic thrust air bearings to assess the load capacity, compressed air consumptions, and the dynamic response. Finite Difference Method (FDM) and Finite Volume Method (FVM) are combined to solve the non-linear Reynolds equation to find the pressure distribution of the air bearing gas film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, supplied pressure, depth of the groove and external load, are investigated based on the proposed FDM model. The simulation results show that the thrust air bearings with a groove have a higher load capacity and air consumption than without a groove, and the load capacity and air consumption both increase with the depth of the groove. Bearings without the groove are better damped than those with the grooves, and the stability of thrust bearing decreases when the groove depth increases. The stability of the thrust bearings is also affected by their loading.

  1. An analysis of the static load test on single square pile of 40x40 cm2, using finite element method in Rusunawa project, Jatinegara, Jakarta

    NASA Astrophysics Data System (ADS)

    Harasid, Harun; Roesyanto; Iskandar, Rudi; Silalahi, Sofyan A.

    2018-03-01

    Piling Foundation is one of the foundations which is used to penetrate its load through soil layer. The power carried by the piling is obtained from the end bearing capacity, that is, the compressive end piling and friction bearing capacity obtained from friction bearing and adhesive capacity between the piling and the soil around it. The investigation on the Standard Penetration Test is aimed to get the description of soil layer, based on the type and color of soil through visual observation, and soil characteristics. SPT data can be used to calculate bearing capacity. Besides investigating the SPT, this study is also been equipped by taking the samples in laboratory and loading test on the piling and Ducth Cone Penetrometer (DCP) data to confirm its bearing capacity. This study analyzed bearing capacity and settlement in the square pile of 40X40 cm in diameter in a single pile or grouped, using an empirical method, AllPile program, Plaxis program, and comparing the result with interpreting its loading test in the foundation of Rusunawa project, Jatinegara, Jakarta. The analysis was been done by using the data on soil investigation and laboratory by comparing them with Mohr-Coulomb soil model. Ultimate bearing capacity from the SPT data in the piling of 15.4 meters was 189.81 tons and the parameter of soil shear strength was 198.67 tons. The sander point, based on Aoki and De Alencar bearing capacity was 276.241 tons and based on Mayerhoff it was 305.49 tons. Based on the loading test of bearing capacity, unlimited bearing capacity for the three methods was Davisson (260 tons), Mazurkiewich (270 tons), and Chin (250 tons). The efficiency of grouped piles according to Converse-Library Equation method = 0.73, according to Los Angeles Group Action Equation method = 0.59, and according to Sheila-Keeny method = 0.94. Bearing capacity based on piling strength was 221.76 tons, bearing capacity based on calendaring data was 201.71 tons, and lateral bearing capacity of a single piling foundation was 129.6 kN (12.96 tons). When the maximum load (280 tons) was been given, more decrease occurred in the Maintained load test of 21.00 mm and Quick Load Test method of 20.67 mm, compared with the result of Load Test in the field of 18.74 mm. Based on ASTM D1143/81, the permitted value was 25.40 mm. Therefore, based on that decreasing, it could be concluded that foundation piles were safe in the construction. The pore water pressure is highly influenced by time so that in Maintained Load Test and Quick Load Test, there was the disparity in the level of pore water pressure. Based on the result of the calculation, Quick Load Test showed that in pore water pressure was dissipated in its acceleration.

  2. Investigating the influence of working memory capacity when driving behavior is combined with cognitive load: An LCT study of young novice drivers.

    PubMed

    Ross, Veerle; Jongen, Ellen M M; Wang, Weixin; Brijs, Tom; Brijs, Kris; Ruiter, Robert A C; Wets, Geert

    2014-01-01

    Distracted driving has received increasing attention in the literature due to potential adverse safety outcomes. An often posed solution to alleviate distraction while driving is hands-free technology. Interference by distraction can occur however at the sensory input (e.g., visual) level, but also at the cognitive level where hands-free technology induces working memory (WM) load. Active maintenance of goal-directed behavior in the presence of distraction depends on WM capacity (i.e., Lavie's Load theory) which implies that people with higher WM capacity are less susceptible to distractor interference. This study investigated the interaction between verbal WM load and WM capacity on driving performance to determine whether individuals with higher WM capacity were less affected by verbal WM load, leading to a smaller deterioration of driving performance. Driving performance of 46 young novice drivers (17-25 years-old) was measured with the lane change task (LCT). Participants drove without and with verbal WM load of increasing complexity (auditory-verbal response N-back task). Both visuospatial and verbal WM capacity were investigated. Dependent measures were mean deviation in the lane change path (MDEV), lane change initiation (LCI) and percentage of correct lane changes (PCL). Driving experience was included as a covariate. Performance on each dependent measure deteriorated with increasing verbal WM load. Meanwhile, higher WM capacity related to better LCT performance. Finally, for LCI and PCL, participants with higher verbal WM capacity were influenced less by verbal WM load. These findings entail that completely eliminating distraction is necessary to minimize crash risks among young novice drivers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  4. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.

    PubMed

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-09-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of approximately 2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO(2) cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of approximately 4 mAh/cm(2), which is comparable to commercial battery values.

  5. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1984-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  6. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D.

    1985-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  7. Challenges of extreme load hexapod design and modularization for large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Gloess, Rainer; Lula, Brian

    2010-07-01

    The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.

  8. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  9. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.

  10. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tianyue; Jia, Zhe; Lin, Na

    Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less

  11. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    DOE PAGES

    Zheng, Tianyue; Jia, Zhe; Lin, Na; ...

    2017-11-29

    Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less

  12. Combined Bearing Capacity of Spudcans on a Double Layer Deposit of Strong-Over-Weak Clays

    NASA Astrophysics Data System (ADS)

    Yin, Qilin; Dong, Sheng

    2018-05-01

    An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load (V), horizontal load (H), and moment (M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement- based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s u,t/s u,b, and the hard layer thickness t 1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity V ult is affected more than the horizontal (H ult) and moment (M ult) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.

  13. Design of rock socketed drilled shafts

    DOT National Transportation Integrated Search

    1998-09-01

    Three field load tests of drilled shafts socketed in Burlington limestone were conducted using the Osterberg load cell. The objective of these tests was to compare the shaft capacities obtained from the field load tests with capacities predicted usin...

  14. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  15. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.

  16. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068

  17. Dilution: A Theoretical Burden or Just Load? A Reply to Tsal and Benoni (2010)

    ERIC Educational Resources Information Center

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and…

  18. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir.

    PubMed

    Janković, Jovana; Djekic, Ljiljana; Dobričić, Vladimir; Primorac, Marija

    2016-01-30

    The study investigated the influence of formulation parameters for design of self-microemulsifying drug delivery systems (SMEDDSs) comprising oil (medium chain triglycerides) (10%), surfactant (Labrasol(®), polysorbate 20, or Kolliphor(®) RH40), cosurfactant (Plurol(®) Oleique CC 497) (q.s. ad 100%), and cosolvent (glycerol or macrogol 400) (20% or 30%), and evaluate their potential as carriers for oral delivery of a poorly permeable antivirotic aciclovir (acyclovir). The drug loading capacity of the prepared formulations ranged from 0.18-31.66 mg/ml. Among a total of 60 formulations, three formulations meet the limits for average droplet size (Z-ave) and polydispersity index (PdI) that have been set for SMEDDSs (Z-ave≤100nm, PdI<0.250) upon spontaneous dispersion in 0.1M HCl and phosphate buffer pH 7.2. SMEDDSs with the highest aciclovir loading capacity (24.06 mg/ml and 21.12 mg/ml) provided the in vitro drug release rates of 0.325 mg cm(-2)min(-1) and 0.323 mg cm(-2)min(-1), respectively, and significantly enhanced drug permeability in the parallel artificial membrane permeability assay (PAMPA), in comparison with the pure drug substance. The results revealed that development of SMEDDSs with enhanced drug loading capacity and oral delivery potential, required optimization of hydrophilic ingredients, in terms of size of hydrophilic moiety of the surfactant, surfactant-to-cosurfactant mass ratio (Km), and log P of the cosolvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

    PubMed Central

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-01-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781

  20. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    PubMed

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.

  1. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  2. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  3. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  4. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  5. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  6. Dilution: atheoretical burden or just load? A reply to Tsal and Benoni (2010).

    PubMed

    Lavie, Nilli; Torralbo, Ana

    2010-12-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere "dilution") for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load.

  7. Processing Capacity under Perceptual and Cognitive Load: A Closer Look at Load Theory

    ERIC Educational Resources Information Center

    Fitousi, Daniel; Wenger, Michael J.

    2011-01-01

    Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than…

  8. [Ethical considerations in mass casualty situation].

    PubMed

    Priel, I E; Dolev, E

    2001-07-01

    Mass casualty is a situation, in which, the physician is compelled to make critical decisions under heavy pressure load, due to severe shortage in time, personnel and information. This task is extremely difficult to fulfill, as the physician has to consider not only professional tools, but needs also to utilize ethical principles, in order to provide the best possible care to most of the casualties who might benefit from it. By definition, in the mass casualty situation the medical facility lacks temporarily the ability to deliver effective therapy to all, as the injured outnumber the medical capacity for a given time. The ethical conflicts and dilemmas that arise during such an event are enormous. Amazingly, only a few articles have addressed the issue of ethical considerations during mass casualty situation. Ethical decision making is based on four principles: beneficence, nonmaleficence, autonomy and justice. Compassion, trustworthiness, discernment and integrity are the four qualities required from those practicing medicine. These virtues should be manifested in mass casualty situations, one of the most demanding situations a physician may face.

  9. Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.

    PubMed

    Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.

  10. Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine

    PubMed Central

    Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375

  11. Evaluation of Amorphous Transformer by Optimum Capacity Selection based on the Load Curve Pattern of Customers

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Yamamoto, Hiromi; Yamaji, Kenji

    Energy loss in transformer is composed of no-load loss and load loss. No-load loss of amorphous transformer (i.e. amorphous metal-based transformer) is less by about 70% compared with traditional transformers (e.g. silicon steel-based transformer). However, amorphous transformers have disadvantages of high cost and high load loss parameter compared with traditional transformers. Furthermore, there are varieties of transformer capacities, and the customers who would buy new transformer have many choices. In this paper, the authors propose an algorithm for optimum transformer selection based on the load curve patterns of customers. It is possible to select the capacity that minimizes the total cost by measuring equivalent load Qe that is the root mean square of load. It becomes clear that amorphous transformer is effective in achieving substantial energy saving compared with traditional transformer.

  12. The capacity-load model of non-communicable disease risk: understanding the effects of child malnutrition, ethnicity and the social determinants of health.

    PubMed

    Wells, Jonathan C K

    2018-05-01

    The capacity-load model is a conceptual model developed to improve understanding of the life-course aetiology of non-communicable diseases (NCDs) and their ecological and societal risk factors. The model addresses continuous associations of both (a) nutrition and growth patterns in early life and (b) lifestyle factors at older ages with NCD risk. Metabolic capacity refers to physiological traits strongly contingent on early nutrition and growth during the first 1000 days, which promote the long-term capacity for homeostasis in the context of fuel metabolism and cardiovascular health. Metabolic load refers to components of nutritional status and lifestyle that challenge homeostasis. The higher the load, and the lower the capacity, the greater the NCD risk. The model therefore helps understand dose-response associations of both early development and later phenotype with NCD risk. Infancy represents a critical developmental period, during which slow growth can constrain metabolic capacity, whereas rapid weight gain may elevate metabolic load. Severe acute malnutrition in early childhood (stunting, wasting) may continue to deplete metabolic capacity, and confer elevated susceptibility to NCDs in the long term. The model can be applied to associations of NCD risk with socio-economic position (SEP): lower SEP is generally associated with lower capacity but often also with elevated load. The model can also help explain ethnic differences in NCD risk, as both early growth patterns and later body composition differ systematically between ethnic groups. Recent work has begun to clarify the role of organ development in metabolic capacity, which may further contribute to ethnic differences in NCD risk.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Peldszus, S.; Huck, P.M.

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider poremore » size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.« less

  14. Load index model: An advanced tool to support decision making during mass-casualty incidents.

    PubMed

    Adini, Bruria; Aharonson-Daniel, Limor; Israeli, Avi

    2015-03-01

    In mass-casualty events, accessing information concerning hospital congestion levels is crucial to improving patient distribution and optimizing care. The study aimed to develop a decision support tool for distributing casualties to hospitals in an emergency scenario involving multiple casualties. A comprehensive literature review and structured interviews with 20 content experts produced a shortlist of relevant criteria for inclusion in the model. A "load index model" was prepared, incorporating results of a modified Delphi survey of 100 emergency response experts. The model was tested in three simulation exercises in which an emergency scenario was presented to six groups of senior emergency managers. Information was provided regarding capacities of 11 simulated admitting hospitals in the region, and evacuation destinations were requested for 600 simulated casualties. Of the three simulation rounds, two were performed without the model and one after its presentation. Following simulation experiments and implementation during a real-life security threat, the efficacy of the model was assessed. Variability between experts concerning casualties' evacuation destinations decreased significantly following the model's introduction. Most responders (92%) supported the need for standardized data, and 85% found that the model improved policy setting regarding casualty evacuation in an emergency situation. These findings were reaffirmed in a real-life emergency scenario. The proposed model improved capacity to ensure evacuation of patients to less congested medical facilities in emergency situations, thereby enhancing lifesaving medical services. The model supported decision-making processes in both simulation exercises and an actual emergency situation.

  15. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  16. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  17. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE PAGES

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    2017-01-05

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  18. Dilution

    PubMed Central

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554

  19. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed Central

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D.

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter-specific differences in the wasps’ predatory patterns. However, the greater FMR of B. zonata, which implies better flight performance and greater load-lifting capacity, may explain why the capture rate in the two wasp species is affected by different factor interactions. In conclusion, although prey availability remains the primary factor shaping prey use, prey flight morphology seems to gain an additional role under conditions of abundant prey, when wasps can avoid flies with better flight ability. PMID:27046238

  20. Cognitive Spare Capacity as an Index of Listening Effort.

    PubMed

    Rudner, Mary

    2016-01-01

    Everyday listening may be experienced as effortful, especially by individuals with hearing loss. This may be due to internal factors, such as cognitive load, and external factors, such as noise. Even when speech is audible, internal and external factors may combine to reduce cognitive spare capacity, or the ability to engage in cognitive processing of spoken information. A better understanding of cognitive spare capacity and how it can be optimally allocated may guide new approaches to rehabilitation and ultimately improve outcomes. This article presents results of three tests of cognitive spare capacity:1. Sentence-final Word Identification and Recall (SWIR) test2. Cognitive Spare Capacity Test (CSCT)3. Auditory Inference Span Test (AIST)Results show that noise reduces cognitive spare capacity even when speech intelligibility is retained. In addition, SWIR results show that hearing aid signal processing can increase cognitive spare capacity, and CSCT and AIST results show that increasing load reduces cognitive spare capacity. Correlational evidence suggests that while the effect of noise on cognitive spare capacity is related to working memory capacity, the effect of load is related to executive function. Future studies should continue to investigate how hearing aid signal processing can mitigate the effect of load on cognitive spare capacity, and whether such effects can be enhanced by developing executive skills through training. The mechanisms modulating cognitive spare capacity should be investigated by studying their neural correlates, and tests of cognitive spare capacity should be developed for clinical use in conjunction with developing new approaches to rehabilitation.

  1. Effects of an external circuit on a MHD slider bearing with couplestress fluid between conducting plates

    NASA Astrophysics Data System (ADS)

    Tasneem Fathima, Syeda; Jamal, Salma; Hanumagowda, B. N.

    2018-04-01

    A MHD Slider bearing lubricated with conducting couplestress fluid (CCSF) between two electrical conducting plates under the influence of magnetic field in free space is theoretically investigated. A closed form solution for the film pressure and load carrying capacity is obtained analytically in terms of inlet-outlet (IO) film height ratio of slider bearings. The results are presented graphically for different values of operating parameters. The results suggest that the bearings with couplestress fluid as lubricant provide significant load carrying capacity than Newtonian lubricant case. Further, it is observed that the influence of applied magnetic field and induced magnetic field is to increase the load carrying capacity substantially while, the load decreases with increase in IO film ratio. Besides, the conductivity increases the load carrying capacity significantly. The results are compared with the Newtonian Fluid case.

  2. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  3. Load Carriage Capacity of the Dismounted Combatant - A Commanders’ Guide

    DTIC Science & Technology

    2012-10-01

    predictive model has been used throughout this document to predict the physiological burden (i.e. energy cost ) of representative load carriage...scenarios. As a general guide this model indicates that a 10 kg increase in external load is metabolically equivalent (i.e. energy cost ) to an increase...larger increases in energy cost for a load carriage task. The multi-factorial nature of human load carriage capacity makes it difficult to set

  4. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    PubMed

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.

  5. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors.

    PubMed

    Willow, Mark A; Cohen, Ronald R H

    2003-01-01

    Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity.

  6. Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion

    NASA Technical Reports Server (NTRS)

    Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.

    2015-01-01

    Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.

  7. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease.

    PubMed

    Fuld, J P; Kilduff, L P; Neder, J A; Pitsiladis, Y; Lean, M E J; Ward, S A; Cotton, M M

    2005-07-01

    Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV(1)) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean -23.1 m (95% CI -71.7 to 25.5) post loading and -21.5 m (95% CI -90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score -7.7 (95% CI -14.9 to -0.5)). Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD.

  8. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  9. Sandia National Laboratories: Up on the roof

    Science.gov Websites

    load of rooftop solar photovoltaic (PV) installations," says structural engineer Steve Dwyer (6912 deemed not strong enough. More load-bearing capacity In two, first-of-their-kind studies funded by DOE's load-bearing capacity for residential rooftop structural systems is several times higher than the

  10. 78 FR 46540 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... fasteners, which can lead to cracking and loss of load carrying capacity, resulting in a possible... already delivered. This condition, if not corrected, could result in cracking and loss of load carrying... cracking and loss of load carrying capacity, resulting in a possible decompression event. (f) Compliance...

  11. Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo

    This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.

  12. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  13. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200°C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ~93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200°C with a 30-min hold and under 207 MPa. The fullymore » densified waste form had a bulk density of 3.3 g/cm3 and contained ~39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.« less

  14. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  15. Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses.

    PubMed

    Kohorst, Philipp; Butzheinen, Lutz Oliver; Dittmer, Marc Philipp; Heuer, Wieland; Borchers, Lothar; Stiesch, Meike

    2010-12-01

    The objective of this investigation was to evaluate the influence of differently shaped preliminary cuts in combination with artificial aging on the load-bearing capacity of four-unit zirconia fixed dental prostheses (FDPs). Forty frameworks were fabricated from white-stage zirconia blanks (InCeram YZ, Vita) by means of a computer-aided design/computer-aided manufacturing system (Cerec inLab, Sirona). Frameworks were divided into four homogeneous groups with ten specimens each. Prior to veneering, frameworks of two groups were "damaged" by defined saw cuts of different dimensions, to simulate accidental flaws generated during shape cutting. After the veneering process, FDPs, with the exception of a control group without preliminary damage, were subjected to thermal and mechanical cycling (TMC) during 200 days storage in distilled water at 36°C. Following the aging procedure, all specimens were loaded until fracture, and forces at fracture were recorded. The statistical analysis of force at fracture data was performed using two-way ANOVA, with the level of significance chosen at 0.05. Neither type of preliminary mechanical damage significantly affected the load-bearing capacity of FDPs. In contrast, artificial aging by TMC proved to have a significant influence on the load-bearing capacity of both the undamaged and the predamaged zirconia restorations (p < 0.001); however, even though load-bearing capacity decreased by about 20% due to simulated aging, the FDPs still showed mean load-bearing capacities of about 1600 N. The results of this study reveal that zirconia restorations have a high tolerance regarding mechanical damages. Irrespective of these findings, damage to zirconia ceramics during production or finishing should be avoided, as this may nevertheless lead to subcritical crack growth and, eventually, catastrophic failure. Furthermore, to ensure long-term clinical success, the design of zirconia restorations has to accommodate the decrease in load-bearing capacity due to TMC in the oral environment. © 2010 by The American College of Prosthodontists.

  16. [Assessment of external breathing parameters and cardiovascular function in patients with constitutive exogenous obesity and reduced body weight].

    PubMed

    Merzlikina, N L; Romantsova, T I; Roik, O V; Lobanova, N A; Drapkina, O M; Ivashkin, V T

    2009-01-01

    The study was designed to evaluate external respiratory function (ERF) and cardiovascular function based on AP measurements, results of 24 hour AP monitoring, treadmill test, and ECG during weight loss therapy in patients with excess body mass. A total of 93 patients with grade 2-3 obesity were examined including 41 (39.8%) with type 2 diabetes mellitus (DM). Group 1 consisted of patients with constitutive exogenous obesity, group 2 of patients with constitutive exogenous obesity and DM, group 3 was used as control. Follow-up studies were conducted after 6 and 12 months. Patients of groups 1 and 2 showed positive dynamics of hemodynamic characteristics related to the loss of weight including significant reduction of heart rate, systolic and diastolic indices of hypertonic loading, specific peripheral vascular resistance, and left ventricular mass. Simultaneously, cardiac index and ERF increased while vital lung capacity, forced vital capacity, and forced respiratory volume in the first second returned to normal values. It is concluded that reduction of body weight has positive effect on ERF dynamics and hemodynamic characteristics in patients with constitutive exogenous obesity.

  17. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  18. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations.

    PubMed

    Alskär, Linda C; Porter, Christopher J H; Bergström, Christel A S

    2016-01-04

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R(2) 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R(2) 0.85; Polysorbate 80, R(2) 0.90; Cremophor EL, R(2) 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R(2) 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R(2) 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.

  19. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC). The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevantfor drinking water treatment Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns forthe change in Freundlich K(F) and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated thatfilm diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional masstransfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model.

  20. Reducing Extra-Terrestrial Excavation Forces with Percussion

    NASA Technical Reports Server (NTRS)

    Mueller, Robert; Schuler, Jason M.; Smith, Jonathan Drew; Nick, Andrew J.; Lippitt, Thomas

    2012-01-01

    High launch costs and mission requirements drive the need for low mass excavators with mobility platforms, which in turn have little traction and excavation reaction capacity in low gravity environments. This presents the need for precursor and long term future missions with low mass robotic mining technology to perform In-Situ Resource Utilization (ISRU) tasks. This paper discusses a series of experiments that investigate the effectiveness of a percussive digging device to reduce excavation loads and thereby the mass of the excavator itself. A percussive mechanism and 30" wide pivoting bucket were attached at the end of the arm simulating a basic backhoe with a percussion direction tangent to the direction of movement. Impact energies from 13.6J to 30.5J and frequencies from 0 BPM to 700 BPM were investigated. A reduction in excavation force of as much as 50% was achieved in this experimental investigation.

  1. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less

  2. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  3. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.

    1998-01-01

    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  4. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery

    DOE PAGES

    Ling, Min; Zhang, Liang; Zheng, Tianyue; ...

    2017-05-10

    Polysulfide shuttling has been the primary cause of failure in lithium-sulfur (Li-S) battery cycling. In this paper, we demonstrate an nucleophilic substitution reaction between polysulfides and binder functional groups can unexpectedly immobilizes the polysulfides. The substitution reaction is verified by UV–visible spectra and X-ray photoelectron spectra. The immobilization of polysulfide is in situ monitored by synchrotron based sulfur K-edge X-ray absorption spectra. The resulting electrodes exhibit initial capacity up to 20.4 mAh/cm 2, corresponding to 1199.1 mAh/g based on a micron-sulfur mass loading of 17.0 mg/cm 2. The micron size sulfur transformed into nano layer coating on the cathode bindermore » during cycling. Directly usage of nano-size sulfur promotes higher capacity of 33.7 mAh/cm 2, which is the highest areal capacity reported in Li-S battery. Finally, this enhance performance is due to the reduced shuttle effect by covalently binding of the polysulfide with the polymer binder.« less

  6. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Min; Zhang, Liang; Zheng, Tianyue

    Polysulfide shuttling has been the primary cause of failure in lithium-sulfur (Li-S) battery cycling. In this paper, we demonstrate an nucleophilic substitution reaction between polysulfides and binder functional groups can unexpectedly immobilizes the polysulfides. The substitution reaction is verified by UV–visible spectra and X-ray photoelectron spectra. The immobilization of polysulfide is in situ monitored by synchrotron based sulfur K-edge X-ray absorption spectra. The resulting electrodes exhibit initial capacity up to 20.4 mAh/cm 2, corresponding to 1199.1 mAh/g based on a micron-sulfur mass loading of 17.0 mg/cm 2. The micron size sulfur transformed into nano layer coating on the cathode bindermore » during cycling. Directly usage of nano-size sulfur promotes higher capacity of 33.7 mAh/cm 2, which is the highest areal capacity reported in Li-S battery. Finally, this enhance performance is due to the reduced shuttle effect by covalently binding of the polysulfide with the polymer binder.« less

  7. 49 CFR 237.131 - Design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modification which materially modifies the capacity of a bridge or the stresses in any primary load-carrying... materially modify the capacity of a bridge or the stresses in any primary load-carrying component of a bridge...

  8. 49 CFR 237.131 - Design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... modification which materially modifies the capacity of a bridge or the stresses in any primary load-carrying... materially modify the capacity of a bridge or the stresses in any primary load-carrying component of a bridge...

  9. Optimization of self-acting step thrust bearings for load capacity and stiffness.

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1972-01-01

    Linearized analysis of a finite-width rectangular step thrust bearing. Dimensionless load capacity and stiffness are expressed in terms of a Fourier cosine series. The dimensionless load capacity and stiffness were found to be a function of the dimensionless bearing number, the pad length-to-width ratio, the film thickness ratio, the step location parameter, and the feed groove parameter. The equations obtained in the analysis were verified. The assumptions imposed were substantiated by comparing the results with an existing exact solution for the infinite width bearing. A digital computer program was developed which determines optimal bearing configuration for maximum load capacity or stiffness. Simple design curves are presented. Results are shown for both compressible and incompressible lubrication. Through a parameter transformation the results are directly usable in designing optimal step sector thrust bearings.

  10. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    PubMed

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  11. Derivatized graphitic nanofibres (GNF) as a new support material for mass spectrometric analysis of peptides and proteins.

    PubMed

    Greiderer, Andreas; Rainer, Matthias; Najam-ul-Haq, Muhammad; Vallant, Rainer M; Huck, Christian W; Bonn, Günther K

    2009-07-01

    Graphitic nanofibres (GNFs), 100-200 nm in diameter and 5-20 microm in length have been modified in order to yield different affinities (Cu2+ and Fe3+ loaded immobilized metal affinity chromatography (IMAC) as well as cation and anion exchange materials) for the extraction of a range of biomolecules by their inherited hydrophobicity and the hydrophilic chemical functionalities, obtained by derivatization. Modified GNFs have for the first time been employed as carrier materials for protein profiling in material-enhanced laser desorption/ionization (MELDI) for the enrichment and screening of biofluids. For that purpose, the derivatized GNF materials have comprehensively been characterized regarding surface area, structural changes during derivatization, IMAC, as well as ion exchange and protein-loading capacity and recovery. GNF derivatives revealed high protein-binding capacity (2,000 microg ml(-1) for insulin) and ideal sensitivities, resulting in a detection limit of 50 fmol microl(-1) (for insulin), which is crucial for the detection of low abundant species in biological samples. Compared to other MELDI carrier materials, sensitivity was enhanced on GNF derivatives, which might be ascribed to the fact that GNFs support desorption and ionization mechanisms and by absorbing laser energy in addition to matrix.

  12. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  13. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less

  14. Study on Power Loss Reduction Considering Load Variation with Large Penetration of Distributed Generation in Smart Grid

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Lv, Xiangyu; Guo, Li; Cai, Lixia; Jie, Jinxing; Su, Kuo

    2017-05-01

    With the increasing of penetration of distributed in the smart grid, the problems that the power loss increasing and short circuit capacity beyond the rated capicity of circuit breaker will become more serious. In this paper, a methodology (Modified BPSO) is presented for network reconfiguration which is based on hybrid approach of Tabu Search and BPSO algorithms to prevent the local convergence and to decrease the calculation time using double fitnesses to consider the constraints. Moreover, an average load simulated method (ALS method) load variation considered is proposed that the average load value is used to instead of the actual load to calculation. Finally, from a case study, the results of simulation certify the approaches will decrease drastically the losses and improve the voltage profiles obviously, at the same time, the short circuit capacity is also decreased into less the shut-off capacity of circuit breaker. The power losses won’t be increased too much even if the short circuit capacity constraint is considered; voltage profiles are better with the constraint of short circuit capacity considering. The ALS method is simple and calculated time is speed.

  15. The Unintentional Memory Load in Tests for Young Children.

    ERIC Educational Resources Information Center

    Jones, Margaret Hubbard

    The validity of certain standardized tests may be affected by the short-term memory load therein and its relation to a child's short-term memory capacity. Factors of testing which increase a test's memory load and consequently interfere with comprehension are discussed. It is hypothesized that a test which strains the short-term memory capacity of…

  16. Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought

    ERIC Educational Resources Information Center

    de Jong, Ton

    2010-01-01

    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems…

  17. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  18. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustard, Chad; Zweibel, Ellen G.; D’Onghia, Elena, E-mail: bustard@wisc.edu

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses,more » we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.« less

  19. Lightening the load: perceptual load impairs visual detection in typical adults but not in autism.

    PubMed

    Remington, Anna M; Swettenham, John G; Lavie, Nilli

    2012-05-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity.

  20. Dual-action gas thrust bearing for improving load capacity

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  1. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  2. Effect of the Coronal Wall Thickness of Dental Implants on the Screw Joint Stability in the Internal Implant-Abutment Connection.

    PubMed

    Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.

  3. Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis

    NASA Astrophysics Data System (ADS)

    Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.

    2018-04-01

    The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.

  4. High pressure solubility of carbon dioxide (CO2) in aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) solvent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Nawaz; Hailegiorgis, Sintayehu Mekuria; Man, Zakaria; Shariff, Azmi Mohd

    2017-10-01

    In this study, the solubility of carbon dioxide (CO2) in the aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) was investigated. In the aqueous solution the concentrations of the N-methyldiethanolamine (MDEA) and piperazine (PZ) were kept constant at 30 wt. % and 3 wt. %, respectively. The solubility experiments were carried out between the temperatures ranges of 303.15 to 333.15 K. The pressure range was selected as 2-50 bar for solubility of carbon dioxide in the aqueous solution. The solubility of the CO2 is reported in terms of CO2 loading capacity of the solvent. The loading capacity of the solvent is the ratio between the numbers of moles of CO2 absorbed to the numbers of moles of solvent used. The experimental data showed that the CO2 loading increased with increase in CO2 partial pressure, while it decreased with increase in system's temperature. It was also observed from the experimental data that the higher pressure favors the absorption process while the increased temperature hinders the absorption process of CO2 capture. The loading capacity of the investigated solvent was compared with the loading capacity of the solvents reported in the literature. The investigated solvent showed better solubility in terms of loading capacity.

  5. Failure tolerance strategy of space manipulator for large load carrying tasks

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yuan, Bonan; Jia, Qingxuan; Sun, Hanxu; Guo, Wen

    2018-07-01

    During the execution of large load carrying tasks in long term service, there is a notable risk of space manipulator suffering from locked-joint failure, thus space manipulator should be with enough failure tolerance performance. A research on evaluating failure tolerance performance and re-planning feasible task trajectory for space manipulator performing large load carrying tasks is conducted in this paper. The effects of locked-joint failure on critical performance(reachability and load carrying capacity) of space manipulator are analyzed at first. According to the requirements of load carrying tasks, we further propose a new concept of failure tolerance workspace with load carrying capacity(FTWLCC) to evaluate failure tolerance performance, and improve the classic A* algorithm to search the feasible task trajectory. Through the normalized FTWLCC and the improved A* algorithm, the reachability and load carrying capacity of the degraded space manipulator are evaluated, and the reachable and capable trajectory can be obtained. The establishment of FTWLCC provides a novel idea that combines mathematical statistics with failure tolerance performance to illustrate the distribution of load carrying capacity in three-dimensional space, so multiple performance indices can be analyzed simultaneously and visually. And the full consideration of all possible failure situations and motion states makes FTWLCC and improved A* algorithm be universal and effective enough to be appropriate for random joint failure and variety of requirement of large load carrying tasks, so they can be extended to other types of manipulators.

  6. Processing capacity under perceptual and cognitive load: a closer look at load theory.

    PubMed

    Fitousi, Daniel; Wenger, Michael J

    2011-06-01

    Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than data limitations (Norman & Bobrow, 1975). Here we provide an extensive and rigorous set of tests of these assumptions. Predictions regarding changes in processing capacity are tested using the hazard function of the response time (RT) distribution (Townsend & Ashby, 1978; Wenger & Gibson, 2004). The assumption that load taps resource rather than data limitations is examined using measures of sensitivity and bias drawn from signal detection theory (Swets, 1964). All analyses were performed at two levels: the individual and the aggregate. Hypotheses regarding changes in processing capacity were confirmed at the level of the aggregate. Hypotheses regarding resource and data limitations were not completely supported at either level of analysis. And in all of the analyses, we observed substantial individual differences. In sum, the results suggest a need to expand the theoretical vocabulary of load theory, rather than a need to discard it.

  7. Effects of adsorptive properties of biofilter packing materials on toluene removal.

    PubMed

    Oh, Dong Ik; Song, Jihyeon; Hwang, Sun Jin; Kim, Jae Young

    2009-10-15

    Various adsorptive materials, including granular activated carbon (GAC) and ground tire rubber (GTR), were mixed with compost in biofilters used for treating gaseous toluene, and the effects of the mixtures on the stability of biofilter performance were investigated. A transient loading test demonstrated that a sudden increase in inlet toluene loading was effectively attenuated in the compost/GAC biofilter, which was the most significant advantage of adding adsorptive materials to the biofilter packing media. Under steady conditions with inlet toluene loading rates of 18.8 and 37.5 g/m(3)/h, both the compost and the compost/GAC biofilters achieved overall toluene removal efficiencies greater than 99%. In the compost/GAC mixture, however, biodegradation activity declined as the GAC mass fraction increased. Because of the low water-holding capacity of GTR, the compost/ground tire mixture did not show a significant improvement in toluene removal efficiency throughout the entire operational period. Furthermore, nitrogen limitations affected system performance in all the biofilters, but an external nitrogen supply resulted in the recovery of the toluene removal efficiency only in the compost biofilter during the test periods. Consequently, the introduction of excessive adsorptive materials was unfavorable for long-term performance, suggesting that the mass ratio of the adsorptive materials in such mixtures should be carefully selected to achieve high and steady biofilter performance.

  8. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study

    PubMed Central

    Jeszka, Jan; Podgórski, Tomasz

    2017-01-01

    The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased (p = 0.049) with a simultaneous reduction of fat mass (p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold (p < 0.0001), threshold load (p = 0.017) and the threshold HR (p < 0.0001), as well as anaerobic peak power (p = 0.005), average power (p = 0.029), maximum speed (p < 0.001) and post-exercise lactate concentrations (p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes. PMID:28708126

  9. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study.

    PubMed

    Durkalec-Michalski, Krzysztof; Jeszka, Jan; Podgórski, Tomasz

    2017-07-14

    The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased ( p = 0.049) with a simultaneous reduction of fat mass ( p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold ( p < 0.0001), threshold load ( p = 0.017) and the threshold HR ( p < 0.0001), as well as anaerobic peak power ( p = 0.005), average power ( p = 0.029), maximum speed ( p < 0.001) and post-exercise lactate concentrations ( p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes.

  10. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis.

    PubMed

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W

    2017-12-01

    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  11. Effects of mass loading on dayside solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.

    2016-12-01

    Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.

  12. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  13. Thermal performance of phase change wallboard for residential cooling application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less

  14. Estimating Track Capacity Based on Rail Stresses and Metal Fatigue.

    DOT National Transportation Integrated Search

    2011-09-21

    This paper describes a framework to evaluate the structural capacity of railroad track to train-induced loads. The framework is applied to estimate structural performance in terms of allowable limits for crosstie spacing. Evaluation of the load-carry...

  15. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity.

    PubMed

    Liu, Siwei; Poh, Jia-Hou; Koh, Hui Li; Ng, Kwun Kei; Loke, Yng Miin; Lim, Joseph Kai Wei; Chong, Joanna Su Xian; Zhou, Juan

    2018-08-01

    Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. REDOX electrochemical energy storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1980-01-01

    Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.

  17. Structural testing and analysis of a braided, inflatable fabric torus structure

    NASA Astrophysics Data System (ADS)

    Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.

    2017-10-01

    Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.

  18. The Development of a new Numerical Modelling Approach for Naturally Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Pine, R. J.; Coggan, J. S.; Flynn, Z. N.; Elmo, D.

    2006-11-01

    An approach for modelling fractured rock masses has been developed which has two main objectives: to maximise the quality of representation of the geometry of existing rock jointing and to use this within a loading model which takes full account of this style of jointing. Initially the work has been applied to the modelling of mine pillars and data from the Middleton Mine in the UK has been used as a case example. However, the general approach is applicable to all aspects of rock mass behaviour including the stress conditions found in hangingwalls, tunnels, block caving, and slopes. The rock mass fracture representation was based on a combination of explicit mapping of rock faces and the synthesis of this data into a three-dimensional model, based on the use of the FracMan computer model suite. Two-dimensional cross sections from this model were imported into the finite element computer model, ELFEN, for loading simulation. The ELFEN constitutive model for fracture simulation includes the Rotating Crack, and Rankine material models, in which fracturing is controlled by tensile strength and fracture energy parameters. For tension/compression stress states, the model is complemented with a capped Mohr-Coulomb criterion in which the softening response is coupled to the tensile model. Fracturing due to dilation is accommodated by introducing an explicit coupling between the inelastic strain accrued by the Mohr-Coulomb yield surface and the anisotropic degradation of the mutually orthogonal tensile yield surfaces of the rotating crack model. Pillars have been simulated with widths of 2.8, 7 and 14 m and a height of 7 m (the Middleton Mine pillars are typically 14 m wide and 7 m high). The evolution of the pillar failure under progressive loading through fracture extension and creation of new fractures is presented, and pillar capacities and stiffnesses are compared with empirical models. The agreement between the models is promising and the new model provides useful insights into the influence of pre-existing fractures. Further work is needed to consider the effects of three-dimensional loading and other boundary condition problems.

  19. Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure

    NASA Astrophysics Data System (ADS)

    Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng

    2018-04-01

    The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.

  20. Simultaneous Optimization of Tooth Flank Form of Involute Helical Gears in Terms of Both Vibration and Load Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo

    The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.

  1. Exercise therapy improves aerobic capacity of inpatients with major depressive disorder.

    PubMed

    Kerling, Arno; von Bohlen, Anne; Kück, Momme; Tegtbur, Uwe; Grams, Lena; Haufe, Sven; Gützlaff, Elke; Kahl, Kai G

    2016-06-01

    Unipolar depression is one of the most common diseases worldwide and is associated with a higher cardiovascular risk partly due to reduced aerobic capacity. Therefore, the aim of our study was to examine whether a structured aerobic training program can improve aerobic capacity in inpatients with MDD (major depressive disorder). Overall, 25 patients (13 women, 12 men) diagnosed with MDD were included in the study. Parameters of aerobic capacity, such as maximum performance, maximum oxygen consumption, and VAT (ventilatory anaerobic threshold), were assessed on a bicycle ergometer before and 6 weeks after a training period (three times per week for 45 min on two endurance machines). In addition, a constant load test was carried out at 50% of the maximum performance prior to and after the training period. The performance data were compared with 25 healthy controls matched for sex, age, and body mass index before and after the training period. Compared to controls, patients with MDD had significantly lower aerobic capacity. After training, there was a significant improvement in their performance data. A significant difference remained only for VAT between patients with MDD and healthy controls. With regard to the coincidence of MDD with cardiovascular and cardiometabolic disorders, a structured supervised exercise program carried out during hospitalization is a useful supplement for patients with MDD.

  2. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less

  3. Effects of periods of nonuse and fluctuating ammonia concentration on biofilter performance.

    PubMed

    Chen, Ying-Xu; Yin, Jun; Wang, Kai-Xiong; Fang, Shi

    2004-01-01

    A systematic study on the transient behavior of odor treatment using biofilters is described. The biofilters were exposed to variations in contaminant loading and periods of nonuse. Two bench-scale biofilters with different filter media were used. Mixtures of compost/perlite (5:1) and dry sludge/granular active carbon (5:1) were used as filter media. Ammonia (NH3), one of the main malodorous gases, was used as the target compound. The response of each biofilter to variations in contaminant mass loading, periodic nonuse, water content, and inlet concentration pulse was studied. The nonuse period comprised of two stages: the "idle phase" when no air was passing through the biofilters, and the "no-contaminant-loading phase" when only humidified air was passing through the biofilters. Concentration spike was applied to study the effects of shock loading on the biofilter performance. Biofilters responded effectively to NH3 concentration variations and shock loading by rapidly recovering to the original removal rates within 6-12h. The results indicated re-acclimation times ranged from several hours to longer than a day. Longer idle phase produced longer re-acclimation periods than periods of no contaminant loading. When the media was dried during the biofiltration process, elimination capacity dropped accordingly for both biofilters. After 24 h of drying, the biofilter experiment could be restarted and run for a few days for recovering.

  4. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  5. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  6. Subject Specific Optimisation of the Stiffness of Footwear Material for Maximum Plantar Pressure Reduction.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Healy, Aoife; Gerth, Peter; Chockalingam, Nachiappan

    2017-08-01

    Current selection of cushioning materials for therapeutic footwear and orthoses is based on empirical and anecdotal evidence. The aim of this investigation is to assess the biomechanical properties of carefully selected cushioning materials and to establish the basis for patient-specific material optimisation. For this purpose, bespoke cushioning materials with qualitatively similar mechanical behaviour but different stiffness were produced. Healthy volunteers were asked to stand and walk on materials with varying stiffness and their capacity for pressure reduction was assessed. Mechanical testing using a surrogate heel model was employed to investigate the effect of loading on optimum stiffness. Results indicated that optimising the stiffness of cushioning materials improved pressure reduction during standing and walking by at least 16 and 19% respectively. Moreover, the optimum stiffness was strongly correlated to body mass (BM) and body mass index (BMI), with stiffer materials needed in the case of people with higher BM or BMI. Mechanical testing confirmed that optimum stiffness increases with the magnitude of compressive loading. For the first time, this study provides quantitative data to support the importance of stiffness optimisation in cushioning materials and sets the basis for methods to inform optimum material selection in the clinic.

  7. Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration

    PubMed Central

    Scheicher, Bernhard; Lorenzer, Cornelia; Gegenbauer, Katrin; Partlic, Julia; Andreae, Fritz; Kirsch, Alexander H.; Rosenkranz, Alexander R.; Werzer, Oliver

    2016-01-01

    Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in order to address key parameters of drug delivery systems as size, API loading or modified drug release. PMID:27828968

  8. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na 2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions andmore » degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.« less

  10. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    PubMed

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  11. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  12. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease

    PubMed Central

    Fuld, J; Kilduff, L; Neder, J; Pitsiladis, Y; Lean, M; Ward, S; Cotton, M

    2005-01-01

    Background: Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. Methods: Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV1) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). Results: No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean –23.1 m (95% CI –71.7 to 25.5) post loading and –21.5 m (95% CI –90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score –7.7 (95% CI –14.9 to –0.5)). Conclusions: Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD. PMID:15994258

  13. Understanding the allocation of attention when faced with varying perceptual load in partial report: a computational approach.

    PubMed

    Kyllingsbæk, Søren; Sy, Jocelyn L; Giesbrecht, Barry

    2011-05-01

    The allocation of visual processing capacity is a key topic in studies and theories of visual attention. The load theory of Lavie (1995) proposes that allocation happens in two steps where processing resources are first allocated to task-relevant stimuli and secondly remaining capacity 'spills over' to task-irrelevant distractors. In contrast, the Theory of Visual Attention (TVA) proposed by Bundesen (1990) assumes that allocation happens in a single step where processing capacity is allocated to all stimuli, both task-relevant and task-irrelevant, in proportion to their relative attentional weight. Here we present data from two partial report experiments where we varied the number and discriminability of the task-irrelevant stimuli (Experiment 1) and perceptual load (Experiment 2). The TVA fitted the data of the two experiments well thus favoring the simple explanation with a single step of capacity allocation. We also show that the effects of varying perceptual load can only be explained by a combined effect of allocation of processing capacity as well as limits in visual working memory. Finally, we link the results to processing capacity understood at the neural level based on the neural theory of visual attention by Bundesen et al. (2005). Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  15. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  16. Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures

    NASA Astrophysics Data System (ADS)

    Gocál, Jozef

    2014-12-01

    This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.

  17. Influence of Altered Mass Loading on Testosterone Levels and Testicular Mass

    NASA Technical Reports Server (NTRS)

    Wang, Tommy J.; Ortiz, R. M.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Effects of altered load on testosterone levels and testicular mass in mammals are not well defined. Two separate studies (loading;centrifuged; +2G(sub z) and unloading;hindlimb suspension;HLS) were conducted to provide a better understanding of the effects of mass loading on testosterone levels and testicular mass. Daily urine samples were collected, and testicular mass measured at the end of the study. +2G(sub z): Sprague-Dawley rats (230-250 g) were centrifuged for 12 days at +2G(sub z): 8 centrifuged (EC) and 8 off centrifuge controls (OCC). EC had lower body mass, however relative testicular mass was greater. EC exhibited an increase in excreted testosterone levels between days 2 (T2) and 6 (T6), and returned to baseline at T9. HLS: To assess the effects of unloading Sprague-Dawley rats (125-150 g) were studied for 12 days: 10 suspended (Exp) and 10 ambulatory (Ctl). Exp had lower body mass during the study, with reduced absolute and relative testicular mass. Exp demonstrated lower excreted testosterone levels from T5-T12. Conclusions: Loading appears to stimulate anabolism, as opposed to unloading, as indicated by greater relative testicular mass and excreted testosterone levels. Reported changes in muscle mass during loading and unloading coincide with similar changes in excreted testosterone levels.

  18. The enrichment of chlorogenic acid from Eucommia ulmoides leaves extract by mesoporous carbons.

    PubMed

    Qin, Guotong; Ma, Jing; Wei, Wei; Li, Jaja; Yue, Fangqing

    2018-06-15

    Herein, we report an efficient separation and enrichment method for chlorogenic acid from crude extracts of Eucommia ulmoides leaves using carbon adsorbents. The effects of the pore structure of the carbon adsorbents on the adsorption capacity were studied. Of the four adsorbents investigated, mesoporous carbon (MC3) showed the highest adsorption capacity (294 mg/g of carbon) for chlorogenic acid due to its high mesopore volume. The static adsorption of CGA on carbon can be accurately described using the Freundlich equation. The kinetics of adsorption follow a pseudo-second-order process. External mass transfer was the controlling step of the adsorption process. Dynamic adsorption on MC3 demonstrated that chlorogenic acid began to break through after 28 bed volumes of extract was loaded. This mesoporous carbon-treatment procedure is safe, economic and has the potential to be scaled up for commercial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Examination of a lumbar spine biomechanical model for assessing axial compression, shear, and bending moment using selected Olympic lifts.

    PubMed

    Eltoukhy, Moataz; Travascio, Francesco; Asfour, Shihab; Elmasry, Shady; Heredia-Vargas, Hector; Signorile, Joseph

    2016-09-01

    Loading during concurrent bending and compression associated with deadlift, hang clean and hang snatch lifts carries the potential for injury to the intervertebral discs, muscles and ligaments. This study examined the capacity of a newly developed spinal model to compute shear and compressive forces, and bending moments in lumbar spine for each lift. Five male subjects participated in the study. The spine was modeled as a chain of rigid bodies (vertebrae) connected via the intervertebral discs. Each vertebral reference frame was centered in the center of mass of the vertebral body, and its principal directions were axial, anterior-posterior, and medial-lateral. The results demonstrated the capacity of this spinal model to assess forces and bending moments at and about the lumbar vertebrae by showing the variations among these variables with different lifting techniques. These results show the model's potential as a diagnostic tool.

  20. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries.

    PubMed

    Wu, Yang; Wei, Yang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2013-02-13

    A uniform Fe(3)O(4) sheath is magnetron sputtered onto aligned carbon nanotube (CNT) scaffolds that are directly drawn from CNT arrays. The Fe(3)O(4)-CNT composite electrode, with the size of Fe(3)O(4) confined to 5-7 nm, exhibits a high reversible capacity over 800 mAh g(-1) based on the total electrode mass, remarkable capacity retention, as well as high rate capability. The excellent performance is attributable to the superior electrical conductivity of CNTs, the uniform loading of Fe(3)O(4) sheath, and the structural retention of the composite anode on cycling. As Fe(3)O(4) is inexpensive and environmentally friendly, and the synthesis of Fe(3)O(4)-CNT is free of chemical wastes, this composite anode material holds considerable promise for high-performance lithium ion batteries.

  1. Numerical modelling of temporal and spatial patterns of petroleum hydrocarbons concentration in the Bohai Sea.

    PubMed

    Guo, Weijun; Wu, Guoxiang; Xu, Tiaojian; Li, Xueyan; Ren, Xiaozhong; Hao, Yanni

    2018-02-01

    The discharge of petroleum hydrocarbons (PHs; ~10,000tons annually) into the Bohai Sea, a shallow inland sea in China, presents a serious threat to the marine environment. To evaluate the effects of PHs pollution and estimate the corresponding environmental capacity, we have developed a genetic algorithm-based coupled hydrodynamic/transport for simulating PHs concentration evolution and distribution from July 2006 to October 2007, with the predicted values being in good agreement with monitoring results. Importantly, the mean PHs concentrations and seasonal concentration variations were primarily determined by external loading, i.e., currents were shown to drive PHs transport, reconfigure local PHs patterns, and increase PHs concentration in water masses, even at large distances from discharge sources. The developed model could realistically simulate PHs distribution and evolution, thus being a useful tool for estimating the seasonal environmental capacity of PHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation for Loss of Lubrication Performance of Black Oxide, Superfinished, and As-Ground Surfaces for Use in Rotorcraft Transmissions

    DTIC Science & Technology

    2016-09-01

    2.3.2 Loss -of-Lubrication Protocol 5 2.3.3 Friction Mapping Protocol 7 2.4 Test Matrices 9 3. Results and Discussion 10 3.1 Load Capacity 10...protocols used to simulate relevant contact conditions are the load capacity (LC), loss -of-lubrication (LoL), and mapping protocols. 2.3.1 Load ...Entrainment velocity (m/s) Slip (%) Skew (°) Load (N) Contact stress (GPa) LoL 16 –100 0 100 1.29 2.3.2.2 Low-Speed Loss -of-Lubrication

  3. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  4. Scaling of maximum net force output by motors used for locomotion.

    PubMed

    Marden, James H

    2005-05-01

    Biological and engineered motors are surprisingly similar in their adherence to two or possibly three fundamental regimes for the mass scaling of maximum force output (Fmax). One scaling regime (Group 1: myosin, kinesin, dynein and RNA polymerase molecules; muscle cells; whole muscles; winches; linear actuators) comprises motors that create slow translational motion with force outputs limited by the axial stress capacity of the motor, which results in Fmax scaling as motor mass0.67 (M0.67). Another scaling regime (Group 2: flying birds, bats and insects; swimming fish; running animals; piston engines; electric motors; jets) comprises motors that cycle rapidly, with significant internal and external accelerations, and for whom inertia and fatigue life appear to be important constraints. The scaling of inertial loads and fatigue life both appear to enforce Fmax scaling as M1.0 in these motors. Despite great differences in materials and mechanisms, the mass specific Fmax of Group 2 motors clusters tightly around a mean of 57 N kg(-1), a region of specific force loading where there appears to be a common transition from high- to low-cycle fatigue. For motors subject to multi-axial stresses, the steepness of the load-life curve in the neighborhood of 50-100 N kg(-1) may overwhelm other material and mechanistic factors, thereby homogenizing the mass specific Fmax of grossly dissimilar animals and machines. Rockets scale with Group 1 motors but for different mechanistic reasons; they are free from fatigue constraints and their thrust is determined by mass flow rates that depend on cross sectional area of the exit nozzle. There is possibly a third scaling regime of Fmax for small motors (bacterial and spermatazoan flagella; a protozoan spring) where viscosity dominates over inertia. Data for force output of viscous regime motors are scarce, but the few data available suggest a gradually increasing scaling slope that converges with the Group 2 scaling relationship at a Reynolds number of about 10(2). The Group 1 and Group 2 scaling relationships intersect at a motor mass of 4400 kg, which restricts the force output and design of Group 2 motors greater than this mass. Above 4400 kg, all motors are limited by stress and have Fmax that scales as M0.67; this results in a gradual decline in mass specific Fmax at motor mass greater than 4400 kg. Because of declining mass specific Fmax, there is little or no potential for biological or engineered motors or rockets larger than those already in use.

  5. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.

    PubMed

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W

    2018-02-28

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  6. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.

    PubMed

    Ju, Zhigang; Sun, Wei

    2017-11-01

    With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.

  7. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    PubMed

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  8. Modeling CO{sub 2} and H{sub 2}S solubility in MDEA and DEA: Design implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochelle, G.T.; Posey, M.

    1996-12-31

    The solubility of H{sub 2}S and CO{sub 2} in aqueous alkanolamines affects solution capacity and the required circulation rate for acid gas absorption. These thermodynamics also determine the relationship of steam rate and the lean loading of the solution which in turn sets the leak of acid gas from the top of the absorber. Finally, the mechanisms of mass transfer and the role of kinetics, especially in stripping, depend on the vapor/liquid equilibria. Published measurements of CO{sub 2} and H{sub 2}S solubility in methyldiethanolamine (MDEA) and diethanolamine (DEA) are not in general agreement, especially at low loading of acid gas.more » The available sets of solubility data have been regressed with the AspenPlus electrolyte/NRTL model. All of the parameters and constants that make up this model have been carefully evaluated. Independent thermodynamic data such as freezing point and heat of mixing have been included in the regression to strengthen the estimates of model parameters. The parameters for each set of solubility data have been evaluated in an attempt to determine which set is correct. Each evaluated model has been used to calculate the acid gas capacity and minimum stripping steam rate for several industrial cases of acid gas absorption/stripping.« less

  9. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  10. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  11. Three-dimensional carbon nanotubes for high capacity lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kang, Chiwon; Patel, Mumukshu; Rangasamy, Baskaran; Jung, Kyu-Nam; Xia, Changlei; Shi, Sheldon; Choi, Wonbong

    2015-12-01

    Carbon nanotubes (CNTs) have been considered as a potential anode material for next generation Lithium-ion batteries (LIBs) due to their high conductivity, flexibility, surface area, and lithium-ion insertion ability. However, the low mass loading and bulk density of carbon nanomaterials hinder their use in large-scale energy storage because their high specific capacity may not scale up linearly with the thickness of the electrode. To address this issue, a novel three-dimensional (3D) architecture is rationally designed by stacking layers of free-standing CNTs with the increased areal density to 34.9 mg cm-2, which is around three-times higher than that of the state-of-the-art graphitic anodes. Furthermore, a thermal compression process renders the bulk density of the multi-stacked 3D CNTs to be increased by 1.85 g cm-3, which yields an excellent volumetric capacity of 465 mAh cm-3 at 0.5C. Our proposed strategy involving the stacking of 3D CNT based layers and post-thermal compression provides a powerful platform for the utilization of carbon nanomaterials in the advanced LIB technology.

  12. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    PubMed

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.

  14. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses

    PubMed Central

    Ma, Li; Guess, Petra C.; Zhang, Yu

    2013-01-01

    Objectives The aim of this study was to test the hypothesis that monolithic lithium disilicate glass-ceramic occlusal onlay can exhibit a load-bearing capacity that approaches monolithic zirconia, due to a smaller elastic modulus mismatch between the lithium disilicate and its supporting tooth structure relative to zirconia. Methods Ceramic occlusal onlays of various thicknesses cemented to either enamel or dentin were considered. Occlusal load was applied through an enamel-like deformable indenter or a control rigid indenter. Flexural tensile stress at the ceramic intaglio (cementation) surface—a cause for bulk fracture of occlusal onlays—was rigorously analyzed using finite element analysis and classical plate-on-foundation theory. Results When bonded to enamel (supported by dentin), the load-bearing capacity of lithium disilicate can approach 75% of that of zirconia, despite the flexural strength of lithium disilicate (400 MPa) being merely 40% of zirconia (1000 MPa). When bonded to dentin (with the enamel completely removed), the load-bearing capacity of lithium disilicate is about 57% of zirconia, still significantly higher than the anticipated value based on its strength. Both ceramics show slightly higher load-bearing capacity when loaded with a deformable indenter (enamel, glass-ceramic, or porcelain) rather than a rigid indenter. Significance When supported by enamel, the load-bearing property of minimally invasive lithium disilicate occlusal onlays (0.6 to 1.4 mm thick) can exceed 70% of that of zircona. Additionally, a relatively weak dependence of fracture load on restoration thickness indicates that a 1.2 mm thin lithium disilicate onlay can be as fracture resistant as its 1.6 mm counterpart. PMID:23683531

  15. The Transportation of Debris by Running Water

    USGS Publications Warehouse

    Gilbert, Grove Karl; Murphy, Edward Charles

    1914-01-01

    Scope.-The finer debris transported by a stream is borne in suspension. The coarser is swept along the channel bed. The suspended load is readily sampled and estimated, and much is known as to its quantity. The bed load is inaccessible and we are without definite information as to its amount. The primary purpose of the investigation was to learn the laws which control the movement of bed load, and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the debris. Method.-To this end a laboratory was equipped at Berkeley, Cal., and experiments were performed in which each of the three conditions mentioned was separately varied and the resulting variations of load were observed and measured. Sand and gravel were sorted by sieves into grades of uniform size. Determinate discharges were used. In each experiment a specific load was fed to a stream of specific width and discharge, and measurement was made of the slope to which the stream automatically adjusted its bed so as to enable the current to transport the load. The slope factor.-For each combination of discharge, width, and grade of debris there is a slope, called competent slope, which limits transportation. With lower slopes there is no load, or the stream has no capacity for load. With higher slopes capacity exists; and increase of slope gives increase of capacity. The value of capacity is approximately proportional to a power of the excess of slope above competent slope. If S equal the stream's slope and sigma equal competent slope, then the stream's capacity varies as (S - sigma)n. This is not a deductive, but an empiric law. The exponent n has not a fixed value, but an indefinite series of values depending on conditions. Its range of values in the experience of the laboratory is from 0.93 to 2.37, the values being greater as the discharges are smaller or the debris is coarser. The discharge factor.-For each combination of width, slope, and grade of debris there is a competent discharge, k. Calling the stream's discharge Q, the stream's capacity varies as (Q - k)o. The observed range of values for o is from 0.81 to 1.24, the values being greater as the slopes are smaller or the debris is coarser. Under like conditions o is less than n; or, in other words, capacity is less sensitive to change3 of discharge than to changes of slope. The fineness factor.-For each combination of width, slope, and discharge there is a limiting fineness of debris below which no transportation takes place. Calling fineness (or degree of comminution) F and competent fineness o, the stream's capacity varies with (F - o)p. The observed range of values for p is from 0.50 to 0.62, the values being greater as slopes and discharges are smaller. Capacity is less sensitive to changes in fineness of debris than to changes in discharge or slope. The form factor.-Most of the experiments were with straight channels. A few with crooked channels yielded nearly the same estimates of capacity. The ratio of depth to width is a more important factor. For any combination of slope, discharge, and fineness it is possible to reduce capacity to zero by making the stream very wide and shallow or very narrow and deep. Between these extremes is a particular ratio of depth to width, p, corresponding to a maximum capacity. The values of p range, under laboratory conditions, from 0.5 to 0.04, being greater as slope, discharge, and fineness are less. Velocity.-The velocity which determines capacity for bed load is that near the stream's bed, but attempts to measure bed velocity were not successful. Mean velocity was measured instead. To make a definite comparison between capacity and mean velocity it is necessary to postulate constancy in some accessory condition. If slope be the constant, in which case velocity changes with discharge, capacity varies on the average with the 3.2 power of velocity. If discharge be the constant, in w

  16. I can see clearly now: the effects of age and perceptual load on inattentional blindness

    PubMed Central

    Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli

    2014-01-01

    Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie’s Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7–8, 9–10, 11–12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task. PMID:24795596

  17. I can see clearly now: the effects of age and perceptual load on inattentional blindness.

    PubMed

    Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli

    2014-01-01

    Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie's Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7-8, 9-10, 11-12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task.

  18. A calibration procedure for load cells to improve accuracy of mini-lysimeters in monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Misra, R. K.; Padhi, J.; Payero, J. O.

    2011-08-01

    SummaryWe used twelve load cells (20 kg capacity) in a mini-lysimeter system to measure evapotranspiration simultaneously from twelve plants growing in separate pots in a glasshouse. A data logger combined with a multiplexer was used to connect all load cells with the full-bridge excitation mode to acquire load-cell signal. Each load cell was calibrated using fixed load within the range of 0-0.8 times the full load capacity of load cells. Performance of all load cells was assessed on the basis of signal settling time, excitation compensation, hysteresis and temperature. Final calibration of load cells included statistical consideration of these effects to allow prediction of lysimeter weights and evapotranspiration over short-time intervals for improved accuracy and sustained performance. Analysis of the costs for the mini-lysimeter system indicates that evapotranspiration can be measured economically at a reasonable accuracy and sufficient resolution with robust method of load-cell calibration.

  19. Enhanced load-carrying capacity of hairy surfaces floating on water.

    PubMed

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  20. Enhanced load-carrying capacity of hairy surfaces floating on water

    PubMed Central

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-01-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  1. Mechanical and deformation analyses of pile foundation for supporting structure of off-shore wind turbine at Changhua coast in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Lin, D. G.

    2015-12-01

    This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.

  2. Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bowen; Maroukis, Spencer D.; Lin, Yashen

    2016-11-21

    Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less

  3. The Effect of Body Mass on the Shoe-Athlete Interaction

    PubMed Central

    Maropoulos, S.; Arabatzi, F.

    2017-01-01

    Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial heel was prototyped to fit the impact pattern of a heel-strike runner and used to measure shock attenuation by an automated drop test. Impact mass and velocity were modulated to simulate runners of various body mass and speeds. The investigation provided refined insight on running-induced impact transmission to the human body. The examined midsole system was optimized around anthropometric data corresponding to an average (normal) body mass. The results suggest that although modern footwear is capable of attenuating the shock waves occurring during foot strike, improper shoe selection could expose an athlete to high levels of peak stress that could provoke an abnormal cartilage response. The selection of a weight-specific cushioning system could provide optimum protection and could thus prolong the duration of physical exercise beneficial to maintaining a simulated immune system. PMID:28465660

  4. The Effect of Body Mass on the Shoe-Athlete Interaction.

    PubMed

    Tsouknidas, A; Pantazopoulos, M; Sagris, D; Fasnakis, D; Maropoulos, S; Arabatzi, F; Michailidis, N

    2017-01-01

    Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial heel was prototyped to fit the impact pattern of a heel-strike runner and used to measure shock attenuation by an automated drop test. Impact mass and velocity were modulated to simulate runners of various body mass and speeds. The investigation provided refined insight on running-induced impact transmission to the human body. The examined midsole system was optimized around anthropometric data corresponding to an average (normal) body mass. The results suggest that although modern footwear is capable of attenuating the shock waves occurring during foot strike, improper shoe selection could expose an athlete to high levels of peak stress that could provoke an abnormal cartilage response. The selection of a weight-specific cushioning system could provide optimum protection and could thus prolong the duration of physical exercise beneficial to maintaining a simulated immune system.

  5. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  6. The influences of load mass changing on inverted pendulum stability based on simulation study

    NASA Astrophysics Data System (ADS)

    Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula

    2017-09-01

    An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.

  7. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    NASA Astrophysics Data System (ADS)

    Baroutaji, A.; Olabi, A. G.

    2010-06-01

    Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2) on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1) and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2).

  8. The river absorption capacity determination as a tool to evaluate state of surface water

    NASA Astrophysics Data System (ADS)

    Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna

    2018-02-01

    In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.

  9. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  10. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  11. Waiting time effect of a GM type orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi

    In a general GM type orifice pulse tube refrigerator, there are two short periods during which both the high pressure valve and the low pressure valve are closed in one cycle. We call the short period `waiting time'. The pressure differences across the high pressure valve and the low pressure valve are decreased by using long waiting time. The pressure difference loss is decreased. Thus, the cooling capacity and the efficiency are increased, and the no-load temperature is decreased. The mechanism of the waiting time is discussed with numerical analysis and verified by experiments. Experiments show that there is an optimum waiting time for the no-load temperature, the cooling capacity and the efficiency, respectively. The no-load temperature of 40.3 K was achieved with a 90° waiting time. The cooling capacity of 58 W at 80 K was achieved with a 60° waiting time. The no-load temperature of 45.1 K and the cooling capacity of 45 W at 80 K were achieved with a 1° waiting time.

  12. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C. Keith; Shen, Bo; Shrestha, Som S.

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less

  14. Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation.

    PubMed

    Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.

  15. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  16. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Bu-han; Zhang, Zhe; Yin, Xiang-gen; Wang, Bo

    2011-11-01

    Most existing research on the vulnerability of power grids based on complex networks ignores the electrical characteristics and the capacity of generators and load. In this paper, the electrical betweenness is defined by considering the maximal demand of load and the capacity of generators in power grids. The loss of load, which reflects the ability of power grids to provide sufficient power to customers, is introduced to measure the vulnerability together with the size of the largest cluster. The simulation results of the IEEE-118 bus system and the Central China Power Grid show that the cumulative distributions of node electrical betweenness follow a power-law and that the nodes with high electrical betweenness play critical roles in both topological structure and power transmission of power grids. The results prove that the model proposed in this paper is effective for analyzing the vulnerability of power grids.

  17. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  18. Plug and Process Loads Capacity and Power Requirements Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less

  19. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative.

    PubMed

    Wang, Xiaojuan; Wu, Guolin; Lu, Caicai; Zhao, Weipeng; Wang, Yinong; Fan, Yunge; Gao, Hui; Ma, Jianbiao

    2012-08-30

    A poly (amino acid)-based amphiphilic copolymer was utilized to fabricate a better micellar drug delivery system (DDS) with improved compatibility and sustained release of doxorubicin (DOX). First, poly (ethylene glycol) monomethyl ether (mPEG) and DOX were conjugated onto polyasparihyazide (PAHy), prepared by hydrazinolysis of the poly (succinimide) (PSI), to afford an amphiphilic polymer [PEG-hyd-P (AHy-hyd-DOX)] with acid-liable hydrazone bonds. The DOX, chemically conjugated to the PAHy, was designed to supply hydrophobic segments. PEGs were also grafted to the polymer via hydrazone bonds to supply hydrophiphilic segments and prolong its lifetime in blood circulation. Free DOX molecules could be entrapped into the nanoparticles fabricated by such an amphiphilic polymer (PEG-hyd-P (AHy-hyd-DOX)), via hydrophobic interaction and π-π stacking between the conjugated and free DOX molecules to obtain a pH responsive drug delivery system with high DOX loaded. The drug loading capacity, drug release behavior, and morphology of the micelles were investigated. The biological activity of micelles was evaluated in vitro. The drug loading capacity was intensively augmented by adjusting the feed ratio, and the maximum loading capacity was as high as 38%. Besides, the DOX-loaded system exhibited pH-dependent drug release profiles in vitro. The cumulative release of DOX was much faster at pH 5.0 than that at pH 7.4. The DOX-loaded system kept highly antitumor activity for a long time, compared with free DOX. This easy-prepared DDS, with features of biocompatibility, biodegradability, high drug loading capacity and pH-responsiveness, was a promising controlled release delivery system for DOX. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

    PubMed Central

    Alerstam, Thomas; Rosén, Mikael; Bäckman, Johan; Ericson, Per G. P; Hellgren, Olof

    2007-01-01

    Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, U e) of 138 species, ranging 0.01–10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of U e in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in U e. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in U e. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading. PMID:17645390

  1. Multi-stage rescheduling of generation, load shedding and short-term transmission capacity for emergency state control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogh, B.; Chow, J.H.; Javid, H.S.

    1983-05-01

    A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.

  2. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    PubMed

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  3. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.

    1989-01-01

    How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.

  5. Modelling of CO2 pipelines in dynamic CCS systems

    NASA Astrophysics Data System (ADS)

    Nimtz, M.; Klatt, M.; Krautz, H. J.

    2012-04-01

    The growing rate of renewable energies contributing to the power supply in Germany is starting to influence conventional thermal power plants. As a particular example, the state of Brandenburg in the eastern part of Germany has an installed capacity of 4.4 GW wind power [DEWI 2011] and 6.1 GW fossil fueled large-scale power plants (including the site in Boxberg, north-east saxony) [Vattenfall 2011] respectively. This ratio is disadvantageous, as the local thermal power plants have to provide all the balancing power to control the load of the power grid in the region. As long as there are bottlenecks in the grid, preventing the extra load from wind energy to be transported as well as a lack of technologies to store electrical energy, almost all load changes have to be balanced by the large fossil fueled power plants. The ability to provide balancing power will also be an essential criterion for new large-scale CCS (carbon dioxide capture and storage) power plants to be permitted. But this of course will influence the overall performance of the power plant and the connected peripheral systems. It is obvious that the additional equipment to capture, transport and store the CO2 and all related extra process steps will lower the flexibility and the speed of load changes that can be applied to the CCS system if no special measures are applied. All changes in load that are demanded from the power grid will be transferred to the capture and transport system, finally resulting in changes in mass flow and pressure of the CO2. These changes will also influence the performance of the storage reservoir. The presentation at the GeoEn session at the EGU 2012 will cover a look at a CCS system consisting of a coal fired Oxyfuel power plant, a pipeline to transport the CO2 and a saline aquifer as a storage reservoir. It is obvious that all parts of this system will influence each other due to the direct connection via pipeline and the physical limitations in mass flow and pressure deviations from design values. To track the effects of load changes on the system, the software program OLGA® [SPT 2011] is used. The software will give as simulation results detailed information about the dynamic changes of pressure, temperature and mass flow within the pipeline from the power plant down to the injection well and even is able to account for influences from the reservoir. The example which will be presented includes a power grid situation wherein high load changes due to fluctuating wind power induce changes in the CCS power plant load and all associated systems, especially the CO2 mass flow in the pipeline itself. Results will be discussed with regard to the design criterions of such CCS systems and the safe operation of a pipeline under high load changes to prevent critical situations that would force a stop of power plant and injection operation or other measures like a blow down of the pipeline.

  6. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  7. Justification of process of loading coal onto face conveyors by auger heads of shearer-loader machines

    NASA Astrophysics Data System (ADS)

    Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.

    2018-03-01

    This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.

  8. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.

    PubMed

    Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby

    2015-12-07

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. © 2015 The Author(s).

  9. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.

    PubMed

    Zhang, Kan; Lee, Jeong-Taik; Li, Ping; Kang, Byoungwoo; Kim, Jung Hyun; Yi, Gi-Ra; Park, Jong Hyeok

    2015-10-14

    Surface carbon coating to improve the inherent poor electrical conductivity of lithium iron phosphate (LiFePO4, LFP) has been considered as most efficient strategy. Here, we also report one of the conventional methods for LFP but exhibiting a specific capacity beyond the theoretical value, ultrahigh rate performance, and excellent long-term cyclability: the specific capacity is 171.9 mAh/g (70 μm-thick electrode with ∼10 mg/cm(2) loading mass) at 0.1 C (17 mA/g) and retains 143.7 mAh/g at 10 C (1.7 A/g) and 95.8% of initial capacity at 10 C after 1000 cycles. It was found that the interior conformal N-C coating enhances the intrinsic conductivity of LFP nanorods (LFP NR) and the exterior reduced graphene oxide coating acts as an electrically conducting secondary network to electrically connect the entire electrode. The great electron transport mutually promoted with shorten Li diffusion length on (010) facet exposed LFP NR represents the highest specific capacity value recorded to date at 10 C and ultralong-term cyclability. This conformal carbon coating approach can be a promising strategy for the commercialization of LFP cathode in lithium ion batteries.

  10. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    PubMed Central

    Blanken, Lisa J.; van Dooremalen, Coby

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559

  11. Relationship of obesity with osteoporosis

    PubMed Central

    Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen

    2007-01-01

    Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077

  12. Study on load forecasting to data centers of high power density based on power usage effectiveness

    NASA Astrophysics Data System (ADS)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  13. Analysis of Static Load Test of a Masonry Arch Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fang, Tian-tian; Luo, Sheng

    2018-03-01

    In order to know whether the carrying capacity of the masonry arch bridge built in the 1980s on the shipping channel entering and coming out of the factory of a cement company can meet the current requirements of Level II Load of highway, through the equivalent load distribution of the test vehicle according to the current design specifications, this paper conducted the load test, evaluated the bearing capacity of the in-service stone arch bridge, and made theoretical analysis combined with Midas Civil. The results showed that under the most unfavorable load conditions the measured strain and deflection of the test sections were less than the calculated values, the bridge was in the elastic stage under the design load; the structural strength and stiffness of the bridge had a certain degree of prosperity, and under the in the current conditions of Level II load of highway, the bridge structure was in a safe state.

  14. Hydrophobic lappaconitine loaded into iota-carrageenan by one step self-assembly.

    PubMed

    Sun, Wenxiu; Saldaña, Marleny D A; Zhao, Yujia; Wu, Lingling; Dong, Tungalag; Jin, Ye; Zhang, Ji

    2016-02-10

    New data on the loading of pH-sensitive lappaconitine loaded into iota-carrageenan (LA-ICG) is provided. This LA-ICG ionic biopolymer was prepared by one step self-assembly. The LA-ICG was characterized in terms of the loading capacity, lappaconitine (LA) releasing behavior, pH-sensitivity, and analgesic properties. Iota-carrageenan (ICG) high loading capacity reached up to 26.18% (w/w). Also, the LA, loaded with ICG, was released faster in an acidic environment than that in neutral or alkaline environments. Animal analgesic experiments showed that the LA-ICG of low molecular weight had earlier onset time and longer duration than the LA. These results suggest that the ICG of low molecular weight has great potential to achieve the synergistic effect of LA. In addition, the ICG can be used as a novel natural polymeric carrier for loading a hydrophobic alkaloid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Gas Seal Pad With Herringbone-Grooved Rotor-Stiffness and Load Capacity

    NASA Technical Reports Server (NTRS)

    Flemming, David P.

    2006-01-01

    The principle of herringbone-grooved journal bearings has been applied to the case of a seal disc running under a finger seal pad. The inward pumping action of herringbone grooves on the disc generates load capacity and stiffness to maintain a fluid film and prevent contact of the pad and disc. This mechanism does not depend on a converging film under the pad, such as analyzed in previous works. Analysis shows that significant stiffness and load capacity can be supplied by herringbone grooves. In order for the grooves to be effective, the seal pressure drop must be taken outside of the grooved portion of the rotor, but this may be acceptable in order to gain freedom from maintaining a precise film convergence.

  16. Amplitude effects on the dynamic performance of a hydrostatic gas thrust bearing

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1975-01-01

    The Reynolds' equation is applied to a strip gas thrust bearing to analyze amplitude disturbance effects on its dynamic performance. The Reynolds' equation is numerically approximated using finite difference techniques. The time dependent load carrying capacity is represented by a Fourier series up to and including the third harmonics. Design curves for the load capacity and the linear stiffness and damping are presented as a function of inlet location, restrictor coefficient, supply pressure, amplitude of oscillation, and squeeze number. For the range of amplitudes investigated the dimensionless load capacity, stiffness and damping does not exhibit an appreciable change in magnitude; thus, only one design curve is needed to represent each relationship. A design methodology is presented.

  17. Effects of surface roughness, MHD and couple stress on squeeze film characteristics between curved circular plates

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Salma, A.; Nagarajappa, C. S.

    2018-04-01

    The theoretical discussion is carried out for understanding the combined study of MHD, rough surface and couple-stress in the presence of applied magnetic field between two curved circular plates is present analysis. Modified Reynolds Equations accounting for rough surface using stochastic model of Christensen are mathematically formulated. The close form derivations for pressure, load-supporting capacity and response-film time are obtained. Our results shows that, there is an significant increase (decrease) for pressure, load-supporting capacity and squeeze film time due to the effect of azimuthal (radial) roughness parameter when compared to the Hanumagowda.et.al [14] and numerical data of load supporting capacity and response time are given in Table for engineering applications.

  18. Anti-buckling design of variable stiffness composite cylinder under combined loading based on the multi-objective optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Chen, J.

    2018-06-01

    Variable stiffness composite structures take full advantages of composite’s design ability. An enlarged design space will make the structure’s performance more excellent. Through an optimal design of a variable stiffness cylinder, the buckling capacity of the cylinder will be increased as compared with its constant stiffness counterpart. In this paper, variable stiffness composite cylinders sustaining combined loadings are considered, and the optimization is conducted based on the multi-objective optimization method. The results indicate that variable stiffness cylinder’s loading capacity is increased significantly as compared with the constant stiffness, especially when an inhomogeneous loading is considered.

  19. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  20. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  1. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this systemmore » using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.« less

  2. Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Yang, Yanling; Li, Yuxin

    2015-02-06

    Development of high resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase column (100 μm x 150 cm) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phasemore » fractionation of peptide ions further increased the number of peptide identification by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed.« less

  3. INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Schroeder; R. W. Youngblood

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion.more » In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently.« less

  4. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  5. Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. S.

    2017-04-01

    Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.

  6. Measuring fish body condition with or without parasites: does it matter?

    PubMed

    Lagrue, C; Poulin, R

    2015-10-01

    A fish body condition index was calculated twice for each individual fish, including or excluding parasite mass from fish body mass, and index values were compared to test the effects of parasite mass on measurement of body condition. Potential correlations between parasite load and the two alternative fish condition index values were tested to assess how parasite mass may influence the perception of the actual effects of parasitism on fish body condition. Helminth parasite mass was estimated in common bully Gobiomorphus cotidianus from four New Zealand lakes and used to assess the biasing effects of parasite mass on body condition indices. Results showed that the inclusion or exclusion of parasite mass from fish body mass in index calculations significantly influenced correlation patterns between parasite load and fish body condition indices. When parasite mass was included, there was a positive correlation between parasite load and fish body condition, seemingly indicating that fish in better condition supported higher parasite loads. When parasite mass was excluded, there was no correlation between parasite load and fish body condition, i.e. there was no detectable effect of helminth parasites on fish condition or fish condition on parasite load. Fish body condition tended to be overestimated when parasite mass was not accounted for; results showed a positive correlation between relative parasite mass and the degree to which individual fish condition was overestimated. Regardless of the actual effects of helminth parasites on fish condition, parasite mass contained within a fish should be taken into account when estimating fish condition. Parasite tissues are not host tissues and should not be included in fish mass when calculating a body condition index, especially when looking at potential effects of helminth infections on fish condition. © 2015 The Fisheries Society of the British Isles.

  7. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.

    PubMed

    Zhang, Zhizhou; Li, Xiaolong

    2018-05-11

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.

  8. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance

    PubMed Central

    Zhang, Zhizhou; Li, Xiaolong

    2018-01-01

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610

  9. The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less

  10. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  11. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    NASA Astrophysics Data System (ADS)

    Seino, H.; Nagashima, K.; Arai, Y.

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  12. Mass-loading and the formation of the Venus tail

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Saunders, M. A.

    1985-01-01

    Despite its lack of intrinsic magnetic field Venus has a well defined magnetotail, containing about 3 megawebers of magnetic flux in a tail about 4 Venus radii across with perhaps a slightly elliptical cross section. This tail arises through the mass-loading of magnetic flux tubes passing by the planet. Mass-loading can occur due to charge exchange and photoionization as well as from the diffusion of magnetic field into the ionosphere. Various evidence exists for the mass-loading process, including the direct observation of the picked up ions with both the Venera and Pioneer Venus plasma analyzers.

  13. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillo, Andrew; Ricketts, Craig I.

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacitymore » of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME AG-1 Code sections FC and FK[1]. (authors)« less

  14. Review of load rating and posting procedures and requirements.

    DOT National Transportation Integrated Search

    2014-12-01

    All states are required to load rate and post bridges in order to comply with federal standards. Load ratings are performed in order to : determine the safe live load capacity of a bridge, considering the existing conditions of the bridge. Based on t...

  15. Study on Predicting Axial Load Capacity of CFST Columns

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.

    2017-11-01

    This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.

  16. The dual action gas thrust bearing - A new high load bearing concept

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.

  17. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  18. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  19. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  20. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  1. Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater.

    PubMed

    Alarcón-Payán, Dulce A; Koyani, Rina D; Vazquez-Duhalt, Rafael

    2017-05-01

    Chitosan, a renewable biopolymer has the prospective applications in different fields due to its gelation capacity. Nanoconfiguration of chitosan through ionotropic gelation to encapsulate enzymatic activity offers numerous potential applications. In the present study, the preparation and characterization of chitosan nanoparticles loaded with versatile peroxidase are reported. Their performance in bioremediation process and the resistance enhancement against natural microbial biodegradation were studied. The average diameter of enzymatic nanoparticles was 120nm and showed a high enzyme loading capacity. The kinetic parameters of nanoparticles exhibited a slightly lower catalytic activity (k cat ), similar affinity constant (Km) for hydrogen peroxide and higher Km value for the phenolic compound when compared with the free enzyme. The enzymatic nanoparticles showed higher thermostability and the same pH activity profile than those from free enzyme. Ten phenolic compounds, including pesticides, halogenated compounds, endocrine disruptors and antibacterials were transformed by the enzymatic nanoparticles. The transformation rate was lower than those obtained with free enzyme suggesting mass transfer limitations. But very importantly, the enzymatic nanoparticles showed a significant increase of the operational stability in real conditions of wastewater treatment process. Moreover, chemical modification of nanoparticles with different aldehydes still enhanced the operational stability of nanoparticulated enzymes. This enhancement of stability in real conditions and the potential use of biocatalytic nanoparticles in bioremediation processes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities.

    PubMed

    Shoaf, C; Genaidy, A; Karwowski, W; Waters, T; Christensen, D

    1997-11-01

    The objective of this study was to develop a set of mathematical models for manual lowering, pushing, pulling and carrying activities that would result in establishing load capacity limits to protect the lower back against occupational low-back disorders. In order to establish safe guidelines, a three-stage process was used. First, psychophysical data was used to generate the models' discounting factors and recommended load capacities. Second, biomechanical analysis was used to refine the recommended load capacities. Third, physiological criteria were used to validate the models' discounting factors. Both task and personal factors were considered in the models' development. When compared to the results from prior psychophysical research for these activities, the developed load capacity values are lower than previously established limits. The results of this study allowed the authors to validate the hypothesis proposed and tested by Karwowski (1983) that states that the combination of physiological and biomechanical stresses should lead to the overall measure of task acceptability or the psychophysical stress. This study also found that some of the discounting factors for the task frequency parameters recommended in the prior psychophysical research should not be used as several of the high frequency factors violated physiological limits.

  3. Measuring Timber Truck Loads With Image Processing In Paper Mills

    NASA Astrophysics Data System (ADS)

    Silva, M. Santos; Carvalho, Fernando D.; Rodrigues, F. Carvalho; Goncalves, Ana N. R.

    1989-04-01

    The raw material for the paper industry is wood. To have an exact account of the stock of piled sawn tree trunks every truck load entering the plant's stockyard must be measured as to the amount of wood being brought in. Weighting down the trucks has its own problems, mainly, due to the high capacity of the tree trunks to absorb water. This problem is further enhanced when calculations must be made to arrive at the mass of sawn tree trunks which must go into the process of producing a certain quantity of paper pulp. The method presented here is based on two fixed cameras which take the image of the truck load. One takes a view of the trunks in order to get information on the average length of the tree trunks. The other obtains a side view which is digitised and by just discriminating against a grey level the area covered by the tree trunk cross section is measured. A simple arithmetic operation gives the volume of wood in the trunk. The same computer, a PC, will register the trucks particulars is almost independent of weather the wood is wet or dry and it serves trucks of any size.

  4. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  5. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Io's Volcanic Event

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Yoshioka, K.; Tsuchiya, F.; Hiraki, Y.; Tao, C.; Murakami, G.; Yamazaki, A.; Fujimoto, M.; Badman, S. V.; Delamere, P. A.; Bagenal, F.

    2016-12-01

    Plasma production and transfer processes in the planetary and stellar magnetospheres are essential for understanding the space environments around the celestial bodies. It is hypothesized that the mass of plasma loaded from Io's volcano to Jupiter's rotating magnetosphere is recurrently ejected as blobs from the distant tail region of the magnetosphere. The plasma ejections are possibly triggered by the magnetic reconnections, which are followed by the particle energization, bursty planetward plasma flow, and resultant auroral emissions. They are referred to as the 'energetic events'. However, there has been no evidence that the plasma mass loading actually causes the energetic events because of lack of the simultaneous observation of them. This study presents that the recurrent transient auroras, which are possibly representative for the energetic events, are closely associated with the mass loading. Continuous monitoring of the aurora and Io plasma torus indicates onset of the recurrent auroras when accumulation of the loaded plasma mass reaches the canonical total mass of the magnetosphere. This onset condition implies that the fully filled magnetosphere overflows the plasma mass accompanying the energetic events.

  6. Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration and flexural properties of the material.

    PubMed

    Garoushi, Sufyan K; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K

    2006-09-01

    The aim of this study was to determine the static load-bearing capacity of composite resin onlay restorations made of particulate filler composite (PFC) with two different types of fiber-reinforced composite (FRC) substructures. In addition, flexural properties of the material combination and the effect of polymerization devices were tested. Specimens were prepared to simulate an onlay restoration, which consisted of 2 to 3 mm of FRC layer as a substructure (short random and continuous bidirectional fiber orientation) and a 1 mm surface layer of PFC. Control specimens were prepared from plain PFC. In Group A the specimens were incrementally polymerized only with a hand-light curing unit for 40 s, while in Group B the specimens were post-cured in a light-curing oven for 15 min before they were statically loaded with a steel ball. Bar-shaped test specimens were prepared to measure the flexural properties of material combination using a three-point bending test (ISO 10477). Analysis of variance (ANOVA) revealed all specimens with a FRC substructure have higher values of static load-bearing capacity and flexural properties than those obtained with plain PFC (p<0.001). The load-bearing capacity of all the specimens decreased after post-curing and water storage. Restorations made from a material combination of FRC and PFC showed better mechanical properties than those obtained with plain PFC.

  7. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  8. Over 2,300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation

    PubMed Central

    Ludwig, Katelyn R.; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J.; Hummon, Amanda B.

    2015-01-01

    Ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) is typically employed for phosphoproteome analysis. Alternatively, capillary zone electrophoresis (CZE) - ESI-MS/MS has great potential for phosphoproteome analysis due to the significantly different migration times of phosphorylated and unphosphorylated forms of peptides. In this work, we systematically compared UPLC-MS/MS and CZE-MS/MS for phosphorylated peptide identifications (IDs) using an enriched phosphoproteome from the MCF-10A cell line. When the sample loading amount of UPLC was 10 times higher than that of CZE (2 μg vs. 200 ng), UPLC generated more phosphorylated peptide IDs than CZE (3,313 vs. 1,783). However, when the same sample loading amounts were used for CZE and UPLC (2–200 ng), CZE-MS/MS consistently and significantly outperformed UPLC-MS/MS in terms of phosphorylated peptide and total peptide IDs. This superior performance is most likely due to the higher peptide intensity generated by CZE-MS/MS. More importantly, compared with UPLC data from 2 μg sample, CZE-MS/MS can identify over 500 unique phosphorylated peptides from 200 ng sample, suggesting that CZE and UPLC are complementary for phosphorylated peptide IDs. With further improved loading capacity via a dynamic pH junction method, 2,313 phosphorylated peptides were identified with single-shot CZE-MS/MS in a 100 min analysis. This number of phosphorylated peptide IDs is over one order of magnitude higher than the number of phosphorylated peptide IDs previously reported by single-shot CZE-MS/MS. PMID:26399161

  9. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    PubMed

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  10. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon.

    PubMed

    Ghaedi, M; Azad, F Nasiri; Dashtian, K; Hajati, S; Goudarzi, A; Soylak, M

    2016-10-05

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20mgg(-1)) is sufficient for the rapid removal of high amount of MG dye in short time (3.99min). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  12. Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.

    PubMed

    Young, John Q; Van Merrienboer, Jeroen; Durning, Steve; Ten Cate, Olle

    2014-05-01

    Cognitive Load Theory (CLT) builds upon established models of human memory that include the subsystems of sensory, working and long-term memory. Working memory (WM) can only process a limited number of information elements at any given time. This constraint creates a "bottleneck" for learning. CLT identifies three types of cognitive load that impact WM: intrinsic load (associated with performing essential aspects of the task), extraneous load (associated with non-essential aspects of the task) and germane load (associated with the deliberate use of cognitive strategies that facilitate learning). When the cognitive load associated with a task exceeds the learner's WM capacity, performance and learning is impaired. To facilitate learning, CLT researchers have developed instructional techniques that decrease extraneous load (e.g. worked examples), titrate intrinsic load to the developmental stage of the learner (e.g. simplify task without decontextualizing) and ensure that unused WM capacity is dedicated to germane load, i.e. cognitive learning strategies. A number of instructional techniques have been empirically tested. As learners' progress, curricula must also attend to the expertise-reversal effect. Instructional techniques that facilitate learning among early learners may not help and may even interfere with learning among more advanced learners. CLT has particular relevance to medical education because many of the professional activities to be learned require the simultaneous integration of multiple and varied sets of knowledge, skills and behaviors at a specific time and place. These activities possess high "element interactivity" and therefore impose a cognitive load that may surpass the WM capacity of the learner. Applications to various medical education settings (classroom, workplace and self-directed learning) are explored.

  13. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    USGS Publications Warehouse

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (<500 km) exhibit broad similarity ( stream gauge samples; CRN samples). Nearly two-thirds of CRN-derived sediment loads exceed historic loads measured at the same locations (). Excessive longer-term sediment loads likely are a result of longer-term recurrence of large-magnitude sediment-transport events. Nearly 80% of sediment loads measured at approximately the same locations exhibit stream gauge loads that are within an order of magnitude of CRN loads, likely as a result of the buffering capacity of large flood plains. Catchments in which space for deposition exceeds sediment supply have greater buffering capacity. Superior locations in which to evaluate anthropogenic influences on landscape evolution might be buffered catchments, in which temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  14. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Sahu, A. K.; Sarkar, B.; Panchal, P.; Tank, J.; Bhattacharya, R.; Panchal, R.; Tanna, V. L.; Patel, R.; Shukla, P.; Patel, J. C.; Singh, M.; Sonara, D.; Sharma, R.; Duggar, R.; Saxena, Y. C.

    2008-03-01

    The 1.3 kW at 4.5 K helium refrigerator / liquefier (HRL) was commissioned during the year 2003. The HRL was operated with its different modes as per the functional requirements of the experiments. The superconducting magnets system (SCMS) of SST-1 was successfully cooled down to 4.5 K. The actual loads were different from the originally predicted boundary conditions and an adjustment in the thermodynamic balance of the refrigerator was necessary. This led to enhanced capacity, which was achieved without any additional hardware. The required control system for the HRL was tuned to achieve the stable thermodynamic balance, while keeping the turbines' operating parameters at optimized conditions. An extra mass flow rate requirement was met by exploiting the margin available with the compressor station. The methodology adopted to modify the capacity of the HRL, the safety precautions and experience of SCMS cool down to 4.5 K, are discussed.

  15. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE PAGES

    Tian, Miao; Wang, Wei; Liu, Yang; ...

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO 2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO 2 electrodes, where the parallel tubesmore » and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm –2 is achieved due to the large TiO 2 mass loading in the 60 µm-thick 3D C/TiO 2 electrodes. At a test rate of C/5, the 3D C/TiO 2 electrode with 18 nm-thick TiO 2 delivers a high gravimetric capacity of ~240 mAh g –1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO 2 electrodes are systematically studied.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Miao; Wang, Wei; Liu, Yang

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO 2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO 2 electrodes, where the parallel tubesmore » and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm –2 is achieved due to the large TiO 2 mass loading in the 60 µm-thick 3D C/TiO 2 electrodes. At a test rate of C/5, the 3D C/TiO 2 electrode with 18 nm-thick TiO 2 delivers a high gravimetric capacity of ~240 mAh g –1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO 2 electrodes are systematically studied.« less

  17. 30 CFR 75.1401 - Hoists; rated capacities; indicators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hoists; rated capacities; indicators. 75.1401... Hoists; rated capacities; indicators. Hoists shall have rated capacities consistent with the loads handled. An accurate and reliable indicator of the position of the cage, platform, skip, bucket, or cars...

  18. 30 CFR 75.1401 - Hoists; rated capacities; indicators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hoists; rated capacities; indicators. 75.1401... Hoists; rated capacities; indicators. Hoists shall have rated capacities consistent with the loads handled. An accurate and reliable indicator of the position of the cage, platform, skip, bucket, or cars...

  19. Development and evaluation of garlic incorporated ready-to-eat extruded snacks.

    PubMed

    Haritha, D; Vijayalakshmi, V; Gulla, S

    2014-11-01

    The present study was carried out to develop and evaluate ready to eat extruded snacks incorporated with garlic powder at various levels (5 %, 10 %, 15 %, 20 %). The organoleptic evaluation was conducted for the developed products and the well accepted products were selected for further studies like physical properties and shelf life (stored at room temperature for 2 months). The organoleptic evaluation of the developed snacks revealed that 15 % and 20 % garlic incorporated snacks were not acceptable due to strong garlic flavor, therefore T1 (control), T2 (5 % garlic) and T3 ( 10 % garlic) were selected for further studies. The physical properties showed significant changes with incorporation of garlic powder at 0 %-10 % level. There was an increase in mass flow rate, tap density and bulk density but decrease in the water holding capacity, oil absorption capacity and expansion ratio. The water soluble index and moisture retention of the products showed the same values for all the three selected treatments. The products were packed by ordinary, nitrogen and vacuum packing and stored for 2 months. It was found that there was an increase in moisture content and microbial load, however the increase was within limits. The increase in the moisture content was low in nitrogen packed products where as the microbial load decreased with increase in the percentage of garlic incorporation. The nitrogen and vacuum packed products showed less microbial load than the ordinary packed products. Garlic powder can be incorporated at 5 and 10 % levels in ready-to-eat extruded snacks with well acceptability and can be stored for a period of 2 months with nitrogen packing as an effective packaging.

  20. Modeling and Experiments on Fast Cooldown of a 120 Hz Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Vanapalli, Srinivas; Lewis, Michael; Grossman, Gershon; Gan, Zhihua; Radebaugh, Ray; Brake, H. J. M. ter

    2008-03-01

    High frequency operation of a pulse tube cryocooler leads to reduced regenerator volume, which results in a reduced heat capacity and a faster cooldown time. A pulse tube cryocooler operating at a frequency of 120 Hz and an average pressure of 3.5 MPa achieved a no-load temperature of 50 K. The cooling power at 80 K was about 3.35 W with a cooldown time from 285 K to 80 K of about 5.5 minutes, even though the additional thermal mass at the cold end due to flanges, screws, heater, and thermometer was 4.2 times that of the regenerator. This fast cooldown is about two to four times faster than that of typical pulse tube cryocoolers and is very attractive to many applications. In this study we measure the cooldown time to 80 K for different cold-end masses and extrapolate to zero cold-end mass. We also present an analytical model for the cooldown time for different cold-end masses and compare the results with the experiments. The model and the extrapolated experimental results indicate that with zero cold-end mass the cooldown time to 80 K with this 120 Hz pulse tube cryocooler would be about 32 s.

  1. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  2. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  3. A prototype for understanding the effects of TMDL standards: Tying property values to sediment loads in the Lake Tahoe Basin

    USGS Publications Warehouse

    Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.

    2004-01-01

    The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.

  4. Transition from global to local control of dayside reconnection from ionospheric-sourced mass loading

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O. J.; Cassak, P. A.; Ouellette, J. E.; Wiltberger, M.; Lotko, W.; Lyon, J. G.

    2017-09-01

    We have conducted a series of controlled numerical simulations to investigate the response of dayside reconnection to idealized, ionosphere-sourced mass loading processes to determine whether they affect the integrated dayside reconnection rate. Our simulation results show that the coupled solar wind-magnetosphere system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in local reconnection rate affects magnetosheath properties only weakly and the geoeffective length in the upstream solar wind is essentially unchanged, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, however, the magnetosheath properties and the geoeffective length are significantly affected by slowing down the local reconnection rate, resulting in an increase of the magnetic pressure in the magnetosheath, with a significant reduction in the geoeffective length in the upstream solar wind and in the integrated dayside reconnection rate. In this controlled simulation setup, the behavior of dayside reconnection potential is determined by the role of the enhanced magnetic pressure in the magnetospheath due to magnetospheric mass loading. The reconnection potential starts to decrease significantly when the enhanced magnetic pressure alters the thickness of the magnetosheath.

  5. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  6. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  7. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    NASA Astrophysics Data System (ADS)

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-06-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.

  8. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  9. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  10. Two-loads Method for Distinguishing among the Muscle Force, Velocity, and Power Producing Capacities

    PubMed Central

    Jaric, Slobodan

    2016-01-01

    It has been generally accepted that muscles could have different mechanical capacities, such as those for producing high force (F), velocity (V), and power (P) outputs. Nevertheless, the standard procedures of the evaluation of muscle function both in research and routine testing are typically conducted under a single mechanical condition, such as under a single external load. Therefore, the observed outcomes do not allow for distinguishing among the different muscle capacities. As a result, the outcomes of most of the routine testing procedures have been of limited informational value, while a number of debated issues in research have originated from arbitrarily interpreted experimental findings regarding specific muscle capacities. A solution for the discussed problem could be based on the approximately linear and exceptionally strong F-V relationship typically observed from various functional tasks performed under different external loads. These findings allow for the 'two-loads method' proposed in this Current Opinion: the functional movement tasks (e.g., maximum jumping, cycling, running, pushing, lifting, or throwing) should be tested against just 2 distinctive external loads. Namely, the F-V relationship determined by 2 pairs of the F and V data could provide the parameters depicting the maximum F (i.e., the F-intercept), V (V-intercept), and P (calculated from the product of F and V) output of the tested muscles. Therefore, the proposed two-loads method applied in both research and routine testing could provide a deeper insight into the mechanical properties and function of the tested muscles and resolve a number of debated issues in the literature. PMID:27075326

  11. Knee-ligament loading properties as influenced by gravity. I - Junction with bone of 3-G rodents

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.; Matthes, R. D.; Tipton, C. M.

    1982-01-01

    The effect of 3-G conditions on the bone-to-ligament junctions of the knee is studied in rats. Results following chronic 3-G centrifugation of rats show that their bone-to-ligament junctions exhibited a force-sustaining capacity (F) which was 95 + or - 12% of the value for the control group. However, F was actually 29 + or - 5% greater for centrifuged rats than for control rats of comparable size, as the experimental animals grew to smaller body mass. It is concluded that gravity determines part of the magnitude of F, and therefore this value will probably be weaker after development in a weightless environment.

  12. Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve

    NASA Technical Reports Server (NTRS)

    Glaser, Robert J.; Chen, Long Y.

    2006-01-01

    Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.

  13. Portable pallet weighing apparatus

    NASA Technical Reports Server (NTRS)

    Day, R. M. (Inventor)

    1984-01-01

    An assembly for use with several like units in weighing the mass of a loaded cargo pallet supported by its trunnions has a bridge frame for positioning the assembly on a transportation frame carrying the pallet while straddling one trunnion of the pallet and its trunnion lock, and a cradle assembly for incrementally raising the trunnion. The mass at the trunnion is carried as a static load by a slidable bracket mounted upon the bridge frame for supporting the cradle assembly. The bracket applies the static loading to an electrical load cell symmetrically positioned between the bridge frame and the bracket. The static loading compresses the load cell, causing a slight deformation and a potential difference at load cell terminals which is proportional in amplitude to the mass of the pallet at the trunnion.

  14. Excess digestive capacity in predators reflects a life of feast and famine.

    PubMed

    Armstrong, Jonathan B; Schindler, Daniel E

    2011-07-06

    A central challenge for predators is achieving positive energy balance when prey are spatially and temporally heterogeneous. Ecological heterogeneity produces evolutionary trade-offs in the physiological design of predators; this is because the ability to capitalize on pulses of food abundance requires high capacity for food-processing, yet maintaining such capacity imposes energetic costs that are taxing during periods of food scarcity. Recent advances in physiology show that when variation in foraging opportunities is predictable, animals may adjust energetic trade-offs by rapidly modulating their digestive system to track variation in foraging opportunities. However, it is increasingly recognized that foraging opportunities for animals are unpredictable, which should favour animals that maintain a capacity for food-processing that exceeds average levels of consumption (loads). Despite this basic principle of quantitative evolutionary design, estimates of digestive load:capacity ratios in wild animals are virtually non-existent. Here we provide an extensive assessment of load:capacity ratios for the digestive systems of predators in the wild, compiling 639 estimates across 38 species of fish. We found that piscine predators typically maintain the physiological capacity to feed at daily rates 2-3 times higher than what they experience on average. A numerical simulation of the trade-off between food-processing capacity and metabolic cost suggests that the observed level of physiological opportunism is profitable only if predator-prey encounters, and thus predator energy budgets, are far more variable in nature than currently assumed.

  15. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1997-09-01

    New data are reported on the heat capacity of CO{sub 2}-loaded, aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), and aqueous MDEA-based blends with MEA and DEA. The work reported here was motivated by the need to quantify the effect of acid gas loading on the important physical properties of gas-sweetening solvents.

  16. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  17. Implications of Dynamic Loading and Changing Climate on Mercury Bioaccumulation in a Planktivorous Fish (Orthodon microlepidotus)

    NASA Astrophysics Data System (ADS)

    Carroll, R. W. H.; Flickinger, A.; Warwick, J. J.; Schumer, R.

    2015-12-01

    A bioenergetic and mercury (Hg) mass balance (BioHg) model is developed for the Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in northern California and Nevada. Attention focuses on the Lahontan Reservoir in northern Nevada, which receives a strong temporally varying load of dissolved methylmercury (DMeHg) from the Carson River. Hg loads are the result of contaminated bank erosion during high flows and diffusion from bottom sediments during low flows. Coupling of dynamic reservoir loading with periods of maximum plankton growth and maximum fish consumption rates are required to explain the largest body burdens observed in the planktivore. In contrast, the large body burdens cannot be achieved using average water column concentrations. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. These are used to drive a fully dynamic Hg transport model to assess changes in contaminant loading to the reservoir and implications on planktivorous bioaccumulation. Model results suggest the future loads of DMeHg entering the Lahontan Reservoir will decrease most significantly in the spring and summer due to channel width increases and depth decreases in the Carson River which reduce bank erosion over the century. The modeled concentrations of DMeHg in the reservoir are expected to increase during the summer due to a decrease in reservoir volume affecting the concentrations more than the decrease in loads, and the model results show that bioaccumulation levels may increase in the upstream sections of the reservoir while maintaining contamination levels above the federal action limit for human consumption in the lower reservoir.

  18. Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka

    2012-09-01

    CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31189e

  19. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.

  20. Shear transfer capacity of reinforced concrete exposed to fire

    NASA Astrophysics Data System (ADS)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  1. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less

  2. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less

  3. The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.; Cooper, D. E.

    1987-01-01

    The effects of pin elasticity, clearance, and friction on the stresses in a pin loaded orthotropic plate are studied. The effects are studied by posing the problem as a planar contact elasticity problem, the pin and the plate being two elastic bodies which interact through contact. Coulomb friction is assumed, the pin loads the plate in one of its principal material directions, and the plate is infinite in extent. A collocation scheme and interaction, in conjunction with a complex variable series solution, are used to obtain numerical results. The contact region between the plate and pin is unknown and must be solved for as part of the solution. The same is true of the region of friction induced no slip. Two pin stiffnesses, two clearance levels, two friction levels and two laminates, a (0/+ or - 45/90)s and a (02/+ or - 45)s, are studied. The effects of pin elasticity, clearance, and friction on the load capacity of the plate are assessed by comparing the load capacity of the plate with the capacity when the pin is rigid, perfectly fitting, and frictionless.

  4. Optimizing the robustness of electrical power systems against cascading failures.

    PubMed

    Zhang, Yingrui; Yağan, Osman

    2016-06-21

    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.

  5. Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides

    PubMed Central

    McCaskill, Ashlee; Turgeon, Robert

    2007-01-01

    Phloem loading is the initial step in photoassimilate export and the one that creates the driving force for mass flow. It has been proposed that loading occurs symplastically in species that translocate carbohydrate primarily as raffinose family oligosaccharides (RFOs). In these plants, dense fields of plasmodesmata connect bundle sheath cells to specialized companion cells (intermediary cells) in the minor veins. According to the polymer trap model, advanced as a mechanism of symplastic loading, sucrose from the mesophyll diffuses into intermediary cells and is converted there to RFOs. This process keeps the sucrose concentration low and, because of the larger size of the RFOs, prevents back diffusion. To test this model, the RFO pathway was down-regulated in Verbascum phoeniceum L. by suppressing the synthesis of galactinol synthase (GAS), which catalyzes the first committed step in RFO production. Two GAS genes (VpGAS1 and VpGAS2) were cloned and shown to be expressed in intermediary cells. Simultaneous RNAi suppression of both genes resulted in pronounced inhibition of RFO synthesis. Phloem transport was negatively affected, as evidenced by the accumulation of carbohydrate in the lamina and the reduced capacity of leaves to export sugars during a prolonged dark period. In plants with severe down-regulation, additional symptoms of reduced export were obvious, including impaired growth, leaf chlorosis, and necrosis and curling of leaf margins. PMID:18048337

  6. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study.

    PubMed

    Muñoz, Raúl; Souza, Theo S O; Glittmann, Lina; Pérez, Rebeca; Quijano, Guillermo

    2013-09-15

    An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The capacity credit of grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.

    The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.

  8. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    NASA Astrophysics Data System (ADS)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  9. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  10. When cognition kicks in: working memory and speech understanding in noise.

    PubMed

    Rönnberg, Jerker; Rudner, Mary; Lunner, Thomas; Zekveld, Adriana A

    2010-01-01

    Perceptual load and cognitive load can be separately manipulated and dissociated in their effects on speech understanding in noise. The Ease of Language Understanding model assumes a theoretical position where perceptual task characteristics interact with the individual's implicit capacities to extract the phonological elements of speech. Phonological precision and speed of lexical access are important determinants for listening in adverse conditions. If there are mismatches between the phonological elements perceived and phonological representations in long-term memory, explicit working memory (WM)-related capacities will be continually invoked to reconstruct and infer the contents of the ongoing discourse. Whether this induces a high cognitive load or not will in turn depend on the individual's storage and processing capacities in WM. Data suggest that modulated noise maskers may serve as triggers for speech maskers and therefore induce a WM, explicit mode of processing. Individuals with high WM capacity benefit more than low WM-capacity individuals from fast amplitude compression at low or negative input speech-to-noise ratios. The general conclusion is that there is an overarching interaction between the focal purpose of processing in the primary listening task and the extent to which a secondary, distracting task taps into these processes.

  11. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand.

    PubMed

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D; Lowry, Gregory V

    2017-01-15

    The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10 -4 Lhr -1 m -2 ) and hydrogen evolution rate constant (1.4 nanomolLhr -1 m -2 ) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  13. Advancement of atmospheric-vacuum interfaces for mass spectrometers with a focus on increasing gas throughput for improving sensitivity.

    PubMed

    Prasad, Satendra; Wouters, Eloy R; Dunyach, Jean-Jacques

    2015-08-18

    Ion sampling from an electrospray ionization (ESI) source was improved by increasing gas conductance of the MS inlet by 4.3-fold. Converting the gas throughput (Q) into sensitivity improvement was dependent on ion desolvation and handling of the gas load. Desolvation was addressed by using a novel slot shaped inlet that exhibited desolvation properties identical to the 0.58 mm i.d capillary. An assay tailored for "small molecules" at high chromatographic flow rate (500 μL/min) yielded a compound dependent 6.5 to 14-fold signal gain while analysis at nano chromatographic flow rate (300 nL/min) showed 2 to 3.5-fold improvement for doubly charged peptides. Improvement exceeding the Q (4.3-fold) at high chromatographic flow rate was explained by superior sampling of the spatially dispersed ion spray when using the slot shaped capillary. Sensitivity improvement across a wide range of chromatographic flow rate confirmed no compromise in ion desolvation with the increase in Q. Another improvement included less overflow of gas into the mass analyzer from the foreline region owing to the slot shape of the capillary. By doubling the roughing pump capacity and operating the electrodynamic ion funnel (EDIF) at ∼4 Torr, a single pumping stage was sufficient to handle the gas load. The transport of solvent clusters from the LC effluent into the mass analyzer was prevented by a "wavy shaped" transfer quadrupole and was compared with a benchmark approach that delivered ions orthogonally into a differentially pumped dual EDIF at comparable gas Q.

  14. Cognitive Load Theory: An Empirical Study of Anxiety and Task Performance in Language Learning

    ERIC Educational Resources Information Center

    Chen, I-Jung; Chang, Chi-Cheng

    2009-01-01

    Introduction: This study explores the relationship among three variables--cognitive load, foreign language anxiety, and task performance. Cognitive load refers to the load imposed on working memory while performing a particular task. The authors hypothesized that anxiety consumes the resources of working memory, leaving less capacity for cognitive…

  15. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    NASA Astrophysics Data System (ADS)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  16. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    PubMed Central

    Chitpong, Nithinart; Husson, Scott M.

    2016-01-01

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394

  17. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.

    PubMed

    Chitpong, Nithinart; Husson, Scott M

    2016-12-20

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  18. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  19. Tailored metal matrix composites for high-temperature performance

    NASA Technical Reports Server (NTRS)

    Morel, M. R.; Saravanos, D. A.; Chamis, C. C.

    1992-01-01

    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.

  20. Association of Post-Saline Load Plasma Aldosterone Levels With Left Ventricular Hypertrophy in Primary Hypertension.

    PubMed

    Catena, Cristiana; Verheyen, Nicolas D; Url-Michitsch, Marion; Kraigher-Krainer, Elisabeth; Colussi, GianLuca; Pilz, Stefan; Tomaschitz, Andreas; Pieske, Burkert; Sechi, Leonardo A

    2016-03-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity in hypertension. Current evidence suggests a contribution to LVH of plasma aldosterone levels that are inappropriately elevated for the salt status. The aim of this study was to investigate whether inappropriate modulation of aldosterone production by a saline load is associated with left ventricular (LV) mass in hypertensive patients. In 90 hypertensive patients free of clinically relevant cardiovascular complications in whom secondary forms of hypertension were ruled out, we performed a standard intravenous saline load (0.9% NaCl, 2 l in 4 hours) with measurement of plasma aldosterone and active renin at baseline and end of infusion. Bi-dimensional echocardiography was performed for the assessment of cardiac morphology and function. LVH was present in 19% of patients who had significantly worse renal function and higher body mass, blood pressure, and plasma aldosterone levels measured both at baseline and after the saline load than patients without LVH. LV mass was directly related to age, body mass, systolic blood pressure, duration of hypertension, baseline, and post-saline load plasma aldosterone levels and inversely to glomerular filtration. Multivariate regression analysis showed independent correlation of LV mass with body mass, systolic blood pressure, and plasma aldosterone levels measured after intravenous saline load, but not at baseline. In patients with hypertension, aldosterone levels measured after intravenous saline load are related to LV mass independent of age, body mass, and blood pressure, suggesting that limited ability of salt to modulate aldosterone production could contribute to LVH. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. An information processing/associative learning account of behavioral disinhibition in externalizing psychopathology.

    PubMed

    Endres, Michael J; Donkin, Chris; Finn, Peter R

    2014-04-01

    Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision-making (more false alarms, faster evidence accumulation rates for false alarms [vFA], and lower scores on a Response Precision Index [RPI] measure of information processing efficiency). The WM load increased disinhibited decision-making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision-making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision-making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative-incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation-evaluation-decision process. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. An information processing/associative learning account of behavioral disinhibition in externalizing psychopathology

    PubMed Central

    Endres, Michael J.; Donkin, Chris; Finn, Peter R.

    2014-01-01

    Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision making (more false alarms, faster evidence accumulation rates for false alarms (vFA), and lower scores on a Response Precision Index (RPI) measure of information processing efficiency). The WM load increased disinhibited decision making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative – incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation – evaluation – decision process. PMID:24611834

  3. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  4. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  5. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  6. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  7. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  8. Load Bearing Equipment for Bone and Muscle

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  9. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue

    PubMed Central

    Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous destructive tests and save cost. The stiffness and bearing capacity degradation expressions for a reinforced concrete beam can be used to predict the deformation and bearing capacity of a structure during the service process and determine the structural fatigue damage and degree of degradation. PMID:29522572

  10. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    PubMed

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous destructive tests and save cost. The stiffness and bearing capacity degradation expressions for a reinforced concrete beam can be used to predict the deformation and bearing capacity of a structure during the service process and determine the structural fatigue damage and degree of degradation.

  11. A finite element formulation with combined loadings for shear dominant RC structures.

    DOT National Transportation Integrated Search

    2008-08-01

    Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...

  12. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries

    DOE PAGES

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-10-26

    Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less

  13. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less

  14. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    PubMed

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  15. Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.

    PubMed

    Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han

    2013-09-01

    To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Moving in extreme environments: extreme loading; carriage versus distance.

    PubMed

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.

  17. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    EPA Science Inventory

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  18. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zeng, Chao; Qu, Deyu; Tang, Haolin; Li, Yu; Su, Bao-Lian; Qu, Deyang

    2016-07-01

    Nitrogen-doped ordered mesoporous carbons (OMCs) have been synthesized via aqueous cooperative assembly route in the presence of basic amino acids as either polymerization catalysts or nitrogen dopants. This method allows the large-scale production of nitrogen-doped OMCs with tunable composition, structure and morphology while maintaining highly ordered mesostructures. For instances, the nitrogen content can be varied from ∼1 wt% to ∼6.3 wt% and the mesophase can be either 3-D body-centered cubic or 2-D hexagonal. The specific surface area for typical OMCs is around 600 m2 g-1, and further KOH activation can significantly enhance the surface area to 1866 m2 g-1 without destroying the ordered mesostructures. Benefiting from hierarchically ordered porous structure, nitrogen-doping effect and large-scale production availability, the synthesized OMCs show a great potential towards supercapacitor application. When measured in a symmetrical two-electrode configuration with an areal mass loading of ∼3 mg cm-2, the activated OMC exhibits high capacitance (186 F g-1 at 0.25 A g-1) and good rate capability (75% capacity retention at 20 A g-1) in ionic liquid electrolyte. Even as the mass loading is up to ∼12 mg cm-2, the OMC electrode still yields a specific capacitance of 126 F g-1 at 20 A g-1.

  19. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  20. Biodegradation of airborne acetone/styrene mixtures in a bubble column reactor.

    PubMed

    Vanek, T; Silva, A; Halecky, M; Paca, J; Ruzickova, I; Kozliak, E; Jones, K

    2017-07-29

    The ability of a bubble column reactor (BCR) to biodegrade a mixture of styrene and acetone vapors was evaluated to determine the factors limiting the process efficiency, with a particular emphasis on the presence of degradation intermediates and oxygen levels. The results obtained under varied loadings and ratios were matched with the dissolved oxygen levels and kinetics of oxygen mass transfer, which was assessed by determination of k L a coefficients. A 1.5-L laboratory-scale BCR was operated under a constant air flow of 1.0 L.min -1 , using a defined mixed microbial population as a biocatalyst. Maximum values of elimination capacities/maximum overall specific degradation rates of 75.5 gC.m -3 .h -1 /0.197 gC.gdw -1 .h -1 , 66.0 gC.m -3 .h -1 /0.059 gC.gdw -1 .h -1 , and 45.8 gC.m -3 .h -1 /0.027 gC.gdw -1 .h -1 were observed for styrene/acetone 2:1, styrene-rich and acetone-rich mixtures, respectively, indicating significant substrate interactions and rate limitation by biological factors. The BCR removed both acetone and styrene near-quantitatively up to a relatively high organic load of 50 g.m -3 .h -1 . From this point, the removal efficiencies declined under increasing loading rates, accompanied by a significant drop in the dissolved oxygen concentration, showing a process transition to oxygen-limited conditions. However, the relatively efficient pollutant removal from air continued, due to significant oxygen mass transfer, up to a threshold loading rate when the accumulation of acetone and degradation intermediates in the aqueous medium became significant. These observations demonstrate that oxygen availability is the limiting factor for efficient pollutant degradation and that accumulation of intermediates may serve as an indicator of oxygen limitation. Microbial (activated sludge) analyses revealed the presence of amoebae and active nematodes that were not affected by variations in operational conditions.

  1. Spatial working memory load affects counting but not subitizing in enumeration.

    PubMed

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  2. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    PubMed Central

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  3. The National Aeronautics and Space Administration's Gilmore Load Cell Machine: Load Cell Calibrations to 2.22 x 10(exp 7) Newtons

    NASA Technical Reports Server (NTRS)

    Haynes, Michael W.

    2000-01-01

    Designed in 1964 and erected in 1966, the mission of the Gilmore Load Cell Machine was to provide highly accurate calibrations for large capacity load cells in support of NASA's Apollo Program. Still in use today, the Gilmore Machine is a national treasure with no equal.

  4. Decreasing Cognitive Load for Learners: Strategy of Web-Based Foreign Language Learning

    ERIC Educational Resources Information Center

    Zhang, Jianfeng

    2013-01-01

    Cognitive load is one of the important factors that influence the effectiveness and efficiency of web-based foreign language learning. Cognitive load theory assumes that human's cognitive capacity in working memory is limited and if it overloads, learning will be hampered, so that high level of cognitive load can affect the performance of learning…

  5. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE PAGES

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  6. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  7. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  8. Vertical load capacities of roof truss cross members.

    PubMed

    Gearhart, David F; Morsy, Mohamed Khaled

    2016-05-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.

  9. Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate.

    PubMed

    Sun, Haina; Liu, Shanshan; Zeng, Xiongfeng; Meng, Xianguang; Zhao, Lina; Wan, Yizao; Zuo, Guifu

    2017-09-13

    In this study, morphology effect of nano-hydroxyapatite as a drug carrier was investigated for the first time. Hydroxyapatite/methotrexate (HAp/MTX) hybrids with different morphologies were successfully prepared in situ using polyethylene glycol (PEG) as a template. SEM, TEM, XRD and FTIR results confirmed that the hybrids of different morphologies (laminated, rod-like and spherical) with similar phase composition and functional groups were obtained by changing the preparation parameters. UV-Vis spectroscopy was used to identify the drug loading capacity and drug release mechanism of the three hybrids with different morphologies. It is concluded that the laminated hybrid exhibits a higher drug loading capacity compared to the other two hybrids, and all the three hybrids showed a sustained slow release which were fitted well by Bhaskar equation. Additionally, the result of in vitro bioassay test confirms that the inhibition efficacy of the three hybrids showed a positive correlation to the drug loading capacity.

  10. Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Li, Jing

    2017-12-01

    The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.

  11. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  12. Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city

    NASA Astrophysics Data System (ADS)

    Prastica, R. M. S.; Maitri, C.; Hermawan, A.; Nugroho, P. C.; Sutjiningsih, D.; Anggraheni, E.

    2018-03-01

    Bojonegoro faces flood every year with less advanced prevention development. Bojonegoro city development could not peak because the flood results material losses. It affects every sectors in Bojonegoro: education, politics, economy, social, and infrastructure development. This research aims to analyse and to ensure that river capacity has high probability to be the main factor of flood in Bojonegoro. Flood discharge analysis uses Nakayasu synthetic unit hydrograph for period of 5 years, 10 years, 25 years, 50 years, and 100 years. They would be compared to the water maximum capacity that could be loaded by downstream part of Bengawan Solo River in Bojonegoro. According to analysis result, Bengawan Solo River in Bojonegoro could not able to load flood discharges. Another method used is HEC-RAS analysis. The conclusion that shown by HEC-RAS analysis has the same view. It could be observed that flood water loading is more than full bank capacity elevation in the river. To conclude, the main factor that should be noticed by government to solve flood problem is river capacity.

  13. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load

    PubMed Central

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie

    2018-01-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972

  14. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    PubMed

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  15. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

    USDA-ARS?s Scientific Manuscript database

    Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...

  16. Use of pile driving analysis for assessment of axial load capacity of piles.

    DOT National Transportation Integrated Search

    2012-05-01

    Driven piles are commonly used in foundation engineering. Pile driving formulae, which directly relate the pile set per blow : to the capacity of the pile, are commonly used to decide whether an installed pile will have the designed capacity. However...

  17. Use of Pile Driving Analysis for Assessment of Axial Load Capacity of Piles

    DOT National Transportation Integrated Search

    2012-05-01

    Driven piles are commonly used in foundation engineering. Pile driving formulae, which directly relate the pile set per blow : to the capacity of the pile, are commonly used to decide whether an installed pile will have the designed capacity. However...

  18. Co-precipitation of asiatic acid and poly( l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    NASA Astrophysics Data System (ADS)

    Sane, Amporn; Limtrakul, Jumras

    2011-09-01

    Poly( l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at Tpre of 70-100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by 20-30%.

  19. Abduction of Toe-excavation Induced Failure Process from LEM and FDM for a Dip Slope with Rock Anchorage in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.-S.; Lin, M.-L.; Liu, H.-C.; Lin, H.-H.

    2012-04-01

    On April 25, 2010, without rainfall and earthquake triggering a massive landslide (200000 m3) covered a 200m stretch of Taiwan's National Freeway No. 3, killing 4 people, burying three cars and destroying a bridge. The failure mode appears to be a dip-slope type failure occurred on a rock anchorage cut slope. The strike of Tertiary sedimentary strata is northeast-southwest and dip 15˚ toward southeast. Based on the investigations of Taiwan Geotechnical Society, there are three possible factors contributing to the failure mechanism as follow:(1) By toe-excavation during construction in 1998, the daylight of the sliding layer had induced the strength reduction in the sliding layer. It also caused the loadings of anchors increased rapidly and approached to their ultimate capacity; (2) Although the excavated area had stabilized soon with rock anchors and backfills, the weathering and groundwater infiltration caused the strength reduction of overlying rock mass; (3) The possible corrosion and age of the ground anchors deteriorate the loading capacity of rock anchors. Considering the strength of sliding layer had reduced from peak to residual strength which was caused by the disturbance of excavation, the limit equilibrium method (LEM) analysis was utilized in the back analysis at first. The results showed the stability condition of slope approached the critical state (F.S.≈1). The efficiency reduction of rock anchors and strength reduction of overlying stratum (sandstone) had been considered in following analysis. The results showed the unstable condition (F.S. <1). This research also utilized the result of laboratory test, geological strength index(GSI) and finite difference method (FDM, FLAC 5.0) to discuss the failure process with the interaction of disturbance of toe-excavation, weathering of rock mass, groundwater infiltration and efficiency reduction of rock anchors on the stability of slope. The analysis indicated that the incremental load of anchors have similar tendency comparing to the monitoring records in toe-excavation stages. This result showed that the strength of the sliding layer was significantly influenced by toe-excavation. The numerical model which calibrated with monitoring records in excavation stage was then used to discuss the failure process after backfilling. The results showed the interaction of different factors into the failure process. Keyword: Dip slope failure, rock anchor, LEM, FDM, GSI, back analysis

  20. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  1. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  2. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany A; Cole, Wesley J; Sun, Yinong

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss commonmore » modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges associate with integration of variable generation resources.« less

  3. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    PubMed

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC-PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The Load-Bearing Capacity of Timber-Glass Composite I-Beams Made with Polyurethane Adhesives

    NASA Astrophysics Data System (ADS)

    Rodacki, Konrad

    2017-12-01

    This article discusses the issue of composite timber-glass I-beams, which are an interesting alternative for load-bearing beams of ceilings and roofs. The reasoning behind the use of timber-glass I-beams is the combination of the best features of both materials - this enables the creation of particularly safe beams with regard to structural stability and post-breakage load capacity. Due to the significant differences between the bonding surfaces of timber and glass, a study on the adhesion of various adhesives to both surfaces is presented at the beginning of the paper. After examination, two adhesives were selected for offering the best performance when used with composite beams. The beams were investigated using a four-point bending test under quasi-static loading.

  5. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    PubMed

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    PubMed

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  7. A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women.

    PubMed

    Welch, A A; MacGregor, A J; Skinner, J; Spector, T D; Moayyeri, A; Cassidy, A

    2013-06-01

    Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid-base load in muscle loss. Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid-base load could influence loss of muscle mass. We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height²), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18-79 years from the TwinsUK Study, and dietary acid-base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein. Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m² P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods. We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.

  8. Application of self-balanced loading test to socketed pile in weak rock

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone, montmorillonite is much. And in the size composition, content of cosmid is high. For specific surface area of cosmid is large and water intake capacity of it is strong, water content has great effect on strength of the mudstone. Along with water content increasing, strength of the mudstone declines nonlinear apparently. Since effective measures had been taken, the mudstone was prohibited from being immerged during construction. And valuable experience has been accumulated for similar projects construction henceforth.

  9. Vibration analyses of an inclined flat plate subjected to moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jang

    2007-01-01

    The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.

  10. Laterally loaded pile cap connections.

    DOT National Transportation Integrated Search

    2010-08-01

    This study investigated the moment capacity and load-displacement response of the pile-to-cap connection details. Lateral load tests were conducted on four pile caps (3 ft H x 3 ft W x 6.5 ft L) with two 40 foot-long steel pipe piles (12.75 inch OD) ...

  11. Preliminary weight and costs of sandwich panels to distribute concentrated loads

    NASA Technical Reports Server (NTRS)

    Belleman, G.; Mccarty, J. E.

    1976-01-01

    Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.

  12. Exotensioned structural members with energy-absorbing effects

    DOEpatents

    Brockwell, Michael Ian

    2014-01-07

    Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.

  13. Exotensioned structural members with energy-absorbing effects

    DOEpatents

    Brockwell, Michael Ian

    2017-08-22

    Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.

  14. Exotensioned structural members with energy-absorbing effects

    DOEpatents

    Brockwell, Michael Ian

    2015-08-11

    Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.

  15. A fully coupled variable properties thermohydraulic model for a cryogenic hydrostatic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.

  16. The Effect of β-Hydroxy-β-Methylbutyrate on Aerobic Capacity and Body Composition in Trained Athletes.

    PubMed

    Durkalec-Michalski, Krzysztof; Jeszka, Jan

    2016-09-01

    Durkalec-Michalski, K and Jeszka, J. The effect of β-hydroxy-β-methylbutyrate on aerobic capacity and body composition in trained athletes. J Strength Cond Res 30(9): 2617-2626, 2016-The aim of this study was to investigate whether supplementation with β-hydroxy-β-methylbutyrate (HMB) affects body composition, aerobic capacity, or intramuscular enzymes activity, as well as in anabolic and/or catabolic hormones and lactate concentrations. A cohort of 58 highly trained males was subjected to 12-week supplementation with HMB (3 × 1 gHMB·d) and a placebo (PLA) in randomized, PLA controlled, double-blind crossover trials, with a 10-day washout period. Body composition and aerobic capacity were recorded, whereas the levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol, and lactate, as well as the T/C ratio, in blood samples were measured. After HMB supplementation, fat-free mass increased (+0.2 kgHMB vs. -1.0 kgPLA, p = 0.021), with a simultaneous reduction of fat mass (-0.8 kgHMB vs. +0.8 kgPLA, p < 0.001). In turn, after HMB supplementation, in comparison to PLA, maximal oxygen uptake (V[Combining Dot Above][Combining Dot Above]O2max: +0.102 L·minHMB vs. -0.063 L·minPLA, p = 0.013), time to reach ventilatory threshold (VT) (TVT: +1.0 minHMB vs. -0.4 minPLA, p < 0.0001), threshold load at VT (WVT: +20 WHMB vs. -7 WPLA, p = 0.001), and the threshold heart rate at VT (HRVT: +8 b·minHMB vs. -1 b·minPLA, p < 0.0001) increased significantly. Analysis of the tested biochemical markers shows significant differences only in relation to the initial concentration. In HMB group, testosterone levels increased (p = 0.047) and in both groups (HMB: p = 0.008; PLA: p = 0.008) higher cortisol levels were observed. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic capacity, although seeming not to significantly affect the levels of the analyzed blood markers.

  17. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models

    PubMed Central

    Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.

    2016-01-01

    Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902

  18. Effects of intelligibility on working memory demand for speech perception.

    PubMed

    Francis, Alexander L; Nusbaum, Howard C

    2009-08-01

    Understanding low-intelligibility speech is effortful. In three experiments, we examined the effects of intelligibility on working memory (WM) demands imposed by perception of synthetic speech. In all three experiments, a primary speeded word recognition task was paired with a secondary WM-load task designed to vary the availability of WM capacity during speech perception. Speech intelligibility was varied either by training listeners to use available acoustic cues in a more diagnostic manner (as in Experiment 1) or by providing listeners with more informative acoustic cues (i.e., better speech quality, as in Experiments 2 and 3). In the first experiment, training significantly improved intelligibility and recognition speed; increasing WM load significantly slowed recognition. A significant interaction between training and load indicated that the benefit of training on recognition speed was observed only under low memory load. In subsequent experiments, listeners received no training; intelligibility was manipulated by changing synthesizers. Improving intelligibility without training improved recognition accuracy, and increasing memory load still decreased it, but more intelligible speech did not produce more efficient use of available WM capacity. This suggests that perceptual learning modifies the way available capacity is used, perhaps by increasing the use of more phonetically informative features and/or by decreasing use of less informative ones.

  19. Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery.

    PubMed

    Zhang, Ye-Zheng; Zhang, Ze; Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2018-03-14

    Low sulfur utilization and poor cycle life of the sulfur cathode with high sulfur loadings remain a great challenge for lithium-sulfur (Li-S) battery. Herein, the free-standing carbon film consisting of porous carbon nanofibers (PCNFs) and carbon nanotubes (CNTs) is successfully fabricated by the electrospinning technology. The PCNF/CNT film with three-dimensional and interconnected structure is promising for the uniformity of the high-loading sulfur, good penetration of the electrolyte, and reliable accommodation of volumetric expansion of the sulfur cathode. In addition, the abundant N/O-doped elements in PCNF/CNT film are helpful to chemically trap soluble polysulfides in the charge-discharge processes. Consequently, the obtained monolayer S/PCNF/CNT film as the cathode shows high specific capacity, excellent cycle stability, and rate stability with the sulfur loading of 3.9 mg cm -2 . Moreover, the high areal capacity of 13.5 mA h cm -2 is obtained for the cathode by stacking three S/PCNF/CNT layers with the high sulfur loading of 12 mg cm -2 . The stacking-layered cathode with high sulfur loading provides excellent cycle stability, which is beneficial to fabricate high-energy-density Li-S battery in future.

  20. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition.

    PubMed

    Shayani Rad, Maryam; Khameneh, Bahman; Sabeti, Zahra; Mohajeri, Seyed Ahmad; Fazly Bazzaz, Bibi Sedigheh

    2016-10-01

    In the present work, the effect of monomer composition on silver nanoparticles' (SNPs) binding capacity of hydrogels was investigated and their antibacterial efficacy was evaluated. Three series of poly-hydroxyethyl methacrylate (HEMA) hydrogels were prepared using methacrylic acid (MAA), methacrylamide (MAAM), and 4-vinylpyridine (4VP) as co-monomers, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. SNPs binding capacity of hydrogels was evaluated in different concentrations (2, 10, and 20 ppm). In vitro antibacterial activity of SNP-loaded hydrogels was studied against Pseudomonas aeruginosa (P. aeruginosa) isolated from patients' eyes. Then, inhibitory effect of hydrogels in biofilm formation was evaluated in the presence of Staphylococcus epidermidis (S. epidermidis) (DSMZ 3270). Our data indicated that poly(HEMA-co-MAA-co-EGDMA) had superior binding affinity for SNPs in comparison with other hydrogels. All SNP-loaded hydrogels demonstrated excellent antimicrobial effects at all times against P. aeruginosa and S. epidermidis after soaking in 10 and 20 ppm SNP suspensions. Scanning electron microscope (SEM) images revealed excellent inhibitory effect of SNPs against biofilm formation on the surface of the hydrogels. This study indicated the effect of monomer compositions in SNP loading capacity of poly(HEMA) hydrogels and antibacterial efficacy of SNP-loaded hydrogels against P. aeruginosa and S. epidermidis, but further in vivo evaluation is necessary.

  1. Assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode Island soils.

    DOT National Transportation Integrated Search

    2013-07-01

    This report presents an assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode : Island soils. Current static capacity methods and associated resistance factors are based on pile load test data in sands : and clays. Some...

  2. Balloon Design Software

    NASA Technical Reports Server (NTRS)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  3. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations

    PubMed Central

    Garoushi, Sufyan K.; Hatem, Marwa; Lassila, Lippo V. J.; Vallittu, Pekka K.

    2015-01-01

    Abstract Objectives: To determine the marginal microleakage of Class II restorations made with different composite base materials and the static load-bearing capacity of direct composite onlay restorations. Methods: Class II cavities were prepared in 40 extracted molars. They were divided into five groups (n = 8/group) depending on composite base material used (everX Posterior, SDR, Tetric EvoFlow). After Class II restorations were completed, specimens were sectioned mid-sagitally. For each group, sectioned restorations were immersed in dye. Specimens were viewed under a stereo-microscope and the percentage of cavity leakage was calculated. Ten groups of onlay restorations were fabricated (n = 8/group); groups were made with composite base materials (everX Posterior, SDR, Tetric EvoFlow, Gradia Direct LoFlo) and covered by 1 mm layer of conventional (Tetric N-Ceram) or bulk fill (Tetric EvoCeram Bulk Fill) composites. Groups made only from conventional, bulk fill and short fiber composites were used as control. Specimens were statically loaded until fracture. Data were analyzed using ANOVA (p = 0.05). Results: Microleakage of restorations made of plain conventional composite or short fiber composite base material showed statistically (p < 0.05) lower values compared to other groups. ANOVA revealed that onlay restorations made from short fiber-reinforced composite (FRC) as base or plain restoration had statistically significant higher load-bearing capacity (1593 N) (p < 0.05) than other restorations. Conclusion: Restorations combining base of short FRC and surface layer of conventional composite displayed promising performance related to microleakage and load-bearing capacity. PMID:28642894

  4. Parameterizing the Variability and Uncertainty of Wind and Solar in CEMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany

    We present current and improved methods for estimating the capacity value and curtailment impacts from variable generation (VG) in capacity expansion models (CEMs). The ideal calculation of these variability metrics is through an explicit co-optimized investment-dispatch model using multiple years of VG and load data. Because of data and computational limitations, existing CEMs typically approximate these metrics using a subset of all hours from a single year and/or using statistical methods, which often do not capture the tail-event impacts or the broader set of interactions between VG, storage, and conventional generators. In our proposed new methods, we use hourly generationmore » and load values across all hours of the year to characterize the (1) contribution of VG to system capacity during high load hours, (2) the curtailment level of VG, and (3) the reduction in VG curtailment due to storage and shutdown of select thermal generators. Using CEM model outputs from a preceding model solve period, we apply these methods to exogenously calculate capacity value and curtailment metrics for the subsequent model solve period. Preliminary results suggest that these hourly methods offer improved capacity value and curtailment representations of VG in the CEM from existing approximation methods without additional computational burdens.« less

  5. An estimation of finger-tapping rates and load capacities and the effects of various factors.

    PubMed

    Ekşioğlu, Mahmut; İşeri, Ali

    2015-06-01

    The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.

  6. GGFC Special Bureau for Loading: current status and plans

    NASA Astrophysics Data System (ADS)

    van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.

    The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.

  7. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal.

    PubMed

    Yıldırım, Kubilay; Kasım, Gözde Çıtır

    2018-03-01

    Boron (B) pollution is an expanding environmental problem throughout the world due to intensive mining practices and extensive usage of B in agricultural chemicals and industrial products in recent years. The purpose of this study was to investigate B removal performance of four poplar and four willow species in small scale Constructed Wetland (CW). Rooted cuttings of tested species were treated with simulated wastewater having five elevated B concentrations (0.5, 5, 10, 20 and 40 ppm). All the tested species could resist up to 20 ppm wastewater B supply and could regrow from their roots in the soil having maximum 15 mg/kg B content. The result of the study indicated that 65% ± 5.3 of B was removed from the wastewater in 5 ppm B treatment while the same efficiency decreased to 45% ± 4.6 at 40 ppm B supply. The average effect of sediment on B removal was found to be approximately 20% for all B treatments while the remaining part of the loaded B was removed from the CW within effluent (35-54%). Therefore, actual effects of plant species on B removal was ranged from 45% to 25% between 5 and 40 ppm B treatments. Mass B removal within plant body (phytextraction) comprised the 13-10% of total loaded B in CW while the remaining part of the loaded B (31-15%) was stabilized into the sediment with the effects of poplar and willow roots. These results presented clear understanding of effective B purification mechanisms in CWs. Boron phytextraction capacity of a plant species was less effective than its phytstabilization efficiency which increase filtering capacity of the sediment and stabilization of more B around the rhizosphere. In terms of their B removal ability, P.nigra and S.anatolica had the highest B removal capacities with phytextraction (20-11%) while S.alba, P.alba and S.babylonica had more phytstabilizaiton performance (40-15%) in CW. Disposal of B loaded plant material create another environmental costs for CW applications. Therefore, B loaded wood and leaf tissues were mixed and used for production of wooden panels in the study. Then a combustion test was applied on these panels to test their fire resistance. The results of the tests revealed much higher burning tolerance of the B loaded panels (5-20%) compared to controls. Annual harvesting, fast growing and deep rooting ability of the poplar and willow species with their high phytstabilization and phytextraction efficiencies make these species excellent tools to remove B from the polluted waters. Utilization of these species for B removal in large scale CWs is quite possible which should be also investigated in further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Successful NEES Grand Challenge Tests on Non-Ductile Beam-Column Joints

    Science.gov Websites

    potential of existing gravity load designed RC buildings is a great concern during intense seismic events evaluate unreinforced corner joints shear strength and axial residual capacity under high axial load axial load is 0.20f ’c Ag , while the overturning axial loads vary with displacement reversals to range

  9. Classic debates in selective attention: early vs late, perceptual load vs dilution, mean RT vs measures of capacity.

    PubMed

    Nelson, Michael D; Crisostomo, Marisa; Khericha, Alifiya; Russo, Francis; Thorne, Gary L

    2012-01-01

    We briefly summarize two important debates regarding selective attention (early vs late selection; perceptual load vs distractor dilution). Also, we report the results of an attempt to replicate Lavie (1995, Journal of Experimental Psychology: Human Perception and Performance 21 451-468). We suggest that measures capable of characterizing the capacity of information processing systems (compared to reporting only mean reaction time) could add great clarity to this literature.

  10. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries.

    PubMed

    Hua, Wuxing; Yang, Zhi; Nie, Huagui; Li, Zhongyu; Yang, Jizhang; Guo, Zeqing; Ruan, Chunping; Chen, Xi'an; Huang, Shaoming

    2017-02-28

    Lithium-sulfur batteries have become an appealing candidate for next-generation energy-storage technologies because of their low cost and high energy density. However, one of their major practical problems is the high solubility of long-chain lithium polysulfides and their infamous shuttle effect, which causes low Coulombic efficiency and sulfur loss. Here, we introduced a concept involving the dithiothreitol (DTT) assisted scission of polysulfides into lithium-sulfur system. Our designed porous carbon nanotube/S cathode coupling with a lightweight graphene/DTT interlayer (PCNTs-S@Gra/DTT) exhibited ultrahigh cycle-ability even at 5 C over 1100 cycles, with a capacity degradation rate of 0.036% per cycle. Additionally, the PCNTs-S@Gra/DTT electrode with a 3.51 mg cm -2 sulfur mass loading delivered a high initial areal capacity of 5.29 mAh cm -2 (1509 mAh g -1 ) at current density of 0.58 mA cm -2 , and the reversible areal capacity of the cell was maintained at 3.45 mAh cm -2 (984 mAh g -1 ) over 200 cycles at a higher current density of 1.17 mA cm -2 . Employing this molecule scission principle offers a promising avenue to achieve high-performance lithium-sulfur batteries.

  11. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    PubMed

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment.

    PubMed

    Tonglairoum, Prasopchai; Woraphatphadung, Thisirak; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Sajomsang, Warayuth; Opanasopit, Praneet

    2017-03-01

    Clotrimazole (CZ)-loaded N-naphthyl-N,O-succinyl chitosan (NSCS) micelles have been developed as an alternative for oral candidiasis treatment. NSCS was synthesized by reductive N-amination and N,O-succinylation. CZ was incorporated into the micelles using various methods, including the dropping method, the dialysis method, and the O/W emulsion method. The size and morphology of the CZ-loaded micelles were characterized using dynamic light scattering measurements (DLS) and a transmission electron microscope (TEM), respectively. The drug entrapment efficiency, loading capacity, release characteristics, and antifungal activity against Candida albicans were also evaluated. The CZ-loaded micelles prepared using different methods differed in the size of micelles. The micelles ranged in size from 120 nm to 173 nm. The micelles prepared via the O/W emulsion method offered the highest percentage entrapment efficiency and loading capacity. The CZ released from the CZ-loaded micelles at much faster rate compared to CZ powder. The CZ-loaded NSCS micelles can significantly hinder the growth of Candida cells after contact. These CZ-loaded NSCS micelles offer great antifungal activity and might be further developed to be a promising candidate for oral candidiasis treatment.

  13. Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies.

    PubMed

    Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2018-06-02

    Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.

  14. Influence of wheel load shape on vertical stress reaching subgrade through an aggregate layer

    DOT National Transportation Integrated Search

    2001-03-01

    The U.S. Army design procedure to stabilize low-bearing capacity soil with geotextiles is based on the assumption that the applied surface load (the wheel load) is in the shape of a circle. The maximum vertical stress that reaches the subgrade throug...

  15. Approach for establishing approximate load carrying capacity for bridges with unknown material and unknown design properties.

    DOT National Transportation Integrated Search

    2011-07-01

    There are 16 small to medium simple span bridges in Larimer County, Colorado that are currently load rated solely based on visual inspections. Most of these bridges are prestressed concrete bridges. The objective of this project is to load rate these...

  16. 29 CFR 1926.1431 - Hoisting personnel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hook, load line and rigging) must not exceed 50 percent of the rated capacity for the radius and... pursuant to paragraph (b)(2) of this section, the total load (including the hook, load line, rigging and... number required to perform the work, whichever is less. (g) Attachment and rigging. (1) Hooks and other...

  17. 29 CFR 1926.1431 - Hoisting personnel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hook, load line and rigging) must not exceed 50 percent of the rated capacity for the radius and... pursuant to paragraph (b)(2) of this section, the total load (including the hook, load line, rigging and... number required to perform the work, whichever is less. (g) Attachment and rigging—(1) Hooks and other...

  18. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  19. Problems of Excess Capacity

    NASA Technical Reports Server (NTRS)

    Douglas, G.

    1972-01-01

    The problems of excess capacity in the airline industry are discussed with focus on the following topics: load factors; fair rate of return on investment; service-quality rivalry among airlines; pricing (fare) policies; aircraft production; and the impacts of excess capacity on operating costs. Also included is a discussion of the interrelationships among these topics.

  20. 33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...

  1. 33 CFR 183.35 - Maximum weight capacity: Outboard boats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...

  2. 33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...

  3. 33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...

  4. 33 CFR 183.35 - Maximum weight capacity: Outboard boats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...

  5. 33 CFR 183.35 - Maximum weight capacity: Outboard boats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...

  6. 33 CFR 183.35 - Maximum weight capacity: Outboard boats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...

  7. 33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...

  8. 33 CFR 183.35 - Maximum weight capacity: Outboard boats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...

  9. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  10. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  11. Bridging the gap between peak and average loads on science networks

    DOE PAGES

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar; ...

    2017-05-12

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less

  12. Bridging the gap between peak and average loads on science networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less

  13. Performance Assessment of Flashed Steam Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, Theodore E.

    1980-12-01

    Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less

  14. Curvilinear relationship between phonological working memory load and social-emotional modulation

    PubMed Central

    Mano, Quintino R.; Brown, Gregory G.; Bolden, Khalima; Aupperle, Robin; Sullivan, Sarah; Paulus, Martin P.; Stein, Murray B.

    2015-01-01

    Accumulating evidence suggests that working memory load is an important factor for the interplay between cognitive and facial-affective processing. However, it is unclear how distraction caused by perception of faces interacts with load-related performance. We developed a modified version of the delayed match-to-sample task wherein task-irrelevant facial distracters were presented early in the rehearsal of pseudoword memoranda that varied incrementally in load size (1-syllable, 2-syllables, or 3-syllables). Facial distracters displayed happy, sad, or neutral expressions in Experiment 1 (N=60) and happy, fearful, or neutral expressions in Experiment 2 (N=29). Facial distracters significantly disrupted task performance in the intermediate load condition (2-syllable) but not in the low or high load conditions (1- and 3-syllables, respectively), an interaction replicated and generalised in Experiment 2. All facial distracters disrupted working memory in the intermediate load condition irrespective of valence, suggesting a primary and general effect of distraction caused by faces. However, sad and fearful faces tended to be less disruptive than happy faces, suggesting a secondary and specific valence effect. Working memory appears to be most vulnerable to social-emotional information at intermediate loads. At low loads, spare capacity is capable of accommodating the combinatorial load (1-syllable plus facial distracter), whereas high loads maximised capacity and deprived facial stimuli from occupying working memory slots to cause disruption. PMID:22928750

  15. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  16. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    NASA Astrophysics Data System (ADS)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  17. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  18. Strength-controllable graphene oxide amphiprotic aerogels as highly efficient carrier for anionic and cationic azo molecules

    NASA Astrophysics Data System (ADS)

    Xiong, Jiaqing; Jiao, Chenlu; Xu, Sijun; Tao, Jin; Zhang, Desuo; Lin, Hong; Chen, Yuyue

    2015-06-01

    Ice-bath self-assembly was employed to fabricate the GO/AP-MCC/CS aerogel based on natural materials. The components are amphiprotic microcrystalline cellulose (AP-MCC), chitosan (CS), and graphene oxide (GO), which act as the main framework, auxiliary framework and adhesive, respectively. The results of characterization determines the components form the GO/AP-MCC/CS aerogel according to chemical interactions. The mechanical properties depend largely on the mass ratio of AP-MCC/CS, which can be regulated by controlling the contents of AP-MCC and CS. The resultant GO/AP-MCC/CS aerogel was observed possessing three-dimensional (3D) interpenetrating porous networks with wrinkled structure on the inner wall, which provide a good encapsulation capacity for the guest molecules. As expected, owing to the amphiprotic properties and large specific surface area, GO/AP-MCC/CS aerogel exhibits high-efficiency load capacity for both anionic (CR) and cationic azo molecules (MB), which can reach up to about 132.2 mg/g for CR and 123.2 mg/g for MB, respectively.

  19. Physiological and Medical Aspects That Put Women Soldiers at Increased Risk for Overuse Injuries.

    PubMed

    Epstein, Yoram; Fleischmann, Chen; Yanovich, Ran; Heled, Yuval

    2015-11-01

    Anthropometric and physiological factors place female soldiers at a disadvantage relative to male soldiers in most aspects of physical performance. Average aerobic and anaerobic fitness levels are lower in women than in men. Thus, women have a lower overall work capacity and must exert themselves more than men to achieve the same output. The lower weight and fat-free mass and the higher body fat of women are associated with lower muscle strength and endurance, placing them at a disadvantage compared with men in performing military tasks such as lifting and carrying weights, or marching with a load. Working at a higher percentage of their maximal capacity to achieve the same performance levels as men, women tire earlier. Their smaller size, skeletal anatomy, and different bone geometry also predispose women to a higher incidence of exercise-related injuries. Consequently, the attrition rate of female soldiers in combat units is higher than that of their male counterparts. This review summarizes the literature on gender-related physiological and anatomical differences that put female soldiers at an increased risk of exercise-related injuries.

  20. EFFECT OF STRENGTHENING AT EXPECTED DAMAGING ZONE OF A RC MEMBER WITH DAMAGED ANCHORAGE

    NASA Astrophysics Data System (ADS)

    Chijiwa, Nobuhiro; Kawanaka, Isao; Maekawa, Koichi

    When a reinforced concrete member having cracks at the anchorage zones is loaded, diagonal crack is formed from the tip of the exsisting crack, and it lead s to brittle shaer failure. A reinforced concrete beam containing corrosion cracks at the anchorage zone were strengthened with sheets at the expected damaging zones, and tested in 3-point loading. Th e test result shows that the load capacity of the strengthened beam was the same to that of the repli cate beam with no damage at the anchorage zones and contained enough shear reinforcement to develop flexural failure. It means that strenghtneing at the expected damaging zone with keeping corrosion cr acks along to the tensile reinforcements at the anchorage zones may improve the load capacity of the damaged reinforced concrete.

  1. Innovative design of composite structures: The use of curvilinear fiber format in structural design of composites

    NASA Technical Reports Server (NTRS)

    Charette, R. F.; Hyer, M. W.

    1990-01-01

    The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.

  2. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  3. Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet.

    PubMed

    Edholm, Peter; Strandberg, Emelie; Kadi, Fawzi

    2017-07-01

    The effects of 24 wk of resistance training combined with a healthy diet on lower limb explosive strength capacity were investigated in a population of healthy elderly women. Participants ( n = 63; 67.5 ± 0.4 yr) were randomized into three groups; resistance training (RT), resistance training and healthy diet (RT-HD), and control (CON). Progressive resistance training was performed at a load of 75-85% one-repetition maximum. A major adjustment in the healthy dietary approach was an n-6/n-3 polyunsaturated fatty acid (PUFA) ratio below 2. Lower limb maximal strength, explosive force capacity during dynamic and isometric movements, whole body lean mass, and physical function were assessed. Whole body lean mass significantly increased by 1.5 ± 0.5% in RT-HD only. Isometric strength performance during knee extension as well as the performance in the five sit-to-stand and single-leg-stance tests increased similarly in RT and RT-HD. Improvements in dynamic peak power and time to reach peak power (i.e shorter time) during knee extension occurred in both RT (+15.7 ± 2.6 and -11.0 ± 3.8%, respectively) and RT-HD (+24.6 ± 2.6 and -20.3 ± 2.7%, respectively); however, changes were significantly larger in RT-HD. Similarly, changes in peak force and rate of force development during squat jump were higher in RT-HD (+58.5 ± 8.4 and +185.4 ± 32.9%, respectively) compared with RT (+35.7 ± 6.9 and +105.4 ± 22.4%, respectively). In conclusion, a healthy diet rich in n-3 PUFA can optimize the effects of resistance training on dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. NEW & NOTEWORTHY Age-related decline in lower limb explosive strength leads to impaired ability to perform daily living tasks. The present randomized controlled trial demonstrates that a healthy diet rich in n-3 polyunsaturated fatty acid (n-3 PUFA) enhances resistance training-induced gains in dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. This supports the use of strategies combining resistance training and dietary changes to mitigate the decline in explosive strength capacity in older adults. Copyright © 2017 the American Physiological Society.

  4. Principal locations of major-ion, trace-element, nitrate, and Escherichia coli loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  5. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Volcanic Eruptions at Io

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Hiraki, Y.; Tao, C.; Tsuchiya, F.; Delamere, P. A.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kita, H.; Badman, S. V.; Fukazawa, K.; Yoshikawa, I.; Fujimoto, M.

    2018-03-01

    The production and transport of plasma mass are essential processes in the dynamics of planetary magnetospheres. At Jupiter, it is hypothesized that Io's volcanic plasma carried out of the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle energization, radial plasma flow, and transient auroral emissions. However, it has not been demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of simultaneous observations of both processes. We report the response of plasmoid ejection to mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and a newly developed analytic model. We found that the transient aurora frequently recurred at a 2-6 day period in response to a mass loading increase from 0.3 to 0.5 t/s. In general, the recurrence of the transient aurora was not significantly correlated with the solar wind, although there was an exceptional event with a maximum emission power of 10 TW after the solar wind shock arrival. The recurrence of plasmoid ejection requires the precondition that an amount comparable to the total mass of magnetosphere, 1.5 Mt, is accumulated in the magnetosphere. A plasmoid mass of more than 0.1 Mt is necessary in case that the plasmoid ejection is the only process for mass release.

  6. Delay Discounting of Losses in Alcohol Use Disorders and Antisocial Psychopathology: Effects of a Working Memory Load.

    PubMed

    Gerst, Kyle R; Gunn, Rachel L; Finn, Peter R

    2017-10-01

    Alcohol use disorders (AUDs) are associated with increased discounting of delayed rewards and reduced executive working memory (eWM) capacity. This association is amplified when comorbid with antisocial psychopathology (AP). Furthermore, recent studies suggest that reduced WM capacity is associated with disinhibited decisions reflected by increased impulsive decision making on the delay discounting of rewards task. While discounting of delayed rewards is well studied, the discounting of delayed losses has received significantly less experimental attention. The current study investigated (i) the rate of discounting of delayed losses in individuals with AUD only (n = 61), AUD with comorbid AP (n = 79) and healthy controls (n = 64); (ii) the relationship between eWM capacity and discounting of delayed losses; and (iii) the effect of a WM load on discounting of delayed losses. Discounting performance was assessed using a computerized discounting of delayed losses task. Results showed that the AUD-only and AUD-AP groups had higher rates of discounting of delayed losses and lower eWM capacity compared to the control groups. Lower individual eWM capacity was associated with increased discounting of delayed losses. However, WM load did not increase discounting rates overall. These results support the hypothesis that greater discounting of delayed losses is associated with AUD and comorbid AP problems and lower individual eWM capacity. Copyright © 2017 by the Research Society on Alcoholism.

  7. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil

    NASA Astrophysics Data System (ADS)

    Yan, Yuping; Lv, Jiajiang; Liu, Sheng

    2018-04-01

    We investigate chirality and grain boundary (GB) effects on indentation mechanical properties of graphene coated on nickel foil using molecular dynamics simulations. The models of graphene with different chirality angles, different numbers of layers and tilt GBs were established. It was found that the chirality angle of few-layer graphene had a significant effect on the load bearing capacity of graphene/nickel systems, and this turns out to be more significant when the number of layers is greater than one. The enhancement to the contact stiffness, elastic capacity and the load bearing capacity of graphene with tilt GBs was lower than that of pristine graphene.

  8. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... no loss of contents. [Amdt. 178-103, 59 FR 38074, July 26, 1994, as amended at 66 FR 33452, June 21... types must be loaded to twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly...

  9. Influence of shift work on the physical work capacity of Tunisian nurses: a cross-sectional study in two university hospitals.

    PubMed

    Merchaoui, Irtyah; Bouzgarrou, Lamia; Mnasri, Ahlem; Mghanem, Mounir; Akrout, Mohamed; Malchaire, Jacques; Chaari, Neila

    2017-01-01

    This study has been performed to determine the influence of rotating shift work on physical working capacity of Tunisian nurses and to design recommendations to managers so that they implement effective preventive measures. It is a cross-sectional design using a standardized questionnaire and many physical capacity tests on a representative sample of 1181 nurses and nursing assistants from two university hospital centers of the school of Medicine of Monastir located in the Tunisian Sahel. 293 participants have been recruited by stratified random sampling according to gender and departments. Maximum Grip strength, 30s sit-to-stand test, one leg test, Fingertip-to-Floor test, Saltsa test and peak expiratory flow were used to assess physical capacity. Work ability was assessed through the workability index. Mental and physical loads were heavily perceived in shift healthcare workers (p=0.01; p=0.02). The maximum grip force was stronger in rotating shift work nurses (p=0.0001). Regarding to the seniority subgroups in each kind of work schedule, the Body Mass Index was increasing with seniority in both schedules. All the physical tests, were better in less-than-ten-year groups. Peak Flow and grip strength were significantly better in less-than-ten-year seniority in shift work group. There is a need to improve the design of the existing shift systems and to reduce as much as possible shift schedule as well as to avoid shift schedule for over-10-year-seniority nurses.

  10. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    NASA Astrophysics Data System (ADS)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  11. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  12. The effect of recycled Natural Rubber Glove (rRG) Plasticizers to Deflection and Flexural Strength Properties of PP/MMt/rRG Smart Composites and Its Inflammability

    NASA Astrophysics Data System (ADS)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Saputri, L. N. M. Z.; Ariesta, N.

    2018-03-01

    Had been synthesized PP/rRG/MMt+ZB smart material composite in solution reactive processes with various rRG concentration. The addition of rRG plasticizers will improve the deflection properties and increase the filler capacity MMt loading to reach the optimum concentration. The addition of 3% rRG is capable of loading filler capacity MMt to 23% as the optimum condition. At the optimum conditions it can increase the deflection (Defl) and flexural strength (FS) up to 16% and 15% respectively compared to that of the composites without rRG. The rRG plasticizer serves as a bio-compatibilizer that can reduce surface tension of the mixture and leads to decrease the Defl., follow by the increase of loading filler capacity and well interaction finally can increase the FS properties. The increase of loading filler MMt up to 23% can also improve the inflammability of the composites. Time to Ignition (TTI) increase by 5% and Burning Rate (BR) decrease by 4.5% compared to that of the composites which is containing MMt 20% without rRG.

  13. Improving the detection of tectonic transients in Japan by accounting for Earth's deformation response to surface mass loading

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Moore, A. W.; Owen, S. E.; Rivera, L. A.

    2016-12-01

    We explore the contributions of oceanic, atmospheric, and hydrologic mass loading to Global Navigation Satellite System (GNSS)-inferred observations of surface displacements in Japan. Surface mass loading (SML) generates mm- to cm-level deformation of the solid Earth on time scales of hours to years, which exceeds the measurement uncertainties of most GNSS position estimates. By improving the efficiency and accuracy of the prediction and empirical estimation of SML response, we aim to reduce the variance of GNSS time series and therefore enhance the ability to resolve subtle tectonic signals, such as aseismic transients associated with subduction zone processes. Using the GIPSY software in precise point positioning mode, we estimate time series of sub-daily receiver positions for the GNSS Earth Observation Network System (GEONET) in Japan. We also model the Earth's elastic deformation response to a variety of surface mass loads, including loads of atmospheric (e.g., ECMWF) and oceanic (e.g., TPXO8-Atlas, ECCO2) origin. We extract periodic signals, such as the ocean tides and seasonal variations in hydrological loading, using harmonic analysis. Deformation caused by non-periodic loads, such as non-tidal oceanic and atmospheric loads, can be predicted and removed to further reduce the variance. We seek to streamline the workflow for estimating SML-induced surface displacements from a variety of sources in order to account for loading signals in routine GNSS data processing, thereby improving the ability to assess the mechanics of plate boundaries.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presentedmore » a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.« less

  15. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology.

    PubMed

    Guo, Fangyuan; Guo, Dingjia; Zhang, Wei; Yan, Qinying; Yang, Yan; Hong, Weiyong; Yang, Gensheng

    2017-03-01

    Biodegradable polymeric nanoparticles (NPs) have potential therapeutic applications; however, preparing NPs of a specific diameter and uniform size distribution is a challenge. In this work, we fabricated a microchannel system for the preparation of curcumin (Cur)-loaded NPs by the interfacial precipitation method, which rapidly and consistently generated stable NPs with a relatively smaller diameter, narrow size distribution, and higher drug-loading capacity and entrapment efficiency. Poly(ε-caprolactone)-poly(ethylene glycol)-poly (ε-caprolactone) triblock copolymers(PCEC) used as the carrier material was synthesized and characterized. Cur-loaded PCEC NPs had an average size of 167.2nm with a zeta potential of -29.23mV, and showed a loading capacity and drug entrapment efficiency of 15.28%±0.23% and 96.11%±0.13%, respectively. Meanwhile, the NPs demonstrated good biocompatibility and bioavailability, efficient cellular uptake, and long circulation time and a possible liver targeting effect in vivo. These results indicate that the Cur-loaded PCEC NPs can be used as drug carriers in controlled delivery systems and other biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  17. Novel neomycin sulfate-loaded hydrogel dressing with enhanced physical dressing properties and wound-curing effect.

    PubMed

    Choi, Jong Seo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Youn, Yu Seok; Jin, Sung Giu; Choi, Han-Gon

    2016-10-01

    To develop a novel neomycin sulfate-loaded hydrogel dressing (HD), numerous neomycin sulfate-loaded HDs were prepared with various amounts of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and sodium alginate (SA) using freeze-thawing technique, and their physical dressing properties, drug release, in vivo wound curing and histopathology in diabetic-induced rats were assessed. SA had a positive effect on a swelling capacity, but a negative effect on the physical dressing properties and drug release of HD. However, PVP did the opposite. In particular, the neomycin sulfate-loaded HD composed of drug, PVA, PVP and SA at the weight ratio of 1/10/0.8/0.8 had excellent swelling and bioadhesive capacity, good elasticity and fast drug release. Moreover, this HD gave more improved wound curing effect compared to the commercial product, ensured the disappearance of granulation tissue and recovered the wound tissue to normal. Therefore, this novel neomycin sulfate-loaded HD could be an effective pharmaceutical product for the treatment of wounds.

  18. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition.

    PubMed

    Bone, Julia L; Ross, Megan L; Tomcik, Kristyen A; Jeacocke, Nikki A; Hopkins, Will G; Burke, Louise M

    2017-05-01

    Standardizing a dual x-ray absorptiometry (DXA) protocol is thought to provide a reliable measurement of body composition. We investigated the effects of manipulating muscle glycogen and creatine content independently and additively on DXA estimates of lean mass. Eighteen well-trained male cyclists undertook a parallel group application of creatine loading (n = 9) (20 g·d for 5 d loading; 3 g·d maintenance) or placebo (n = 9) with crossover application of glycogen loading (12 v 6 g·kg BM per day for 48 h) as part of a larger study involving a glycogen-depleting exercise protocol. Body composition, total body water, muscle glycogen and creatine content were assessed via DXA, bioelectrical impedance spectroscopy and standard biopsy techniques. Changes in the mean were assessed using the following effect-size scale: >0.2 small, >0.6, moderate, >1.2 large and compared with the threshold for the smallest worthwhile effect of the treatment. Glycogen loading, both with and without creatine loading, resulted in substantial increases in estimates of lean body mass (mean ± SD; 3.0% ± 0.7% and 2.0% ± 0.9%) and leg lean mass (3.1% ± 1.8% and 2.6% ± 1.0%) respectively. A substantial decrease in leg lean mass was observed after the glycogen depleting condition (-1.4% ± 1.6%). Total body water showed substantial increases after glycogen loading (2.3% ± 2.3%), creatine loading (1.4% ± 1.9%) and the combined treatment (2.3% ± 1.1%). Changes in muscle metabolites and water content alter DXA estimates of lean mass during periods in which minimal change in muscle protein mass is likely. This information needs to be considered in interpreting the results of DXA-derived estimates of body composition in athletes.

  19. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    PubMed

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  20. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  1. 40 CFR 165.87 - Design and capacity requirements for existing structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Design and capacity requirements for... Structures § 165.87 Design and capacity requirements for existing structures. (a) For all existing... concrete or other rigid material capable of withstanding the full hydrostatic head, load and impact of any...

  2. 33 CFR 183.39 - Persons capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inboard-outdrive boats. 183.39 Section 183.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.39 Persons capacity: Inboard and inboard-outdrive boats. (a) The persons capacity in pounds marked on a boat that is...

  3. 33 CFR 183.39 - Persons capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inboard-outdrive boats. 183.39 Section 183.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.39 Persons capacity: Inboard and inboard-outdrive boats. (a) The persons capacity in pounds marked on a boat that is...

  4. 33 CFR 183.39 - Persons capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inboard-outdrive boats. 183.39 Section 183.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.39 Persons capacity: Inboard and inboard-outdrive boats. (a) The persons capacity in pounds marked on a boat that is...

  5. 33 CFR 183.39 - Persons capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inboard-outdrive boats. 183.39 Section 183.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.39 Persons capacity: Inboard and inboard-outdrive boats. (a) The persons capacity in pounds marked on a boat that is...

  6. 33 CFR 183.39 - Persons capacity: Inboard and inboard-outdrive boats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inboard-outdrive boats. 183.39 Section 183.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.39 Persons capacity: Inboard and inboard-outdrive boats. (a) The persons capacity in pounds marked on a boat that is...

  7. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.

    PubMed

    Murray, Audrey; Örmeci, Banu

    2018-04-01

    Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP. The lower surface area and micropore to mesopore ratio of the NIP led to decreased adsorption capacity in comparison to the activated carbons. In addition, experiments were conducted for single-solute adsorption of Methylene Blue (MB) dye, simultaneous adsorption with humic acid and wastewater, and pre-loading with humic acid and wastewater followed by adsorption of MB dye using NIP and Norit PAC 200. Both the NIP and PAC 200 showed significant decreases of 27% for NIP (p=0.087) and 29% for PAC 200 (p=0.096) during simultaneous exposure to humic acid and MB dye. There was no corresponding decrease for NIP or PAC 200 pre-loaded with humic acid and then exposed to MB. In fact, for PAC 200, the adsorption capacity of the activated carbon increased when it was pre-loaded with humic acid by 39% (p=0.0005). For wastewater, the NIP showed no significant increase or decrease in adsorption capacity during either simultaneous exposure or pre-loading. The adsorption capacity of PAC 200 increased by 40% (p=0.001) for simultaneous exposure to wastewater and MB. Pre-loading with wastewater had no effect on MB adsorption by PAC 200. Copyright © 2017. Published by Elsevier B.V.

  8. Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang

    2016-10-01

    The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.

  9. The Future Impact of Wind on BPA Power System Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less

  10. Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-grooved Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    This paper describes a theoretical investigation of static and dynamic characteristics of herringbone-grooved air thrust bearings. Firstly, Finite Difference Method (FDM) and Finite Volume Method (FVM) are used in combination to solve the non-linear Reynolds equation and to find the pressure distribution of the film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, depth of the groove and rotating speed, are analyzed based on the FDM model. The simulation results show that hydrostatic thrust bearings can achieve a better load capacity with less air consumption than herringbone grooved thrust bearings at low compressibility number; herringbone grooved thrust bearings can achieve a higher load capacity but with more air consumption than hydrostatic thrust bearing at high compressibility number; herringbone grooved thrust bearings would lose stability at high rotating speeds, and the stability increases with the depth of the grooves.

  11. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    NASA Astrophysics Data System (ADS)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  12. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  13. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin.

    PubMed

    Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo

    2017-10-15

    Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.

    PubMed

    Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-04-06

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups ( p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention ( p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention ( p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

  15. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study

    PubMed Central

    Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-01-01

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice. PMID:29642407

  16. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    NASA Astrophysics Data System (ADS)

    Sommer, Silke

    2010-06-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  17. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    NASA Astrophysics Data System (ADS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  18. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    NASA Astrophysics Data System (ADS)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties, compared to Portland cement concrete.

  19. Oscillations of end loaded cantilever beams

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  20. Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application

    PubMed Central

    He, Na; Zhong, Lei; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong

    2016-01-01

    Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g−1, however, the practical energy density of Li-S battery is far away from such promising due to its low active material utilization and low sulfur loading. Moreover, the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. Here, we report a kind of free-standing and foldable cathodes consisting of 3D activated carbon fiber matrix and sulfur cathode. The 3D activated carbon fiber matrix (ACFC) has continuous conductive framework and sufficient internal space to provide a long-distance and continuous high-speed electron pathway. It also gives a very larger internal space and tortuous cathode region to ACFC accommodate a highly sulfur loading and keeps polysulfide within the cathode. The unique structured 3D foldable sulfur cathode using a foldable ACFC as matrix delivers a reversible capacity of about 979 mAh g−1 at 0.2C, a capacity retention of 98% after 100 cycles, and 0.02% capacity attenuation per cycle. Even at an areal capacity of 6 mAh cm−2, which is 2 times higher than the values of Li-ion battery, it still maintains an excellent rate capability and cycling performance. PMID:27677602

Top