Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine
2008-01-01
Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.
UNCERTAINTIES IN NITROGEN MASS LOADINGS IN COASTAL WATERSHEDS
With the increasing reduction of nutrients for coastal eutrophication control, the importance of well defined nitrogen mass balance becomes paramount. imited number of attempts have been made to quantify inputs and outputs within major coastal ecosystems including its watersheds....
Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi
NASA Astrophysics Data System (ADS)
Harned, D. A.; Harvill, J. S.; McMahon, G.
2001-12-01
The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.
T.C. McDonnell; B.J. Cosby; T.J. Sullivan; S.G. McNulty; E.C. Cohen
2010-01-01
The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earthâs surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance...
Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment.
Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo
2015-05-01
Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Kellas, Sotiris
2004-01-01
A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.
Simulating the Gradually Deteriorating Performance of an RTG
NASA Technical Reports Server (NTRS)
Wood, Eric G.; Ewell, Richard C.; Patel, Jagdish; Hanks, David R.; Lozano, Juan A.; Snyder, G. Jeffrey; Noon, Larry
2008-01-01
Degra (now in version 3) is a computer program that simulates the performance of a radioisotope thermoelectric generator (RTG) over its lifetime. Degra is provided with a graphical user interface that is used to edit input parameters that describe the initial state of the RTG and the time-varying loads and environment to which it will be exposed. Performance is computed by modeling the flows of heat from the radioactive source and through the thermocouples, also allowing for losses, to determine the temperature drop across the thermocouples. This temperature drop is used to determine the open-circuit voltage, electrical resistance, and thermal conductance of the thermocouples. Output power can then be computed by relating the open-circuit voltage and the electrical resistance of the thermocouples to a specified time-varying load voltage. Degra accounts for the gradual deterioration of performance attributable primarily to decay of the radioactive source and secondarily to gradual deterioration of the thermoelectric material. To provide guidance to an RTG designer, given a minimum of input, Degra computes the dimensions, masses, and thermal conductances of important internal structures as well as the overall external dimensions and total mass.
Santos, Lúcia H M L M; Gros, Meritxell; Rodriguez-Mozaz, Sara; Delerue-Matos, Cristina; Pena, Angelina; Barceló, Damià; Montenegro, M Conceição B S M
2013-09-01
The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae. Copyright © 2013 Elsevier B.V. All rights reserved.
How uncertain is model-based prediction of copper loads in stormwater runoff?
Lindblom, E; Ahlman, S; Mikkelsen, P S
2007-01-01
In this paper, we conduct a systematic analysis of the uncertainty related with estimating the total load of pollution (copper) from a separate stormwater drainage system, conditioned on a specific combination of input data, a dynamic conceptual pollutant accumulation-washout model and measurements (runoff volumes and pollutant masses). We use the generalized likelihood uncertainty estimation (GLUE) methodology and generate posterior parameter distributions that result in model outputs encompassing a significant number of the highly variable measurements. Given the applied pollution accumulation-washout model and a total of 57 measurements during one month, the total predicted copper masses can be predicted within a range of +/-50% of the median value. The message is that this relatively large uncertainty should be acknowledged in connection with posting statements about micropollutant loads as estimated from dynamic models, even when calibrated with on-site concentration data.
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, R. C.
1992-01-01
A user's manual is presented for MacPASCO, which is an interactive, graphic, preprocessor for panel design. MacPASCO creates input for PASCO, an existing computer code for structural analysis and sizing of longitudinally stiffened composite panels. MacPASCO provides a graphical user interface which simplifies the specification of panel geometry and reduces user input errors. The user draws the initial structural geometry and reduces user input errors. The user draws the initial structural geometry on the computer screen, then uses a combination of graphic and text inputs to: refine the structural geometry; specify information required for analysis such as panel load and boundary conditions; and define design variables and constraints for minimum mass optimization. Only the use of MacPASCO is described, since the use of PASCO has been documented elsewhere.
Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment
2008-01-01
Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497
Robust control of a parallel hybrid drivetrain with a CVT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, T.; Schroeder, D.
1996-09-01
In this paper the design of a robust control system for a parallel hybrid drivetrain is presented. The drivetrain is based on a continuously variable transmission (CVT) and is therefore a highly nonlinear multiple-input-multiple-output system (MIMO-System). Input-Output-Linearization offers the possibility of linearizing and of decoupling the system. Since for example the vehicle mass varies with the load and the efficiency of the gearbox depends strongly on the actual working point, an exact linearization of the plant will mostly fail. Therefore a robust control algorithm based on sliding mode is used to control the drivetrain.
Predicting the vibroacoustic response of satellite equipment panels.
Conlon, S C; Hambric, S A
2003-03-01
Modern satellites are constructed of large, lightweight equipment panels that are strongly excited by acoustic pressures during launch. During design, performing vibroacoustic analyses to evaluate and ensure the integrity of the complex electronics mounted on the panels is critical. In this study the attached equipment is explicitly addressed and how its properties affect the panel responses is characterized. FEA and BEA methods are used to derive realistic parameters to input to a SEA hybrid model of a panel with multiple attachments. Specifically, conductance/modal density and radiation efficiency for nonhomogeneous panel structures with and without mass loading are computed. The validity of using the spatially averaged conductance of panels with irregular features for deriving the structure modal density is demonstrated. Maidanik's proposed method of modifying the traditional SEA input power is implemented, illustrating the importance of accounting for system internal couplings when calculating the external input power. The predictions using the SEA hybrid model agree with the measured data trends, and are found to be most sensitive to the assumed dynamic mass ratio (attachments/structure) and the attachment internal loss factor. Additional experimental and analytical investigations are recommended to better characterize dynamic masses, modal densities and loss factors.
Trajectory-Based Loads for the Ares I-X Test Flight Vehicle
NASA Technical Reports Server (NTRS)
Vause, Roland F.; Starr, Brett R.
2011-01-01
In trajectory-based loads, the structural engineer treats each point on the trajectory as a load case. Distributed aero, inertial, and propulsion forces are developed for the structural model which are equivalent to the integrated values of the trajectory model. Free-body diagrams are then used to solve for the internal forces, or loads, that keep the applied aero, inertial, and propulsion forces in dynamic equilibrium. There are several advantages to using trajectory-based loads. First, consistency is maintained between the integrated equilibrium equations of the trajectory analysis and the distributed equilibrium equations of the structural analysis. Second, the structural loads equations are tied to the uncertainty model for the trajectory systems analysis model. Atmosphere, aero, propulsion, mass property, and controls uncertainty models all feed into the dispersions that are generated for the trajectory systems analysis model. Changes in any of these input models will affect structural loads response. The trajectory systems model manages these inputs as well as the output from the structural model over thousands of dispersed cases. Large structural models with hundreds of thousands of degrees of freedom would execute too slowly to be an efficient part of several thousand system analyses. Trajectory-based loads provide a means for the structures discipline to be included in the integrated systems analysis. Successful applications of trajectory-based loads methods for the Ares I-X vehicle are covered in this paper. Preliminary design loads were based on 2000 trajectories using Monte Carlo dispersions. Range safety loads were tied to 8423 malfunction turn trajectories. In addition, active control system loads were based on 2000 preflight trajectories using Monte Carlo dispersions.
Method for analyzing the chemical composition of liquid effluent from a direct contact condenser
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
2001-01-01
A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.
Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine.
Buerge, Ignaz J; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf
2006-07-01
Continuous progress in wastewater treatment technology and the growing number of households connected to wastewater treatment plants (WWTPs) have generally resulted in decreased environmental loading of many pollutants. Nonetheless, further reduction of pollutant inputs is required to improve the quality of surface waters in densely populated areas. In this context, the relative contribution of combined sewer overflows as sources of wastewater-derived contaminants has attracted more and more attention, but the quantitative importance of these overflows has barely been investigated. In this study, caffeine was successfully used as a chemical marker to estimate the fraction of sewer overflows in the catchment area of lake Greifensee, Switzerland. Caffeine is a ubiquitous compound in raw, domestic wastewater with typical per capita loads of approximately 16 mg person(-1) d(-1). In WWTPs of the Greifensee region, caffeine is largely eliminated (>99%), resulting in much smaller loads of < or = 0.15 mg person(-1) d(-1) in treated wastewater. However, in receiving streams as in the inflows to Greifensee, caffeine loads (0.1-1.6 mg person(-1) d(-1)) were higher than those in WWTP effluents, indicating additional sources. As the loads in the streams correlated with precipitation during sampling, it was concluded that combined sewer overflows were the most likely source of caffeine. Using a mass balance approach, it was possible to determine the fraction of wastewater (in dry weather equivalents) discharged untreated to the receiving streams (up to 10%, annual mean, approximately 2-3%). The concept of caffeine as a marker for combined sewer overflows was then applied to estimate phosphorus inputs to Greifensee with untreated and treated wastewater (approximately 1.5 and 2.0 t P y(-1), respectively), which corresponded well with P inputs determined in a separate study based on hydraulic considerations. For compounds with high elimination in WWTPs such as phosphorus (96-98% in the Greifensee area), inputs from combined sewer overflows are thus of similar magnitude as inputs from treated wastewater. The study demonstrated that caffeine is a suitable marker for untreated wastewater (from combined sewer overflows, direct discharges, etc.), but its sensitivity depends on regional conditions and decreases with decreasing elimination efficiency in WWTPs.
2012-08-01
HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal , and brake pedal . From this driver requested power at the...HMMWV engine, b) base HMMWV gear ratios of the 4 speed transmission, c) acceleration and brake pedal pressed for the hybrid vehicle and d) Torque...coefficient. µb: Threshold for detecting brake pedal pressed ? 2 tanE4FGH 2 tanE4 I [K ρ: Air mass density, ρ = ma/Va where ma is mass of air
NASA Astrophysics Data System (ADS)
Katsev, S.; Li, J.
2017-12-01
Predicting the time scales on which lake ecosystems respond to changes in anthropogenic phosphorus loadings is critical for devising efficient management strategies and setting regulatory limits on loading. Internal loading of phosphorus from sediments, however, can significantly contribute to the lake P budget and may delay recovery from eutrophication. The efficiency of mineralization and recycling of settled P in bottom sediments, which is ultimately responsible for this loading, is often poorly known and is surprisingly poorly characterized in the societally important systems such as the Great Lakes. We show that a simple mass-balance model that uses only a minimum number of parameters, all of which are measurable, can successfully predict the time scales over which the total phosphorus (TP) content of lakes responds to changes in external loadings, in a range of situations. The model also predicts the eventual TP levels attained under stable loading conditions. We characterize the efficiency of P recycling in Lake Superior based on a detailed characterization of sediments at 13 locations that includes chemical extractions for P and Fe fractions and characterization of sediment-water exchange fluxes of P. Despite the low efficiency of P remobilization in these deeply oxygenated sediments (only 12% of deposited P is recycled), effluxes of dissolved phosphorus (2.5-7.0 μmol m-2 d-1) still contribute 37% to total P inputs into the water column. In this oligotrophic large lake, phosphate effluxes are regulated by organic sedimentation rather than sediment redox conditions. By adjusting the recycling efficiency to conditions in other Laurentian Great Lakes, we show that the model reproduces the historical data for total phosphorus levels. Analysis further suggests that, in the Lower Lakes, the rate of P sequestration from water column into sediments has undergone a significant change in recent decades, possibly in response to their invasion by quagga mussels. Importantly, even for lakes where P budgets are dominated by internal loading, mass balance arguments show that, over multi-year time scales, lakes should respond to changes in external P inputs faster than their hydrological residence times.
T-load microchannel array and fabrication method
Swierkowski, Stefan P.
2000-01-01
A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.
Climatic variability and its role in regulating C, N and P retention in the James River Estuary
NASA Astrophysics Data System (ADS)
Bukaveckas, Paul A.; Beck, Michael; Devore, Dana; Lee, William M.
2018-05-01
Transformations and retention of C, N and P inputs to estuaries are subject to external factors such as discharge-driven variation in loading rates, and internal processes regulating biogeochemical cycles. We used an 8-year time series of finely resolved (monthly) mass balances for the tidal freshwater segment of the James River Estuary to assess the influence of discharge and temperature on C, N and P retention. Peak export and retention of organic, likely particulate, fractions occurred in months of highest discharge. With increasing discharge we observed higher mass retention, greater proportional retention (in relation to inputs) and more selective retention (with P retained preferentially over N and C). DIN retention was strongly influenced by water temperature with 10-fold high retention occurring at high (>20 °C) vs. low (<15 °C) water temperature at corresponding discharge. Our findings suggest that rising temperatures will have a greater effect on the retention of N than P because a greater proportion of the total N delivered to estuaries is in dissolved inorganic form, and therefore subject to temperature dependent rates of biological assimilation and denitrification. By contrast, the bulk of the P load was in particulate form, which is retained via sediment trapping, and not appreciably affected by water temperature. The tidal freshwater estuary was an important site for nutrient removal where the accumulation of N- and P- rich materials may delay recovery in response to nutrient load reductions.
Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W
2016-05-03
Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Ellsworth Mountains: critical and enduringly enigmatic
Dalziel, I.W.D.
2007-01-01
The elevation (~5000m) is high for an early Mesozoic fold belt. Thermal uplift could have been initiated during Jurassic-Cretaceous block rotation and Weddell Sea opening and continued into the Cenozoic. The history of glaciation provides input for models of ice loading and unloading. Measurements of present-day uplift test these models and help assess change in the mass of the ice sheet and hence in global sea level.
Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O
2010-02-01
Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.
Bruno Garza, J L; Young, J G
2015-01-01
Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.
Guidelines for reducing dynamic loads in two-bladed teetering-hub downwind wind turbines
NASA Astrophysics Data System (ADS)
Wright, A. D.; Bir, G. S.; Butterfield, C. D.
1995-06-01
A major goal of the federal Wind Energy Program is the rapid development and validation of structural models to determine loads and response for a wide variety of different wind turbine configurations operating under extreme conditions. Such codes are crucial to the successful design of future advanced wind turbines. In previous papers the authors described steps they took to develop a model of a two-bladed teetering-hub downwind wind turbine using ADAMS (Automatic Dynamic Analysis of Mechanical Systems), as well as comparison of model predictions to test data. In this paper they show the use of this analytical model to study the influence of various turbine parameters on predicted system loads. They concentrate their study on turbine response in the frequency range of six to ten times the rotor rotational frequency (6P to 10P). Their goal is to identify the most important parameters which influence the response of this type of machine in this frequency range and give turbine designers some general design guidelines for designing two-bladed teetering-hub machines to be less susceptible to vibration. They study the effects of such parameters as blade edgewise and flapwise stiffness, tower top stiffness, blade tip-brake mass, low-speed shaft stiffness, nacelle mass momenta of inertia, and rotor speed. They show which parameters can be varied in order to make the turbine less responsive to such atmospheric inputs as wind shear and tower shadow. They then give designers a set of design guidelines in order to show how these machines can be designed to be less responsive to these inputs.
NASA Technical Reports Server (NTRS)
Dreisbach, R. L. (Editor)
1979-01-01
The input data and execution control statements for the ATLAS integrated structural analysis and design system are described. It is operational on the Control Data Corporation (CDC) 6600/CYBER computers in a batch mode or in a time-shared mode via interactive graphic or text terminals. ATLAS is a modular system of computer codes with common executive and data base management components. The system provides an extensive set of general-purpose technical programs with analytical capabilities including stiffness, stress, loads, mass, substructuring, strength design, unsteady aerodynamics, vibration, and flutter analyses. The sequence and mode of execution of selected program modules are controlled via a common user-oriented language.
Automatic crack detection method for loaded coal in vibration failure process
Li, Chengwu
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Modeling spray drift and runoff-related inputs of pesticides to receiving water.
Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S
2018-03-01
Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = -1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.
[Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].
Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao
2015-12-01
China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.
NASA Technical Reports Server (NTRS)
Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce
2010-01-01
The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:
Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability
NASA Astrophysics Data System (ADS)
Paytan, A.; Street, J. H.
2003-12-01
Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.
Smith, T.E.; Laursen, A.E.; Deacon, J.R.
2008-01-01
Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
Power Electronics for a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
1997-01-01
A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.
Rimondi, V.; Chiarantini, L.; Lattanzi, P.; Benvenuti, M.; Beutel, M.; Colica, A.; Costagliola, P.; Di Benedetto, F.; Gabbani, G.; Gray, John E.; Pandeli, E.; Pattelli, G.; Paolieri, M.; Ruggieri, G.
2015-01-01
Results of our studies indicate that the Mt. Amiata region is at present a source of Hg of remarkable environmental concern at the local, regional (Tiber River), and Mediterranean scales. Ongoing studies are aimed to a more detailed quantification of the Hg mass load input to the Mediterranean Sea, and to unravel the processes concerning Hg transport and fluid dynamics.
A Load-Based Temperature Prediction Model for Anomaly Detection
NASA Astrophysics Data System (ADS)
Sobhani, Masoud
Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
A mass balance mercury budget for a mine-dominated lake: Clear Lake, California
Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.
2009-01-01
The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.
Validity and reliability of a controlled pneumatic resistance exercise device.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2008-01-01
During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
O'Brien, Anne K.; Rice, Karen C.; Bricker, Owen P.; Kennedy, Margaret M.; Anderson, R. Todd
1997-01-01
The importance of mineral weathering was assessed and compared for five mid-Atlantic watersheds receiving similar atmospheric inputs but underlain by differing bedrock. Annual solute mass balances and volume-weighted mean solute concentrations were calculated for each watershed for each year of record. In addition, primary and secondary mineralogy were determined for each of the watersheds through analysis of soil samples and thin sections using petrographic, scanning electron microscope, electron microprobe and X-ray diffraction techniques. Mineralogical data were also compiled from the literature. These data were input to NETPATH, a geochemical program that calculates the masses of minerals that react with precipitation to produce stream water chemistry. The feasibilities of the weathering scenarios calculated by NETPATH were evaluated based on relative abundances and reactivities of minerals in the watershed. In watersheds underlain by reactive bedrocks, weathering reactions explained the stream base cation loading. In the acid-sensitive watersheds on unreactive bedrock, calculated weathering scenarios were not consistent with the abundance of reactive minerals in the underlying bedrock, and alternative sources of base cations are discussed.
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825
Improved Neural Networks with Random Weights for Short-Term Load Forecasting.
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
NASA Astrophysics Data System (ADS)
van Raaphorst, Wim; de Jonge, Victor N.
2004-03-01
In this paper we reconstruct the Total Nitrogen (TN) and Total Phosphorus (TP) inputs into the western Wadden Sea from its major freshwater source the lake IJsselmeer between 1935-1998. The reconstruction is based on the TN and TP loads of the river Rhine at the German/Dutch border and follows the aquatic continuum approach to calculate loads further downstream in (1) the river IJssel feeding the IJsselmeer, and (2) the discharge of this lake into the western Wadden Sea. Our objectives are to determine (1) how the signal of changing nutrient loads of the Rhine is transferred downstream, and (2) how hydrological changes in the rivers-and-lake system affected the TN and TP discharges into the western Wadden Sea. Observational data from which TN and TP loads of the river Rhine could be calculated date back to the 1960s and we used background loads for European rivers for the period before World War II. The period in between was interpolated using the historic scenarios of watershed land use and management tested for the hypothetical Phison river (Billen and Garnier, 1997, Aquat. Microb. Ecol. 13, 3-17), adapted for the hydrology of the Rhine. The interpolations were constrained by loads of dissolved inorganic N and P compounds, for which data go back to the 1930s. Using the reconstructed loads of the river Rhine, TN and TP loads of the river IJssel and the lake IJsselmeer were calculated with simple mass balance models that were calibrated against data available from 1972-1993 onwards. Results show a gradual 12-fold increase of the TN discharge of the IJsselmeer into the Wadden Sea from 1935 to 1988, after which it decreased to levels still ˜5 fold those in 1935. The discharge of TP increased more abruptly in the early 1960s to values in 1983 ˜10 fold those before 1965, followed by a sharp decrease to values still ˜2.5 fold those before 1965. These patterns resemble those in the river Rhine, but are modified due to (1) variability of other sources to the lake, and (2) reduction of the retention capacity of the lake due to enormous land reclamation. TN:TP atomic ratios in the freshwater input to the Wadden Sea as high as 100 in 1995 were caused by successful P reduction programmes, less successful N reduction and N-rich inputs from smaller rivers and land runoff into the lake IJsselmeer. Land reclamation caused the lake's retention of TN to decrease step-wise from ˜70% to ˜45-50% and that of TP from 85% to 55-60% between 1950 and 1980.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
NECAP 4.1: NASA's Energy-Cost Analysis Program input manual
NASA Technical Reports Server (NTRS)
Jensen, R. N.
1982-01-01
The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.
NASA Astrophysics Data System (ADS)
Erturk, A.; Anton, S. R.; Inman, D. J.
2009-03-01
This paper discusses the basic design factors for modifying an original wing spar to a multifunctional load-bearing - energy harvester wing spar. A distributed-parameter electromechanical formulation is given for modeling of a multilayer piezoelectric power generator beam for different combinations of the electrical outputs of piezoceramic layers. In addition to the coupled vibration response and voltage response expressions for a multimorph, strength formulations are given in order to estimate the maximum load input that can be sustained by the cantilevered structure without failure for a given safety factor. Embedding piezoceramics into an original wing spar for power generation tends to reduce the maximum load that can be sustained without failure and increase the total mass due to the brittle nature and large mass densities of typical piezoelectric ceramics. Two case studies are presented for demonstration. The theoretical case study discusses modification of a rectangular wing spar to a 3-layer generator wing spar with a certain restriction on mass addition for fixed dimensions. Power generation and strength analyses are provided using the electromechanical model. The experimental case study considers a 9-layer generator beam with aluminum, piezoceramic, Kapton and epoxy layers and investigates its power generation and load-bearing performances experimentally and analytically. This structure constitutes the main body of the multifunctional self-charging structure concept proposed by the authors. The second part of this work (experiments and storage applications) employs this multi-layer generator along with the thin-film battery layers in order to charge the battery layers using the electrical outputs of the piezoceramic layers.
Naftz, David L.
2017-01-01
Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.
Steam sterilisation's energy and water footprint.
McGain, Forbes; Moore, Graham; Black, Jim
2017-03-01
Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser's electricity and water meters every 5min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or 'test' cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2kg, with 32% of cycles <15kg. Electricity used for active cycles was 32652kWh (60% of total), whereas the water used was 1243495L (79%). Standby used 21457kWh (40%) electricity and 329200L (21%) water. Total electricity and water consumption per mass sterilised was 1.9kWhkg -1 and 58Lkg -1 , respectively. The linear regression model predicting electricity use was: kWh=15.7+ 0.14×mass (in kg; R 2 =0.58, P<0.01). Models for water and item type were poor. Electricity and water use fell from 3kWhkg -1 and 200Lkg -1 , respectively, for 5-kg loads to 0.5kWhkg -1 and 20Lkg -1 , respectively, for 40-kg loads. Conclusions Considerable electricity and water use occurred during standby, load mass was only moderately predictive of electricity consumption and light loads were common yet inefficient. The findings of the present study are a baseline for steam sterilisation's environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment ('cradle to grave') provides a scientific method of analysing environmental effects. Although data of the effects of steam sterilisation are integral to the life cycles of reusable items and procedures using such items, there are few data available. Further, there is scant information regarding the efficiency of the long-term in-hospital use of sterilisers. What does this paper add? We quantified, for the first time, long-term electricity and water use of a hospital steam steriliser. We provide useful input data for future life cycle assessments of all reusable, steam-sterilised equipment. Further, we identified opportunities for improved steriliser efficiencies, including rotating off idle sterilisers and reducing the number of light steriliser loads. Finally, others could use our methods to examine steam sterilisers and many other energy-intensive items of hospital equipment. What are the implications for practitioners? We provide useful input data for all researchers examining the environmental footprint of reusable hospital equipment and procedures using such equipment. As a result of the present study, staff in the hospital sterile supply department have reduced steam steriliser electricity and water use considerably without impeding sterilisation throughput (and reduced time inefficiencies). Many other hospitals could benefit from similar methods to improve steam steriliser and other hospital equipment efficiencies.
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
Simple Sensitivity Analysis for Orion GNC
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch.We describe in this paper a sensitivity analysis tool (Critical Factors Tool or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production
NASA Astrophysics Data System (ADS)
White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.
2005-05-01
Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.
Ortiz, Roderick F.
2001-01-01
In July 1999, a tracer-injection study was conducted concurrently with synoptic sampling to generate mass-load profiles in Wightman Fork near the Summitville Mine site. The mine site is located in the San Juan Mountains of southwestern Colorado at an elevation of about 3,500 meters above sea level. Metal loads increased substantially along the 2,815-meter study reach along the boundary of the mine site. Spatial determinations of dissolved aluminum, copper, iron, manganese, and zinc loads were used to identify potential source areas to the stream. Overall, four source areas appeared to contribute most of the specific load at the end of the study reach. One source area was along a 60-meter reach downgradient from the toe of the North Waste Dump that generally corresponded to a region of radial faults. Another source area was a short reach that included inputs from the Summitville Water Treatment Facility and the Pump House Fault. In July 1999, seepage from the Summitville Dam Impoundment was a substantial contributor of metal load at the end of the study reach. Finally, the metal load contributed along a 60-meter reach that included Cropsy Creek is considered a substantial source of metal load to Wightman Fork.
Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake
Craft, James A.; Stanford, Jack A.
2015-01-01
We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810
Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.
Ellis, Bonnie K; Craft, James A; Stanford, Jack A
2015-01-01
We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts
Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.
2016-01-01
Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ∼ 2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( < 0.063 mm) ash (3–59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.
NASA Technical Reports Server (NTRS)
1973-01-01
This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
NASA Astrophysics Data System (ADS)
Walve, Jakob; Sandberg, Maria; Larsson, Ulf; Lännergren, Christer
2018-05-01
Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input-export) and the internal P exchange with sediments in 1968-2015. For 10-20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.
Buitrago, Jaime; Asfour, Shihab
2017-01-01
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buitrago, Jaime; Asfour, Shihab
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
Nutrients discharged to the Mississippi River from eastern Iowa watersheds, 1996-1997
Becher, Kent D.; Schnoebelen, Douglas J.; Akers, Kimberlee K.
2000-01-01
The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
NASA Astrophysics Data System (ADS)
Tamborski, J. J.; Cochran, J. K.; Bokuniewicz, H. J.
2017-12-01
Bottom-waters in Smithtown Bay (Long Island Sound, NY) are subject to hypoxic conditions every summer despite limited nutrient inputs from waste-water and riverine sources, while modeling estimates of groundwater inputs are thought to be insignificant. Terrestrial and marine fluxes of submarine groundwater discharge (SGD) were quantified to Smithtown Bay using mass balances of 222Rn, 224Ra, 226Ra and 228Ra during the spring and summer of 2014/2015, in order to track this seasonal transition period. Intertidal pore waters from a coastal bluff (terrestrial SGD) and from a barrier beach (marine SGD) displayed substantial differences in N concentrations and sources, traced using a multi-isotope approach (222Rn, Ra, δ15N-NO3-, δ18O-NO3-). NO3- in terrestrial SGD did not display any seasonality and was derived from residential septic systems and fertilizer. Marine SGD N concentrations varied month-to-month because of mixing between oxic seawater and hypoxic saline pore waters; N concentrations were greatest during the summer, when NO3- was derived from the remineralization of organic matter. Short-lived 222Rn and 224Ra SGD fluxes were used to determine remineralized N loads along tidal recirculation flow paths, while long-lived 228Ra was used to trace inputs of anthropogenic N in terrestrial SGD. 228Ra-derived terrestrial N load estimates were between 20 and 55% lower than 224Ra-derived estimates (excluding spring 2014); 228Ra may be a more appropriate tracer of terrestrial SGD N loads. Terrestrial SGD NO3- (derived from 228Ra) to Smithtown Bay varied from (1.40-12.8) ∗ 106 mol N y-1, with comparable marine SGD NO3- fluxes of (1.70-6.79) ∗ 106 mol N y-1 derived from 222Rn and 224Ra. Remineralized N loads were greater during the summer compared with spring, and these may be an important driver toward the onset of seasonal hypoxic conditions in Smithtown Bay and western Long Island Sound. Seawater recirculation through the coastal aquifer can rival the N load from terrestrial SGD from a heavily polluted aquifer.
Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program
NASA Technical Reports Server (NTRS)
Graham, J. B.; Luz, P. L.
1998-01-01
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.
Domagalski, Joseph; Majewski, Michael S; Alpers, Charles N; Eckley, Chris S; Eagles-Smith, Collin A; Schenk, Liam; Wherry, Susan
2016-10-15
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg. Published by Elsevier B.V.
Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan
2016-01-01
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.
1977-01-01
A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.
A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations
Guo, Yi; Parsons, Tyler; Dykes, Katherine; ...
2016-08-24
This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree ofmore » variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.« less
A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Parsons, Tyler; Dykes, Katherine
This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree ofmore » variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.« less
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Segmentation, dynamic storage, and variable loading on CDC equipment
NASA Technical Reports Server (NTRS)
Tiffany, S. H.
1980-01-01
Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.
Zhang, Wei; Ye, Youbin; Tong, Yindong; Ou, Langbo; Hu, Dan; Wang, Xuejun
2011-01-30
Concentrations of OCPs in rain, canopy throughfall, and runoff water were measured in the Beijing metropolitan area during the rainy seasons from 2006 to 2007. This study was conducted to calculate the fluxes of OCPs in rain and canopy throughfall, as well as their contributions to runoff. At urban sites, the contribution of HCB and ΣHCHs from rainfall accounted for approximately 50% of the mass in runoff. At the site with significant coverage of landscaping trees, the HCB, ΣHCHs, and ΣDDTs from the net canopy throughfall accounted for approximately 10% of the mass in the runoff. Based on the data obtained in this study, loadings of OCPs (in μg) in rain, net canopy throughfall, and runoff water were calculated. The input of OCPs from rain and canopy throughfall water accounted for a significant portion of urban runoff. In cities undergoing rapid urban sprawl, monitoring and control of the transport of OCPs in urban runoff are essential for effective control of environmental hazards in surface water bodies. Copyright © 2010 Elsevier B.V. All rights reserved.
CrossWater - Modelling micropollutant loads from different sources in the Rhine basin
NASA Astrophysics Data System (ADS)
Moser, Andreas; Bader, Hans-Peter; Fenicia, Fabrizio; Scheidegger, Ruth; Stamm, Christian
2016-04-01
The pressure on rivers from micropollutants (MPs) originating from various sources is a growing environmental issue and requiring political regulations. The challenges for the water management are numerous, particularly for international water basins. Spatial knowledge of MP sources and the water quality are prerequisites for an effective water quality policy. In this study we analyze the sources of MPs in the international Rhine basin in Europe, and model their transport to the streams. The spatial patterns of MP loads and concentrations from different use classes are investigated with a mass flow analysis and compared to the territorial jurisdictions that shape the spatial arrangement of water management. The source area of MPs depends on the specific use of a compound. Here, we focus on i) herbicides from agricultural land use, ii) biocides from material protection on buildings and iii) human pharmaceuticals from households. The total mass of MPs available for release to the stream network is estimated from statistical application and consumption data. The available mass of MPs is spatially distributed to the catchments areas based on GIS data of agricultural land use, vector data of buildings and wastewater treatment plant (WWTP) locations, respectively. The actual release of MPs to the stream network is calculated with empirical loss rates related to river discharge for agricultural herbicides and to precipitation for biocides. For the pharmaceuticals the release is coupled to the human metabolism rates and elimination rates in WWTP. The released loads from the catchments are propagated downstream with hydraulic routing. Water flow, transport and fate of the substances are simulated within linked river reaches. Time series of herbicide concentrations and loads are simulated for the main rivers in the Rhine basin. Accordingly the loads from the primary catchments are aggregated and constitute lateral or upstream input to the simulated river reaches. Pronounced differences in the spatial patterns of concentrations in the aquatic system are observed between the different compounds. The comparison with measurements from monitoring stations along the Rhine yield satisfactory results.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
Transient dynamic analysis of the Bao'An Stadium
NASA Astrophysics Data System (ADS)
Knight, David; Whitefield, Rowan; Nhieu, Eric; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando
2016-08-01
Bao'An Stadium is a unique structure that utilises 54m span cantilevers with tensioned members to support the roof. This report involves a simplified finite element model of Bao'An stadium using Strand7 to analyse the effects of deflections, buckling and earthquake loading. Modelling the cantilevers of the original structure with a double curvature was problematic due to unrealistic deflections and no total mass participation using the Spectral Response Solver. To rectify this, a simplified symmetrical stadium was created and the cable free length attribute was used to induce tension in the inner ring and bottom chord members to create upwards deflection. Further, in place of the Spectral Response Solver, the Transient Linear Dynamic Solver was inputted with an El-Centro earthquake. The stadium's response to a 0.20g earthquake and self-weight indicated the deflections satisfied AS1170.0, the loading in the columns was below the critical buckling load, and all structural members satisfied AS4100.
Simple Sensitivity Analysis for Orion Guidance Navigation and Control
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch. We describe in this paper a sensitivity analysis tool ("Critical Factors Tool" or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
NASA Technical Reports Server (NTRS)
Holland, W.
1974-01-01
This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.
Axial calibration methods of piezoelectric load sharing dynamometer
NASA Astrophysics Data System (ADS)
Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu
2018-06-01
The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.
Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.
2009-01-01
A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.
Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs
NASA Astrophysics Data System (ADS)
Harvey, David Benjamin Paul
A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wilbur
2005-01-01
The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.
Microchannel cross load array with dense parallel input
Swierkowski, Stefan P.
2004-04-06
An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.
Asbury, C.E.; Oaksford, E.T.
1997-01-01
Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Keller, J.; LaCava, W.
2012-09-01
This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less
Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.
Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C
2010-03-01
Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.
Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000
Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.
2010-01-01
Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.
40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat input rate. 75.83 Section 75.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions and heat input rate in accordance with the procedures in sections 9.1 through 9.3 of appendix F to...
Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutri...
A versatile computer package for mechanism analysis, part 2: Dynamics and balance
NASA Astrophysics Data System (ADS)
Davies, T.
The algorithms required for the shaking force components, the shaking moment about the crankshaft axis, and the input torque and bearing load components are discussed using the textile machine as a focus for the discussion. The example is also used to provide illustrations of the output for options on the hodograph of the shaking force vector. This provides estimates of the optimum contrarotating masses and their locations for a generalized primary Lanchester balancer. The suitability of generalized Lanchester balancers particularly for textile machinery, and the overall strategy used during the development of the package are outlined.
NASA Astrophysics Data System (ADS)
Baker, A.; Finlay, J. C.; Gran, K. B.; Karwan, D. L.; Engstrom, D. R.; Atkins, W.; Muramoto-Mathieu, M.
2017-12-01
The Minnesota River Basin is an intensively-managed agricultural watershed which contributes disproportionately to downstream sediment and nutrient loading. The Le Sueur River, an actively eroding tributary to the Minnesota River, has been identified as a disproportionate contributor of sediment and nutrients to this system. In an effort to identify best practices for reduction of phosphorus (P) in the context of intensifying agriculture and climate change pressure, we coupled investigation of source sediment P chemistry with an existing fine sediment budget to create a watershed mass balance for sediment-associated P. Sediments collected from primary source areas including agricultural fields, glacial till bluffs, alluvial streambanks, ravines, and agricultural ditches were analyzed for total- and extractable-P, and sorptive properties. Preliminary integration of these data into a mass-balance suggests that less than a quarter of the total-P exported from this watershed can be attributed directly to sediment inputs, likely due to the low P concentration of most sediment sources. While sediment may supply less than 25% of the total-P exiting the Le Sueur, a high proportion of total-P load ( 66% on average) is in particulate form. This finding indicates that sorption of dissolved-P from upstream sources onto fine sediment plays a major role in determining the form and reactivity of P in the watershed. Sorption processes convert dissolved-P into particulate-P, and may substantially alter the fate and reactivity of P in downstream channels and lakes. In highly erosive rivers, as the Le Sueur, where inputs of sediment from deep soil horizons are dominant, the dynamic relationship between sediment and dissolved-P must be evaluated and incorporated into models to forecast potential for P retention and export from the landscape. By incorporating results of this mass balance and analysis of sediment sorptive properties into existing models, we can develop strategies that most effectively address both of these interwoven pollutants to aquatic ecosystems.
An Input Routine Using Arithmetic Statements for the IBM 704 Digital Computer
NASA Technical Reports Server (NTRS)
Turner, Don N.; Huff, Vearl N.
1961-01-01
An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.
Hu, Limin; Shi, Xuefa; Qiao, Shuqing; Lin, Tian; Li, Yuanyuan; Bai, Yazhi; Wu, Bin; Liu, Shengfa; Kornkanitnan, Narumol; Khokiattiwong, Somkiat
2017-01-01
Surface sediments obtained from a matrix of 92 sample sites in the Gulf of Thailand (GOT) were analyzed for a comprehensive study of the distribution, sources, and mass inventory of polycyclic aromatic hydrocarbons (PAHs) to assess their input pathways and impacts of the regional land-based energy structure on the deposition of PAHs on the adjacent continental margins. The concentration of 16 PAHs in the GOT ranged from 2.6 to 78.1ng/g (dry weight), and the mean concentration was 19.4±15.1ng/g. The spatial distribution pattern of 16 PAH was generally consistent with that of sediment grain size, suggesting the influence of regional hydrodynamic conditions. Correlation and principal component analysis of the PAHs indicated that direct land-based inputs were dominantly responsible for the occurrence of PAHs in the upper GOT and the low molecular weight (LMW) PAHs in the coastal region could be from petrogenic sources. A positive matrix factorization (PMF) model apportioned five contributors: petroleum residues (~44%), biomass burning (~13%), vehicular emissions (~11%), coal combustion (~6%), and air-water exchange (~25%). Gas absorption may be a significant external input pathway for the volatile PAHs in the open GOT, which further implies that atmospheric loading could be important for the sink of PAHs in the open sea of the Southeast Asia (SE Asia). The different PAH source patterns obtained and a significant disparity of PAH mass inventory in the sediments along the East and Southeast Asia continental margins can be ascribed mainly to different land-based PAH emission features under the varied regional energy structure in addition to the depositional environment and climatic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets
NASA Astrophysics Data System (ADS)
Liu, Jing; Gao, Xiaolong; Zhang, Jianxun
2016-11-01
The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.
NASA Astrophysics Data System (ADS)
Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Ebied, Mohamed R.; Ali, Mohamed G. S.
2017-10-01
In this study, we aim to examine the triggering force for an efficient snap-through solution of hand shaking vibrations of a piezoelectric bistable energy harvester. The proposed structure works at very low frequencies with nearly continuous periodic vibrations. The static characterizations are presented as well as the dynamic characterizations based on the phase diagrams of velocity vs displacement, voltage vs displacement, and voltage vs input acceleration. The mass attached to the bistable harvester plays an important role in determining the acceleration needed for the snap-through action, and the explanation for this role is complex because of mass dependence on frequency/amplitude vibration. Various hand shaking vibration tests are performed to demonstrate the advantage of the proposed structure in harvesting energy from hand shaking vibration. The minimum input acceleration for snap-through action was 11.59 m/s2 with peaks of 15.76 and 2 m/s2 in the frequency range of 1.3-2.7 Hz, when an attached mass of 14.6 g is used. The maximum generated power at a buckling state of 0.5 mm is 11.3 µW for the test structure at 26 g. The experimental results obtained in this study indicate that power output harvesting of slow hand shaking vibrations at 10 µW and a load resistance of 1 MΩ.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... and for a flow monitoring system and an O2 or CO2 diluent gas monitoring system to measure heat input...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Taylor; Guo, Yi; Veers, Paul
Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less
NASA Astrophysics Data System (ADS)
Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe
2018-03-01
Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950-2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO3) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950-2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories.
Life and reliability models for helicopter transmissions
NASA Technical Reports Server (NTRS)
Savage, M.; Knorr, R. J.; Coy, J. J.
1982-01-01
Computer models of life and reliability are presented for planetary gear trains with a fixed ring gear, input applied to the sun gear, and output taken from the planet arm. For this transmission the input and output shafts are co-axial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. The reliability model is based on the Weibull distributions of the individual reliabilities of the in transmission components. The system model is also a Weibull distribution. The load versus life model for the system is a power relationship as the models for the individual components. The load-life exponent and basic dynamic capacity are developed as functions of the components capacities. The models are used to compare three and four planet, 150 kW (200 hp), 5:1 reduction transmissions with 1500 rpm input speed to illustrate their use.
Harmonize input selection for sediment transport prediction
NASA Astrophysics Data System (ADS)
Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed
2017-09-01
In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.
2014-01-01
We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.
Two stage gear tooth dynamics program
NASA Technical Reports Server (NTRS)
Boyd, Linda S.
1989-01-01
The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.
ACON: a multipurpose production controller for plasma physics codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, C.
1983-01-01
ACON is a BCON controller designed to run large production codes on the CTSS Cray-1 or the LTSS 7600 computers. ACON can also be operated interactively, with input from the user's terminal. The controller can run one code or a sequence of up to ten codes during the same job. Options are available to get and save Mass storage files, to perform Historian file updating operations, to compile and load source files, and to send out print and film files. Special features include ability to retry after Mass failures, backup options for saving files, startup messages for the various codes,more » and ability to reserve specified amounts of computer time after successive code runs. ACON's flexibility and power make it useful for running a number of different production codes.« less
NASA Astrophysics Data System (ADS)
Poret, Matthieu; Corradini, Stefano; Merucci, Luca; Costa, Antonio; Andronico, Daniele; Montopoli, Mario; Vulpiani, Gianfranco; Freret-Lorgeril, Valentin
2018-04-01
Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-Caulle in 2011) demonstrated the necessity for a better assessment of the eruption source parameters (ESPs; e.g. column height, mass eruption rate, eruption duration, and total grain-size distribution - TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23 November 2013, Etna (Italy) erupted, producing a 10 km height plume, from which two volcanic clouds were observed at different altitudes from satellites (SEVIRI, MODIS). One was retrieved as mainly composed of very fine ash (i.e. PM20), and the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). An atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Apulia regions (southern Italy), permitting tephra sampling in proximal (i.e. ˜ 5-25 km from the source) and medial areas (i.e. the Calabria region, ˜ 160 km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of the initial magma fragmentation. To better constrain the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting TGSD is inverted by best-fitting the field, ground-based, and satellite-based measurements. The results indicate a total erupted mass of 1.2 × 109 kg, being similar to the field-derived value of 1.3 × 109 kg, and an initial PM20 fraction between 3.6 and 9.0 wt %, constituting the tail of the TGSD.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a coal...
NMR and mass spectrometry of phosphorus in wetlands
El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.
2008-01-01
There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
Vibration reduction of pulse tube cryocooler driven by single piston compressor
NASA Astrophysics Data System (ADS)
Chen, Houlei; Xu, Nana; Liang, Jingtao; Yang, Luwei
2012-12-01
The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.
Updated polychlorinated biphenyl mass budget for Lake Michigan
Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Li, An; Kreis, Russell; Hites, Ronald A.; Venier, Marta
2017-01-01
This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994–1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budget. Five of the 11 LMMBP tributaries were revisited in 2015. In these five tributaries, the geometric mean concentrations of ∑PCBs (sum of 85 congeners) ranged from 1.52 to 22.4 ng L–1. The highest concentrations of PCBs were generally found in the Lower Fox River and in the Indiana Harbor and Ship Canal. The input flows of ∑PCBs from wet deposition, dry deposition, tributary loading, and air to water exchange, and the output flows due to sediment burial, volatilization from water to air, and transport to Lake Huron and through the Chicago Diversion were calculated, as well as flows related to the internal processes of settling, resuspension, and sediment–water diffusion. The net transfer of ∑PCBs is 1240 ± 531 kg yr–1 out of the lake. This net transfer is 46% lower than that estimated in 1994–1995. PCB concentrations in most matrices in the lake are decreasing, which drove the decline of all the individual input and output flows. Atmospheric deposition has become negligible, while volatilization from the water surface is still a major route of loss, releasing PCBs from the lake into the air. Large masses of PCBs remain in the water column and surface sediments and are likely to contribute to the future efflux of PCBs from the lake to the air.
Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties
NASA Technical Reports Server (NTRS)
Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.
2012-01-01
The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.
Control Valve Trajectories for SOFC Hybrid System Startup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorrell, Megan; Banta, Larry; Rosen, William
2012-07-01
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less
Compression wave studies in Blair dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.
Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as muchmore » as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.« less
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert
2017-04-01
Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.
Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui
2015-12-15
Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less
Caffeine, an anthropogenic marker for wastewater comtamination of surface waters.
Buerge, Ignaz I; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf
2003-02-15
The suitability of caffeine as a chemical marker for surface water pollution by domestic wastewaters was assessed in this study. Caffeine concentrations in influents and effluents of Swiss wastewater treatment plants (WWTPs, 7-73 and 0.03-9.5 microg/L, respectively) indicated an efficient elimination of 81-99.9%. Corresponding loads in untreated wastewater showed small variations when normalized forthe population discharging to the WWTPs (15.8 +/- 3.8 mg person(-1) d(-1)), reflecting a rather constant consumption. WWTP effluent loads were considerably lower (0.06 +/- 0.03 mg person(-1) d(-1)), apart from installations with low sludge age (< or = 5 d, loads up to 4.4 mg person(-1) d(-1)). Despite the efficient removal in most WWTPs, caffeine was ubiquitously found in Swiss lakes and rivers (6-250 ng/ L), except for remote mountain lakes (<2 ng/L; analytical procedure for wastewater and natural waters: SPE, GC-MS-SIM or GC-MS-MS-MRM, internal standard 13C3-labeled caffeine). Caffeine concentrations in lakes correlated with the anthropogenic burden by domestic wastewaters, demonstrating the suitability of caffeine as a marker. A mass balance for Greifensee revealed that approximately 1-4% of the wastewaters had been discharged without treatment, presumably on rainy days when the capacity of WWTPs had been exceeded. For Zürichsee, it could be shown that the monthly inputs of caffeine correlated with precipitation data. The depth- and seasonal-dependent concentrations in this lake were adequately rationalized by a numerical model considering flushing, biodegradation, and indirect photodegradation via HO. radicals as elimination processes and caffeine inputs as fitting variables.
MEPDG Traffic Loading Defaults Derived from Traffic Pooled Fund Study
DOT National Transportation Integrated Search
2016-04-01
As part of traffic loading inputs, the Mechanistic-Empirical Pavement Design Guide (MEPDG), Interim Edition: A Manual of Practice requires detailed axle loading information in the form of normalized axle load spectra (NALS), number of axle per truck ...
River fluxes to the sea from the oceanʼs 10Be/9Be ratio
NASA Astrophysics Data System (ADS)
von Blanckenburg, Friedhelm; Bouchez, Julien
2014-02-01
The ratio of the meteoric cosmogenic radionuclide 10Be to the stable isotope 9Be is proposed here to be a flux proxy of terrigenous input into the oceans. The ocean's dissolved 10Be/9Be is set by (1) the flux of meteoric 10Be produced in the atmosphere; (2) the denudational flux of the rivers discharging into a given ocean basin; (3) the fraction of 9Be that is released from primary minerals during weathering (meaning the 9Be transported by rivers in either the dissolved form or adsorbed onto sedimentary particles and incorporated into secondary oxides); and (4) the fraction of riverine 10Be and 9Be actually released into seawater. Using published 10Be/9Be data of rivers for which independent denudation rate estimates exist we first find that the global average fraction of 9Be released during weathering into river waters and their particulate load is 20% and does not depend on denudation rate. We then evaluate this quantitative proxy for terrigenous inputs by using published dissolved seawater Be isotope data and a compilation of global river loads. We find that the measured global average oceanic dissolved 10Be/9Be ratio of about 0.9×10-7 is satisfied by the mass balance if only about 6% of the dissolved and adsorbed riverine Be is eventually released to the open ocean after escaping the coastal zone. When we establish this mass balance for individual ocean basins good agreement results between 10Be/9Be ratios predicted from known river basin denudation rates and measured ocean 10Be/9Be ratios. Only in the South Atlantic and the South Pacific the 10Be/9Be ratio is dominated by advected Be and in these basins the ratio is a proxy for ocean circulation. As the seawater 10Be/9Be ratio is faithfully recorded in marine chemical precipitates the 10Be/9Be ratio extracted from authigenic sediments can now serve to estimate relative changes in terrigenous input into the oceans back through time on a global and on an ocean basin scale.
A VERSATILE FAMILY OF GALACTIC WIND MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustard, Chad; Zweibel, Ellen G.; D’Onghia, Elena, E-mail: bustard@wisc.edu
2016-03-01
We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses,more » we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.« less
Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008
Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.
2010-01-01
The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the overall sediment load from Crab Creek to Moses Lake relative to natural, background conditions. Because Moses Lake is relatively shallow and subject to significant wind-driven circulation currents, mixing also would redistribute some of the fluvial sediment load deposited from Crab Creek throughout Parker Horn and the rest of Moses Lake, further mitigating the local effect of Crab Creek sedimentation near the City of Moses Lake.
Response of pendulums to complex input ground motion
Graizer, V.; Kalkan, E.
2008-01-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.
Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardono, B.; Nelson, R.M.
The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less
Hollender, Juliane; Bourgin, Marc; Fenner, Kathrin B; Longrée, Philipp; Mcardell, Christa S; Moschet, Christoph; Ruff, Matthias; Schymanski, Emma L; Singer, Heinz P
2014-11-01
To characterize a broad range of organic contaminants and their transformation products (TPs) as well as their loads, input pathways and fate in the water cycle, the Department of Environmental Chemistry (Uchem) at Eawag applies and develops high-performance liquid chromatography (LC) methods combined with high-resolution tandem mass spectrometry (HRMS/MS). In this article, the background and state-of-the-art of LC-HRMS/MS for detection of i) known targets, ii) suspected compounds like TPs, and iii) unknown emerging compounds are introduced briefly. Examples for each approach are taken from recent research projects conducted within the department. These include the detection of trace organic contaminants and their TPs in wastewater, pesticides and their TPs in surface water, identification of new TPs in laboratory degradation studies and ozonation experiments and finally the screening for unknown compounds in the catchment of the river Rhine.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and which has a rated primary voltage between 601 V and 34.5 kV. No-load loss means those losses that... no-load loss, 55 °C for load loss of liquid-immersed distribution transformers at 50 percent load... input. Excitation current or no-load current means the current that flows in any winding used to excite...
Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul
2006-01-01
Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108
A user's manual for the Loaded Microstrip Antenna Code (LMAC)
NASA Technical Reports Server (NTRS)
Forrai, D. P.; Newman, E. H.
1988-01-01
The use of the Loaded Microstrip Antenna Code is described. The geometry of this antenna is shown and its dimensions are described in terms of the program outputs. The READ statements for the inputs are detailed and typical values are given where applicable. The inputs of four example problems are displayed with the corresponding output of the code given in the appendices.
Load power device, system and method of load control and management employing load identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
Effects of mass loading on dayside solar wind-magnetosphere interactions
NASA Astrophysics Data System (ADS)
Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.
2016-12-01
Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.
Multiplexer/Demultiplexer Loading Tool (MDMLT)
NASA Technical Reports Server (NTRS)
Brewer, Lenox Allen; Hale, Elizabeth; Martella, Robert; Gyorfi, Ryan
2012-01-01
The purpose of the MDMLT is to improve the reliability and speed of loading multiplexers/demultiplexers (MDMs) in the Software Development and Integration Laboratory (SDIL) by automating the configuration management (CM) of the loads in the MDMs, automating the loading procedure, and providing the capability to load multiple or all MDMs concurrently. This loading may be accomplished in parallel, or single MDMs (remote). The MDMLT is a Web-based tool that is capable of loading the entire International Space Station (ISS) MDM configuration in parallel. It is able to load Flight Equivalent Units (FEUs), enhanced, standard, and prototype MDMs as well as both EEPROM (Electrically Erasable Programmable Read-Only Memory) and SSMMU (Solid State Mass Memory Unit) (MASS Memory). This software has extensive configuration management to track loading history, and the performance improvement means of loading the entire ISS MDM configuration of 49 MDMs in approximately 30 minutes, as opposed to 36 hours, which is what it took previously utilizing the flight method of S-Band uplink. The laptop version recently added to the MDMLT suite allows remote lab loading with the CM of information entered into a common database when it is reconnected to the network. This allows the program to reconfigure the test rigs quickly between shifts, allowing the lab to support a variety of onboard configurations during a single day, based on upcoming or current missions. The MDMLT Computer Software Configuration Item (CSCI) supports a Web-based command and control interface to the user. An interface to the SDIL File Transfer Protocol (FTP) server is supported to import Integrated Flight Loads (IFLs) and Internal Product Release Notes (IPRNs) into the database. An interface to the Monitor and Control System (MCS) is supported to control the power state, and to enable or disable the debug port of the MDMs to be loaded. Two direct interfaces to the MDM are supported: a serial interface (debug port) to receive MDM memory dump data and the calculated checksum, and the Small Computer System Interface (SCSI) to transfer load files to MDMs with hard disks. File transfer from the MDM Loading Tool to EEPROM within the MDM is performed via the MILSTD- 1553 bus, making use of the Real- Time Input/Output Processors (RTIOP) when using the rig-based MDMLT, and via a bus box when using the laptop MDMLT. The bus box is a cost-effective alternative to PC-1553 cards for the laptop. It is noted that this system can be modified and adapted to any avionic laboratory for spacecraft computer loading, ship avionics, or aircraft avionics where multiple configurations and strong configuration management of software/firmware loads are required.
Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input
NASA Astrophysics Data System (ADS)
Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko
2011-09-01
In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.
Analysis of rotor vibratory loads using higher harmonic pitch control
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.
1992-01-01
Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae
NASA Astrophysics Data System (ADS)
Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim
2017-04-01
We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.
Pretty, Steven P; Martel, Daniel R; Laing, Andrew C
2017-12-01
Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.
Geohydrology and limnology of Walden Pond, Concord, Massachusetts
Colman, John A.; Friesz, Paul J.
2001-01-01
The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas
Structural/aerodynamic Blade Analyzer (SAB) User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Morel, M. R.
1994-01-01
The structural/aerodynamic blade (SAB) analyzer provides an automated tool for the static-deflection analysis of turbomachinery blades with aerodynamic and rotational loads. A structural code calculates a deflected blade shape using aerodynamic loads input. An aerodynamic solver computes aerodynamic loads using deflected blade shape input. The two programs are iterated automatically until deflections converge. Currently, SAB version 1.0 is interfaced with MSC/NASTRAN to perform the structural analysis and PROP3D to perform the aerodynamic analysis. This document serves as a guide for the operation of the SAB system with specific emphasis on its use at NASA Lewis Research Center (LeRC). This guide consists of six chapters: an introduction which gives a summary of SAB; SAB's methodology, component files, links, and interfaces; input/output file structure; setup and execution of the SAB files on the Cray computers; hints and tips to advise the user; and an example problem demonstrating the SAB process. In addition, four appendices are presented to define the different computer programs used within the SAB analyzer and describe the required input decks.
Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng
2018-05-01
The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Low reflectance high power RF load
Ives, R. Lawrence; Mizuhara, Yosuke M.
2016-02-02
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
Low reflectance radio frequency load
Ives, R. Lawrence; Mizuhara, Yosuke M
2014-04-01
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John
2013-02-01
Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.
Influence of Altered Mass Loading on Testosterone Levels and Testicular Mass
NASA Technical Reports Server (NTRS)
Wang, Tommy J.; Ortiz, R. M.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Effects of altered load on testosterone levels and testicular mass in mammals are not well defined. Two separate studies (loading;centrifuged; +2G(sub z) and unloading;hindlimb suspension;HLS) were conducted to provide a better understanding of the effects of mass loading on testosterone levels and testicular mass. Daily urine samples were collected, and testicular mass measured at the end of the study. +2G(sub z): Sprague-Dawley rats (230-250 g) were centrifuged for 12 days at +2G(sub z): 8 centrifuged (EC) and 8 off centrifuge controls (OCC). EC had lower body mass, however relative testicular mass was greater. EC exhibited an increase in excreted testosterone levels between days 2 (T2) and 6 (T6), and returned to baseline at T9. HLS: To assess the effects of unloading Sprague-Dawley rats (125-150 g) were studied for 12 days: 10 suspended (Exp) and 10 ambulatory (Ctl). Exp had lower body mass during the study, with reduced absolute and relative testicular mass. Exp demonstrated lower excreted testosterone levels from T5-T12. Conclusions: Loading appears to stimulate anabolism, as opposed to unloading, as indicated by greater relative testicular mass and excreted testosterone levels. Reported changes in muscle mass during loading and unloading coincide with similar changes in excreted testosterone levels.
The composite load spectra project
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H.; Kurth, R. E.
1990-01-01
Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.
Nonlinear dynamic modeling for smart material electro-hydraulic actuator development
NASA Astrophysics Data System (ADS)
Larson, John P.; Dapino, Marcelo J.
2013-03-01
Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.
Application of Classification Methods for Forecasting Mid-Term Power Load Patterns
NASA Astrophysics Data System (ADS)
Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho
Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.
NASA Technical Reports Server (NTRS)
Hancock, P. A.; Robinson, M. A.
1989-01-01
The present experiment examined the influence of several task-related factors on tracking performance and concomitant workload. The manipulated factors included tracking order, the presence or absence of knowledge of performance, and the control device. Summed root mean square error (rmse) and perceived workload were measured at the termination of each trial. Perceived workload was measured using the NASA Task Load Index (TLX) and the Subjective Workload Assessment Technique (SWAT). Results indicated a large and expected effect for track order on both performance and the perception of load. In general, trackball input was more accurate and judged for lower load than input using a mouse. The presence or absence of knowledge of performance had little effect on either performance or workload. There were a number of interactions between factors shown in performance that were mirrored by perceived workload scores. Results from each workload scale were equivalent in terms of sensitivity to task manipulations. The pattern of results affirm the utility of these workload measures in assessing the imposed load of multiple task-related variables.
Changing ecosystem response to nitrogen load into Buzzards Bay, MA
NASA Astrophysics Data System (ADS)
Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.
2016-02-01
Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).
NASA Astrophysics Data System (ADS)
Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Gallotti, Glauco; Tinti, Stefano
2017-04-01
The Eastern Tyrrhenian margin offshore western Calabria (Italy) has experienced several mass movements involving varying volumes and shapes, as revealed by several geological surveys identifying slide scars and massive deposits. The hypothesis that at least some of these mass movements was tsunamigenic sounds perfectly reasonable. In this study, we focus on the continental edge offshore the Santa Eufemia Gulf and the Paola Basin, because the area experienced several strong earthquakes (Mw up to 7), some of them in the last centuries (see, for example, the 1905 earthquake and the late shocks of the 1783 sequence). Our aim is to study the seismic load as the trigger mechanism of mass failures: not all earthquakes generate tsunamis, but the conjunction of definite factors as seafloor shaking and pore water pressure could temporarily reduce soil shear stress, inducing failures and submarine tsunamigenic landslides. We have selected several sections of the Calabrian margin with different gradients and studied their slope stability by using the Minimum Lithostatic Deviation (MLD) method. We have applied typical Peak Ground Accelerations (PGAs) obtained from local historical earthquakes by means of regression laws, determining the potentially unstable sectors, as well as the volumes of the material that can be set in motion. This in turn can be used as input for future tsunami modelling and hazard assessment. This work is a contribution to assess local hazard and risk in western Calabrian coast where earthquakes can trigger tsunamigenic submarine mass movements: the impact and the effects of such phenomena could be disastrous for coastal infrastructures and populations without the proper mitigation measures. This work was carried out in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3).
Modeling of a resonant heat engine
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2012-12-01
A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1984-01-01
A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current
NASA Astrophysics Data System (ADS)
Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.
2015-12-01
Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distringuishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.
NASA Astrophysics Data System (ADS)
Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.
2015-06-01
Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P < 0.05). White and brown-white patched cows had significantly longer ( P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower ( P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different ( P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.
Etheridge, Alexandra B.
2013-01-01
he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.
Quantifying Groundwater Nutrient Discharge to a Large Glacial Lake using a Watershed Loading Model
NASA Astrophysics Data System (ADS)
Schilling, K. E.
2015-12-01
Groundwater discharge to a lake is an important, if often neglected, component to water and nutrient budgets. Point measurements of groundwater discharge into a lake are prone to error, so in this study of 15.57 km2 West Lake Okoboji, Iowa, a watershed-based groundwater loading model was developed. Located in northwest Iowa, West Lake Okoboji is considered one of Iowa's premier tourist destinations but is threatened by eutrophication. A network of 21 observation wells was installed in the watershed to evaluate groundwater recharge and quality under representative land cover types in a range of landscape positions. Our objective was to develop typical groundwater responses from various land cover-landscape associations for scaling up to unmonitored areas in the watershed. Results indicated substantial variation in groundwater recharge and quality in the 3847 ha watershed. Recharge was similar among land covers under vegetation but was much lower under urban pavement. Nitrate-nitrogen concentrations were highest under cropped fields and lowest under perennial grassland and golf courses, whereas dissolved phosphorus was highest under residential and urban areas, including an engineered bioswale. A groundwater load allocation model indicated 91% of the nitrate load was from cropped areas and 7% from residential areas. In contrast, P loads were more equally divided among cropped fields (43%), perennial grass (36%) and residential (19%) areas. Based on the mass of nitrate and P in the lake, groundwater accounts for 71% and 18% of the nutrient inputs, respectively.
NASA Astrophysics Data System (ADS)
Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.
2017-12-01
The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.
Load power device and system for real-time execution of hierarchical load identification algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh
A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.
NASA Technical Reports Server (NTRS)
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
The influences of load mass changing on inverted pendulum stability based on simulation study
NASA Astrophysics Data System (ADS)
Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula
2017-09-01
An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.
Design of an integral thermal protection system for future space vehicles
NASA Astrophysics Data System (ADS)
Bapanapalli, Satish Kumar
Thermal protection systems (TPS) are the features incorporated into a spacecraft's design to protect it from severe aerodynamic heating during high-speed travel through planetary atmospheres. The ablative TPS on the space capsule Apollo and ceramic tiles and blankets on the Space Shuttle Orbiter were designed as add-ons to the main load-bearing structure of the vehicles. They are usually incompatible with the structure due to mismatch in coefficient of thermal expansion and as a result the robustness of the external surface of the spacecraft is compromised. This could potentially lead to catastrophic consequences because the TPS forms the external surface of the vehicle and is subjected to numerous other loads like aerodynamic pressure loads, small object high-speed impacts and handling damages during maintenance. In order to make the spacecraft external surface robust, an Integral Thermal Protection System (ITPS) concept has been proposed in this research in which the load-bearing structure and the TPS are combined into one single structure. The design of an ITPS is a formidable task because the requirement of a load-bearing structure and a TPS are often contradictory to one another. The design process has been formulated as an optimization problem with mass per unit area of the ITPS as the objective function and the various functions of the ITPS were formulated as constraints. This is a multidisciplinary design optimization problem involving heat transfer and structural analysis fields. The constraints were expressed as response surface approximations obtained from a large number of finite element analyses, which were carried out with combinations of design variables obtained from an optimized Latin-Hypercube sampling scheme. A MATLABRTM code has been developed to carry out these FE analyses automatically in conjunction with ABAQUSRTM . Corrugated-core structures were designed for ITPS applications with loads and boundary conditions similar to that of a Space Shuttle-like vehicle. Temperature, buckling, deflection and stress constraints were considered for the design process. An optimized mass ranging between 3.5--5 lb/ft2 was achieved by the design. This is considerably heavier when compared to conventional TPS designs. However, the ITPS can withstand substantially large mechanical loads when compared to the conventional TPS. Truss-core geometries used for ITPS design in this research were found to be unsuitable as they could not withstand large thermal gradients frequently encountered in ITPS applications. The corrugated-core design was used for further studying the influence of the various input parameters on the final design weight of the ITPS. It was observed that boundary conditions not only significantly influence the ITPS design but also have a major impact on the effect of various input parameters. It was found that even a small amount of heat loss from bottom face sheet leads to significant reduction in ITPS weight. Aluminum and Beryllium are the most suitable materials for bottom face sheet with Beryllium having considerable advantages in terms of heat capacity, stiffness and density. Although ceramic matrix composites have many superior properties when compared to metal alloys (Titanium alloys and Inconel), their low tensile strength presents difficulties in ITPS applications.
TRIAC/SCR proportional control circuit
Hughes, Wallace J.
1999-01-01
A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.
Dynamics of current-use pesticides in the agricultural model basin
NASA Astrophysics Data System (ADS)
Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis
2017-04-01
The southeast of the Pampas plains is a zone with intensive agricultural activities; this zone is highly irrigated by wetlands, rivers and many streams. The stream flow dynamics are strongly related to the regional humidity, mainly given by runoff water and phreatic surface level, and can change dramatically during storm events. In this sense, it is important to study the fluctuations in the loads and mass of current-use pesticide (CUPs) to examine the influence of hydrologic and seasonal variability on the response of pesticide levels. The objective of this work was to determine the maximum loads reached of ∑CUPs and mass of CUPs associated with the flow dynamic in surface waters of "El Crespo" stream. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the UP and DN sites using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The stream flow was measured during the sampling times in both sites, covering low base-flow and high base-flow periods. The most frequently detected residues (>40%) were glyphosate and its metabolite AMPA, atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole. The mean concentrations of ∑CUPs during the sampling period were 1.62µg/L and 1.66µg/L in UP site and DN site, respectively. The highest levels of ∑CUPs were 4.03 µg/L in UP site during spring 2014 and 2.53 µg/L in DN site during winter 2014. The mass of ∑CUPs showed a direct relation between low base flow and high base flow periods. During high base flow during spring 2014, the stream discharge showed peak of 6.16 mt3/s and 6.77 mt3/s, in UP and DN site, respectively; where the total loads of ∑CUPs were 3.7 µg/L and 2.88 µg/L and the associated mass were 22.74 and 19.54 µg/s, in UP and DN site, respectively. During low base flow the discharge were lower than 1 mt3/s and the total loads of ∑CUPs were variable between 1-3 µg/L, but the mass never were higher than 3 µg/s. The intensive rain during the spring 2014, were the mainly factor that influence the stream flow and pesticide dynamics in the model basin
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
Watershed processing of atmospheric polychlorinated biphenyl inputs.
Rowe, Amy A; Totten, Lisa A; Cavallo, Gregory I; Yagecic, John R
2007-04-01
Indirect atmospheric deposition of PCBs was examined in subwatersheds of the Delaware River Estuary. Tributary PCB loads and atmospheric PCB concentrations were used to understand the pass-through efficiencies for nine rivers/ creeks for which PCB inputs appeared to be dominated by atmospheric deposition. The pass-through efficiency, E, was calculated from tributary loads and atmospheric deposition fluxes. Unfortunately, uncertainties in the gaseous and dry particle deposition velocities, vg and vd, respectively, render the calculated atmospheric deposition fluxes highly uncertain. In order to circumvent this problem, export of PCBs from the watershed was related directly to atmospheric PCB concentrations via a new mass transfer coefficient, the watershed delivery rate or vws, which describes the process by which the watershed transfers PCBs from the airto the River's main stem. vws increases with increasing chlorination and is significantly correlated with vapor pressure. This trend suggests that the transfer of PCBs from the atmosphere to the River via the watershed is more efficient for high molecular weight PCBs than for low molecular weight PCBs. This may indicate that the selected watersheds are at or close to equilibrium with respect to gaseous exchange of PCBs, such that lower molecular weight congeners undergo substantial revolatilization after deposition. The magnitude of the pass-through efficiency, E, depends on the deposition velocities used to calculate the atmospheric deposition flux, but when congener-specific deposition velocities are used, E is independent of vapor pressure and is relatively constant at about 3%.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin; Habetler, Thomas G.
2015-10-27
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA
2011-06-07
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
2010-05-11
UNCLASSIFIED 11 Occupant Model Inputs: Blast Pulse (apeak) Seat Cushion Foam Stiffness (sc) Seat EA System Stiffness (sEA) Outputs: Upper Neck Axial Force...Floor Pad Surrogate model from linear regression on 300 data points: Inputs: Blast Pulse (apeak) Seat Cushion Foam Stiffness (sc) Seat EA System...B Ground Vehicle Weight and Occupant Safety Under Blast Loading Steven Hoffenson, presenter (U of M) Panos Papalambros, PI (U of M) Michael
Predicting marching capacity while carrying extremely heavy loads.
Koerhuis, Claudy L; Veenstra, Bertil J; van Dijk, Jos J; Delleman, Nico J
2009-12-01
The objective of this study was to establish the best prediction for endurance time of combat soldiers marching with extremely heavy loads. It was hypothesized that loads relative to individual characteristics (% maximal load carry capacity [MLCC], % body mass, % lean body mass) would better predict endurance time than load itself. Twenty-three male combat soldiers participated. MLCC was determined by increasing the load by 7.5 kg every 4 minutes until exhaustion. The marching velocity and gradient were 3 km.h(-1) and 5%, respectively. Endurance time was determined carrying 70, 80, and 90% of MLCC. MLCC was on average 102.6 kg +/- 11.6. Load expressed as % MLCC was the best predictor for endurance time (R2 = 0.45). Load expressed as % body mass, as % lean body mass, and absolute load predicted endurance time less well (R2 = 0.30, R2 = 0.24, and R2 = 0.23, respectively). On the basis of these results, it is recommended to assess the MLCC of individual combat soldiers.
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
Snowpack ion accumulation and loss in a basin draining to Lake Superior
Stottlemyer, Robert
1987-01-01
The objective of this study was to relate winter precipitation ionic inputs, snowpack retention, and change in first-order stream chemistry with spring snowpack melt. During winter 1982–83, measurement of precipitation inputs, snowpack concentration and loading, and streamwater concentration and discharge of Ca2+, K+, H+, NO3−, and SO42− from a 176-ha watershed reveals that only H+ might be lost from the snowpack before first thaw. Above-freezing soil temperature beneath the snowpack may be a factor in H+ loss. An initial 1-d thaw resulted in loss of over one third (6 eq∙ha−1) of the snowpack Ca2+. Over one half the snowpack load of K+, H+, NO3−, and SO42−, was lost in a subsequent midwinter freeze–thaw period. Snowpack loading of ionic species was reduced by 70–90% before peak spring melting and stream discharge. Ecosystem H+ retention and biological uptake of NO3− further mitigate ionic "pulses" in streamwater. Sulfate discharge exceeds bulk inputs, which suggests significant dry deposition input and little forest soil retention of this anion. The snowpack was relatively small, which limits wider application of these results to the region.
Code of Federal Regulations, 2011 CFR
2011-01-01
... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...
NASA Astrophysics Data System (ADS)
Lumentut, M. F.; Howard, I. M.
2013-03-01
Power harvesters that extract energy from vibrating systems via piezoelectric transduction show strong potential for powering smart wireless sensor devices in applications of health condition monitoring of rotating machinery and structures. This paper presents an analytical method for modelling an electromechanical piezoelectric bimorph beam with tip mass under two input base transverse and longitudinal excitations. The Euler-Bernoulli beam equations were used to model the piezoelectric bimorph beam. The polarity-electric field of the piezoelectric element is excited by the strain field caused by base input excitation, resulting in electrical charge. The governing electromechanical dynamic equations were derived analytically using the weak form of the Hamiltonian principle to obtain the constitutive equations. Three constitutive electromechanical dynamic equations based on independent coefficients of virtual displacement vectors were formulated and then further modelled using the normalised Ritz eigenfunction series. The electromechanical formulations include both the series and parallel connections of the piezoelectric bimorph. The multi-mode frequency response functions (FRFs) under varying electrical load resistance were formulated using Laplace transformation for the multi-input mechanical vibrations to provide the multi-output dynamic displacement, velocity, voltage, current and power. The experimental and theoretical validations reduced for the single mode system were shown to provide reasonable predictions. The model results from polar base excitation for off-axis input motions were validated with experimental results showing the change to the electrical power frequency response amplitude as a function of excitation angle, with relevance for practical implementation.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Two terminal micropower radar sensor
McEwan, Thomas E.
1995-01-01
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.
Two terminal micropower radar sensor
McEwan, T.E.
1995-11-07
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.
Flight Speeds among Bird Species: Allometric and Phylogenetic Effects
Alerstam, Thomas; Rosén, Mikael; Bäckman, Johan; Ericson, Per G. P; Hellgren, Olof
2007-01-01
Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, U e) of 138 species, ranging 0.01–10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of U e in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in U e. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in U e. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading. PMID:17645390
The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io
NASA Technical Reports Server (NTRS)
Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.
1989-01-01
How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.
NASA Technical Reports Server (NTRS)
Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew
2013-01-01
High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat input at common and multiple stacks. 75.82 Section 75.82 Protection of Environment ENVIRONMENTAL... Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit... systems and perform the Hg emission testing described under § 75.81(b). If reporting of the unit heat...
A structurally adaptive space crane concept for assembling space systems on orbit
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Sutter, Thomas R.; Wu, K. C.
1992-01-01
A space crane concept is presented which is based on erectable truss hardware to achieve high stiffness and low mass booms and articulating-truss joints which can be assembled on orbit. The hardware is characterized by linear load-deflection response and is structurally predictable. The crane can be reconfigured into different geometries to meet future assembly requirements. Articulating-truss joint concepts with significantly different geometries are analyzed and found to have similar static and dynamic performance, which indicates that criteria other than structural and kinematic performance can be used to select a joint. Passive damping and an open-loop preshaped command input technique greatly enhance the structural damping in the space crane and may preclude the need for an active vibrations suppression system.
Rebich, Richard A; Houston, Natalie A; Mize, Scott V; Pearson, Daniel K; Ging, Patricia B; Evan Hornig, C
2011-01-01
Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). PMID:22457582
Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T
2016-08-01
High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
How Involved Are American L2 Learners of Spanish in Lexical Input Processing Tasks during Reading?
ERIC Educational Resources Information Center
Pulido, Diana
2009-01-01
This study examines the nature of the involvement load (Laufer & Hulstijn, 2001) in second language (L2) lexical input processing through reading by considering the effects of the reader-based factors of L2 reading proficiency and background knowledge. The lexical input processing aspects investigated were lexical inferencing (search), attentional…
Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.
2009-01-01
Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified, with nitrogen export ??54% of total inputs and burial ??24%, leaving an unquantified residual loss term in the nitrogen budget of ??22%. ?? 2009.
NASA Astrophysics Data System (ADS)
Průša, Vít; Řehoř, Martin; Tůma, Karel
2017-02-01
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
NASA Astrophysics Data System (ADS)
Destouni, G.
2017-12-01
Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.
Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model
NASA Astrophysics Data System (ADS)
Dordevich, Milorad C. W.
This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.
2014-04-15
Seat stroke, Lumbar loads, Accelerative load, M&S analysis, Blast , UBB, LS- DYNA , ATD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...typical blast input load to the seat . Resulting crew injuries are monitored for various vertical accelerative loading scenarios. The retractor load...an enforced blast pulse, this hull structural thickness does not have any effect on the results. 2.2 Seatbelt model Automotive seat belts with
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed
Brakebill, John W.; Preston, Stephen D.
1999-01-01
Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.
Automated validation of a computer operating system
NASA Technical Reports Server (NTRS)
Dervage, M. M.; Milberg, B. A.
1970-01-01
Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.
2017-12-01
The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.
REopt Lite Training Video - Text Version | State, Local, and Tribal
information about your electric load profile. So, if you have hourly interval data from your utility, you can input that by selecting custom load profile. If you don't have that, you can simulate your electric load Palmdale, California. And we're going to simulate this load profile based on a medium office that consumes
Structural analysis for a 40-story building
NASA Technical Reports Server (NTRS)
Hua, L.
1972-01-01
NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.
Measuring fish body condition with or without parasites: does it matter?
Lagrue, C; Poulin, R
2015-10-01
A fish body condition index was calculated twice for each individual fish, including or excluding parasite mass from fish body mass, and index values were compared to test the effects of parasite mass on measurement of body condition. Potential correlations between parasite load and the two alternative fish condition index values were tested to assess how parasite mass may influence the perception of the actual effects of parasitism on fish body condition. Helminth parasite mass was estimated in common bully Gobiomorphus cotidianus from four New Zealand lakes and used to assess the biasing effects of parasite mass on body condition indices. Results showed that the inclusion or exclusion of parasite mass from fish body mass in index calculations significantly influenced correlation patterns between parasite load and fish body condition indices. When parasite mass was included, there was a positive correlation between parasite load and fish body condition, seemingly indicating that fish in better condition supported higher parasite loads. When parasite mass was excluded, there was no correlation between parasite load and fish body condition, i.e. there was no detectable effect of helminth parasites on fish condition or fish condition on parasite load. Fish body condition tended to be overestimated when parasite mass was not accounted for; results showed a positive correlation between relative parasite mass and the degree to which individual fish condition was overestimated. Regardless of the actual effects of helminth parasites on fish condition, parasite mass contained within a fish should be taken into account when estimating fish condition. Parasite tissues are not host tissues and should not be included in fish mass when calculating a body condition index, especially when looking at potential effects of helminth infections on fish condition. © 2015 The Fisheries Society of the British Isles.
TRIAC/SCR proportional control circuit
Hughes, W.J.
1999-04-06
A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
Projecting Electricity Demand in 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.
2014-07-01
This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly datamore » for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.« less
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.
Zhang, Zhizhou; Li, Xiaolong
2018-05-11
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance
Zhang, Zhizhou; Li, Xiaolong
2018-01-01
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610
Assessment of spill flow emissions on the basis of measured precipitation and waste water data
NASA Astrophysics Data System (ADS)
Hochedlinger, Martin; Gruber, Günter; Kainz, Harald
2005-09-01
Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.
40 CFR 96.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... entire year and shall report the NOX mass emissions data and heat input data for such unit, in an... monitoring of NOX mass emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for such unit in accordance with paragraph (d)(1) of this section; or (ii) Meet...
Mass-loading and the formation of the Venus tail
NASA Technical Reports Server (NTRS)
Russell, C. T.; Luhmann, J. G.; Saunders, M. A.
1985-01-01
Despite its lack of intrinsic magnetic field Venus has a well defined magnetotail, containing about 3 megawebers of magnetic flux in a tail about 4 Venus radii across with perhaps a slightly elliptical cross section. This tail arises through the mass-loading of magnetic flux tubes passing by the planet. Mass-loading can occur due to charge exchange and photoionization as well as from the diffusion of magnetic field into the ionosphere. Various evidence exists for the mass-loading process, including the direct observation of the picked up ions with both the Venera and Pioneer Venus plasma analyzers.
Zehr, Jackie D; Carnegie, Danielle R; Welsh, Timothy N; Beach, Tyson A C
2018-03-19
To compare the effects of object handled and handgrip used on lumbar spine motion and loading during occupational lifting task simulations. Eight male and eight female volunteers performed barbell and crate lifts with a pronated (barbell) and a neutral (crate) handgrip. The mass of barbells/crates lifted was identical across the objects and fixed at 11.6 and 9.3 kg for men and women, respectively. The initial heights of barbells/crates were individualized to mid-shank level. Body segment kinematics and foot-ground reaction kinetics were collected, and then input into an electromyography-assisted dynamic biomechanical model to quantify lumbar spine motion and loading. Lumbar compression and net lumbosacral moment magnitudes were 416 N and 17 Nm lower when lifting a barbell than when lifting a crate (p < 0.001), respectively. There were no between-condition differences in lumbar flexion displacements (p > 0.392) or flexion/extension velocities (p > 0.085). Crate- and barbell-lifting tasks can be used interchangeably if assessing lifting mechanics based on peak spine motion variables. If assessments are based on the spine loading responses to task demands, however, then crate- and barbell-lifting tasks cannot be used interchangeably.
Robust control of seismically excited cable stayed bridges with MR dampers
NASA Astrophysics Data System (ADS)
YeganehFallah, Arash; Khajeh Ahamd Attari, Nader
2017-03-01
In recent decades active and semi-active structural control are becoming attractive alternatives for enhancing performance of civil infrastructures subjected to seismic and winds loads. However, in order to have reliable active and semi-active control, there is a need to include information of uncertainties in design of the controller. In real world for civil structures, parameters such as loading places, stiffness, mass and damping are time variant and uncertain. These uncertainties in many cases model as parametric uncertainties. The motivation of this research is to design a robust controller for attenuating the vibrational responses of civil infrastructures, regarding their dynamical uncertainties. Uncertainties in structural dynamic’s parameters are modeled as affine uncertainties in state space modeling. These uncertainties are decoupled from the system through Linear Fractional Transformation (LFT) and are assumed to be unknown input to the system but norm bounded. The robust H ∞ controller is designed for the decoupled system to regulate the evaluation outputs and it is robust to effects of uncertainties, disturbance and sensors noise. The cable stayed bridge benchmark which is equipped with MR damper is considered for the numerical simulation. The simulated results show that the proposed robust controller can effectively mitigate undesired uncertainties effects on systems’ responds under seismic loading.
REVIEW OF THE STABILITY ANALYSIS FOR THE LANL BSL-3 BUILDING FOUNDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F E; Wagoner, J L
2006-11-30
This work was performed upon request from Dr. Richard Thorpe from NNSA after his review of the LANL report on BSL-3 seismic stability [1]. The authors also reviewed report [1] and concluded, as did Dr. Thorpe, that the stability analysis was inappropriate. There are several reasons for that conclusion: (1) the assumption of a circular failure surface through the combined fill-and-rock foundation does not recognize the geologic structure involved. (2) the assumption of an equivalent static force to an earthquake loading does not represent the multiple cycles of shear loads created by a seismic event that can engender a substantialmore » degradation of shear modulus and shear strength of the soil under the building [2]. (3) there was no credible in-situ strength of the foundation materials (fill and rock mass) available for input into the stability analysis. Following that review, on September 26 the authors made a site visit and held discussions with LANL personnel connected to the BSL-3 building project. No information or evidence was presented to the authors indicating that the static stability of BSL-3 could be an issue. Accordingly, this report focuses on the topic of the BSL-3 site stability under seismic loading.« less
Mohanty, Pratap Ranjan; Panda, Anup Kumar
2016-11-01
This paper is concerned to performance improvement of boost PFC converter under large random load fluctuation, ensuring unity power factor (UPF) at source end and regulated voltage at load side. To obtain such performance, a nonlinear controller based on dynamic evolution path theory is designed and its robustness is examined under both heavy and light loading condition. In this paper, %THD and zero-cross-over dead-zone of input current is significantly reduced. Also, very less response time of input current and output voltage to that of load and reference variation is remarked. A simulation model of proposed system is designed and it is realized using dSPACE 1104 signal processor for a 390V DC , 500W prototype. The relevant experimental and simulation waveforms are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Levi, L.; Cvetkovic, V.; Destouni, G.
2015-12-01
This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.
40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by... total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures... generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but...
Four-gate transistor analog multiplier circuit
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)
2011-01-01
A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.
External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.
Bryhn, Andreas C; Dimberg, Peter H; Bergström, Lena; Fredriksson, Ronny E; Mattila, Johanna; Bergström, Ulf
2017-01-30
Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following ice-break and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reale, Reid; Slater, Gary; Cox, Gregory R; Dunican, Ian C; Burke, Louise M
2018-05-03
Novel methods of acute weight loss practiced by combat sport athletes include "water loading," the consumption of large fluid volumes for several days prior to restriction. We examined claims that this technique increases total body water losses, while also assessing the risk of hyponatremia. Male athletes were separated into control (n = 10) and water loading (n = 11) groups and fed a standardized energy-matched diet for 6 days. Days 1-3 fluid intake was 40 and 100 ml/kg for control and water loading groups, respectively, with both groups consuming 15 ml/kg on Day 4 and following the same rehydration protocol on Days 5 and 6. We tracked body mass (BM), urine sodium, urine specific gravity and volume, training-related sweat losses and blood concentrations of renal hormones, and urea and electrolytes throughout. Physical performance was assessed preintervention and postintervention. Following fluid restriction, there were substantial differences between groups in the ratio of fluid input/output (39%, p < .01, effect size = 1.2) and BM loss (0.6% BM, p = .02, effect size = 0.82). Changes in urine specific gravity, urea and electrolytes, and renal hormones occurred over time (p < .05), with an interaction of time and intervention on blood sodium, potassium, chloride, urea, creatinine, urine specific gravity, and vasopressin (p < .05). Measurements of urea and electrolyte remained within reference ranges, and no differences in physical performance were detected over time or between groups. Water loading appears to be a safe and effective method of acute BM loss under the conditions of this study. Vasopressin-regulated changes in aquaporin channels may potentially partially explain the mechanism of increased body water loss with water loading.
NASA Astrophysics Data System (ADS)
Kimura, T.; Yoshioka, K.; Tsuchiya, F.; Hiraki, Y.; Tao, C.; Murakami, G.; Yamazaki, A.; Fujimoto, M.; Badman, S. V.; Delamere, P. A.; Bagenal, F.
2016-12-01
Plasma production and transfer processes in the planetary and stellar magnetospheres are essential for understanding the space environments around the celestial bodies. It is hypothesized that the mass of plasma loaded from Io's volcano to Jupiter's rotating magnetosphere is recurrently ejected as blobs from the distant tail region of the magnetosphere. The plasma ejections are possibly triggered by the magnetic reconnections, which are followed by the particle energization, bursty planetward plasma flow, and resultant auroral emissions. They are referred to as the 'energetic events'. However, there has been no evidence that the plasma mass loading actually causes the energetic events because of lack of the simultaneous observation of them. This study presents that the recurrent transient auroras, which are possibly representative for the energetic events, are closely associated with the mass loading. Continuous monitoring of the aurora and Io plasma torus indicates onset of the recurrent auroras when accumulation of the loaded plasma mass reaches the canonical total mass of the magnetosphere. This onset condition implies that the fully filled magnetosphere overflows the plasma mass accompanying the energetic events.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.
Sources and transformations of anthropogenic nitrogen along an urban river-estuarine continuum
NASA Astrophysics Data System (ADS)
Pennino, Michael J.; Kaushal, Sujay S.; Murthy, Sudhir N.; Blomquist, Joel D.; Cornwell, Jeff C.; Harris, Lora A.
2016-11-01
Urbanization has altered the fate and transport of anthropogenic nitrogen (N) in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river-estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal) wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3- values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L-1 and 25.7 ± 2.9 ‰, respectively) compared to upper-estuary concentrations (1.0 ± 0.2 mg L-1 and 9.3 ± 1.4 ‰, respectively). Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L-1), corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day-1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day-1 at the estuary mouth), with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3- along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river-estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.
Effects of Nitrogen Inputs and Watershed Characteristics on ...
Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN – DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs to the watershed ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but, agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indi
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.
NASA Astrophysics Data System (ADS)
Zhang, B.; Brambles, O. J.; Cassak, P. A.; Ouellette, J. E.; Wiltberger, M.; Lotko, W.; Lyon, J. G.
2017-09-01
We have conducted a series of controlled numerical simulations to investigate the response of dayside reconnection to idealized, ionosphere-sourced mass loading processes to determine whether they affect the integrated dayside reconnection rate. Our simulation results show that the coupled solar wind-magnetosphere system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in local reconnection rate affects magnetosheath properties only weakly and the geoeffective length in the upstream solar wind is essentially unchanged, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, however, the magnetosheath properties and the geoeffective length are significantly affected by slowing down the local reconnection rate, resulting in an increase of the magnetic pressure in the magnetosheath, with a significant reduction in the geoeffective length in the upstream solar wind and in the integrated dayside reconnection rate. In this controlled simulation setup, the behavior of dayside reconnection potential is determined by the role of the enhanced magnetic pressure in the magnetospheath due to magnetospheric mass loading. The reconnection potential starts to decrease significantly when the enhanced magnetic pressure alters the thickness of the magnetosheath.
Experimental compliance calibration of the compact fracture toughness specimen
NASA Technical Reports Server (NTRS)
Fisher, D. M.; Buzzard, R. J.
1980-01-01
Compliances and stress intensity coefficients were determined over crack length to width ratios from 0.1 to 0.8. Displacements were measured at the load points, load line, and crack mouth. Special fixturing was devised to permit accurate measurement of load point displacement. The results are in agreement with the currently used results of boundary collocation analyses. The errors which occur in stress intensity coefficients or specimen energy input determinations made from load line displacement measurements rather than from load point measurements are emphasized.
Stability testing and analysis of a PMAD dc test bed for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Button, Robert M.; Brush, Andrew S.
1992-01-01
The Power Management and Distribution (PMAD) dc Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power dc to dc converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD dc Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.
Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Button, Robert M.; Brush, Andrew S.
1992-01-01
The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve
NASA Technical Reports Server (NTRS)
Glaser, Robert J.; Chen, Long Y.
2006-01-01
Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.
Portable pallet weighing apparatus
NASA Technical Reports Server (NTRS)
Day, R. M. (Inventor)
1984-01-01
An assembly for use with several like units in weighing the mass of a loaded cargo pallet supported by its trunnions has a bridge frame for positioning the assembly on a transportation frame carrying the pallet while straddling one trunnion of the pallet and its trunnion lock, and a cradle assembly for incrementally raising the trunnion. The mass at the trunnion is carried as a static load by a slidable bracket mounted upon the bridge frame for supporting the cradle assembly. The bracket applies the static loading to an electrical load cell symmetrically positioned between the bridge frame and the bracket. The static loading compresses the load cell, causing a slight deformation and a potential difference at load cell terminals which is proportional in amplitude to the mass of the pallet at the trunnion.
Methods for Combining Payload Parameter Variations with Input Environment
NASA Technical Reports Server (NTRS)
Merchant, D. H.; Straayer, J. W.
1975-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.
Evaluation of Stream Loads Used to Calibrate a SPARROW Model for California, USA
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Saleh, D.
2012-12-01
A SPARROW (Spatially Referenced Regression on Watershed Attributes) Model is being developed for California. The model will be used to understand how Total Nitrogen (TN) and Total Phosphorus (TP) are transported from land to water from sources such as the atmosphere, fertilizer, soils, wastewater treatment facilities, etc., and relies on accurate calibration of mass loads obtained from water sampling at gauging stations in order to link mass at a location to upstream sources. Prior to input to the SPARROW model, the mass loads are calculated separately using a five-parameter log linear multi-regression model utilizing discharge, chemical measurements, time, and seasonal adjustments to obtain the best fit for the relationship of discharge and concentration. The gauging stations are situated in three ecological management zones as defined by the U.S. Environmental Protection Agency: the Western Forested Mountains, the Central Valley, and the Xeric West. Load models for nitrogen have at times been shown to be positively biased when the form of TN is predominately nitrate. The regions under study have different sources of nitrogen, which will affect the form of TN transported. Some stream segments are natural settings (forested), while others are highly influenced by agriculture and urban (Central Valley) settings and others by arid climate (Xeric). These differences affect the form of TN transported (dissolved as nitrate or suspended in the form of organic nitrogen), and hence it is expected that the efficiency of the discharge-load model may not be uniform at all locations. Less than 10% of the TN is in the form of nitrate in streams of the western forested mountains, but about 30% is nitrate in the Central Valley and about 40% in the arid region. Model efficiency was evaluated using the Nash Sutcliffe (NS) equation, which examines the square of the residuals of modeled results and observed values after transforming the logarithm of loads back to the actual data scale. An efficiency of one indicates a perfect fit. Median NS efficiency for TN in the forested mountains was 0.65 to 0.7 for the Central Valley, and 0.81 for the arid region, suggesting that the model better fits the load when the form of nitrogen is predominantly in the dissolved phase. The NS equation indicates the load models are under-predicting the true load at these sites as the efficiency index is less than one. TP is mostly transported in the suspended phase and the NS equation also shows that the model under-predicts TP as the median efficiency for all sites was 0.56. A further examination of the residuals shows that the discharge-concentration relationship under-prediction is greater at higher discharges. Two major rivers in the study area, the Sacramento and San Joaquin Rivers, supply much of the fresh water and nutrient load to the San Francisco Estuary, but have different forms of TN. The ratio of nitrate to TN in the Sacramento River changes from 0.11 in the headwaters to 0.29 as the river enters the Estuary, while the ratio in the San Joaquin changes from 0.19 in the headwaters to 0.61, demonstrating the effect that land use has on river water quality. Understanding how the forms of nitrogen affect the calculation of load is necessary in order to provide the best possible calibration for subsequent calculations of land to water transport by the SPARROW model.
Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2007-01-01
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.
Fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in a fly ash treatment plant.
Li, Hsing-Wang; Wu, Yee-Lin; Lee, Wen-Jhy; Chang-Chien, Guo-Ping
2007-09-01
To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.
Brown, J.B.; Sprague, L.A.; Dupree, J.A.
2011-01-01
SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.
Brown, Juliane B; Sprague, Lori A; Dupree, Jean A
2011-01-01
Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
Estimation of global plastic loads delivered by rivers into the sea
NASA Astrophysics Data System (ADS)
Schmidt, Christian; Krauth, Tobias; Klöckner, Phillipp; Römer, Melina-Sophie; Stier, Britta; Reemtsma, Thorsten; Wagner, Stephan
2017-04-01
A considerable fraction of marine plastic debris likely originates from land-based sources. Transport of plastics by rivers is a potential mechanism that connects plastic debris generated on land with the marine environment. We analyze existing and experimental data of plastic loads in rivers and relate these to the amount of mismanaged plastic waste (MMPW) generated in the river catchments. We find a positive relationship between the plastic load in rivers and the amount of MMPW. Using our empirical MMPW-plastic river load-relationship we estimated the annual plastic load for 1494 rivers, ranging from small first order streams to large rivers, which have an outlet to the sea. We estimate that the global load of plastic debris delivered by rivers to the sea is 39000 tons per year with a large 95% prediction interval between 247 tons per year and 16.7 million tons per year, respectively. Our best estimate is considerably lower than the estimated total land-based inputs which range between 4.8-12.7 million tons anually (Jambeck et al. 2015). Approximately 75% of the total load is transported by the 10 top-ranked rivers which are predominantly located in Asia. These river catchments encompass countries with a large population and high economic growth but an insufficient waste infrastructure. Reducing the plastic loads in these rivers by 50% would reduce the global inputs by 37%. Of the total MMPW generated within river catchments, only a small fraction of about 0.05 % has been found to be mobile in rivers. Thus, either only a small fraction of MMPW enters the river systems, or a substantial fraction of plastic debris accumulates in river systems world wide. References: Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law (2015), Plastic waste inputs from land into the ocean, Science, 347(6223), 768-771, doi:10.1126/science.1260352.
Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves
NASA Astrophysics Data System (ADS)
Zhang, R. P.
2017-04-01
A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.
NASA Astrophysics Data System (ADS)
Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène
2010-05-01
The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget
A conceptual framework: redifining forests soil's critical acid loads under a changing climate
Steven G. McNulty; Johnny L. Boggs
2010-01-01
Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it...
JPL-IDEAS - ITERATIVE DESIGN OF ANTENNA STRUCTURES
NASA Technical Reports Server (NTRS)
Levy, R.
1994-01-01
The Iterative DEsign of Antenna Structures (IDEAS) program is a finite element analysis and design optimization program with special features for the analysis and design of microwave antennas and associated sub-structures. As the principal structure analysis and design tool for the Jet Propulsion Laboratory's Ground Antenna and Facilities Engineering section of NASA's Deep Space Network, IDEAS combines flexibility with easy use. The relatively small bending stiffness of the components of large, steerable reflector antennas allows IDEAS to use pinjointed (three translational degrees of freedom per joint) models for modeling the gross behavior of these antennas when subjected to static and dynamic loading. This facilitates the formulation of the redesign algorithm which has only one design variable per structural element. Input data deck preparation has been simplified by the use of NAMELIST inputs to promote clarity of data input for problem defining parameters, user selection of execution and design options and output requests, and by the use of many attractive and familiar features of the NASTRAN program (in many cases, NASTRAN and IDEAS formatted bulk data cards are interchangeable). Features such as simulation of a full symmetric structure based on analyses of only half the structure make IDEAS a handy and efficient analysis tool, with many features unavailable in any other finite element analysis program. IDEAS can choose design variables such as areas of rods and thicknesses of plates to minimize total structure weight, constrain the structure weight to a specified value while maximizing a natural frequency or minimizing compliance measures, and can use a stress ratio algorithm to size each structural member so that it is at maximum or minimum stress level for at least one of the applied loads. Calculations of total structure weight can be broken down according to material. Center of gravity weight balance, static first and second moments about the center of mass and optionally about a user-specified gridpoint, and lumped structure weight at grid points can also be calculated. Other analysis outputs include calculation of reactions, displacements, and element stresses due to specified gravity, thermal, and external applied loads; calculations of linear combinations of specific node displacements (e.g. to represent motions of rigid attachments not included in the structure model), natural frequency eigenvalues and eigenvectors, structure reactions and element stresses, and coordinates of effective modal masses. Cassegrain antenna boresight error analysis of a best fitting paraboloid and Cassegrain microwave antenna root mean square half-pathlength error analysis of a best fitting paraboloid are also performed. The IDEAS program is written in ATHENA FORTRAN and ASSEMBLER for an EXEC 8 operating system and was implemented on a UNIVAC 1100 series computer. The minimum memory requirement for the program is approximately 42,000 36-bit words. This program is available on a 9-track 1600 BPI magnetic tape in UNIVAC FURPUR format only; since JPL-IDEAS will not run on other platforms, COSMIC will not reformat the code to be readable on other platforms. The program was developed in 1988.
NASA Astrophysics Data System (ADS)
Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.
2011-12-01
Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D; Lowry, Gregory V
2017-01-15
The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10 -4 Lhr -1 m -2 ) and hydrogen evolution rate constant (1.4 nanomolLhr -1 m -2 ) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime. Copyright © 2016 Elsevier B.V. All rights reserved.
Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus
NASA Technical Reports Server (NTRS)
Murawski, K.; Steinolfson, R. S.
1996-01-01
Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.
Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong
2017-08-01
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sediment concentrations and loads in the Loxahatchee River estuary, Florida, 1980-82
Sonntag, Wayne H.; McPherson, Benjamin F.
1984-01-01
This study was conducted to estimate the magnitude of sediment loads and the general spatial and temporal patterns of sediment transport in the Loxahatchee River estuary, Florida. Mean concentrations of suspended sediment generally were higher in the Jupiter Inlet area than in the remainder of the embayment area. Concentrations of suspended sediment varied with season and weather conditions. Concentrations in selected tributaries following Tropical Storm Dennis in August 1981 immediately increased as much as 16 times over concentrations before the storm. Suspended-sediment loads from the tributaries were also highly seasonal and storm related. During a 61-day period of above-average rainfall that included Tropical Storm Dennis, 5 major tributaries discharged 926 tons (short) of suspended sediment to the estuary, accounting for 74 percent of the input for the 1981 water year and 49 percent of the input for the 20-month study period. Suspended-sediment loads at Jupiter Inlet and at the mouth of the estuary embayment on both incoming and outgoing tides far exceeded tributary loads, but the direction of long-term, net tidal transport was not determined. (USGS)
Beck, H J; Birch, G F
2013-06-01
Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation--MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (∼50 and ∼25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8-8.3 times above and 2.6-4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4-10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.
Influence of load by high power on the optical coupler
NASA Astrophysics Data System (ADS)
Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir
2016-12-01
Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.
Catena, Cristiana; Verheyen, Nicolas D; Url-Michitsch, Marion; Kraigher-Krainer, Elisabeth; Colussi, GianLuca; Pilz, Stefan; Tomaschitz, Andreas; Pieske, Burkert; Sechi, Leonardo A
2016-03-01
Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity in hypertension. Current evidence suggests a contribution to LVH of plasma aldosterone levels that are inappropriately elevated for the salt status. The aim of this study was to investigate whether inappropriate modulation of aldosterone production by a saline load is associated with left ventricular (LV) mass in hypertensive patients. In 90 hypertensive patients free of clinically relevant cardiovascular complications in whom secondary forms of hypertension were ruled out, we performed a standard intravenous saline load (0.9% NaCl, 2 l in 4 hours) with measurement of plasma aldosterone and active renin at baseline and end of infusion. Bi-dimensional echocardiography was performed for the assessment of cardiac morphology and function. LVH was present in 19% of patients who had significantly worse renal function and higher body mass, blood pressure, and plasma aldosterone levels measured both at baseline and after the saline load than patients without LVH. LV mass was directly related to age, body mass, systolic blood pressure, duration of hypertension, baseline, and post-saline load plasma aldosterone levels and inversely to glomerular filtration. Multivariate regression analysis showed independent correlation of LV mass with body mass, systolic blood pressure, and plasma aldosterone levels measured after intravenous saline load, but not at baseline. In patients with hypertension, aldosterone levels measured after intravenous saline load are related to LV mass independent of age, body mass, and blood pressure, suggesting that limited ability of salt to modulate aldosterone production could contribute to LVH. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
Plöchl, Matthias; Heiermann, Monika; Rodemann, Bernd; Bandte, Martina; Büttner, Carmen
2014-01-15
Knowledge of fate and behavior of plant pathogens in the biogas production chain is limited and hampers the estimation and evaluation of the potential phytosanitary risk if digestate is spread on arable land as a fertilizer. Therefore, simulation is an appropriate tool to demonstrate the effects which influence the steady state of pathogen infected plant material in both digesters and digestate. Simple approaches of kinetics of inactivation and mass balances of infected material were carried out considering single-step as well as two-step digestion. The simulation revealed a very fast to fast reduction of infected material after a singular feeding, reaching a cutback to less than 1% of input within 4 days even for D90-values of 68 h. Steady state mass balances below input rate could be calculated with D90-values of less than 2 h at a continuous hourly feeding. At higher D90-values steady state mass balances exceed the input rate but are still clearly below the sum of input mass. Dilution further decreases mass balances to values 10(-5) to 10(-6) Mg m(-3) for first-step digestion and 10(-8) to 10(-9) for second-step. Copyright © 2013 Elsevier Ltd. All rights reserved.
Monitoring water quality in Northwest Atlantic coastal waters using dinoflagellate cysts
Nutrient pollution is a major environmental problem in many coastal waters around the US. Determining the total input of nutrients to estuaries is a challenge. One method to evaluate nutrient input is through nutrient loading models. Another method relies upon using indicators as...
Electropneumatic transducer automatically limits motor current
NASA Technical Reports Server (NTRS)
Lovitt, T. F.
1966-01-01
Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.
Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M
2013-05-01
The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Load Bearing Equipment for Bone and Muscle
NASA Technical Reports Server (NTRS)
Shackelford, Linda; Griffith, Bryan
2015-01-01
Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.
First results of the EGSIEM Near Real-Time Service
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Gruber, Christian; Gouweleeuw, Ben; Chen, Qiang; Poropat, Lea; Flechtner, Frank; Mayer-Gürr, Torsten; Güntner, Andreas
2017-04-01
To enable the use of GRACE and GRACE-FO earth observation data for rapid monitoring applications, the Horizon2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project has established a demonstrator for a near real-time (NRT) gravity field service. The service aims to increase the temporal resolution of mass transport products from one month to one day and to reduce the latency from currently two months to five days. This allows the monitoring of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. On-line validation will be performed by the University of Luxembourg using GNSS loading. A six-month long operational test run of the service starting in April 2017 is planned, in case GRACE Quick-Look data (provided by JPL) is still available. Within this time period, daily gravity field solutions serve as input to the EGSIEM Hydrological Service, which derives flood and drought indicators to be used within DLR's Center for Satellite Based Crisis Information and the Global Flood Awareness System (GloFAS). This contribution highlights the current status of the NRT service and the results of the preparation phase. The performance of the NRT mass transport products will be shown by comparison with independent GNSS loading and ocean bottom pressure data as well as as catchment aggregated values for hydrological extreme events.
Rebich, R.A.; Houston, N.A.; Mize, S.V.; Pearson, D.K.; Ging, P.B.; Evan, Hornig C.
2011-01-01
SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.
2006-01-01
Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.
Data-Driven Residential Load Modeling and Validation in GridLAB-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotseff, Peter; Lundstrom, Blake
Accurately characterizing the impacts of high penetrations of distributed energy resources (DER) on the electric distribution system has driven modeling methods from traditional static snap shots, often representing a critical point in time (e.g., summer peak load), to quasi-static time series (QSTS) simulations capturing all the effects of variable DER, associated controls and hence, impacts on the distribution system over a given time period. Unfortunately, the high time resolution DER source and load data required for model inputs is often scarce or non-existent. This paper presents work performed within the GridLAB-D model environment to synthesize, calibrate, and validate 1-second residentialmore » load models based on measured transformer loads and physics-based models suitable for QSTS electric distribution system modeling. The modeling and validation approach taken was to create a typical GridLAB-D model home that, when replicated to represent multiple diverse houses on a single transformer, creates a statistically similar load to a measured load for a given weather input. The model homes are constructed to represent the range of actual homes on an instrumented transformer: square footage, thermal integrity, heating and cooling system definition as well as realistic occupancy schedules. House model calibration and validation was performed using the distribution transformer load data and corresponding weather. The modeled loads were found to be similar to the measured loads for four evaluation metrics: 1) daily average energy, 2) daily average and standard deviation of power, 3) power spectral density, and 4) load shape.« less
Critical acid load limits in a changing climate: implications and solutions
Steven G. McNulty
2010-01-01
The federal agencies of the United States are currently developing guidelines for critical nitrogen load limits for U.S. forest ecosystems. These guidelines will be used to develop regulations designed to maintain pollutant inputs below the level shown to damage specified ecosystems.
This newly initiated research will provide environmental managers with an empirical method to develop regional nutrient input limits for East Coast estuaries/coastal water bodies. The goal will be to reduce the current uncertainty associated with nutrient load-response relationsh...
The English Channel: Contamination status of its transitional and coastal waters.
Tappin, A D; Millward, G E
2015-06-30
The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.
Compound hydraulic shear-modulated vortex amplifiers
NASA Technical Reports Server (NTRS)
Goldschmied, F. R.
1977-01-01
A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaqu...
The fate of large sediment inputs in rivers: Implications for watershed and waterway management
Thomas E. Lisle
2000-01-01
Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.
The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures
NASA Astrophysics Data System (ADS)
Huang, W. J.; Audi, G.; Wang, Meng; Kondev, F. G.; Naimi, S.; Xu, Xing
2017-03-01
This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the AME are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous AME2012 evaluation are discussed and specific information is presented for several cases that may be of interest to AME users. The second AME2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the AME2016 and the NUBASE2016 evaluations (the first paper in this issue). AMDC: http://amdc.impcas.ac.cn/ Contents The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment proceduresAcrobat PDF (1.2 MB) Table I. Input data compared with adjusted valuesAcrobat PDF (1.3 MB)
River fluxes to the sea from the ocean's 10Be/9Be ratio
NASA Astrophysics Data System (ADS)
von Blanckenburg, F.; Bouchez, J.
2013-12-01
The ratio of the meteoric cosmogenic radionuclide 10Be to the stable isotope 9Be is proposed here to be a flux proxy of terrigenous input into the oceans. The ocean's dissolved 10Be/9Be is set by (1) the flux of meteoric 10Be produced in the atmosphere; (2) the denudational flux of the rivers discharging into a given ocean basin; (3) the fraction of 9Be that is released from primary minerals during weathering (meaning the 9Be transported by rivers in either the dissolved form or adsorbed onto sedimentary particles and incorporated into secondary oxides); and (4) the fraction of riverine 10Be and 9Be actually released into seawater. Using published 10Be/9Be data of rivers for which independent denudation rate estimates exist we first find that the global average fraction of 9Be released during weathering into river waters and their particulate load is 20% and does not depend on denudation rate. We then evaluate this quantitative denudation rate proxy by using published dissolved seawater Be isotope data and a compilation of global river loads (15Gt/yr). We find that the measured global average oceanic dissolved 10Be/9Be ratio of about 0.9E-7 is satisfied by the mass balance if only 6.5% of the dissolved and reactive riverine Be is eventually released to the open ocean by boundary exchange. Except for the South Atlantic and the South Pacific, in which the 10Be/9Be ratio is dominated by Be advected through ocean circulation, good agreement results between 10Be/9Be ratios predicted by denudation rates and measured ocean 10Be/9Be ratios when we establish this mass balance for individual ocean basins. As the seawater 10Be/9Be ratio is faithfully recorded in marine chemical precipitates the 10Be/9Be ratio extracted from authigenic sediments can now serve to estimate relative changes in terrigenous input into the oceans back through time on a global and on a basin scale.
Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95
Litke, D.W.
1996-01-01
The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to
Muslim, Khoirul; Nussbaum, Maury A
2015-06-05
Concerns have been raised regarding the high prevalence of musculoskeletal symptoms (MSS) among manual material handling (MMH) workers. However, limited investigations have been undertaken among one large group of workers using a particular MMH method called posterior load carriage (PLC). This is typically done without the use of a backpack in developing countries, and involves exposure to known risk factors for MSS such as heavy loads, non-neutral postures, and high levels of repetition. To 1) determine the types and prevalence of MSS among PLC workers and the impacts of these MSS on workers, 2) explore job demands potentially contributing to MSS, and (3) obtain input from workers regarding possible improvements to facilitate future interventions. Structured interview applied to 108 workers to assess PLC worker characteristics and job demands in eight cities in Indonesia. MSS were reported in all anatomical regions evaluated, with symptoms most commonly reported at the lower back (72.2%), feet (69.4%), knees (64%), shoulders (47.2%), and neck (41.7%). Logistic regression indicated that MSS in the lower back were associated with longer work hours/day, MSS in the hands were associated with load mass, and MSS in the ankles/feet were associated with stature and load carriage frequency. MSS were reported to interfere with daily activity, but only few workers sought medical treatment. Possible improvements included the use of a belt, hook, or backpack/frame, and changes in the carriage method. The study suggests that PLC workers incur a relatively high MSS burden. Future studies are needed to develop and evaluate practical interventions and specific guidelines to improve working conditions and occupational health and safety for PLC workers.
A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico.
Harris, Reed; Pollman, Curtis; Hutchinson, David; Landing, William; Axelrad, Donald; Morey, Steven L; Dukhovskoy, Dmitry; Vijayaraghavan, Krish
2012-11-01
A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations. Copyright © 2012. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Merchant, D. H.
1976-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.
Effect of granular media on the vibrational response of a resonant structure: theory and experiment.
Valenza, John J; Hsu, Chaur-Jian; Johnson, David Linton
2010-11-01
The acoustic response of a structure that contains a cavity filled with a loose granular material is analyzed. The inputs to the theory are the effective masses of each subsystem: that of the empty-cavity resonating structure and that of the granular medium within the cavity. This theory accurately predicts the frequencies, widths, and relative amplitudes of the various flexural mode resonances observed with rectangular bars, each having a cavity filled with loose tungsten granules. Inasmuch as the dominant mechanism for damping is due to adsorbed water at the grain-grain contacts, the significant effects of humidity on both the effective mass of the granular medium as well as on the response of the grain-loaded bars are monitored. Here, depending upon the humidity and the preparation protocol, it is possible to observe one, two, or three distinct resonances in a wide frequency range (1-5 kHz) over which the empty bar has but one resonance. These effects are understood in terms of the theoretical framework, which may simplify in terms of perturbation theories.
Classification Model for Damage Localization in a Plate Structure
NASA Astrophysics Data System (ADS)
Janeliukstis, R.; Ruchevskis, S.; Chate, A.
2018-01-01
The present study is devoted to the problem of damage localization by means of data classification. The commercial ANSYS finite-elements program was used to make a model of a cantilevered composite plate equipped with numerous strain sensors. The plate was divided into zones, and, for data classification purposes, each of them housed several points to which a point mass of magnitude 5 and 10% of plate mass was applied. At each of these points, a numerical modal analysis was performed, from which the first few natural frequencies and strain readings were extracted. The strain data for every point were the input for a classification procedure involving k nearest neighbors and decision trees. The classification model was trained and optimized by finetuning the key parameters of both algorithms. Finally, two new query points were simulated and subjected to a classification in terms of assigning a label to one of the zones of the plate, thus localizing these points. Damage localization results were compared for both algorithms and were found to be in good agreement with the actual application positions of point load.
Gulhane, Madhuri; Khardenavis, Anshuman A; Karia, Sneha; Pandit, Prabhakar; Kanade, Gajanan S; Lokhande, Satish; Vaidya, Atul N; Purohit, Hemant J
2016-09-01
In the present study, feasibility of biomethanation of vegetable market waste in a 4-chambered anaerobic baffled reactor (ABR) was investigated at 30d hydraulic retention time and organic loading rate of 0.5gVS/L/d for one year. Indicators of process stability viz., butyrate/acetate and propionate/acetate ratios were consistent with phase separation in the different chambers, which remained unaltered even during recirculation of effluent. Chemical oxygen demand (COD) and volatile solids (VS) removal efficiencies were observed to be consistently high (above 90%). Corresponding biogas and methane yields of 0.7-0.8L/g VS added/d and 0.42-52L/g VS added/d respectively were among the highest reported in case of AD of vegetable waste in an ABR. Process efficiency of the ABR for vegetable waste methanation, which is indicated by carbon recovery factor showed that, nearly 96.7% of the input carbon considered for mass balance was accounted for in the product. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O
2015-02-15
Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement. Copyright © 2014 Elsevier B.V. All rights reserved.
Swing-free transport of suspended loads. Summer research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
1996-02-01
Transportation of large objects using traditional bridge crane can induce pendulum motion (swing) of the object. In environments such as factory the energy contained in the swinging mass can be large and therefore attempts to move the mass onto target while still swinging can cause considerable damage. Oscillations must be damped or allowed to decay before the next process can take place. Stopping the swing can be accomplished by moving the bridge in a manner to counteract the swing which sometimes can be done by skilled operator, or by waiting for the swing to damp sufficiently that the object canmore » be moved to the target without risk of damage. One of the methods that can be utilized for oscillation suppression is input preshaping. The validity of this method depends on the exact knowledge of the system dynamics. This method can be modified to provide some degrees of robustness with respect to unknown dynamics but at the cost of the speed of transient response. This report describes investigations on the development of a controller to dampen the oscillations.« less
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Mars Propellant Liquefaction Modeling in Thermal Desktop
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
NASA Astrophysics Data System (ADS)
Tsiaras, K. P.; Petihakis, G.; Kourafalou, V. H.; Triantafyllou, G.
2014-02-01
The impact of river load variability on the North Aegean ecosystem functioning over the last decades (1980-2000) was investigated by means of a coupled hydrodynamic/biogeochemical model simulation. Model results were validated against available SeaWiFS Chl-a and in situ data. The simulated food web was found dominated by small cells, in agreement with observations, with most of the carbon channelled through the microbial loop. Diatoms and dinoflagellates presented a higher relative abundance in the more productive coastal areas. The increased phosphate river loads in the early 80s resulted in nitrogen and silicate deficiency in coastal, river-influenced regions. Primary production presented a decreasing trend for most areas. During periods of increased phosphate/nitrate inputs, silicate deficiency resulted in a relative decrease of diatoms, triggering an increase of dinoflagellates. Such an increase was simulated in the late 90s in the Thermaikos Gulf, in agreement with the observed increased occurrence of Harmful Algal Blooms. Microzooplankton was found to closely follow the relative increase of dinoflagellates under higher nutrient availability, showing a faster response than mesozooplankton. Sensitivity simulations with varying nutrient river inputs revealed a linear response of net primary production and plankton biomass. A stronger effect of river inputs was simulated in the enclosed Thermaikos Gulf, in terms of productivity and plankton composition, showing a significant increase of dinoflagellates relative abundance under increased nutrient loads.
Influence of Body Weight on Bone Mass, Architecture, and Turnover
Iwaniec, Urszula T.; Turner, Russell T.
2016-01-01
Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896
Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment
NASA Astrophysics Data System (ADS)
Macedonio, G.; Costa, A.; Folch, A.
2008-12-01
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection-diffusion-sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection-diffusion-sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1977-01-01
A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.
Original data preprocessor for Femap/Nastran
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra
2016-12-01
Automatic data processing and visualization in the finite elements analysis of the structural problems is a long run concern in mechanical engineering. The paper presents the `common database' concept according to which the same information may be accessed from an analytical model, as well as from a numerical one. In this way, input data expressed as comma-separated-value (CSV) files are loaded into the Femap/Nastran environment using original API codes, being automatically generated: the geometry of the model, the loads and the constraints. The original API computer codes are general, being possible to generate the input data of any model. In the next stages, the user may create the discretization of the model, set the boundary conditions and perform a given analysis. If additional accuracy is needed, the analyst may delete the previous discretizations and using the same information automatically loaded, other discretizations and analyses may be done. Moreover, if new more accurate information regarding the loads or constraints is acquired, they may be modelled and then implemented in the data generating program which creates the `common database'. This means that new more accurate models may be easily generated. Other facility consists of the opportunity to control the CSV input files, several loading scenarios being possible to be generated in Femap/Nastran. In this way, using original intelligent API instruments the analyst is focused to accurately model the phenomena and on creative aspects, the repetitive and time-consuming activities being performed by the original computer-based instruments. Using this data processing technique we apply to the best Asimov's principle `minimum change required / maximum desired response'.
EFFECTS OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND SALT MARSH
Coastal marshes represent an important transitional zone between uplands and estuaries. One important function of marshes is to assimilate nutrient inputs from uplands, thus providing a buffer for anthropogenic nutrient loads. We examined the effects of nitrogen (N) and phosphoru...
DOT National Transportation Integrated Search
2012-12-01
Traffic is one of the primary inputs in pavement design. Traditional pavement design procedures account for traffic using the equivalent single axle loads (ESALs) accumulated during the life of the pavement structure. This procedure is based on co...
A model for heat and mass input control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, H.B.; Einerson, C.J.
1993-05-01
This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less
A nitrogen mass balance for California
NASA Astrophysics Data System (ADS)
Liptzin, D.; Dahlgren, R. A.
2010-12-01
Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows, requires a net influx of N in feed to the state. In terms of exports, the riverine N loads are smaller than many more mesic climates. Because many of the large population centers are on the coast, N discharged directly from wastewater treatment plants into the ocean is almost four times greater than the N discharge of all of the watersheds in the state combined. Gas losses are estimated through a combination of bottom up approaches using field data, emissions inventories, and numerical models. The largest uncertainties are in emissions of N2 and NH3. Calculated by difference, groundwater N loading represents the largest loss term in the mass balance. Contamination of groundwater with nitrates is a serious concern in many areas of the state. Given the long residence time of groundwater in many aquifers like the Central Valley the current and past N inputs to groundwater pose a hazard to drinking water supplies for decades to come. These calculations along with the analysis of management and policy tools will help elucidate the spatial location or activities that would be best to target to reduce the negative consequences of human alteration of the nitrogen cycle.
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, the NOX emission rate and NOX concentration values substituted for missing data under subpart D... report the NOX mass emissions data and heat input data for such unit, in an electronic quarterly report... emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for...
A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women.
Welch, A A; MacGregor, A J; Skinner, J; Spector, T D; Moayyeri, A; Cassidy, A
2013-06-01
Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid-base load in muscle loss. Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid-base load could influence loss of muscle mass. We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height²), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18-79 years from the TwinsUK Study, and dietary acid-base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein. Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m² P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods. We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.
Compact waveguide power divider with multiple isolated outputs
Moeller, Charles P.
1987-01-01
A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
Development of a mass balance model for estimating PCB export from the lower Fox River to Green Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velleux, M.; Endicott, D.
A mass balance approach was used to model contaminant cycling in the lower Fox River from the DePere Dam to Green Bay. The objectives of this research were (1) to estimate present contaminant export from the Fox River to Green Bay, and (2) to quantify contaminant transport and fate pathways in the lower river for the study period. Specifically, a model describing the transport, fate, and export of chlorides, total suspended solids, total PCBs, and six PCB congeners for the lower Fox River was developed. Field data collected as part of the U.S. Environmental Protection Agency's Green Bay Mass Balancemore » Study were used to calibrate the model. Model results suggest that the transport of inplace pollutants significantly contributed to the cumulative export of total PCBs over this period. Estimated total PCB transport in the Fox River during 1989 increased 60% between the dam and river mouth due to the resuspension of lower river sediments. Total suspended solids and PCB predictions are most sensitive to particle transport parameters, particularly the settling and resuspension velocities. The significant components of the total PCB mass balance are import (loading over the DePere Dam), settling, resuspension, and export to Green Bay. Volatilization, porewater transport, and point source input were not significant to the mass balance. Present point source discharges to the river are not significant total PCB sources, collectively contributing less than 6 kg of PCB to the river during the mass balance period.« less
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
Active Learning Framework for Non-Intrusive Load Monitoring: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin
2016-05-16
Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically requestmore » user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.« less
High voltage electrical amplifier having a short rise time
Christie, David J.; Dallum, Gregory E.
1991-01-01
A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
Electronic system for high power load control. [solar arrays
NASA Technical Reports Server (NTRS)
Miller, E. L. (Inventor)
1980-01-01
Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.
High efficiency 40 K single-stage Stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.
2017-12-01
A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.
Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.
2003-01-01
One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.
47 CFR 80.915 - Main power supply.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Main power supply. 80.915 Section 80.915... supply. (a) There must be readily available for use under normal load conditions a main power supply... required receiver. Under this load condition the potential of the main power supply at the power input...
47 CFR 80.915 - Main power supply.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Main power supply. 80.915 Section 80.915... supply. (a) There must be readily available for use under normal load conditions a main power supply... required receiver. Under this load condition the potential of the main power supply at the power input...
Nitrogen Bsalance for a Plantation Forest Drainage Canal on the North Carolina Coastal Plain
USDA-ARS?s Scientific Manuscript database
Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less than the total nitrogen inputs to the system, indicating nitrogen removal duri...
Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim
2013-09-06
Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model
Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401
We compared patterns of historical watershed nutrient inputs with in-river nutrient loads for the Neuse River, NC. Basin-wide sources of both nitrogen and phosphorus have increased substantially during the past century, marked by a sharp increase in the last 10 years resulting...
Accurate, up-to-date information describing Nr inputs by source is needed for effective Nr management and for guiding Nr research. Here we present a new synthesis of spatial data describing present Nr inputs to terrestrial and aquatic ecosystems across the conterminous US to hel...
Excess nitrogen inputs to estuaries have been linked to deteriorating water quality and habitat conditions which in turn have direct and indirect impacts on both commercial and recreational fish and shellfish. This paper is the first of a two-part series that applies a previously...
Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to reduce nitrogen loads to estuaries by 10%. If only agricultural inputs are reduced, ...
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
Probabilistic Meteorological Characterization for Turbine Loads
NASA Astrophysics Data System (ADS)
Kelly, M.; Larsen, G.; Dimitrov, N. K.; Natarajan, A.
2014-06-01
Beyond the existing, limited IEC prescription to describe fatigue loads on wind turbines, we look towards probabilistic characterization of the loads via analogous characterization of the atmospheric flow, particularly for today's "taller" turbines with rotors well above the atmospheric surface layer. Based on both data from multiple sites as well as theoretical bases from boundary-layer meteorology and atmospheric turbulence, we offer probabilistic descriptions of shear and turbulence intensity, elucidating the connection of each to the other as well as to atmospheric stability and terrain. These are used as input to loads calculation, and with a statistical loads output description, they allow for improved design and loads calculations.
Input-variable sensitivity assessment for sediment transport relations
NASA Astrophysics Data System (ADS)
Fernández, Roberto; Garcia, Marcelo H.
2017-09-01
A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.
Analysis of piezoelectric energy harvester under modulated and filtered white Gaussian noise
NASA Astrophysics Data System (ADS)
Quaranta, Giuseppe; Trentadue, Francesco; Maruccio, Claudio; Marano, Giuseppe C.
2018-05-01
This paper proposes a comprehensive method for the electromechanical probabilistic analysis of piezoelectric energy harvesters subjected to modulated and filtered white Gaussian noise (WGN) at the base. Specifically, the dynamic excitation is simulated by means of an amplitude-modulated WGN, which is filtered through the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with a concentrated mass at the free-end, and its global behavior is approximated by the fundamental vibration mode (which is tuned with the dominant frequency of the dynamic input). A resistive electrical load is considered in the circuit. Once the Lyapunov equation of the coupled electromechanical problem has been formulated, an original and efficient semi-analytical procedure is proposed to estimate mean and standard deviation of the electrical energy extracted from the piezoelectric layers.
Sun, Chengchun; Shen, Zhenyao; Liu, Ruimin; Xiong, Ming; Ma, Fangbing; Zhang, Ouyang; Li, Yangyang; Chen, Lei
2013-12-01
Excessive inputs of nitrogen and phosphorus (N and P) degrade surface water quality worldwide. Impoundment of reservoirs alters the N and P balance of a basin. In this study, riverine nutrient loads from the upper Yangtze River basin (YRB) at the Yichang station were estimated using Load Estimator (LOADEST). Long-term load trends and monthly variabilities during three sub-periods based on the construction phases of the Three Gorges Dam (TGD) were analyzed statistically. The dissolved inorganic nitrogen (DIN) loads from the upper YRB for the period from 1990 to 2009 ranged from 30.47 × 10(4) to 78.14 × 10(4) t, while the total phosphorus (TP) loads ranged from 2.54 × 10(4) to 7.85 × 10(4) t. DIN increased rapidly from 1995 to 2002 mainly as a result of increased fertilizer use. Statistics of fertilizer use in the upper YRB agreed on this point. However, the trend of the TP loads reflected the combined effect of removal by sedimentation in reservoirs and increased anthropogenic inputs. After the TGD impoundment in 2003, decreasing trends in both DIN and TP loads were found. The reduction in DIN was mainly caused by ammonium consumption and transference. From an analysis of monthly loads, it was found that DIN had a high correlation to discharges. For TP loads, an average decrease of 4.91 % in October was found when the TGD impoundment occurred, but an increase of 4.23 % also occurred in July, corresponding to the washout from sediment deposited in the reservoir before July. Results of this study revealed the TGD had affected nutrient loads in the basin, and it had played a role in nutrient reduction after its operation.
Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK.
Bowes, M J; Leach, D V; House, W A
2005-01-05
Chalk streams provide unique, environmentally important habitats, but are particularly susceptible to human activities, such as water abstraction, fish farming and intensive agricultural activity on their fertile flood-meadows, resulting in increased nutrient concentrations. Weekly phosphorus, nitrate, dissolved silicon, chloride and flow measurements were made at nine sites along a 32 km stretch of the River Frome and its tributaries, over a 15 month period. The stretch was divided into two sections (termed the middle and lower reach) and mass balances were calculated for each determinand by totalling the inputs from upstream, tributaries, sewage treatment works and an estimate of groundwater input, and subtracting this from the load exported from each reach. Phosphorus and nitrate were retained within the river channel during the summer months, due to bioaccumulation into river biota and adsorption of phosphorus to bed sediments. During the autumn to spring periods, there was a net export, attributed to increased diffuse inputs from the catchment during storms, decomposition of channel biomass and remobilisation of phosphorus from the bed sediment. This seasonality of retention and remobilisation was higher in the lower reach than the middle reach, which was attributed to downstream changes in land use and fine sediment availability. Silicon showed much less seasonality, but did have periods of rapid retention in spring, due to diatom uptake within the river channel, and a subsequent release from the bed sediments during storm events. Chloride did not produce a seasonal pattern, indicating that the observed phosphorus and nitrate seasonality was a product of annual variation in diffuse inputs and internal riverine processes, rather than an artefact of sampling, flow gauging and analytical errors.
Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, J. M.
The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation
NASA Astrophysics Data System (ADS)
Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.
2017-03-01
This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.
Heat Control via Torque Control in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Colligan, Kevin; Knapp, Alan
2004-01-01
In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
Effects of mucosal loading on vocal fold vibration.
Tao, Chao; Jiang, Jack J
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Effects of mucosal loading on vocal fold vibration
NASA Astrophysics Data System (ADS)
Tao, Chao; Jiang, Jack J.
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
NASA Technical Reports Server (NTRS)
2008-01-01
This is a photo of an engineering model of the Thermal and Evolved-Gas Analyzer (TEGA) instrument on board NASA's Phoenix Mars Lander. This view shows a TEGA oven-loading mechanism beneath the input screen. The screen on the 1-and-1/2-inch-wide funnel has been removed in this model to show the whirligig that is suspended from the screw on the shaft. The black hole underneath is the porthole that leads to the oven. A tiny electric current compresses and releases a spring on the shaft. As the shaft spins, the screw bumps the screen, breaking up clumps of material into fine particles so they pass through the one millimeter-square screen openings. The energy applied to the tapping screen is about 0.02 inch per pound, or the force needed to move a one-pound mass two-hundredths of an inch. The screw also lifts the three-bladed whirligig so that it jostles fine particles and keeps the oven port open to aid the loading process. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Smith, Aaron D; Holtzapple, Mark T
2010-12-01
The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading.
Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Porté, Hugo; Campanaro, Stefano; Angelidaki, Irini
2017-06-01
This study evaluates the efficiency of four novel up-flow reactors for ex situ biogas upgrading converting externally provided CO 2 and H 2 to CH 4 , via hydrogenotrophic methanogenesis. The gases were injected through stainless steel diffusers combined with alumina ceramic sponge or through alumina ceramic membranes. Pore size, input gas loading and gas recirculation flow rate were modulated to optimize gas-liquid mass transfer, and thus methanation efficiency. Results showed that larger pore size diffusion devices achieved the best kinetics and output-gas quality converting all the injected H 2 and CO 2 , up to 3.6L/L REACTOR ·d H 2 loading rate. Specifically, reactors' CH 4 content increased from 23 to 96% and the CH 4 yield reached 0.25L CH4/ L H2 . High throughput 16S rRNA gene sequencing revealed predominance of bacteria belonging to Anaerobaculum genus and to uncultured order MBA08. Additionally, the massive increase of hydrogenotrophic methanogens, such as Methanothermobacter thermautotrophicus, and syntrophic bacteria demonstrates the selection-effect of H 2 on community composition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
Identification of secondary aerosol precursors emitted by an aircraft turbofan
NASA Astrophysics Data System (ADS)
Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.
2018-05-01
Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
NASA Astrophysics Data System (ADS)
Kimura, T.; Hiraki, Y.; Tao, C.; Tsuchiya, F.; Delamere, P. A.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kita, H.; Badman, S. V.; Fukazawa, K.; Yoshikawa, I.; Fujimoto, M.
2018-03-01
The production and transport of plasma mass are essential processes in the dynamics of planetary magnetospheres. At Jupiter, it is hypothesized that Io's volcanic plasma carried out of the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle energization, radial plasma flow, and transient auroral emissions. However, it has not been demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of simultaneous observations of both processes. We report the response of plasmoid ejection to mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and a newly developed analytic model. We found that the transient aurora frequently recurred at a 2-6 day period in response to a mass loading increase from 0.3 to 0.5 t/s. In general, the recurrence of the transient aurora was not significantly correlated with the solar wind, although there was an exceptional event with a maximum emission power of 10 TW after the solar wind shock arrival. The recurrence of plasmoid ejection requires the precondition that an amount comparable to the total mass of magnetosphere, 1.5 Mt, is accumulated in the magnetosphere. A plasmoid mass of more than 0.1 Mt is necessary in case that the plasmoid ejection is the only process for mass release.
NASA Astrophysics Data System (ADS)
Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.
2017-12-01
Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... no loss of contents. [Amdt. 178-103, 59 FR 38074, July 26, 1994, as amended at 66 FR 33452, June 21... types must be loaded to twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly...
Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier
2018-06-16
Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.
2015-12-01
Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.
Design and fabrication of composite wing panels containing a production splice
NASA Technical Reports Server (NTRS)
Reed, D. L.
1975-01-01
Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.
Process based analysis of manually controlled drilling processes for bone
NASA Astrophysics Data System (ADS)
Teicher, Uwe; Achour, Anas Ben; Nestler, Andreas; Brosius, Alexander; Lauer, Günter
2018-05-01
The machining operation drilling is part of the standard repertoire for medical applications. This machining cycle, which is usually a multi-stage process, generates the geometric element for the subsequent integration of implants, which are screwed into the bone in subsequent processes. In addition to the form, shape and position of the generated drill hole, it is also necessary to use a technology that ensures an operation with minimal damage. A surface damaged by excessive mechanical and thermal energy input shows a deterioration in the healing capacity of implants and represents a structure with complications for inflammatory reactions. The resulting loads are influenced by the material properties of the bone, the used technology and the tool properties. An important aspect of the process analysis is the fact that machining of bone is in most of the cases a manual process that depends mainly on the skills of the operator. This includes, among other things, the machining time for the production of a drill hole, since manual drilling is a force-controlled process. Experimental work was carried out on the bone of a porcine mandible in order to investigate the interrelation of the applied load during drilling. It can be shown that the load application can be subdivided according to the working feed direction. The entire drilling process thus consists of several time domains, which can be divided into the geometry-generating feed motion and a retraction movement of the tool. It has been shown that the removal of the tool from the drill hole has a significant influence on the mechanical load input. This fact is proven in detail by a new evaluation methodology. The causes of this characteristic can also be identified, as well as possible ways of reducing the load input.
On the use of an Arduino-based controller to control the charging process of a wind turbine
NASA Astrophysics Data System (ADS)
Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly
2017-02-01
In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.
Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012
Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.
2014-01-01
Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.
NASA Astrophysics Data System (ADS)
Martens, H. R.; Simons, M.; Moore, A. W.; Owen, S. E.; Rivera, L. A.
2016-12-01
We explore the contributions of oceanic, atmospheric, and hydrologic mass loading to Global Navigation Satellite System (GNSS)-inferred observations of surface displacements in Japan. Surface mass loading (SML) generates mm- to cm-level deformation of the solid Earth on time scales of hours to years, which exceeds the measurement uncertainties of most GNSS position estimates. By improving the efficiency and accuracy of the prediction and empirical estimation of SML response, we aim to reduce the variance of GNSS time series and therefore enhance the ability to resolve subtle tectonic signals, such as aseismic transients associated with subduction zone processes. Using the GIPSY software in precise point positioning mode, we estimate time series of sub-daily receiver positions for the GNSS Earth Observation Network System (GEONET) in Japan. We also model the Earth's elastic deformation response to a variety of surface mass loads, including loads of atmospheric (e.g., ECMWF) and oceanic (e.g., TPXO8-Atlas, ECCO2) origin. We extract periodic signals, such as the ocean tides and seasonal variations in hydrological loading, using harmonic analysis. Deformation caused by non-periodic loads, such as non-tidal oceanic and atmospheric loads, can be predicted and removed to further reduce the variance. We seek to streamline the workflow for estimating SML-induced surface displacements from a variety of sources in order to account for loading signals in routine GNSS data processing, thereby improving the ability to assess the mechanics of plate boundaries.
We use a simple nitrogen budget model to analyze concentrations of total nitrogen (TN) in estuaries for which both nitrogen inputs and water residence time are correlated with freshwater inflow rates. While the nitrogen concentration of an estuary varies linearly with TN loading ...
Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to decrease nitrogen loads to estuaries by 10%. As a first approximation we looked at s...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
An ever-increasing population in the coastal zone has led to increased nutrient loading to estuaries worldwide. Marshes represent an important transitional zone between uplands and estuaries and can intercept nutrient inputs from uplands. We examined the effects of N and P fertil...
An ever-increasing population in the coastal zone has led to increased nutrient loading to estuaries worldwide. Marshes represent an important transitional zone between uplands and estuaries and can intercept nutrient inputs from uplands. We examined the effects of N and P fertil...
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth
2008-01-01
This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).
Analysis of load monitoring system in hydraulic mobile cranes
NASA Astrophysics Data System (ADS)
Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew
2017-11-01
Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.
Bone, Julia L; Ross, Megan L; Tomcik, Kristyen A; Jeacocke, Nikki A; Hopkins, Will G; Burke, Louise M
2017-05-01
Standardizing a dual x-ray absorptiometry (DXA) protocol is thought to provide a reliable measurement of body composition. We investigated the effects of manipulating muscle glycogen and creatine content independently and additively on DXA estimates of lean mass. Eighteen well-trained male cyclists undertook a parallel group application of creatine loading (n = 9) (20 g·d for 5 d loading; 3 g·d maintenance) or placebo (n = 9) with crossover application of glycogen loading (12 v 6 g·kg BM per day for 48 h) as part of a larger study involving a glycogen-depleting exercise protocol. Body composition, total body water, muscle glycogen and creatine content were assessed via DXA, bioelectrical impedance spectroscopy and standard biopsy techniques. Changes in the mean were assessed using the following effect-size scale: >0.2 small, >0.6, moderate, >1.2 large and compared with the threshold for the smallest worthwhile effect of the treatment. Glycogen loading, both with and without creatine loading, resulted in substantial increases in estimates of lean body mass (mean ± SD; 3.0% ± 0.7% and 2.0% ± 0.9%) and leg lean mass (3.1% ± 1.8% and 2.6% ± 1.0%) respectively. A substantial decrease in leg lean mass was observed after the glycogen depleting condition (-1.4% ± 1.6%). Total body water showed substantial increases after glycogen loading (2.3% ± 2.3%), creatine loading (1.4% ± 1.9%) and the combined treatment (2.3% ± 1.1%). Changes in muscle metabolites and water content alter DXA estimates of lean mass during periods in which minimal change in muscle protein mass is likely. This information needs to be considered in interpreting the results of DXA-derived estimates of body composition in athletes.
Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W
2012-03-01
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.
Mass load estimation errors utilizing grab sampling strategies in a karst watershed
Fogle, A.W.; Taraba, J.L.; Dinger, J.S.
2003-01-01
Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Optical mass memory system (AMM-13). AMM/DBMS interface control document
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1980-01-01
The baseline for external interfaces of a 10 to the 13th power bit, optical archival mass memory system (AMM-13) is established. The types of interfaces addressed include data transfer; AMM-13, Data Base Management System, NASA End-to-End Data System computer interconnect; data/control input and output interfaces; test input data source; file management; and facilities interface.
Advanced torque converters for robotics and space applications
NASA Technical Reports Server (NTRS)
1985-01-01
This report describes the results of the evaluation of a novel torque converter concept. Features of the concept include: (1) automatic and rapid adjustment of effective gear ratio in response to changes in external torque (2) maintenance of output torque at zero output velocity without loading the input power source and (3) isolation of input power source from load. Two working models of the concept were fabricated and tested, and a theoretical analysis was performed to determine the limits of performance. It was found that the devices are apparently suited to certain types of tool driver applications, such as screwdrivers, nut drivers and valve actuators. However, quantiative information was insufficient to draw final conclusion as to robotic applications.
NASA Astrophysics Data System (ADS)
Strååt, Kim Dahlgren; Mörth, Carl-Magnus; Undeman, Emma
2018-01-01
The Baltic Sea is a semi-enclosed brackish sea in Northern Europe with a drainage basin four times larger than the sea itself. Riverine organic carbon (Particulate Organic Carbon, POC and Dissolved Organic Carbon, DOC) dominates carbon input to the Baltic Sea and influences both land-to-sea transport of nutrients and contaminants, and hence the functioning of the coastal ecosystem. The potential impact of future climate change on loads of POC and DOC in the Baltic Sea drainage basin (BSDB) was assessed using a hydrological-biogeochemical model (CSIM). The changes in annual and seasonal concentrations and loads of both POC and DOC by the end of this century were predicted using three climate change scenarios and compared to the current state. In all scenarios, overall increasing DOC loads, but unchanged POC loads, were projected in the north. In the southern part of the BSDB, predicted DOC loads were not significantly changing over time, although POC loads decreased in all scenarios. The magnitude and significance of the trends varied with scenario but the sign (+ or -) of the projected trends for the entire simulation period never conflicted. Results were discussed in detail for the "middle" CO2 emission scenario (business as usual, a1b). On an annual and entire drainage basin scale, the total POC load was projected to decrease by ca 7% under this scenario, mainly due to reduced riverine primary production in the southern parts of the BSDB. The average total DOC load was not predicted to change significantly between years 2010 and 2100 due to counteracting decreasing and increasing trends of DOC loads to the six major sub-basins in the Baltic Sea. However, predicted seasonal total loads of POC and DOC increased significantly by ca 46% and 30% in winter and decreased by 8% and 21% in summer over time, respectively. For POC the change in winter loads was a consequence of increasing soil erosion and a shift in duration of snowfall and onset of the spring flood impacting the input of terrestrial litter, while reduced primary production mainly explained the differences predicted in summer. The simulations also showed that future changes in POC and DOC export can vary significantly across the different sub-basins of the Baltic Sea. These changes in organic carbon input may impact future coastal food web structures e.g. by influencing bacterial and phytoplankton production in coastal zones, which in turn may have consequences at higher trophic levels.
Oscillations of end loaded cantilever beams
NASA Astrophysics Data System (ADS)
Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.
2015-09-01
This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.
NASA Astrophysics Data System (ADS)
Vink, Rona; Behrendt, Horst
2002-11-01
Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.
NASA Astrophysics Data System (ADS)
Borchani, Wassim
The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post-buckling response of the bilaterally constrained beam subjected to axial loading is investigated experimentally, numerically, and theoretically. The capability of the system to generate electric energy under quasi-static excitation is also assessed experimentally. The post-buckling behavior is reproducible under cyclic loadings and independent of the input loading frequency. The static and dynamic response of the beam is theoretically studied using an energy method. The model adequately predicts the beam geometry at every loading stage, including the flattening behavior just before the snap buckling transitions, the mode transition events and the released kinetic energy as well as accelerations of the beam during transitions. The buckling transitions generate high kinetic energy and acceleration spikes. However, the location of the maximum acceleration differs from one transition to another. Tuning the parameters of the system affects dramatically the accelerations generated during snap-through transitions. However, it does not affect the number and spacing between these events. To achieve better control of the system, multiple slender beams with different geometric and material properties are stacked in parallel configurations. The system allows then to control the spacing between energy bursts and reduce the energy leakage in electronic circuits. As an application example, the mechanical energy concentrators and triggers were integrated with a piezo-floating gate events sensor. This allowed for harvesting and recording of bursts and impulses of released energy at very low frequencies. The system can be calibrated to determine the number of times the magnitude of the input signal exceeded a mechanical threshold. The mechanism allows for frequency up-conversion from the low input frequency (in the order of mHz) to the natural frequency of the piezoelectric scavenger.
DOE-2 sample run book: Version 2.1E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.
1993-11-01
The DOE-2 Sample Run Book shows inputs and outputs for a variety of building and system types. The samples start with a simple structure and continue to a high-rise office building, a medical building, three small office buildings, a bar/lounge, a single-family residence, a small office building with daylighting, a single family residence with an attached sunspace, a ``parameterized`` building using input macros, and a metric input/output example. All of the samples use Chicago TRY weather. The main purpose of the Sample Run Book is instructional. It shows the relationship of LOADS-SYSTEMS-PLANT-ECONOMICS inputs, displays various input styles, and illustrates manymore » of the basic and advanced features of the program. Many of the sample runs are preceded by a sketch of the building showing its general appearance and the zoning used in the input. In some cases we also show a 3-D rendering of the building as produced by the program DrawBDL. Descriptive material has been added as comments in the input itself. We find that a number of users have loaded these samples onto their editing systems and use them as ``templates`` for creating new inputs. Another way of using them would be to store various portions as files that can be read into the input using the {number_sign}{number_sign} include command, which is part of the Input Macro feature introduced in version DOE-2.lD. Note that the energy rate structures here are the same as in the DOE-2.lD samples, but have been rewritten using the new DOE-2.lE commands and keywords for ECONOMICS. The samples contained in this report are the same as those found on the DOE-2 release files. However, the output numbers that appear here may differ slightly from those obtained from the release files. The output on the release files can be used as a check set to compare results on your computer.« less
NASA Astrophysics Data System (ADS)
Pawar, Harshita; Sachan, Himanshu; Garg, Saryu; Arya, Ruhani; Singh, Nitin Kumar; Sinha, Baerbel; Sinha, Vinayak
2013-04-01
We investigate the climatology of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.67°N, 76.73°E; 310 m amsl) through 3-day backtrajectories arriving at 20 m above ground level for the period August 2011-November 2012. IISER Mohali is a suburban site in the North-Western Indo Gangetic Basin. The trajectories are computed in ensemble mode twice daily with an arrival time of 2:30 pm local time (daytime) and 4:30 am local time (nighttime) using the HYSPLIT 4 model with the National Oceanic and Atmospheric Administration's GDAS file as meterological input data. Due to the close proximity of the site to the Himalayan mountain range the trajectory output is found to be very sensitive to the models input data. IISER Air Quality station is located in the IGB at an altitude of 310 m amsl approximately 20 km south west of the Shivalik hills, but the model terrain height for the site in the ensemble run output varies between 200 m amsl and 3500 m amsl for the GDAS dataset and 200 m amsl to 5000 m amsl for the reanalysis dataset. We conclude that the GDAS dataset performs better than than reanalysis dataset for our site and selected only those trajectories from the trajectory ensemble for cluster analysis, for which the terrain height in the model output was < 400 m amsl for IISER Mohali (in the IGB) and > 400 m amsl for Shimla (a site located at an altitude of 1000 m amsl in the mountains 60 km north east of Mohali). We subjected the trajectories to hierarchical, and non-hierarchical (K-means) clustering and found that the air mass transport to our station can be characterised by 10 distinct airflow patterns; 3 of which occur only during the monsoon season. For pre-monsoon season (March-June), post-monsoon season (Sept-Nov) and winter season (Dec-Feb), air mass transport to our site is predominantly from the west. Direct transport of north westerly air masses to our site is subdivided into three clusters (slow, medium and rapid) while other clusters are attributed to south westerly air currents or arise from the fact that westerly air masses are deflected and descend along the slope of the Himalayan mountain range and reach our site from the north or south-east. A local recirculation cluster is found to occur particularly during wintertime when stagnant conditions with windspeeds < 1 m/s can presist for several days. We find that several air pollutants measured at the IISER Mohali air quality station are significantly influenced by regional transport and long range transport during pre-monsoon (March-June) and post-monsoon (Sept-Nov) season. This is particularly true for PM10 where the highest loadings (730 μg/m3) are found in air masses with rapid air mass transport from a north western direction during pre-monsoon season. In medium and slow transport from the NW we observe 260 μg/m3 and 210 μg/m3 PM10 respectively. The lowest PM10 loading during pre-monsoon season are associated with local recirculation of air masses (170 μg/m3) and air masses with a long residence time over the eastern IGB (190μg/m3). For NOx, SO2 and CO the lowest concentrations are observed in air masses influenced by rapid long range transport from the NW (4.7, 2.6 and 220 ppbv respectively) while the highest NOx, SO2 and concentrations are observed in air masses transported with slow or medium speed from the NW (7.1, 5.2 and 380 ppbv respectively). During winter season local and regional sources are found to dominate over long range transport, with long range transport accounting for less than 30 % of the observed variablity in the chemical composition of the air masses. During monsoon season removal of pollutants through wet deposition dominates the measured concentrations. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD), India and IISER Mohali for funding the facility. Chinmoy Sarkar is acknowledged for technical support, SG thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding the research, H. Panwar, H. Sachan and N. K. Singh acknowledge the DST-INSPIRE Fellowship program and R. Arya thanks IISER Mohali for providing an IISER Summer Research Fellowship.
Pan, Yuanjin; Shen, Wen-Bin; Hwang, Cheinway; Liao, Chaoming; Zhang, Tengxu; Zhang, Guoqing
2016-01-01
Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet. PMID:27490550
Stabilization of a Quadrotor With Uncertain Suspended Load Using Sliding Mode Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xu; Liu, Rui; Zhang, Jiucai
2016-08-21
The stability and trajectory control of a quadrotor carrying a suspended load with a fixed known mass has been extensively studied in recent years. However, the load mass is not always known beforehand in practical applications. This mass uncertainty brings uncertain disturbances to the quadrotor system, causing existing controllers to have a worse performance or to be collapsed. To improve the quadrotor's stability in this situation, we investigate the impacts of the uncertain load mass on the quadrotor. By comparing the simulation results of two controllers -- the proportional-derivative (PD) controller and the sliding mode controller (SMC) driven by amore » sliding mode disturbance of observer (SMDO), the quadrotor's performance is verified to be worse as the uncertainty increases. The simulation results also show a controller with stronger robustness against disturbances is better for practical applications.« less
NASA Technical Reports Server (NTRS)
Wu, Xiaoping; Argus, Donald F.; Heflin, Michael B.; Ivins, Erik R.; Webb, Frank H.
2002-01-01
Precise GPS measurements of elastic relative site displacements due to surface mass loading offer important constraints on global surface mass transport. We investigate effects of site distribution and aliasing by higher-degree (n greater than or equal 2) loading terms on inversion of GPS data for n = 1 load coefficients and geocenter motion. Covariance and simulation analyses are conducted to assess the sensitivity of the inversion to aliasing and mismodeling errors and possible uncertainties in the n = 1 load coefficient determination. We found that the use of center-of-figure approximation in the inverse formulation could cause 10- 15% errors in the inverted load coefficients. n = 1 load estimates may be contaminated significantly by unknown higher-degree terms, depending on the load scenario and the GPS site distribution. The uncertainty in n = 1 zonal load estimate is at the level of 80 - 95% for two load scenarios.
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
DACS II - A distributed thermal/mechanical loads data acquisition and control system
NASA Technical Reports Server (NTRS)
Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.
1987-01-01
A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.
Development and testing of aluminum micro channel heat sink
NASA Astrophysics Data System (ADS)
Kumaraguruparan, G.; Sornakumar, T.
2010-06-01
Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.
Sonntag, W.H.; McPherson, B.F.
1984-01-01
Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)
Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam
2012-11-01
Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.
Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold
NASA Astrophysics Data System (ADS)
Barua, A.; Kim, S.; Horie, Y.; Zhou, M.
2013-02-01
A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.
2010-10-01
mission, participants were given the NASA Task Load Index ( NASA TLX ) to measure subjective workload. Additional performance measures included mission...16 NASA TLX Workload Analyses...worksheet (See Appendix C), the Hidden Patterns Test (ETS, 1976), and an electronic form of the NASA Task Load Index ( TLX ; Hart & Staveland, 1988). The
Heat dissipation in water-cooled reflectors
NASA Technical Reports Server (NTRS)
Kozai, Toyoki
1994-01-01
The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.
Experimental Study of Split-Path Transmission Load Sharing
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Delgado, Irebert R.
1996-01-01
Split-path transmissions are promising, attractive alternatives to the common planetary transmissions for helicopters. The split-path design offers two parallel paths for transmitting torque from the engine to the rotor. Ideally, the transmitted torque is shared equally between the two load paths; however, because of manufacturing tolerances, the design must be sized to allow for other than equal load sharing. To study the effect of tolerances, experiments were conducted using the NASA split-path test gearbox. Two gearboxes, nominally identical except for manufacturing tolerances, were tested. The clocking angle was considered to be a design parameter and used to adjust the load sharing of an otherwise fixed design. The torque carried in each path was measured for a matrix of input torques and clocking angles. The data were used to determine the optimal value and a tolerance for the clocking angles such that the most heavily loaded split path carried no greater than 53 percent of an input shaft torque of 367 N-m. The range of clocking angles satisfying this condition was -0.0012 +/- 0.0007 rad for box 1 and -0.0023 +/- 0.0009 rad for box 2. This study indicates that split-path gearboxes can be used successfully in rotorcraft and can be manufactured with existing technology.
The design and analysis of single flank transmission error tester for loaded gears
NASA Technical Reports Server (NTRS)
Bassett, Duane E.; Houser, Donald R.
1987-01-01
To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.
NASA Astrophysics Data System (ADS)
Brownjohn, James Mark William; Bocian, Mateusz; Hester, David; Quattrone, Antonino; Hudson, William; Moore, Daniel; Goh, Sushma; Lim, Meng Sun
2016-12-01
With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service. This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses. The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.
Saleh, Dina; Domagalski, Joseph L.
2015-01-01
The SPARROW (SPAtially Referenced Regressions On Watershed attributes) model was used to evaluate the spatial distribution of total nitrogen (TN) sources, loads, watershed yields, and factors affecting transport and decay in the stream network of California and portions of adjacent states for the year 2002. The two major TN sources to local catchments on a mass basis were fertilizers and manure (51.7%) and wastewater discharge (15.9%). Other sources contributed < 12%. Fertilizer use is widespread in the Central Valley region of California, and also important in several other regions because of the diversity of California agriculture. Precipitation, sand content of surficial soils, wetlands, and tile drains were important for TN movement to stream reaches. Median streamflow in the study area is about 0.04 m3/s. Aquatic losses of nitrogen were found to be most important in intermittent and small to medium sized streams (0.2-14 m3/s), while larger streams showed less loss, and therefore are important for TN transport. Nitrogen loss in reservoirs was found to be insignificant, possibly because most of the larger ones are located upstream of nitrogen sources. The model was used to show loadings, sources, and tributary inputs to several major rivers. The information provided by the SPARROW model is useful for determining both the major sources contributing nitrogen to streams and the specific tributaries that transport the load.
Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany).
Kiss, Aliz; Fries, Elke
2009-09-01
Benzotriazoles (BT) as 1H-benzotriazole (1H-BT), 5-methyl-1H-benzotriazole (5Me-BT), and 4-methyl-1H-benzotriazole (4Me-BT) are frequently used as corrosion inhibitors in dish washer detergents, aircraft de-icing/anti-icing fluids (ADAF), automotive antifreeze formulations, brake fluids, fluids for industrial cooling systems, metal-cutting fluids, and in solid cooling lubricants. Discharge of treated municipal waste water and controlled over-runs of combined waste water sewers are potential point sources for BT in rivers. The aim of this monitoring study was to yield an overview on exposure concentrations and loads of BT in the German rivers Main, Hengstbach, and Hegbach. Concentrations of 1H-BT, 5Me-BT, and 4Me-BT were determined in grab samples collected from different sampling points in the rivers Main, Hengstbach, and Hegbach at four different sampling times. Main and Hengstbach rivers were sampled close to Frankfurt International Airport. Both rivers receive domestic waste water effluents. BT were extracted from 2.5 L of river water by solid phase extraction using Bond Elut ppl cartridges (200 mg/3 mL). The extracts were analyzed by gas chromatography/mass spectrometry in full scan mode. Mass flows of BT were calculated by concentrations multiplied by mean daily river flow rates. Median concentrations and mass flows were compared for different rivers. Mass flows were also compared for selected sampling points at different sampling times. 1H-BT, 5Me-BT, and 4Me-BT were detected in Main and Hengstbach rivers. 1H-BT and 5Me-BT were also detected in Hegbach River. Concentrations ranged from 38 to 1,474 ng/L for 1H-BT, from 25 to 281 ng/L for 5Me-BT, and from 25 to 952 ng/L for 4Me-BT. Median concentrations of 1H-BT, 5Me-BT, and 4Me-BT were lower in Main than in Hengstbach River. Much higher median mass flows of all BT were calculated for Main than for Hengstbach River. At sampling points P9 (Main) and P5 (Hengstbach) concentrations of 4Me-BT and 5Me-BT increased from March 29, 2008 to May 1, 2008 to June 22, 2008 whereas daily mean river flow rate decreased simultaneously. However, concentration of 1H-BT in Main and Hengstbach River increased from March 29, 2008 to May 1, 2008 and decreased again on June 22, 2008. In the Main River, lowest and highest mass flows for all BT were calculated on June 22, 2008 and May 1, 2008, respectively. In the Hengstbach River lowest and highest mass flows for 1H-BT and 4Me-BT were also calculated on June 22, 2008 and May 1, 2008, respectively. However, mass flows of 5Me-BT in Hengstbach River were rather similar at all three sampling times. In all grab samples, 1H-BT was more abundant than 5Me-BT and 4Me-BT in Main and Hengstbach River, except on June 22, 2008. Ratios of 1H-BT/(5Me-BT + 4Me-BT) determined on March 15, 2008, March 29, 2008, and May 1, 2008 varied between 1.6 and 9.0 with a median value of 1.9 (n = 9) whereas on June 22, 2008 the ratios varied between 0.4 and 0.7 with a median value of 0.6 (n = 5). Due to the absence of waste water effluents in the Hegbach River, other input sources as controlled over-runs of combined waste water sewers and/or atmospheric deposition of BT must be regarded as possible input sources. Exfiltration of ground water containing BT to Hegbach River must be also regarded, especially when considering the high polarity of BT. Median concentrations of BT in Main River were much lower than in Hengstbach River due to dilution. However, median mass flows were higher in the Main River than in the Hengstbach River. Higher mass flows could be attributed to higher source strengths and/or numerous emissions sources in the Main River. Mass flows determined on June 22, 2008 in Main and Hengstbach rivers probably reflect emissions of BT only from dishwasher detergents since de-icing operations were unlikely at that time. Emissions of BT from dish washer detergents are rather constant without any seasonal variations. Assuming the absence of additional input sources and constant in-stream removal processes, mass flows calculated for all other sampling times must be nearly similar to mass flows for June 22, 2009 as it was only observed for 5Me-BT in Hengstbach River. The higher mass flows for 1H-BT and 4Me-BT in March and May in both rivers could be an indication for temporal variations of emission pattern and/or of in-stream removal processes. 1H-BT/(4Me-BT + 5Me-BT) ratios above one in March and May and below one in June could be also an indication for temporal variations of input and/or removal processes. 1H-BT, 5Me-BT, and 4Me-BT used as corrosion inhibitors in many applications were detected in the rivers Main, Hengstbach, and Hegbach with relative high temporal and spatial concentration variations. Dilution is a dominant factor that influences exposure concentrations of BT in the studied rivers. We conclude that, especially in smaller rivers (as Hengstbach River), the hydrological situation has to be regarded when predicting exposure concentrations of BT. Characteristic emission strength and in-stream removal processes must be known to relate loads of BT in river water to different sources. The ratio of 1H-BT/(4Me-BT + 5Me-BT) could be possibly used for source apportionment. Time series analyses of BT in composite river water samples collected at two river sites of the Hengstbach/Schwarzbach catchment area, without any waste water effluents in between, are recommended to study in-stream removal of BT. In addition, exposure modeling is recommended of BT, regarding all input sources and in-stream removal processes to predict exposure concentrations of BT in rivers. In order to calibrate and validate the model, additional monitoring data are required.
Adebayo, O O; Ko, F C; Wan, P T; Goldring, S R; Goldring, M B; Wright, T M; van der Meulen, M C H
2017-12-01
Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Reconstruction of Orion Engineering Development Unit (EDU) Parachute Inflation Loads
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
The process of reconstructing inflation loads of Capsule Parachute Assembly System (CPAS) has been updated as the program transitioned to testing Engineering Development Unit (EDU) hardware. The equations used to reduce the test data have been re-derived based on the same physical assumptions made by simulations. Due to instrumentation challenges, individual parachute loads are determined from complementary accelerometer and load cell measurements. Cluster inflations are now simulated by modeling each parachute individually to better represent different inflation times and non-synchronous disreefing. The reconstruction procedure is tailored to either infinite mass or finite mass events based on measurable characteristics from the test data. Inflation parameters are determined from an automated optimization routine to reduce subjectivity. Infinite mass inflation parameters have been re-defined to avoid unrealistic interactions in Monte Carlo simulations. Sample cases demonstrate how best-fit inflation parameters are used to generate simulated drag areas and loads which favorably agree with test data.
SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin
Robertson, Dale M.; Saad, David A.
2013-01-01
Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km2) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.
Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992-2009
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Giovinetto, Mario B.
2011-01-01
Mass balance estimates for the Antarctic Ice Sheet (AIS) in the 2007 report by the Intergovernmental Panel on Climate Change and in more recent reports lie between approximately ?50 to -250 Gt/year for 1992 to 2009. The 300 Gt/year range is approximately 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (?28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. We also modify the IOM estimate using (1) an alternate extrapolation to estimate the discharge from the non-observed 15% of the periphery, and (2) substitution of input from a field data compilation for input from an atmospheric model in 6% of area. The modified IOM estimate reduces the loss from 136 Gt/year to 13 Gt/year. Two ERS-based estimates, the modified IOM, and a GRACE-based estimate for observations within 1992 2005 lie in a narrowed range of ?27 to -40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992 2001 is -47 Gt/year for West Antarctica, ?16 Gt/year for East Antarctica, and -31 Gt/year overall (?0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07% of the AIS area). Although recent reports of large and increasing rates of mass loss with time from GRACE-based studies cite agreement with IOM results, our evaluation does not support that conclusion
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
NASA Astrophysics Data System (ADS)
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
Liu, Chen; Wang, Qinxue; Zou, Chunjing; Hayashi, Yoshitsugu; Yasunari, Tetsuzo
2015-03-01
The objectives of this study are to diagnose and prevent environmental problems that threaten urban sustainability, the impact of changes in lifestyle (diet, domestic sanitation, and motorization), and production style (agriculture, industry, and services) with the rapid urbanization on regional nitrogen (N) flows, and the water environment was quantitatively evaluated. The megacity Shanghai was chosen as a case study to investigate the temporal changes in nitrogen flow during 1980-2008 by a multidisciplinary approach (a field survey, a regional nitrogen mass balance model, input-output analysis, etc.). Although the total potential nitrogen load in Shanghai has decreased in the 2000s and water pollution problems seem to have improved, the problem has shifted and expanded to affect a wider area through the food/product chain and water/air movement. Further effective solutions that aim at material cycles are necessary and have to be implemented on a large scale.
Performance modeling of optical refrigerators
NASA Astrophysics Data System (ADS)
Mills, Gary; Mord, Allan
2006-02-01
Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN.
An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material
NASA Astrophysics Data System (ADS)
Yu, Huiqin; Wu, Yinong; Ding, Lei; Jiang, Zhenhua; Liu, Shaoshuai
2017-12-01
A 1.22 kg coaxial miniature pulse tube cryocooler (MPTC) has been fabricated and tested in our laboratory to provide cooling for cryogenic applications demanding compactness, low mass and rapid cooling rate. The geometrical parameters of regenerator, pulse tube and phase shifter are optimized. The investigation demonstrates that using higher mesh number and thinner wire diameter of stainless steel screen (SSS) can promote the coefficient of performance (COP) when the MPTC operates at 120 Hz. In this study, the 604 mesh SSS with 17 μm diameter of mesh wire is constructed as filler of regenerator. The experimental results show the MPTC operating at 120 Hz achieves a no-load temperature of 53.5 K with 3.8 MPa charging pressure, and gets a cooling power of 2 W at 80 K with 55 W input electric power which has a relative Carnot efficiency of 9.68%.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2010-04-01
In much of the vibration-based energy harvesting literature, devices are modeled, designed, and tested for dissipating energy across a resistive load at a single base excitation frequency. This paper presents several practical scenarios germane to tracking, sensing, and wireless communication on humans and land vehicles. Measured vibrational data from these platforms are used to provide a time-varying, broadband input to the energy harvesting system. Optimal power considerations are given for several circuit topologies, including a passive rectifier circuit and active, switching methods. Under various size and mass constraints, the optimal design is presented for two scenarios: walking and idling a car. The frequency response functions are given alongside time histories of the power harvested using the experimental base accelerations recorded. The issues involved in designing an energy harvester for practical (i.e. timevarying, non-sinusoidal) applications are discussed.
NASA Astrophysics Data System (ADS)
Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael
2009-03-01
Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.
NASA Astrophysics Data System (ADS)
Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.
2007-05-01
Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.
Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.
2013-01-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.
2013-04-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo
2016-01-01
Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.
Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku
2014-01-01
The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165
The dependence of cosmic ray-driven galactic winds on halo mass
NASA Astrophysics Data System (ADS)
Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph
2018-03-01
Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1972-01-01
Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.
1994-07-01
This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less
Anteroventral third ventricle (AV3V) lesions alter c-fos expression induced by salt loading
NASA Technical Reports Server (NTRS)
Rocha, M. J.; Beltz, T. G.; Dornelles, R. C.; Johnson, A. K.; Franci, C. R.
1999-01-01
Lesion of the anteroventral third-ventricle region (AV3VX) reduced saline consumption. Salt loading in AV3VX rats resulted in reduced but not completely abolished c-fos expression in the supraoptic and paraventricular nuclei. Intrinsic osmosensitivity of the magnocellular neurons, or input from other brain areas, such as the subfornical and median preoptic nuclei, may account for this residual c-fos expression. These regions showed c-fos expression following salt loading. Copyright 1999 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-03-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.
Frequency effects on the stability of a journal bearing for periodic loading
NASA Technical Reports Server (NTRS)
Vijayaraghavan, D.; Brewe, D. E.
1992-01-01
The stability of a journal bearing is numerically predicted when an unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the JFO theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load vibration and frequency of journal speed are also investigated.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.
Liu, Zhiyuan; Wang, Changhui
2015-10-23
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.
Vibroacoustic Model Validation for a Curved Honeycomb Composite Panel
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Robinson, Jay H.; Grosveld, Ferdinand W.
2001-01-01
Finite element and boundary element models are developed to investigate the vibroacoustic response of a curved honeycomb composite sidewall panel. Results from vibroacoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission facility are used to validate the numerical predictions. The sidewall panel is constructed from a flexible honeycomb core sandwiched between carbon fiber reinforced composite laminate face sheets. This type of construction is being used in the development of an all-composite aircraft fuselage. In contrast to conventional rib-stiffened aircraft fuselage structures, the composite panel has nominally uniform thickness resulting in a uniform distribution of mass and stiffness. Due to differences in the mass and stiffness distribution, the noise transmission mechanisms for the composite panel are expected to be substantially different from those of a conventional rib-stiffened structure. The development of accurate vibroacoustic models will aide in the understanding of the dominant noise transmission mechanisms and enable optimization studies to be performed that will determine the most beneficial noise control treatments. Finite element and boundary element models of the sidewall panel are described. Vibroacoustic response predictions are presented for forced vibration input and the results are compared with experimental data.
NASA Technical Reports Server (NTRS)
Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.
1992-01-01
A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.
NASA Astrophysics Data System (ADS)
Zidikheri, Meelis J.; Lucas, Christopher; Potts, Rodney J.
2017-08-01
Airborne volcanic ash is a hazard to aviation. There is an increasing demand for quantitative forecasts of ash properties such as ash mass load to allow airline operators to better manage the risks of flying through airspace likely to be contaminated by ash. In this paper we show how satellite-derived mass load information at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the distribution of mass of the ash column at the volcano. This in turn leads to better forecasts of ash mass load. We demonstrate the efficacy of this approach using several case studies.
Melville, Katherine M.; Kelly, Natalie H.; Surita, Gina; Buchalter, Daniel B.; Schimenti, John C.; Main, Russell P.; Ross, F. Patrick; van der Meulen, Marjolein C. H.
2015-01-01
Estrogen receptor alpha (ERα) has been implicated in bone’s response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age the left tibia was loaded in vivo for two weeks. We analyzed bone mass through microCT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared to LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, while male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L5 vertebrae, and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, while the response of pOC-ERαKO male animals was similar to their littermate controls. PMID:25707500
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.
2018-03-01
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.
NASA Astrophysics Data System (ADS)
Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.
2015-08-01
Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2012-05-06
The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.
2016-04-01
Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process datamore » to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.« less
2012-01-01
Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852
Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads
NASA Technical Reports Server (NTRS)
Gold, Harold; Otto, Edward W; Ransom, Victor L
1953-01-01
An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.
Helicopter noise prediction - The current status and future direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1992-01-01
The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
The 30-cm ion thruster power processor
NASA Technical Reports Server (NTRS)
Herron, B. G.; Hopper, D. J.
1978-01-01
A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.
High static gain single-phase PFC based on a hybrid boost converter
NASA Astrophysics Data System (ADS)
Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo
2017-05-01
In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.
Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan--a stable isotope approach.
Miller, Todd W; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi
2010-10-01
The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ(15)N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ(15)N and δ(13)C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Schinkel-Ivy, Alison; Burkhart, Timothy A; Andrews, David M
2014-01-01
This study aimed to examine the effects of sex and sport on the tissue composition of the distal lower extremity of varsity athletes, in sports that involve repetitive-impact loading patterns. Fat mass, lean mass, bone mineral content and wobbling mass were predicted for the leg and leg + foot segments of varsity basketball, cross-country, soccer and volleyball athletes. The absolute masses were normalised to body mass, and also expressed relative to each other as ratios. Females and males differed on most normalised tissue masses and ratios by 11-101%. Characteristic differences were found in the normalised tissue masses across sports, with the lowest and highest values displayed by cross-country and volleyball (female)/basketball (male) athletes, respectively. Conversely, cross-country athletes had the highest wobbling mass:bone mineral content and lean mass:bone mineral content ratios for females by 10% and 16%, respectively. The differences between sports may be explained in part by different impact loading patterns characteristic of each sport. Tissue mass ratio differences between sports may suggest that the ratios of soft to rigid tissues are optimised by the body in response to typical loading patterns, and may therefore be useful in investigations of distal lower extremity injury mechanisms in athletes.
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soilmore » model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.« less
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2009-05-01
There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.
Design of Linear Control System for Wind Turbine Blade Fatigue Testing
NASA Astrophysics Data System (ADS)
Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben
2016-09-01
This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.
Impacts of emerging contaminants on surrounding aquatic environment from a youth festival.
Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der; Tu, Bo-Wen; Liang, Yu-Jen
2015-01-20
The youth festival as we refer to Spring Scream, a large-scale pop music festival, is notorious for the problems of drug abuse and addiction. The origin, temporal magnitudes, potential risks and mass inputs of emerging contaminants (ECs) were investigated. Thirty targeted ECs were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Sampling strategy was designed to characterize EC behavior in different stages (before and after the youth festival), based on multivariate data analysis to explore the contributions of contaminants from normal condition to the youth festival. Wastewater influents and effluents were collected during the youth festival (approximately 600 000 pop music fans and youth participated). Surrounding river waters are also sampled to illustrate the touristic impacts during peak season and off-season. Seasonal variations were observed, with the highest concentrations in April (Spring Scream) and the lowest in October (off-season). Acetaminophen, diclofenac, codeine, ampicillin, tetracycline, erythromycin-H2O, and gemfibrozil have significant pollution risk quotients (RQs > 1), indicating ecotoxicological concerns. Principal component analysis (PCA) and weekly patterns provide a perspective in assessing the touristic impacts and address the dramatic changes in visitor population and drug consumption. The highest mass loads discharged into the aquatic ecosystem corresponded to illicit drugs/controlled substances such as ketamine and MDMA, indicating the high consumption of ecstasy during Spring Scream.
NASA Astrophysics Data System (ADS)
Negroni, Garry Inocentes
Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated efficiency was 11.4%. The average voltage efficiency of the electrolyser during dynamometer testing was 69.16%, producing a solar-to-electrolysis efficiency of 7.88%. At varying engine speeds, HC emissions decreased an average of 54.4% at multiple engine speeds at part-load, while CO2 increased by 2.54% due to oxygen enrichment of intake air. However, the auto-ignition of a small amount of hydrogen (0.0035% of diesel fuel energy) had a negative impact on part-load power (-3.671%) and torque (-3.296%). Full-load sweep testing showed an increase in peak power (1.562%) and peak torque (2.608%). Solar electrolysis gas aspiration reduced soot opacity by 31.5%. The alternator-less part-load step tests show average HC and CO2 emissions decrease on average 25.05% and 1.14% respectively. The test also indicates an increase in average part-load power (1.57%) and torque (2.12%). Alternator-less operation can reduce soot opacity by 56.76%. Full-load testing of the vehicle with alternator unplugged indicates that alternator load upon an engine increase with engine ne speed even with no load and no pilot excitation. Alternator load elimination's performance and emissions improvements should be considered, however, practical limitations exist in winter-night, summer-midday scenarios and for longer duration of operation.
Particle loading rates for HVAC filters, heat exchangers, and ducts.
Waring, M S; Siegel, J A
2008-06-01
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.
ERIC Educational Resources Information Center
Paulik, G. F.; Mayer, R. P.
2012-01-01
A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…
Implementing wavelet inverse-transform processor with surface acoustic wave device.
Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan
2013-02-01
The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
Pennycuick, C.J.; Fuller, M.R.; McAllister, L.
1989-01-01
Two Harris' hawks were trained to fly along horizontal and climbing flight paths, while carrying loads of various masses, to provide data for estimating available muscle power during short flights. The body mass of both hawks was about 920 g, and they were able to carry loads up to 630 g in horizontal flight. The rate of climb decreased with increasing all-up mass, as also did the climbing power (product of weight and rate of climb). Various assumptions about the aerodynamic power in low-speed climbs led to estimates of the maximum power output of the flight muscles ranging from 41 to 46 W. This, in turn, would imply a stress during shortening of around 210 kPa. The effects of a radio package on a bird that is raising young should be considered in relation to the food load that the forager can normally carry, rather than in relation to its body mass.
Method for revealing biases in precision mass measurements
NASA Astrophysics Data System (ADS)
Vabson, V.; Vendt, R.; Kübarsepp, T.; Noorma, M.
2013-02-01
A practical method for the quantification of systematic errors of large-scale automatic comparators is presented. This method is based on a comparison of the performance of two different comparators. First, the differences of 16 equal partial loads of 1 kg are measured with a high-resolution mass comparator featuring insignificant bias and 1 kg maximum load. At the second stage, a large-scale comparator is tested by using combined loads with known mass differences. Comparing the different results, the biases of any comparator can be easily revealed. These large-scale comparator biases are determined over a 16-month period, and for the 1 kg loads, a typical pattern of biases in the range of ±0.4 mg is observed. The temperature differences recorded inside the comparator concurrently with mass measurements are found to remain within a range of ±30 mK, which obviously has a minor effect on the detected biases. Seasonal variations imply that the biases likely arise mainly due to the functioning of the environmental control at the measurement location.
Shaper-Based Filters for the compensation of the load cell response in dynamic mass measurement
NASA Astrophysics Data System (ADS)
Richiedei, Dario; Trevisani, Alberto
2018-01-01
This paper proposes a novel model-based signal filtering technique for dynamic mass measurement through load cells. Load cells are sensors with an underdamped oscillatory response which usually imposes a long settling time. Real-time filtering is therefore necessary to compensate for such a dynamics and to quickly retrieve the mass of the measurand (which is the steady state value of the load cell response) before the measured signal actually settles. This problem has a big impact on the throughput of industrial weighing machines. In this paper a novel solution to this problem is developed: a model-based filtering technique is proposed to ensure accurate, robust and rapid estimation of the mass of the measurand. The digital filters proposed are referred to as Shaper-Based Filters (SBFs) and are based on the convolution of the load cell output signal with a sequence of few impulses (typically, between 2 and 5). The amplitudes and the instants of application of such impulses are computed through the analytical development of the load cell step response, by imposing the admissible residual oscillation in the steady-state filtered signal and by requiring the desired sensitivity of the filter. The inclusion of robustness specifications tackles effectively the unavoidable uncertainty and variability in the load cell frequency and damping. The effectiveness of the proposed filters is proved experimentally through an industrial set up: the load-cell-instrumented weigh bucket of a multihead weighing machine for packaging. A performance comparison with other benchmark filters is provided and discussed too.
Diagnosable structured logic array
NASA Technical Reports Server (NTRS)
Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)
2009-01-01
A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika
2017-05-01
Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
Skeletal Adaptation to Daily Activity: A Biochemical Perspective
NASA Technical Reports Server (NTRS)
Whalen, Robert T.; Dalton, Bonnie (Technical Monitor)
2002-01-01
Musculoskeletal forces generated by normal daily activity on Earth maintain the functional and structural properties of muscle and bone throughout most of one's adult life. A reduction in the level of cumulative daily loading caused by space flight, bed rest or spinal cord injury induces rapid muscle atrophy, functional changes in muscle, and bone resorption in regions subjected to the reduced loading. Bone cells in culture and bone tissue reportedly respond to a wide variety of non-mechanical and mechanical stimuli ranging, from electromagnetic fields, and hormones to small amplitude, high frequency vibrations, fluid flow, strain rate, and stress/strain magnitude. However, neither the transduction mechanism that transforms the mechanical input into a muscle or bone metabolic response nor the characteristics, of the loading history that directly or indirectly stimulates the cell is known. Identifying the factors contributing to the input stimulus will have a major impact on the design of effective countermeasures for long duration space flight. This talk will present a brief overview of current theories of bone remodeling and functional adaptation to mechanical loading. Work from our lab will be presented from the perspective of daily cumulative loading on Earth and its relationship to bone density and structure. Our objective is to use the tibia and calcaneus as model bone sites of cortical and cancellous bone adaptation, loaded daily by musculoskeletal forces in equilibrium with the ground reaction force. All materials that will be discussed are in the open scientific literature.
NASA Astrophysics Data System (ADS)
Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques
2017-04-01
Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.
Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity
NASA Technical Reports Server (NTRS)
Newman, Brett A.
1999-01-01
Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.
Barbaro, Jeffrey R.; Walter, Donald A.; LeBlanc, Denis R.
2013-01-01
Land disposal of treated wastewater from a treatment plant on the Massachusetts Military Reservation in operation from 1936 to 1995 has created a plume of contaminated groundwater that is migrating toward coastal discharge areas in the town of Falmouth, Massachusetts. To develop a better understanding of the potential impact of the treated-wastewater plume on coastal discharge areas, the U.S. Geological Survey, in cooperation with the Air Force Center for Engineering and the Environment, evaluated the fate of nitrogen (N) in the plume. Groundwater samples from two large sampling events in 1994 and 2007 were used to map the size and location of the plume, calculate the masses of nitrate-N and ammonium-N, evaluate changes in mass since cessation of disposal in 1995, and create a gridded dataset suitable for use in nitrogen-transport simulations. In 2007, the treated-wastewater plume was about 1,200 meters (m) wide, 30 m thick, and 7,700 m long and contained approximately 87,000 kilograms (kg) nitrate-N and 31,600 kg total ammonium-N. An analysis of previous studies and data from 1994 and 2007 sampling events suggests that most of biologically reactive nitrogen in the plume in 2007 will be transported to coastal discharge areas as either nitrate or ammonium with relatively little transformation to an environmentally nonreactive end product such as nitrogen gas. Nitrogen-transport simulations were conducted with a previously calibrated regional three-dimensional MODFLOW groundwater flow model. Mass-loaded particle tracking was used to simulate the advective transport of nitrogen to discharge areas (or receptors) along the coast. In the simulations, nonreactive transport (no mass loss in the aquifer) was assumed, providing an upper-end estimate of nitrogen loads to receptors. Simulations indicate that approximately 95 percent of the nitrate-N and 99 percent of the ammonium-N in the wastewater plume will eventually discharge to the Coonamessett River, Backus River, Green Pond, and Bournes River. Approximately 76 percent of the total nitrate-N mass in the plume will discharge to these receptors within 100 years of 2007; 90 and 94 percent will discharge within 200 and 500 years, respectively. Nitrate loads will peak within about 50 years at all of the major receptors. The highest peak loads will occur at the Coonamessett River (450 kg per year (kg/yr) nitrate-N) and the Backus River (350 kg/yr nitrate-N). Because of adsorption, travel times are longer for ammonium than for nitrate; approximately 5 percent of the total ammonium-N mass in the plume will discharge to receptors within 100 years; 46 and 81 percent will discharge within 200 and 500 years, respectively. The simulations indicate that the Coonamessett River will receive the largest cumulative nitrogen mass and the highest rate of discharge (load). Ongoing discharge to Ashumet Pond is relatively minor because most of the wastewater plume mass has already migrated downgradient from the pond. To evaluate the contribution of the nitrogen loads from the treated-wastewater plume to total nitrogen loads to the discharge areas, the simulated treated-wastewater plume loads were compared to steady-state nonpoint-source loads calculated by the Massachusetts Estuaries Project for 2005. Simulation results indicate that the total nitrogen loads from the treated-wastewater plume are much lower than corresponding steady-state nonpoint-source loads from the watersheds; peak plume loads are equal to 11 percent or less of the nonpoint-source loads.
Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.
Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine
2015-08-01
Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Qu, Xingda; Nussbaum, Maury A
2009-01-01
The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.
Kimball, Briant A.; Runkel, Robert L.; Gerner, Linda J.
2009-01-01
Land-management agencies are faced with decisions about remediation in streams affected by mine drainage. In support of the U. S. Forest Service, for the Uinta National Forest, the U.S. Geological Survey conducted mass-loading studies in American Fork and Mary Ellen Gulch, Utah. Synoptic samples were collected along a 10,000-meter study reach in American Fork and 4,500-meter reach in Mary Ellen Gulch. Tracer-injection methods were combined with synoptic sampling methods to evaluate discharge and mass loading. This data-series report gives the results of the chemical analyses of these samples and provides the equations used to calculate discharge from tracer concentrations and loads from discharge and concentrations of the constituents. The detailed information from these studies will facilitate the preparation of interpretive reports and discussions with stakeholder groups. Data presented include detailed locations of the sampling sites, results of chemical analyses, and graphs of mass-loading profiles for major and trace elements in American Fork and Mary Ellen Gulch. Ultrafiltration was used to define filtered concentrations and total-recoverable concentrations were measured on unfiltered samples.
Apparent negative mass in QCM sensors due to punctual rigid loading
NASA Astrophysics Data System (ADS)
Castro, P.; Resa, P.; Elvira, L.
2012-12-01
Quartz Crystal Microbalances (QCM) are highly sensitive piezoelectric sensors able to detect very small loads attached to them. These devices are widely employed in many applications including process control and industrial and environmental monitoring. Mass loading is usually related to frequency shift by the well-known Sauerbrey's equation, valid for thin rigid homogeneous films. However, a significant deviation from this equation can occur when the mass is not uniformly distributed over the surface. Whereas the effects of a thin film on a QCM have been thoroughly studied, there are relatively few results on punctual loads, even though particles are usually deposited randomly and non-uniformly on the resonator surface. In this work, we have studied the effect of punctual rigid loading on the resonant frequency shift of a QCM sensor, both experimentally and using finite element method (FEM). The FEM numerical analysis was done using COMSOL software, 3D modeling a linear elastic piezoelectric solid and introducing the properties of an AT-cut quartz crystal. It is shown that a punctual rigid mass deposition on the surface of a QCM sensor can lead to positive shifts of resonance frequency, contrary to Sauerbrey's equation.
Free-free and fixed base modal survey tests of the Space Station Common Module Prototype
NASA Technical Reports Server (NTRS)
Driskill, T. C.; Anderson, J. B.; Coleman, A. D.
1992-01-01
This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.
2007-01-01
Hydrologists have long been concerned with the interface of groundwater flow into estuaries, but not until the end of the last century did other disciplines realize the major role played by groundwater transport of nutrients to estuaries. Mass balance and stable isotopic data suggest that land-derived NO3, NH4, and dissolved organic N do enter estuaries in amounts likely to affect the function of the receiving ecosystem. Because of increasing human occupancy of the coastal zone, the nutrient loads borne by groundwater have increased in recent decades, in spite of substantial interception of nutrients within the land and aquifer components of watersheds. Groundwater-borne nutrient loads have increased the N content of receiving estuaries, increased phytoplankton and macroalgal production and biomass, decreased the area of seagrasses, and created a cascade of associated ecological changes. This linkage between land use and eutrophication of estuaries occurs in spite of mechanisms, including uptake of land-derived N by riparian vegetation and fringing wetlands, “unloading” by rapid water removal, and direct N inputs to estuaries, that tend to uncouple the effects of land use on receiving estuaries. It can be expected that as human activity on coastal watersheds continues to increase, the role of groundwater-borne nutrients to the receiving estuary will also increase.
Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.
2006-01-01
Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.
Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.
2011-01-01
The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.
Proposed Framework for Determining Added Mass of Orion Drogue Parachutes
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Dearman, James; Morris, Aaron
2011-01-01
The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is executing a program to qualify a parachute system for a next generation human spacecraft. Part of the qualification process involves predicting parachute riser tension during system descent with flight simulations. Human rating the CPAS hardware requires a high degree of confidence in the simulation models used to predict parachute loads. However, uncertainty exists in the heritage added mass models used for loads predictions due to a lack of supporting documentation and data. Even though CPAS anchors flight simulation loads predictions to flight tests, extrapolation of these models outside the test regime carries the risk of producing non-bounding loads. A set of equations based on empirically derived functions of skirt radius is recommended as the simplest and most viable method to test and derive an enhanced added mass model for an inflating parachute. This will increase confidence in the capability to predict parachute loads. The selected equations are based on those published in A Simplified Dynamic Model of Parachute Inflation by Dean Wolf. An Ames 80x120 wind tunnel test campaign is recommended to acquire the reefing line tension and canopy photogrammetric data needed to quantify the terms in the Wolf equations and reduce uncertainties in parachute loads predictions. Once the campaign is completed, the Wolf equations can be used to predict loads in a typical CPAS Drogue Flight test. Comprehensive descriptions of added mass test techniques from the Apollo Era to the current CPAS project are included for reference.
Plio-Pleistocene evolution of water mass exchange and erosional input at the Atlantic-Arctic gateway
NASA Astrophysics Data System (ADS)
Teschner, Claudia; Frank, Martin; Haley, Brian A.; Knies, Jochen
2016-05-01
Water mass exchange between the Arctic Ocean and the Norwegian-Greenland Seas has played an important role for the Atlantic thermohaline circulation and Northern Hemisphere climate. We reconstruct past water mass mixing and erosional inputs from the radiogenic isotope compositions of neodymium (Nd), lead (Pb), and strontium (Sr) at Ocean Drilling Program site 911 (leg 151) from 906 m water depth on Yermak Plateau in the Fram Strait over the past 5.2 Myr. The isotopic compositions of past bottom waters were extracted from authigenic oxyhydroxide coatings of the bulk sediments. Neodymium isotope signatures obtained from surface sediments agree well with present-day deepwater ɛNd signature of -11.0 ± 0.2. Prior to 2.7 Ma the Nd and Pb isotope compositions of the bottom waters only show small variations indicative of a consistent influence of Atlantic waters. Since the major intensification of the Northern Hemisphere Glaciation at 2.7 Ma the seawater Nd isotope composition has varied more pronouncedly due to changes in weathering inputs related to the waxing and waning of the ice sheets on Svalbard, the Barents Sea, and the Eurasian shelf, due to changes in water mass exchange and due to the increasing supply of ice-rafted debris (IRD) originating from the Arctic Ocean. The seawater Pb isotope record also exhibits a higher short-term variability after 2.7 Ma, but there is also a trend toward more radiogenic values, which reflects a combination of changes in input sources and enhanced incongruent weathering inputs of Pb released from freshly eroded old continental rocks.
An apparatus for altering the mechanical load of the respiratory system.
Younes, M; Bilan, D; Jung, D; Kroker, H
1987-06-01
We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.
NASA Technical Reports Server (NTRS)
Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie
2015-01-01
This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.
Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run
2012-04-01
Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.
NASA Technical Reports Server (NTRS)
Combi, M. R.; Kabin, K.; Gombosi, T. I.; DeZeeuw, D. L.; Powell, K. G.
1998-01-01
The first results for applying a three-dimensional multimedia ideal MHD model for the mass-loaded flow of Jupiter's corotating magnetospheric plasma past Io are presented. The model is able to consider simultaneously physically realistic conditions for ion mass loading, ion-neutral drag, and intrinsic magnetic field in a full global calculation without imposing artificial dissipation. Io is modeled with an extended neutral atmosphere which loads the corotating plasma torus flow with mass, momentum, and energy. The governing equations are solved using adaptive mesh refinement on an unstructured Cartesian grid using an upwind scheme for AHMED. For the work described in this paper we explored a range of models without an intrinsic magnetic field for Io. We compare our results with particle and field measurements made during the December 7, 1995, flyby of to, as published by the Galileo Orbiter experiment teams. For two extreme cases of lower boundary conditions at Io, our model can quantitatively explain the variation of density along the spacecraft trajectory and can reproduce the general appearance of the variations of magnetic field and ion pressure and temperature. The net fresh ion mass-loading rates are in the range of approximately 300-650 kg/s, and equivalent charge exchange mass-loading rates are in the range approximately 540-1150 kg/s in the vicinity of Io.
NASA Astrophysics Data System (ADS)
Green, Scott R.; Gianchandani, Yogesh B.
2010-07-01
This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe-Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000-36 000 ppm mg-1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
Evaluating process origins of sand-dominated fluvial stratigraphy
NASA Astrophysics Data System (ADS)
Chamberlin, E.; Hajek, E. A.
2015-12-01
Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large-scale downstream-fining and mass-extraction trends in basins with limited exposure.
Mass Balance of Water and Nitrogen in the Mounded Drainfield of a Drip-Dispersal Septic System.
De, Mriganka; Toor, Gurpal S
2016-07-01
Quantitative assessment of nitrogen (N) loading from septic systems is needed to protect groundwater contamination. We determined the mass balance of water and N in the mounded drainfield of a drip-dispersal septic system. Three lysimeters (152.4 cm long, 91.4 cm wide, 91.4 cm high, with 1:1 side slope) were constructed using pressure-treated wood to mimic mounded drainfields. Of total water inputs, septic tank effluent (STE) added 57% water and natural rainfall added 43% water from January 2013 to January 2014. Outputs included leached water (46%) from the lysimeters over 67 sampling events ( = 15 daily and = 52 weekly flow-weighted), potential evapotranspiration (28%), and water stored in the drainfields (26%). Over 13 mo, each drainfield received 227 g of total N (STE, 99%; rainfall, 1%), of which 33% leached, 23% accumulated in the drainfield, and 6% was taken up by grass, with the remainder (38%) estimated to be gaseous N loss. Using these data, the leaching of water from 2.5 million drip-dispersal drainfields in the state of Florida was estimated to be 2.29 × 10 L yr, which would transport 2.4 × 10 kg of total N yr from the drainfields to shallow groundwater. Further reduction of N below drainfields in the soil profile could be expected before STE reaches groundwater. Our results provide quantitative information on the water and N loading and can be used to optimize drainfield conditions to attenuate N and protect groundwater quality. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Load reduction of a monopile wind turbine tower using optimal tuned mass dampers
NASA Astrophysics Data System (ADS)
Tong, Xin; Zhao, Xiaowei; Zhao, Shi
2017-07-01
We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.
What caused terrestrial dust loading and climate downturns between A.D. 533 and 540?
Abbott, Dallas H.; Breger, Dee; Biscaye, Pierre E.; Barron, John A.; Juhl, Robert A.; McCafferty, Patrick
2014-01-01
Sn-rich particles, Ni-rich particles, and cosmic spherules are found together at four discrete stratigraphic levels within the 362-360 m depth interval of the Greenland Ice Sheet Project 2 (GISP2) ice core (72.6°N, 38.5°W, elevation: 3203 m). Using a previously derived calendar-year time scale, these particles span a time of increased dust loading of Earth's atmosphere between A.D. 533 and 540. The Sn-rich and Ni-rich particles contain an average of 10–11 wt% C. Their high C contents coupled with local enrichments in the volatile elements I, Zn, Cu, and Xe suggest a cometary source for the dust. The late spring timing of extraterrestrial input best matches the Eta Aquarid meteor shower associated with comet 1P/Halley. An increased flux of cometary dust might explain a modest climate downturn in A.D. 533. Both cometary dust and volcanic sulfate probably contributed to the profound global dimming during A.D. 536 and 537 but may be insufficient sources of fine aerosols. We found tropical marine microfossils and aerosol-sized CaCO3 particles at the end A.D. 535–start A.D. 536 level that we attribute to a low-latitude explosion in the ocean. This additional source of dust is probably needed to explain the solar dimming during A.D. 536 and 537. Although there has been no extinction documented at A.D. 536, our results are relevant because mass extinctions may also have multiple drivers. Detailed examinations of fine particles at and near extinction horizons can help to determine the relative contributions of cosmic and volcanic drivers to mass extinctions.
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramey, G. ED; Jenkins, Robert C.
1994-01-01
The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
NASA Technical Reports Server (NTRS)
Schnitzer, Emanuel
1953-01-01
A theoretical method is derived for the determination of the motions and loads during chine-immersed water landings of prismatic bodies. This method makes use of a variation of two-dimensional deflected water mass over the complete range of immersion, modified by a correction for three-dimensional flow. Equations are simplified through omission of the term proportional to the acceleration of the deflected mass for use in calculation of loads on hulls having moderate and heavy beam loading. The effects of water rise at the keel are included in these equations. In order to make a direct comparison of theory with experiment, a modification of the equations was made to include the effect of finite test-carriage mass. A simple method of computation which can be applied without reading the body of this report is presented as an appendix along with the required theoretical plots for determination of loads and motions in chine-immersed landings.
Faber, G S; Kingma, I; Kuijer, P P F M; van der Molen, H F; Hoozemans, M J M; Frings-Dresen, M H W; van Dieën, J H
2009-09-01
The goal of this study was to compare the effects of the task variables block mass, working height and one- vs. two-handed block handling on low back and shoulder loading during masonry work. In a mock-up of a masonry work site, nine masonry workers performed one- and two-handed block-lifting and block-placing tasks at varying heights (ranging from floor to shoulder level) with blocks of varying mass (ranging from 6 to 16 kg). Kinematics and ground reaction forces were measured and used in a 3-D linked segment model to calculate low back and shoulder loading. Increasing lifting height appeared to be the most effective way to reduce low back loading. However, working at shoulder level resulted in relatively high shoulder loading. Therefore, it was recommended to organise masonry work in such a way that blocks are handled with the hands at about iliac crest height as much as possible.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1987-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1989-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.
1975-01-01
An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
NASA Astrophysics Data System (ADS)
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-05-01
SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-01-01
The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Harms, Kevin; Srivastava, Priyesh
A closed-cycle gasoline compression ignition engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q supercomputer. The test case has 9 million cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output performance resulted in a significant speedup in reading restart files, andmore » in an over 100-times speedup in writing restart files and files for post-processing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over 3-times faster run-time near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.« less
Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model
Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.
2013-01-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872
Net Anthropogenic Nitrogen Inputs in the Seattle, WA Metropolitan Area
NASA Astrophysics Data System (ADS)
Larson, E. K.; Alberti, M.
2014-12-01
Nitrogen loading has been identified as a potential stressor to marine ecosystems of the Puget Sound in the Pacific Northwest, and the Washington State Department of Ecology has estimated that anthropogenic sources of dissolved inorganic nitrogen to the Sound are 2.7 times higher than natural loads (Mohamedali et al. 2011). The Seattle urban area, situated in the southeast of the Sound, has the largest population in the northwestern US. Heavily urbanized along the coast, the 4 counties comprising the region (Snohomish, King, Pierce, and Kitsap) also include forests and agriculture. Urban and agricultural areas tend to have substantial anthropogenic N loading due to fertilizer application, presence of N-fixing vegetation, N atmospheric deposition, and human and other animal waste. To determine the relative contribution of urban vs. rural agricultural activities to N loads from the Seattle region to the Puget Sound, we used the Net Anthropogenic Nitrogen Inputs (NANI) calculator developed by Hong et al. (2011) for the watersheds of this region. The NANI calculator uses nationally available datasets to calculate NANI as the sum of oxidized N deposition, fertilizer application, agricultural N fixation, net food and feed inputs, and net animal and human N consumption. We found that NANI ranged from approximately 100 to 1500 kg m-2 y-1, with some of the highest rates in watersheds with high impervious surface or agricultural areas with N-fixing crops or large fertilizer additions. Many of the agricultural watersheds have intervening low-NANI watershed between themselves and the coast, thus it is likely that agricultural NANI is attenuated before entering the Puget Sound. The urban areas in the region do not have these attenuating watersheds, and so are likely to be the main contributor to the observed total aquatic N yield. This information is helpful for developing policies to reduce N loading to the Sound.
Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.
Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H
2012-11-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...
2018-03-15
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992 - 2009
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Giovinetto, Mario B.
2011-01-01
Published mass balance estimates for the Antarctic Ice Sheet (AIS) lie between approximately +50 to -250 Gt/year for 1992 to 2009, which span a range equivalent to 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar-altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (+28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. Although recent reports of large and accelerating rates of mass loss from GRACE=based studies cite agreement with IOM results, our evaluation does not support that conclusion. We find that the extrapolation used in the published IOM estimates for the 15 % of the periphery for which discharge velocities are not observed gives twice the rate of discharge per unit of associated ice-sheet area than the 85% faster-moving parts. Our calculations show that the published extrapolation overestimates the ice discharge by 282 Gt/yr compared to our assumption that the slower moving areas have 70% as much discharge per area as the faster moving parts. Also, published data on the time-series of discharge velocities and accumulation/precipitation do not support mass output increases or input decreases with time, respectively. Our modified IOM estimate, using the 70% discharge assumption and substituting input from a field-data compilation for input from an atmospheric model over 6% of area, gives a loss of only 13 Gt/year (versus 136 Gt/year) for the period around 2000. Two ERS-based estimates, our modified IOM, and a GRACE-based estimate for observations within 1992 to 2005 lie in a narrowed range of +27 to - 40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992-2001 is - 47 Gt/year for West Antarctica, + 16 Gt/year for East Antarctica, and -31 Gt/year overall (+0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07 % of the AIS area)
Unsteady load on an oscillating Kaplan turbine runner
NASA Astrophysics Data System (ADS)
Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.
2013-02-01
A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.
Changes in Gait with Anteriorly Added Mass: A Pregnancy Simulation Study
Ogamba, Maureen I.; Loverro, Kari L.; Laudicina, Natalie M.; Gill, Simone V.; Lewis, Cara L.
2016-01-01
During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy. Twenty healthy females walked on a treadmill while wearing a custom made pseudo-pregnancy sac (1 kg) under three load conditions: sac only, 10 pound condition (4.535 kg added anteriorly), and 20 pound condition (9.07 kg added anteriorly), used to simulate pregnancy, in the second trimester and at full term pregnancy, respectively. The increase in anterior mass resulted in kinematic changes at the knee, hip, pelvis, and trunk in the sagittal and frontal planes. Additionally, ankle, knee, and hip joint moments normalized to baseline mass increased with increased load; however, these moments decreased when normalized to total mass. These kinematic and kinetic changes may suggest that women modify gait biomechanics to reduce the effect of added load. Furthermore, the increase in joint moments increases stress on the musculoskeletal system and may contribute to musculoskeletal pain. PMID:26958743
Buckley, Harriet; Owen, Robert; Marin, Ana Campos; Lu, Yongtau; Eyles, Darryl; Lacroix, Damien; Reilly, Gwendolen C.; Skerry, Tim M.; Bishop, Nick J.
2018-01-01
There is increasing evidence of persistent effects of early life vitamin D exposure on later skeletal health; linking low levels in early life to smaller bone size in childhood as well as increased fracture risk later in adulthood, independently of later vitamin D status. A major determinant of bone mass acquisition across all ages is mechanical loading. We tested the hypothesis in an animal model system that early life vitamin D depletion results in abrogation of the response to mechanical loading, with consequent reduction in bone size, mass and strength during both childhood and adulthood. A murine model was created in which pregnant dams were either vitamin D deficient or replete, and their offspring moved to a vitamin D replete diet at weaning. Tibias of the offspring were mechanically loaded and bone structure, extrinsic strength and growth measured both during growth and after skeletal maturity. Offspring of vitamin D deplete mice demonstrated lower bone mass in the non loaded limb and reduced bone mass accrual in response to loading in both the growing skeleton and after skeletal maturity. Early life vitamin D depletion led to reduced bone strength and altered bone biomechanical properties. These findings suggest early life vitamin D status may, in part, determine the propensity to osteoporosis and fracture that blights later life in many individuals. PMID:29370213