Spatial operator factorization and inversion of the manipulator mass matrix
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz-Delgado, Kenneth
1992-01-01
This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Uncertainty of relative sensitivity factors in glow discharge mass spectrometry
NASA Astrophysics Data System (ADS)
Meija, Juris; Methven, Brad; Sturgeon, Ralph E.
2017-10-01
The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.
NASA Technical Reports Server (NTRS)
Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean
1997-01-01
In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.
Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
Varney, Shawn; Hirshon, Jon Mark; Dischinger, Patricia; Mackenzie, Colin
2006-01-01
The Haddon Matrix offers a classic epidemiological model for studying injury prevention. This methodology places the public health concepts of agent, host, and environment within the three sequential phases of an injury-producing incident-pre-event, event, and postevent. This study uses this methodology to illustrate how it could be applied in systematically preparing for a mass casualty disaster such as an unconventional sarin attack in a major urban setting. Nineteen city, state, federal, and military agencies responded to the Haddon Matrix chemical terrorism preparedness exercise and offered feedback in the data review session. Four injury prevention strategies (education, engineering, enforcement, and economics) were applied to the individual factors and event phases of the Haddon Matrix. The majority of factors identified in all phases were modifiable, primarily through educational interventions focused on individual healthcare providers and first responders. The Haddon Matrix provides a viable means of studying an unconventional problem, allowing for the identification of modifiable factors to decrease the type and severity of injuries following a mass casualty disaster such as a sarin release. This strategy could be successfully incorporated into disaster planning for other weapons attacks that could potentially cause mass casualties.
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
Prevedello, Jayme Augusto; Forero-Medina, Germán; Vieira, Marcus Vinícius
2010-11-01
1. For animal species inhabiting heterogeneous landscapes, the tortuosity of the dispersal path is a key determinant of the success in locating habitat patches. Path tortuosity within and beyond perceptual range must differ, and may be differently affected by intrinsic attributes of individuals and extrinsic environmental factors. Understanding how these factors interact to determine path tortuosity allows more accurate inference of successful movements between habitat patches. 2. We experimentally determined the effects of intrinsic (body mass and species identity) and extrinsic factors (distance to nearest forest fragment and matrix type) on the tortuosity of movements of three forest-dwelling didelphid marsupials, in a fragmented landscape of the Atlantic Forest, Brazil. 3. A total of 202 individuals were captured in forest fragments and released in three unsuitable matrix types (mowed pasture, abandoned pasture and manioc plantation), carrying spool-and-line devices. 4. Twenty-four models were formulated representing a priori hypotheses of major determinants of path tortuosity, grouped in three scenarios (only intrinsic factors, only extrinsic factors and models with combinations of both), and compared using a model selection approach. Models were tested separately for individuals released within the perceptual range of the species, and for individuals released beyond the perceptual range. 5. Matrix type strongly affected path tortuosity, with more obstructed matrix types hampering displacement of animals. Body mass was more important than species identity to determine path tortuosity, with larger animals moving more linearly. Increased distance to the fragment resulted in more tortuous paths, but actually reflects a threshold in perceptual range: linear paths within perceptual range, tortuous paths beyond. 6. The variables tested explained successfully path tortuosity, but only for animals released within the perceptual range. Other factors, such as wind intensity and direction of plantation rows, may be more important for individuals beyond their perceptual range. 7. Simplistic scenarios considering only intrinsic or extrinsic factors are inadequate to predict path tortuosity, and to infer dispersal success in heterogeneous landscapes. Perceptual range represents a fundamental threshold where the effects of matrix type, body mass and individual behaviour change drastically. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
NASA Astrophysics Data System (ADS)
Xu, Xiankun; Li, Peiwen
2017-11-01
Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
NASA Astrophysics Data System (ADS)
Rechthaler, Justyna; Pittenauer, Ernst; Schaub, Tanner M.; Allmaier, Günter
2013-05-01
We have studied sample preparation conditions to increase the reproducibility of positive UV-MALDI-TOF mass spectrometry of peptides in the amol range. By evaluating several α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix batches and preparation protocols, it became apparent that two factors have a large influence on the reproducibility and the quality of the generated peptide mass spectra: (1) the selection of the CHCA matrix, which allows the most sensitive measurements and an easier finding of the "sweet spots," and (2) the amount of the sample volume deposited onto the thin crystalline matrix layer. We have studied in detail the influence of a contaminant, coming from commercial CHCA matrix batches, on sensitivity of generated peptide mass spectra in the amol as well as fmol range of a tryptic peptide mixture. The structure of the contaminant, N, N-dimethylbutyl amine, was determined by applying MALDI-FT-ICR mass spectrometry experiments for elemental composition and MALDI high energy CID experiments utilizing a tandem mass spectrometer (TOF/RTOF). A recrystallization of heavily contaminated CHCA batches that reduces or eliminates the determined impurity is described. Furthermore, a fast and reliable method for the assessment of CHCA matrix batches prior to tryptic peptide MALDI mass spectrometric analyses is presented.
Takayama, Mitsuo; Nagoshi, Keishiro; Iimuro, Ryunosuke; Inatomi, Kazuma
2014-01-01
A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility. PMID:24828203
D → Klv semileptonic decay using lattice QCD with HISQ at physical pion masses
NASA Astrophysics Data System (ADS)
Chakraborty, Bipasha; Davies, Christine; Koponen, Jonna; Lepage, G. Peter
2018-03-01
he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Many Masses on One Stroke:. Economic Computation of Quark Propagators
NASA Astrophysics Data System (ADS)
Frommer, Andreas; Nöckel, Bertold; Güsken, Stephan; Lippert, Thomas; Schilling, Klaus
The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ = 1/κ-D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.
Source apportionment of VOCs in the Los Angeles area using positive matrix factorization
NASA Astrophysics Data System (ADS)
Brown, Steven G.; Frankel, Anna; Hafner, Hilary R.
Eight 3-h speciated hydrocarbon measurements were collected daily by the South Coast Air Quality Management District (SCAQMD) as part of the Photochemical Assessment Monitoring Stations (PAMS) program during the summers of 2001-03 at two sites in the Los Angeles air basin, Azusa and Hawthorne. Over 30 hydrocarbons from over 500 samples at Azusa and 600 samples at Hawthorne were subsequently analyzed using the multivariate receptor model positive matrix factorization (PMF). At Azusa and Hawthorne, five and six factors were identified, respectively, with a good comparison between predicted and measured mass. At Azusa, evaporative emissions (a median of 31% of the total mass), motor vehicle exhaust (22%), liquid/unburned gasoline (27%), coatings (17%), and biogenic emissions (3%) factors were identified. Factors identified at Hawthorne were evaporative emissions (a median of 34% of the total mass), motor vehicle exhaust (24%), industrial process losses (15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions (1%). Together, the median contribution from mobile source-related factors (exhaust, evaporative emissions, and liquid/unburned gasoline) was 80% and 71% at Azusa and Hawthorne, respectively, similar to previous source apportionment results using the chemical mass balance (CMB) model. There is a difference in the distribution among mobile source factors compared to the CMB work, with an increase in the contribution from evaporative emissions, though the cause (changes in emissions or differences between models) is unknown.
Numerical examination of the factors controlling DNAPL migration through a single fracture.
Reynolds, D A; Kueper, B H
2002-01-01
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.
Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng
2016-01-01
Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644968
Rudzki, Piotr J; Gniazdowska, Elżbieta; Buś-Kwaśnik, Katarzyna
2018-06-05
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for studying pharmacokinetics and toxicokinetics. Reliable bioanalysis requires the characterization of the matrix effect, i.e. influence of the endogenous or exogenous compounds on the analyte signal intensity. We have compared two methods for the quantitation of matrix effect. The CVs(%) of internal standard normalized matrix factors recommended by the European Medicines Agency were evaluated against internal standard normalized relative matrix effects derived from Matuszewski et al. (2003). Both methods use post-extraction spiked samples, but matrix factors require also neat solutions. We have tested both approaches using analytes of diverse chemical structures. The study did not reveal relevant differences in the results obtained with both calculation methods. After normalization with the internal standard, the CV(%) of the matrix factor was on average 0.5% higher than the corresponding relative matrix effect. The method adopted by the European Medicines Agency seems to be slightly more conservative in the analyzed datasets. Nine analytes of different structures enabled a general overview of the problem, still, further studies are encouraged to confirm our observations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Zhan, Hongbin
2018-06-01
The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.
NASA Astrophysics Data System (ADS)
Matsuda, Koichi; Nishiura, Hiroyuki
2006-01-01
A phenomenological approach for the universal mass matrix model with a broken flavor 2↔3 symmetry is explored by introducing the 2↔3 antisymmetric parts of mass matrices for quarks and charged leptons. We present explicit texture components of the mass matrices, which are consistent with all the neutrino oscillation experiments and quark mixing data. The mass matrices have a common structure for quarks and leptons, while the large lepton mixings and the small quark mixings are derived with no fine-tuning due to the difference of the phase factors. The model predicts a value 2.4×10-3 for the lepton mixing matrix element square |U13|2, and also ⟨mν⟩=(0.89-1.4)×10-4eV for the averaged neutrino mass which appears in the neutrinoless double beta decay.
Xu, Jianqiao; Huang, Shuyao; Jiang, Ruifen; Cui, Shufen; Luan, Tiangang; Chen, Guosheng; Qiu, Junlang; Cao, Chenyang; Zhu, Fang; Ouyang, Gangfeng
2016-04-21
Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
Malys, Brian J; Owens, Kevin G
2017-05-15
Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M
2007-12-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.
2007-01-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800
Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J
2016-07-01
The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Engström, Karl Gunnar; Angrén, John; Björnstig, Ulf; Saveman, Britt-Inger
2018-02-01
Underground mining is associated with obvious risks that can lead to mass casualty incidents. Information about such incidents was analyzed in an integrated literature review. A literature search (1980-2015) identified 564 modern-era underground mining reports from countries sharing similar occupational health legislation. These reports were condensed to 31 reports after consideration of quality grading and appropriateness to the aim. The Haddon matrix was used for structure, separating human factors from technical and environmental details, and timing. Most of the reports were descriptive regarding injury-creating technical and environmental factors. The influence of rock characteristics was an important pre-event environmental factor. The organic nature of coal adds risks not shared in hard-rock mines. A sequence of mechanisms is commonly described, often initiated by a human factor in interaction with technology and step-wise escalation to involve environmental circumstances. Socioeconomic factors introduce heterogeneity. In the Haddon matrix, emergency medical services are mainly a post-event environmental issue, which were not well described in the available literature. The US Quecreek Coal Mine incident of 2002 stands out as a well-planned rescue mission. Evaluation of the preparedness to handle underground mining incidents deserves further scientific attention. Preparedness must include the medical aspects of rescue operations. (Disaster Med Public Health Preparedness. 2018;12:138-146).
Recursive dynamics for flexible multibody systems using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1990-01-01
Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Tilp, Alison; Fast, Jerome
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
Scalar and vector form factors of D →π (K )ℓν decays with Nf=2 +1 +1 twisted fermions
NASA Astrophysics Data System (ADS)
Lubicz, V.; Riggio, L.; Salerno, G.; Simula, S.; Tarantino, C.; ETM Collaboration
2017-09-01
We present a lattice determination of the vector and scalar form factors of the D →π ℓν and D →K ℓν semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vc d| and |Vc s| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 flavors of dynamical quarks, at three different values of the lattice spacing (a ≃0.062 ,0.082 ,0.089 fm ) and with pion masses as small as 210 MeV. Quark momenta are injected on the lattice using nonperiodic boundary conditions. The matrix elements of both vector and scalar currents are determined for plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit, we determine the vector and scalar form factors in the whole kinematical region from q2=0 up to qmax2=(MD-Mπ (K ))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible. A set of synthetic data points, representing our results for f+Dπ (K )(q2) and f0D π (K )(q2) for several selected values of q2, is provided and also the corresponding covariance matrix is available. At zero four-momentum transfer, we get f+D→π(0 )=0.612 (35 ) and f+D→K(0 )=0.765 (31 ). Using the experimental averages for |Vc d|f+D→π(0 ) and |Vc s|f+D→K(0 ), we extract |Vc d|=0.2330 (137 ) and |Vc s|=0.945 (38 ), respectively. The second row of the CKM matrix is found to be in agreement with unitarity within the current uncertainties: |Vc d|2+|Vc s|2+|Vc b|2=0.949 (78 ).
Tensor form factor for the D → π(K) transitions with Twisted Mass fermions.
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a preliminary lattice calculation of the D → π and D → K tensor form factors fT (q2) as a function of the squared 4-momentum transfer q2. ETMC recently computed the vector and scalar form factors f+(q2) and f0(q2) describing D → π(K)lv semileptonic decays analyzing the vector current and the scalar density. The study of the weak tensor current, which is directly related to the tensor form factor, completes the set of hadronic matrix element regulating the transition between these two pseudoscalar mesons within and beyond the Standard Model where a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV and with the valence heavy quark in the mass range from ≃ 0.7 mc to ≃ 1.2mc. The matrix element of the tensor current are determined for a plethora of kinematical conditions in which parent and child mesons are either moving or at rest. As for the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data. We will present preliminary results on the removal of such hypercubic lattice effects.
Eigenvalue computations with the QUAD4 consistent-mass matrix
NASA Technical Reports Server (NTRS)
Butler, Thomas A.
1990-01-01
The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.
1988-01-01
This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2014-08-01
Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to understand better the chemical nature of atypical factors from high-resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of the extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2014-02-01
Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
Alcántara-Durán, Jaime; Moreno-González, David; Gilbert-López, Bienvenida; Molina-Díaz, Antonio; García-Reyes, Juan F
2018-04-15
In this work, a sensitive method based on nanoflow liquid chromatography high-resolution mass spectrometry has been developed for the multiresidue determination of veterinary drugs residues in honey, veal muscle, egg and milk. Salting-out supported liquid extraction was employed as sample treatment for milk, veal muscle and egg, while a modified QuEChERS procedure was used in honey. The enhancement of sensitivity provided by the nanoflow LC system also allowed the implementation of high dilution factors as high as 100:1. For all matrices tested, matrix effects were negligible starting from a dilution factor of 100, enabling, thus, the use of external standard calibration instead of matrix-matched calibration of each sample, and the subsequent increase of laboratory throughput. At spiked levels as low as 0.1 or 1 µg kg -1 before the 1:100 dilution, the obtained signals were still significantly higher than the instrumental limit of quantitation (S/N 10). Copyright © 2017 Elsevier Ltd. All rights reserved.
O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P
2017-05-01
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.
Stupavska, Monika; Jerigova, Monika; Michalka, Miroslav; Hasko, Daniel; Szoecs, Vojtech; Velic, Dusan
2011-12-01
A technique for improving the sensitivity of high mass molecular analysis is described. Three carbon species, fullerenes, single walled carbon nanotubes, and highly ordered pyrolytic graphite are introduced as matrices for the secondary ion mass spectrometry analysis of cyclodextrin (C(42)H(70)O(35), 1134 u). The fullerene and nanotubes are deposited as single deposition, and 10, 20, or 30 deposition films and cyclodextrin is deposited on top. The cyclodextrin parent-like ions and two fragments were analyzed. A 30 deposition fullerene film enhanced the intensity of cationized cyclodextrin with Na by a factor of 37. While the C(6)H(11)O(5) fragment, corresponding to one glucopyranose unit, increased by a factor of 16. Although fragmentation on fullerene is not suppressed, the intensity is twice as low as the parent-like ion. Deprotonated cyclodextrin increases by 100× and its C(8)H(7)O fragment by 10×. While the fullerene matrix enhances secondary ion emission, the nanotubes matrix film generates a basically constant yield. Graphite gives rise to lower intensity peaks than either fullerene or nanotubes. Scanning electron microscopy and atomic force microscopy provide images of the fullerene and nanotubes deposition films revealing flat and web structured surfaces, respectively. A "colliding ball" model is presented to provide a plausible physical mechanism of parent-like ion enhancement using the fullerene matrix. © American Society for Mass Spectrometry, 2011
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Tahboub, Yahya R
2014-12-01
Chromatographic behavior of co-eluted compounds from un-extracted drug-free plasma samples was studied by LC-MS and LC-MS/MS with positive APCI. Under soft gradient, total ion chromatogram (TIC) consisted of two major peaks separated by a constant lower intensity region. Early peak (0.15-0.4 min) belongs to polar plasma compounds and consisted of smaller mass ions ( m / z <250); late peak (3.6-4.6 min) belongs to thermally unstable phospholipids and consisted of fragments with m / z <300. Late peak is more sensitive to variations in chromatographic and MS parameters. Screening of most targeted cardiovascular drugs at levels lower than 50 ng/mL has been possible by LC-MS for drugs with retention factors larger than three. Matrix effects and recovery, at 20 and 200 ng/mL, were evaluated for spiked plasma samples with 15 cardiovascular drugs, by MRM-LC-MS/MS. Average recoveries were above 90% and matrix effects expressed as percent matrix factor (% MF) were above 100%, indicating enhancement character for APCI. Large uncertainties were significant for drugs with smaller masses ( m / z <250) and retention factors lower than two.
NASA Astrophysics Data System (ADS)
Nirmalkar, J.; Raman, R. S.
2016-12-01
Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, J; Zhang, Q; Tilp, A
Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.
Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less
Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...
2015-04-01
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor
2018-04-01
In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, John
A measurement of the top quark mass in tmore » $$\\bar{t}$$ → l + jets candidate events, obtained from p$$\\bar{p}$$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$$\\bar{t}$$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb -1 data sample, using events with a high-p T lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M meas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c 2.« less
NASA Astrophysics Data System (ADS)
Spicer, Graham L. C.; Azarin, Samira M.; Yi, Ji; Young, Scott T.; Ellis, Ronald; Bauer, Greta M.; Shea, Lonnie D.; Backman, Vadim
2016-10-01
In cancer biology, there has been a recent effort to understand tumor formation in the context of the tissue microenvironment. In particular, recent progress has explored the mechanisms behind how changes in the cell-extracellular matrix ensemble influence progression of the disease. The extensive use of in vitro tissue culture models in simulant matrix has proven effective at studying such interactions, but modalities for non-invasively quantifying aspects of these systems are scant. We present the novel application of an imaging technique, Inverse Spectroscopic Optical Coherence Tomography, for the non-destructive measurement of in vitro biological samples during matrix remodeling. Our findings indicate that the nanoscale-sensitive mass density correlation shape factor D of cancer cells increases in response to a more crosslinked matrix. We present a facile technique for the non-invasive, quantitative study of the micro- and nano-scale structure of the extracellular matrix and its host cells.
Sun, Mingyun; Lin, Jennifer S.
2012-01-01
Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses (HECs) with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide (LPA). Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1 Kb DNA extension ladder (200 bp to 40,000 bp) was completed in 2 minutes. An orthogonal Design of Experiments (DOE) was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 kbp and 10 kbp, and large dsDNA fragments above 10 kbp. PMID:22009451
Li, Bin; Comi, Troy J; Si, Tong; Dunham, Sage J B; Sweedler, Jonathan V
2016-11-01
Matrix-assisted laser desorption/ionization imaging of biofilms cultured on agar plates is challenging because of problems related to matrix deposition onto agar. We describe a one-step, spray-based application of a 2,5-dihydroxybenzoic acid solution for direct matrix-assisted laser desorption/ionization imaging of hydrated Bacillus subtilis biofilms on agar. Using both an optimized airbrush and a home-built automatic sprayer, region-specific distributions of signaling metabolites and cannibalistic factors were visualized from B. subtilis cells cultivated on biofilm-promoting medium. The approach provides a homogeneous, relatively dry coating on hydrated samples, improving spot to spot signal repeatability compared with sieved matrix application, and is easily adapted for imaging a range of agar-based biofilms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.
2013-01-01
Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243
Dutton, Steven J.; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B.; Miller, Shelly L.; Hannigan, Michael P.
2012-01-01
Particulate matter less than 2.5 microns in diameter (PM2.5) has been linked with a wide range of adverse health effects. Determination of the sources of PM2.5 most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM2.5 speciation measurements. In this study, PM2.5 source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM2.5 measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF. Sensitivity of the PMF2 and ME2 models to the selection of speciated PM2.5 components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM2.5 emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers. PMID:22768005
Thomas precession, Wigner rotations and gauge transformations
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Son, D.
1987-01-01
The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.
NASA Astrophysics Data System (ADS)
Hoffmann, Thomas; Dorrestein, Pieter C.
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.
Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.
2013-05-01
Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
The Assessment of Selectivity in Different Quadrupole-Orbitrap Mass Spectrometry Acquisition Modes
NASA Astrophysics Data System (ADS)
Berendsen, Bjorn J. A.; Wegh, Robin S.; Meijer, Thijs; Nielen, Michel W. F.
2015-02-01
Selectivity of the confirmation of identity in liquid chromatography (tandem) mass spectrometry using Q-Orbitrap instrumentation was assessed using different acquisition modes based on a representative experimental data set constructed from 108 samples, including six different matrix extracts and containing over 100 analytes each. Single stage full scan, all ion fragmentation, and product ion scanning were applied. By generating reconstructed ion chromatograms using unit mass window in targeted MS2, selected reaction monitoring (SRM), regularly applied using triple-quadrupole instruments, was mimicked. This facilitated the comparison of single stage full scan, all ion fragmentation, (mimicked) SRM, and product ion scanning applying a mass window down to 1 ppm. Single factor Analysis of Variance was carried out on the variance (s2) of the mass error to determine which factors and interactions are significant parameters with respect to selectivity. We conclude that selectivity is related to the target compound (mainly the mass defect), the matrix, sample clean-up, concentration, and mass resolution. Selectivity of the different instrumental configurations was quantified by counting the number of interfering peaks observed in the chromatograms. We conclude that precursor ion selection significantly contributes to selectivity: monitoring of a single product ion at high mass accuracy with a 1 Da precursor ion window proved to be equally selective or better to monitoring two transition products in mimicked SRM. In contrast, monitoring a single fragment in all ion fragmentation mode results in significantly lower selectivity versus mimicked SRM. After a thorough inter-laboratory evaluation study, the results of this study can be used for a critical reassessment of the current identification points system and contribute to the next generation of evidence-based and robust performance criteria in residue analysis and sports doping.
Isolation and characterization of chicken bile matrix metalloproteinase.
Packialakshmi, B; Liyanage, R; Rasaputra, K S; Lay, Jackson O; Rath, N C
2014-06-01
Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies, but the significance of their expression in normal, healthy bile is not understood. We hypothesized that the MMP in bile may aid the digestion of native collagens that are resistant to conventional gastric proteases. Hence, the objective of this study was to characterize the bile MMP and check its regulation in association with dietary factors. We used substrate zymography, azocoll protease assay, and gelatin affinity chromatography to identify and purify the MMP from chicken bile. Using zymography and SDS PAGE, 5 bands at 70, 64, 58, 50, and 42 kDa were detected. The bands corresponding to 64, 50, and 42 kDa were identified as MMP2 using trypsin in-gel digestion and matrix-assisted laser desorption time-of-flight mass spectrometry and peptide mass fingerprinting. Chickens fed diets containing gelatin supplements showed higher levels of MMP expression in the bile by both azocoll assay and zymography. We conclude that the bile MMP may be associated with the digestion of collagens and other extracellular matrix proteins in avian diets. Poultry Science Association Inc.
Schmidt, Kathrin S; Mankertz, Joachim
2018-06-01
A sensitive and robust LC-MS/MS method allowing the rapid screening and confirmation of selective androgen receptor modulators in bovine urine was developed and successfully validated according to Commission Decision 2002/657/EC, chapter 3.1.3 'alternative validation', by applying a matrix-comprehensive in-house validation concept. The confirmation of the analytes in the validation samples was achieved both on the basis of the MRM ion ratios as laid down in Commission Decision 2002/657/EC and by comparison of their enhanced product ion (EPI) spectra with a reference mass spectral library by making use of the QTRAP technology. Here, in addition to the MRM survey scan, EPI spectra were generated in a data-dependent way according to an information-dependent acquisition criterion. Moreover, stability studies of the analytes in solution and in matrix according to an isochronous approach proved the stability of the analytes in solution and in matrix for at least the duration of the validation study. To identify factors that have a significant influence on the test method in routine analysis, a factorial effect analysis was performed. To this end, factors considered to be relevant for the method in routine analysis (e.g. operator, storage duration of the extracts before measurement, different cartridge lots and different hydrolysis conditions) were systematically varied on two levels. The examination of the extent to which these factors influence the measurement results of the individual analytes showed that none of the validation factors exerts a significant influence on the measurement results.
Nagy, Erzsébet; Abrók, Marianna; Bartha, Noémi; Bereczki, László; Juhász, Emese; Kardos, Gábor; Kristóf, Katalin; Miszti, Cecilia; Urbán, Edit
2014-09-21
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures.
NOVEL STATISTICAL APPROACH TO EVALUATE SPATIAL DISTRIBUTION OF PM FROM SPECIFIC SOURCE CATEGORIES
This task addresses aspects of NRC recommendations 10A and 10B. Positive matrix factorization (PMF) is a new statistical techniques for determining the daily contribution to PM mass of specific source categories (auto exhaust, smelters, suspended soil, secondary sulfate, etc.). I...
Boysen, Angela K; Heal, Katherine R; Carlson, Laura T; Ingalls, Anitra E
2018-01-16
The goal of metabolomics is to measure the entire range of small organic molecules in biological samples. In liquid chromatography-mass spectrometry-based metabolomics, formidable analytical challenges remain in removing the nonbiological factors that affect chromatographic peak areas. These factors include sample matrix-induced ion suppression, chromatographic quality, and analytical drift. The combination of these factors is referred to as obscuring variation. Some metabolomics samples can exhibit intense obscuring variation due to matrix-induced ion suppression, rendering large amounts of data unreliable and difficult to interpret. Existing normalization techniques have limited applicability to these sample types. Here we present a data normalization method to minimize the effects of obscuring variation. We normalize peak areas using a batch-specific normalization process, which matches measured metabolites with isotope-labeled internal standards that behave similarly during the analysis. This method, called best-matched internal standard (B-MIS) normalization, can be applied to targeted or untargeted metabolomics data sets and yields relative concentrations. We evaluate and demonstrate the utility of B-MIS normalization using marine environmental samples and laboratory grown cultures of phytoplankton. In untargeted analyses, B-MIS normalization allowed for inclusion of mass features in downstream analyses that would have been considered unreliable without normalization due to obscuring variation. B-MIS normalization for targeted or untargeted metabolomics is freely available at https://github.com/IngallsLabUW/B-MIS-normalization .
NASA Astrophysics Data System (ADS)
Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang
2016-07-01
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.
Aerosol composition and sources in the Central Arctic Ocean during ASCOS
NASA Astrophysics Data System (ADS)
Chang, R. Y.-W.; Leck, C.; Graus, M.; Müller, M.; Paatero, J.; Burkhart, J. F.; Stohl, A.; Orr, L. H.; Hayden, K.; Li, S.-M.; Hansel, A.; Tjernström, M.; Leaitch, W. R.; Abbatt, J. P. D.
2011-05-01
Measurements of submicron aerosol chemical composition were made in the Central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.042 and 0.046 μg m-3, respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33 % and 36 % of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47 % of the sulphate apportioned to marine biogenic sources and 48 % to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25 ± 0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it was more processed and had been present longer in the atmosphere than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources.
Texture zeros and hierarchical masses from flavour (mis)alignment
NASA Astrophysics Data System (ADS)
Hollik, W. G.; Saldana-Salazar, U. J.
2018-03-01
We introduce an unconventional interpretation of the fermion mass matrix elements. As the full rotational freedom of the gauge-kinetic terms renders a set of infinite bases called weak bases, basis-dependent structures as mass matrices are unphysical. Matrix invariants, on the other hand, provide a set of basis-independent objects which are of more relevance. We employ one of these invariants to give a new parametrisation of the mass matrices. By virtue of it, one gains control over its implicit implications on several mass matrix structures. The key element is the trace invariant which resembles the equation of a hypersphere with a radius equal to the Frobenius norm of the mass matrix. With the concepts of alignment or misalignment we can identify texture zeros with certain alignments whereas Froggatt-Nielsen structures in the matrix elements are governed by misalignment. This method allows further insights of traditional approaches to the underlying flavour geometry.
Aerosol composition and sources in the central Arctic Ocean during ASCOS
NASA Astrophysics Data System (ADS)
Chang, R. Y.-W.; Leck, C.; Graus, M.; Müller, M.; Paatero, J.; Burkhart, J. F.; Stohl, A.; Orr, L. H.; Hayden, K.; Li, S.-M.; Hansel, A.; Tjernström, M.; Leaitch, W. R.; Abbatt, J. P. D.
2011-10-01
Measurements of submicron aerosol chemical composition were made over the central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.051 and 0.055 μ g m-3, respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33% and 36% of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47% of the sulphate apportioned to marine biogenic sources and 48% to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25 ± 0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it had a longer photochemical lifetime than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources. In particular, given that the factor does not correlate with common tracers of continental influence, we cannot rule out that the organic factor arises from a primary marine source.
Hoffmann, Thomas; Dorrestein, Pieter C
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique. Graphical Abstract ᅟ.
Butler, G S; Overall, C M
2007-01-01
We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.
High Precision Low-blank Lithium Isotope Ratios in Forams.
NASA Astrophysics Data System (ADS)
Misra, S.; Froelich, P. N.
2007-12-01
We present a high precision (±1‰, 2σ) low blank (<500 fg/ml) method for Li isotope measurements of forams using <2 ng of Li by single collector Quad ICP-MS (Agilent 7500cs). The Li isotope ratio of seawater (δ7Li) recorded in planktonic forams has the potential to constrain the evolution of seawater chemistry and elucidate the factors driving variations of oceanic mass balances linked to the continental and sea floor/hydrothermal silica cycles. In addition a δ7Li record of seawater will complement other long-term recorders of seawater chemistry such as Sr, Os and S isotopes. Li isotope measurements of forams are limited by several factors: low Li concentrations in forams (1-2 ppm), instrument-induced fractionation and mass bias effects, matrix effects, high Li blanks and incomplete recovery of Li during column separation. Modest concentrations of alkali and alkaline earth elements in the matrix result in variable mass bias in measured Li isotope ratios. Even worse, Li strongly fractionates during chromatographic clean-up to remove Na+, Ca2+ and Mg2+, from +100‰ in the leading edge to - 100‰ in the trailing edge of elution peaks (Urey 1938). Consequently, miniscule incomplete recoveries of Li during chromatographic separations can result in large unrecognized isotope fractionation of eluents. Large mass-dependent fractionation caused by a difference of 17% in mass between 6Li and 7Li, makes Li a powerful tracer of geochemical processes, but also promotes large and difficult-to-fix isotope fractionations during laboratory chemical processing. Matrix effects of Na & Ca and of column chromatography on Li isotope ratios were investigated using artificial Li solutions representative of foram compositions (matrix matching). Li/Ca and Li/Na ratios in cleaned forams are 10 μmol/mol and 3 mmol/mol respectively. An ICP-MS tolerance limit of 20 ppb for Na and 20 μM for Ca was established, much higher tolerances than by TIMS. A single step chromatographic method to quantitatively separate Li from matrix elements using both small volume resin (3.4 meq/2ml AG50W-X8) and acid (6 ml of 0.5N HCl) was developed. Our low blank (<0.5 pg/ml) and high yield (>99.99%) column method minimizes errors in measured Li isotope ratios associated with incomplete column recovery and presence of matrix elements. High sensitivity and precision achieved with a 7500cs using cold plasma (600W), soft extraction and peak jumping coupled with very low sample to blank ratios enables high precision (±1‰, 2σ) statistically significant Li isotope measurements using very small mass of Li (0.8 ng). The development of this technique makes possible good quality Li isotope measurements from samples that are mass limited for Li, i.e., reasonable number of picked forams. This will enable us to test interferences regarding chemical cleaning and species effects in planktonic forams along the road toward creating a δ7Li record of seawater for the Cenozoic.
Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix
NASA Astrophysics Data System (ADS)
Caldwell, Kathleen L.; Murray, Kermit K.
1998-05-01
Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.
Characterization of urban aerosol in Cork City (Ireland) using aerosol mass spectrometry
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.
2012-11-01
Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC), sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) and was also found to comprise organic matter as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and then chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA) comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA) comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA) comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA) but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively).
Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; ...
2016-11-25
Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less
NASA Astrophysics Data System (ADS)
Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.
2016-11-01
We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.
2014-08-06
the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element
Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.
Reactive solute transport in an asymmetrical fracture-rock matrix system
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Zhan, Hongbin
2018-02-01
The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.
NASA Astrophysics Data System (ADS)
Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.
A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.
Automated acoustic matrix deposition for MALDI sample preparation.
Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M
2006-02-01
Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.
SOURCE APPORTIONMENT OF PM2.5 AT AN URBAN IMPROVE SITE IN SEATTLE, WA
The multivariate receptor models Positive Matrix Factorization (PMF) and Unmix were used along with EPA's Chemical Mass Balance model to deduce the sources of PM2.5 at a centrally located urban site in Seattle, Washington. A total of 289 filter samples were obtained with an IM...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell
Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less
Prediction on neutrino Dirac and Majorana phases and absolute mass scale from the CKM matrix
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Yamada, Toshifumi
2018-03-01
In the type-I seesaw model, the lepton-flavor-mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata matrix) and the quark-flavor-mixing matrix [Cabibbo-Kobayashi-Maskawa (CKM) matrix] may be connected implicitly through a relation between the neutrino Dirac Yukawa coupling YD and the quark Yukawa couplings. In this paper, we study whether YD can satisfy—in the flavor basis where the charged lepton Yukawa and right-handed neutrino Majorana mass matrices are diagonal—the relation YD∝diag (yd,ys,yb)VCKMT or YD∝diag (yu,yc,yt)VCKM* without contradicting the current experimental data on quarks and neutrino oscillations. We search for sets of values of the neutrino Dirac C P phase δC P, Majorana phases α2 , α3 , and the lightest active neutrino mass that satisfy either of the above relations, with the normal or inverted hierarchy of neutrino masses. In performing the search, we consider renormalization group evolutions of the quark masses and CKM matrix and the propagation of their experimental errors along the evolutions. We find that only the former relation YD∝diag (yd,ys,yb)VCKMT with the normal neutrino mass hierarchy holds, based on which we make predictions for δC P, α2, α3, and the lightest active neutrino mass.
NASA Astrophysics Data System (ADS)
Arganda, E.; Herrero, M. J.; Marcano, X.; Morales, R.; Szynkman, A.
2017-05-01
In this work we present a new computation of the lepton flavor violating Higgs boson decays that are generated radiatively to one-loop from heavy right-handed neutrinos. We work within the context of the inverse seesaw model with three νR and three extra singlets X , but the results could be generalized to other low scale seesaw models. The novelty of our computation is that it uses a completely different method by means of the mass insertion approximation which works with the electroweak interaction states instead of the usual 9 physical neutrino mass eigenstates of the inverse seesaw model. This method also allows us to write the analytical results explicitly in terms of the most relevant model parameters, that are the neutrino Yukawa coupling matrix Yν and the right-handed mass matrix MR, which is very convenient for a phenomenological analysis. This Yν matrix, being generically nondiagonal in flavor space, is the only one responsible for the induced charged lepton flavor violating processes of our interest. We perform the calculation of the decay amplitude up to order O (Yν2+Yν4). We also study numerically the goodness of the mass insertion approximation results. In the last part we present the computation of the relevant one-loop effective vertex H ℓiℓj for the lepton flavor violating Higgs decay which is derived from a large MR mass expansion of the form factors. We believe that our simple formula found for this effective vertex can be of interest for other researchers who wish to estimate the H →ℓiℓ¯j rates in a fast way in terms of their own preferred input values for the relevant model parameters Yν and MR.
Nonzero θ13 from the Triangular Ansatz and Leptogenesis
NASA Astrophysics Data System (ADS)
Benaoum, H. B.
2012-08-01
Recent experiments indicate a departure from the exact tri-bimaximal mixing by measure ring definitive nonzero value of θ13. Within the framework of type I seesaw mechanism, we reconstruct the triangular Dirac neutrino mass matrix from the μ - τ symmetric mass matrix. The deviation from μ - τ symmetry is then parametrized by adding dimensionless parameters yi in the triangular mass matrix. In this parametrization of the neutrino mass matrix, the nonzero value θ13 is controlled by Δy = y4 - y6. We also calculate the resulting leptogenesis and show that the triangular texture can generate the observed baryon asymmetry in the universe via leptogenesis scenario.
Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.
Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo
2017-10-01
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).
General structure of democratic mass matrix of quark sector in E6 model
NASA Astrophysics Data System (ADS)
Ciftci, R.; ćiftci, A. K.
2016-03-01
An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smentkowski, Vincent S., E-mail: smentkow@ge.com
Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondarymore » Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.« less
Gopinath, Kulasekaran; Sudhandiran, Ganapasam
2016-01-01
Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.
Gross, Jürgen H
2017-12-01
Basic poly(propylene glycols), commercially available under the trade name Jeffamine, are evaluated for their potential use as internal mass calibrants in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Due to their basic amino endgroups Jeffamines are expected to deliver [M+H] + ions in higher yields than neutral poly(propylene glycols) or poly(ethylene glycols). Aiming at accurate mass measurements and molecular formula determinations by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry, four Jeffamines (M-600, M-2005, D-400, D-230) were thus compared. As a result, Jeffamine M-2005 is introduced as a new mass calibrant for positive-ion matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry in the range of m/z 200-1200 and the reference mass list is provided. While Jeffamine M-2005 is compatible with α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, and 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile matrix, its use in combination with 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile provides best results due to low laser fluence requirements. Applications to PEG 300, PEG 600, the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, and [60]fullerene demonstrate mass accuracies of 2-5 ppm.
Structure of right-handed neutrino mass matrix
NASA Astrophysics Data System (ADS)
Koide, Yoshio
2017-11-01
Recently, Nishiura and the author proposed a unified quark-lepton mass matrix model under a family symmetry U (3 )×U (3 )' . The model can give excellent parameter fitting to the observed quark and neutrino data. The model has a reasonable basis as far as the quark sector, but, in the neutrino sector, the form of the right-handed neutrino mass matrix MR does not have a theoretical basis; that is, it was nothing but a phenomenological assumption. In this paper, it is pointed out that the form of MR is originated in the structure of Majorana mass matrix (4 ×4 matrix) for the left-handed fields ((νL)i,(νRc)i,(NL)α,(NRc)α) where νi (i =1 , 2, 3) and Nα (α =1 , 2, 3) are U(3)-family and U(3 ) ' -family triplets, respectively.
NASA Astrophysics Data System (ADS)
Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming
2017-04-01
High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.
Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz
2015-08-18
This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.
Cobimaximal lepton mixing from soft symmetry breaking
NASA Astrophysics Data System (ADS)
Grimus, W.; Lavoura, L.
2017-11-01
Cobimaximal lepton mixing, i.e.θ23 = 45 ° and δ = ± 90 ° in the lepton mixing matrix V, arises as a consequence of SV =V* P, where S is the permutation matrix that interchanges the second and third rows of V and P is a diagonal matrix of phase factors. We prove that any such V may be written in the form V = URP, where U is any predefined unitary matrix satisfying SU =U*, R is an orthogonal, i.e. real, matrix, and P is a diagonal matrix satisfying P2 = P. Using this theorem, we demonstrate the equivalence of two ways of constructing models for cobimaximal mixing-one way that uses a standard CP symmetry and a different way that uses a CP symmetry including μ-τ interchange. We also present two simple seesaw models to illustrate this equivalence; those models have, in addition to the CP symmetry, flavour symmetries broken softly by the Majorana mass terms of the right-handed neutrino singlets. Since each of the two models needs four scalar doublets, we investigate how to accommodate the Standard Model Higgs particle in them.
Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C
2011-04-15
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Verma, Surender; Bhardwaj, Shankita
2018-05-01
We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.
Anderson, Alexander R A; Weaver, Alissa M; Cummings, Peter T; Quaranta, Vito
2006-12-01
Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...
2016-08-30
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2009-03-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analyzed using positive matrix factorization (PMF). The two instruments were given equal weight in the PMF analysis by application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the relative weight. The PMF analysis yielded a 5-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling, and oxidative processing. The unified dataset provides information on particle and VOC sources and atmospheric processing that cannot be obtained from the datasets of the individual instruments, such as apportionment of oxygenated VOCs to direct emission sources vs. secondary reaction products, improved correlation of oxygenated aerosol factors with photochemical age, and increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
NASA Astrophysics Data System (ADS)
Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.
2017-12-01
A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.
General structure of democratic mass matrix of quark sector in E{sub 6} model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, R., E-mail: rciftci@cern.ch; Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch
2016-03-25
An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.
Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya
2017-08-01
The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)
2005-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)
2006-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)
2002-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...
NASA Astrophysics Data System (ADS)
Eatough, Delbert J.; Grover, Brett D.; Woolwine, Woods R.; Eatough, Norman L.; Long, Russell; Farber, Robert
Positive matrix factorization (PMF2) was used to elucidate sources of fine particulate material (PM 2.5) for a study conducted during July and August 2005, in Riverside, CA. One-hour averaged semi-continuous measurements were made with a suite of instruments to provide PM 2.5 mass and chemical composition data. Total PM 2.5 mass concentrations (non-volatile plus semi-volatile) were measured with an R&P filter dynamic measurement system (FDMS TEOM) and a conventional TEOM monitor was used to measure non-volatile mass concentrations. PM 2.5 chemical species monitors included a dual-oven Sunset monitor to measure both non-volatile and semi-volatile carbonaceous material, an ion chromatographic-based monitor to measure sulfate and nitrate and an Anderson Aethalometer to measure black carbon (BC). Gas phase data including CO, NO 2, NO x and O 3 were also collected during the sampling period. In addition, single-particle measurements were made using aerosol time-of-flight mass spectrometry (ATOFMS). Twenty different single-particle types consistent with those observed in previous ATOFMS studies in Riverside were identified for the PMF2 analysis. Finally, time-of-flight aerosol mass spectrometry (ToF-AMS) provided data on markers of primary and secondary organic aerosol. Two distinct PMF2 analyses were performed. In analysis 1, all the data except for the ATOFMS and ToF-AMS data were used in an initial evaluation of sources at Riverside during the study. PMF2 was able to identify six factors from the data set corresponding to both primary and secondary sources, primarily from automobile emissions, diesel emissions, secondary nitrate formation, a secondary photochemical associated source, organic emissions and Basin transported pollutants. In analysis 2, the ATOFMS and ToF-AMS data were included in the analysis. In the second analysis, PMF2 was able to identify 16 factors with a variety of both primary and secondary factors being identified, corresponding to both primary and secondary material from both anthropogenic and natural sources. Based on relationships with Basin meteorology, the PMF identified source profiles and diurnal patterns in the source concentrations, sources were identified as being of local origin or resulting from transport of pollutants across the Basin due to onshore flow. Good agreement was observed between the PMF2 predicted mass and the FDMS measured mass for both analyses.
NASA Astrophysics Data System (ADS)
Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.
2014-09-01
A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean environment.
Inutan, Ellen D.; Trimpin, Sarah
2013-01-01
The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551
Walton, Barbara L; Verbeck, Guido F
2014-08-19
Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.
NASA Astrophysics Data System (ADS)
Ge, Xinlei; Setyan, Ari; Sun, Yele; Zhang, Qi
2012-10-01
Organic aerosols (OA) were studied in Fresno, California, in winter 2010 with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). OA dominated the submicron aerosol mass (average = 67%) with an average concentration of 7.9μg m-3 and a nominal formula of C1H1.59N0.014O0.27S0.00008, which corresponds to an average organic mass-to-carbon ratio of 1.50. Three primary OA (POA) factors and one oxygenated OA factor (OOA) representative of secondary OA (SOA) were identified via Positive Matrix Factorization of the high-resolution mass spectra. The three POA factors, which include a traffic-related hydrocarbon-like OA (HOA), a cooking OA (COA), and a biomass burning OA (BBOA) released from residential heating, accounted for an average 57% of the OA mass and up to 80% between 6 - 9 P.M., during which enhanced emissions from evening rush hour traffic, dinner cooking, and residential wood burning were exacerbated by low mixed layer height. The mass-based size distributions of the OA factors were estimated based on multilinear analysis of the size-resolved mass spectra of organics. Both HOA and BBOA peaked at ˜140 nm in vacuum aerodynamic diameter (Dva) while OOA peaked at an accumulation mode of ˜460 nm. COA exhibited a unique size distribution with two size modes centering at ˜200 nm and 450 nm respectively. This study highlights the leading roles played by anthropogenic POA emissions, primarily from traffic, cooking and residential heating, in aerosol pollution in Fresno in wintertime.
Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul
2017-08-01
Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z < 500). Reproducibility of inter-spot and intra-spot analyses of amino acids was less than 10%. Methanol extraction was adopted for simple and rapid sample preparation of serum before mass spectrometric analysis showing 13.3 to 45% of extraction efficiency. Calibration curves for diagnosis of neonatal metabolic disorders were obtained by analyzing methanol-extracted serum spiked with target amino acids using MALDI-ToF MS. They showed good linearity (R 2 > 0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Robotic Compliant Motion Control for Aircraft Refueling Applications
1988-12-01
J. DUVALL 29 SEP 88 C-26 SUBROUTINE IMPCONST(CONST,MINV, BMAT ) Abstract: This subroutine calculates the 25 constants used by the Fortran subroutine...mass with center of gravity along the joint 6 axis. The desired mass and the damping ( BMAT ) matrices are assumed to be diagonal. Joints angles 4,5...constants. MINV -- A 2x2 matrix containing the elements of the inverse desired mass matrix (diagonal). BMAT -- A 2x2 matrix of damping coefficents (diagonal
Tsuchiyama, Tomoyuki; Katsuhara, Miki; Nakajima, Masahiro
2017-11-17
In the multi-residue analysis of pesticides using GC-MS, the quantitative results are adversely affected by a phenomenon known as the matrix effect. Although the use of matrix-matched standards is considered to be one of the most practical solutions to this problem, complete removal of the matrix effect is difficult in complex food matrices owing to their inconsistency. As a result, residual matrix effects can introduce analytical errors. To compensate for residual matrix effects, we have developed a novel method that employs multiple isotopically labeled internal standards (ILIS). The matrix effects of ILIS and pesticides were evaluated in spiked matrix extracts of various agricultural commodities, and the obtained data were subjected to simple statistical analysis. Based on the similarities between the patterns of variation in the analytical response, a total of 32 isotopically labeled compounds were assigned to 338 pesticides as internal standards. It was found that by utilizing multiple ILIS, residual matrix effects could be effectively compensated. The developed method exhibited superior quantitative performance compared with the common single-internal-standard method. The proposed method is more feasible for regulatory purposes than that using only predetermined correction factors and is considered to be promising for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q.; Farmer, D. K.; Rizzo, L. V.
Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least atmore » concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during the study period.« less
NASA Astrophysics Data System (ADS)
Gligor, M.; Ausloos, M.
2007-05-01
The statistical distances between countries, calculated for various moving average time windows, are mapped into the ultrametric subdominant space as in classical Minimal Spanning Tree methods. The Moving Average Minimal Length Path (MAMLP) algorithm allows a decoupling of fluctuations with respect to the mass center of the system from the movement of the mass center itself. A Hamiltonian representation given by a factor graph is used and plays the role of cost function. The present analysis pertains to 11 macroeconomic (ME) indicators, namely the GDP (x1), Final Consumption Expenditure (x2), Gross Capital Formation (x3), Net Exports (x4), Consumer Price Index (y1), Rates of Interest of the Central Banks (y2), Labour Force (z1), Unemployment (z2), GDP/hour worked (z3), GDP/capita (w1) and Gini coefficient (w2). The target group of countries is composed of 15 EU countries, data taken between 1995 and 2004. By two different methods (the Bipartite Factor Graph Analysis and the Correlation Matrix Eigensystem Analysis) it is found that the strongly correlated countries with respect to the macroeconomic indicators fluctuations can be partitioned into stable clusters.
Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C
2011-01-01
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21416534
Screening for Natural Chemoprevention Agents that Modify Human Keap1
Hu, Chenqi; Nikolic, Dejan; Eggler, Aimee L.; Mesecar, Andrew D.; van Breemen, Richard B.
2012-01-01
Upregulation of cytoprotective enzymes by therapeutic agents to prevent damage by reactive oxygen species and xenobiotic electrophiles is a strategy for cancer chemoprevention. The Kelch-like ECH-associated protein 1 (Keap1) and its binding partner, transcription factor NF-E2-related factor-2 (Nrf2), are chemoprevention targets because of their role in regulating the antioxidant response element (ARE) in response to oxidative stress and exposure to electrophiles. Modification of the sensor protein Keap1 by electrophiles such as the isothiocyanate sulforaphane can direct Nrf2 accumulation in the nucleus and subsequent ARE activation. Since our previous matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS)-based screening method to discover natural products that modify Keap1 does not detect covalent modification of Keap1 by some highly reversible agents such as sulforaphane, a more sensitive screening assay was developed. In this new assay, electrophiles that have reversibly modified Keap1 can be released, trapped and detected as β-mercaptoethanol adducts by mass spectrometry. Isoliquiritigenin and sulforaphane, known ARE activators that target Keap1, were used to validate the assay. To determine the ability of the assay to identify electrophiles in complex matrixes that modify Keap1, sulforaphane was spiked into a cocoa extract, and LC-MS/MS using high resolution mass spectrometry with accurate mass measurement was used to identify β-mercaptoethanol adducts of sulforaphane that had been released from Keap1. This screening assay permits identification of potential chemoprevention agents in complex natural product mixtures that reversibly modify Keap1 but cannot be detected using MALDI-TOF MS. PMID:22074792
Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd
2015-01-01
The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
NASA Astrophysics Data System (ADS)
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E
2017-09-08
Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.
$$|V_{ub}|$$ from $$B\\to\\pi\\ell\
Bailey, Jon A.; et al.
2015-07-23
We present a lattice-QCD calculation of the B → πℓν semileptonic form factors and a new determination of the CKM matrix element |V ub|. We use the MILC asqtad (2+1)-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent z parametrization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolationmore » to the z expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain |V ub|, we simultaneously fit the experimental data for the B → πℓν differential decay rate obtained by the BABAR and Belle collaborations together with our lattice form-factor results. We find |V ub|=(3.72±0.16) × 10 –3, where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on |V ub| to the same level as the experimental error. We also provide results for the B → πℓν vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely determined than from our lattice-QCD calculation alone. Lastly, these results can be used in other phenomenological applications and to test other approaches to QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.; et al.
We present a lattice-QCD calculation of the B → πℓν semileptonic form factors and a new determination of the CKM matrix element |V ub|. We use the MILC asqtad (2+1)-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent z parametrization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolationmore » to the z expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain |V ub|, we simultaneously fit the experimental data for the B → πℓν differential decay rate obtained by the BABAR and Belle collaborations together with our lattice form-factor results. We find |V ub|=(3.72±0.16) × 10 –3, where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on |V ub| to the same level as the experimental error. We also provide results for the B → πℓν vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely determined than from our lattice-QCD calculation alone. Lastly, these results can be used in other phenomenological applications and to test other approaches to QCD.« less
ERIC Educational Resources Information Center
Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.
2010-01-01
Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…
Design of a unidirectional composite momentum wheel rim
NASA Astrophysics Data System (ADS)
Shogrin, Bradley; Jones, William R., Jr.; Prahl, Joseph M.
1995-05-01
A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.
Theory of quark mixing matrix and invariant functions of mass matrices
NASA Astrophysics Data System (ADS)
Jarloskog, C.
1987-10-01
The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.
Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua
2018-04-01
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.
Chromatography and mass spectrometry of prebiological and biological molecules
NASA Astrophysics Data System (ADS)
Navale, Vivek
The detection and identification of prebiological and biological molecules are of importance for understanding chemical and biological processes occurring within the solar system. Molecular mass measurements, peptide mapping, and disulfide bond analysis of enzymes and recombinant proteins are important in the development of therapeutic drugs for human diseases. Separation of hydrocarbons (C1 to C6) and nitriles was achieved by 14%-cyanopropylphenyl-86%- dimethylpolysiloxane (CPPS-DMPS) stationary phase in a narrow bore metal capillary column. The calculation of modeling numbers enabled the differentiation of the C4 hydrocarbon isomers of 1-butene (cis and trans). The modeled retention time values for benzene, toluene, xylene, acetonitrile, propane, and propene nitriles were in good agreement with the measurements. The separation of C2 hydrocarbons (ethane and ethene) from predominantly N2 matrix was demonstrated for the first time on wall coated narrow bore low temperature glassy carbon column. Identification and accurate mass measurements of pepsin, an enzymatic protein with less number of basic amino acid residues were successfully demonstrated by matrix- assisted laser desorption ionization mass spectrometry (MALDI-MS). The molecular mass of pepsin was found to be 34,787 Da. Several decomposition products of pepsin, in m/z range of 3,500 to 4,700 were identified. Trypsin, an important endopeptidase enzyme had a mass of 46829.7 Da. Lower mass components with m/z 8047.5, 7776.6, 5722, 5446.2 and 5185 Da were also observed in trypsin spectrum. Both chemokine and growth factor recombinant proteins were mass analyzed as 8848.1 ± 3.5 and 16178.52 ± 4.1 Da, respectively. The accuracy of the measurements was in the range of 0.01 to 0.02%. Reduction and alkylation experiments on the chemokine showed the presence of six cysteines and three disulfide bonds. The two cysteines of the growth factor contained the free sulfhydryl groups and the accurate average mass of the growth factor protein was 16175.6 Da. MALDI analysis of trypsin digest of Myeloid progenitor inhibitory factor chemokine verified the disulfide bridging among cysteine residues. Several partially digested trypsin and V8 peptides were detected that verified significant portions of the primary structure of the chemokine. Mass difference amounting to the loss of a single amino acid, serine was also identified. The cyanogen bromide (CNBr) treated chemokine produced three peptides 7051, 6910.1 and 1492 Da. The analysis of Keratinocyte growth factor (KGF) peptide mixtures showed suppression effects during the MALDI ionization process. Several partially digested peptides with mass values 3214, 9980, 10325 and 10497 Da were identified. Direct MALDI-MS analysis of cyanogen bromide treated KGF molecule demonstrated the formation of peptides with mass 7567.3, 4992.6 and 3118.6 Da. The high sensitivity of MALDI-MS provided a rapid method for confirming the fidelity of gene expression in the host system. The present work showed that the combined methods of chromatography and mass spectrometry are efficient means for identification and characterization of prebiological and biological molecules.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2010-02-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analysed using positive matrix factorization (PMF). The two instruments were given balanced weight in the PMF analysis by the application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the instrument relative weight within each solution. The PMF analysis yielded a 6-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling and oxidative processing. The unified dataset provides information on emission sources (particle and VOC) and atmospheric processing that cannot be obtained from the datasets of the individual instruments: (1) apportionment of oxygenated VOCs to either direct emission sources or secondary reaction products; (2) improved correlation of oxygenated aerosol factors with photochemical age; and (3) increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
NASA Astrophysics Data System (ADS)
Dworschak, Ragnar G.
Orthogonal-injection was introduced to allow continuous ion sources to be coupled to time-of-flight mass spectrometers, but also demonstrated promising features for pulsed sources such as MALDI. We tested the feasibility of using a simple implementation orthogonal injection TOF with a MALDI source without collisional cooling. The experiment demonstrated that high resolution is achievable in principle in such an instrument, but only with impractical sacrifices in intensity. Subsequent work in this laboratory has demonstrated that the addition of collisional cooling makes orthogonal MALDI not only feasible, but advantageous in several respects. The instrument used for the above feasibility test was well-suited for measurements of initial velocity distributions in MALDI, avoiding problems of field penetration and questions of timescale of the plume expansion that seemed to produce rather conflicting results in axial TOF measurements. Average initial velocities of peptides and proteins above about 1000 daltons were found to be largely mass independent around 800 m/s, plus or minus about 15% depending on the matrix used. This result is slightly higher, but still quite consistent with earlier measurements using axial TOF with the field-free method (˜750 m/s), but a factor of two higher than the first reports using the delayed-extraction method. The experiments also showed that in contrast to the average velocity, the width of the velocity distribution increases significantly with increasing mass. The matrix velocity measurements confirm earlier experiments that show the benzoic acid derivatives have generally higher velocities than the cinnamic acid derivatives. Measurements of the velocity component in the direction back toward the laser with different sample orientations suggest that the surface orientation is the main determiner of the plume direction. On the other hand, preliminary measurements using the field-free method in the axial TOF geometry show higher velocities of matrix and analyte ions for more normal laser incidence, and for single crystals parallel to the sample surface compared to polycrystalline surfaces, suggesting the orientation of the crystal face with respect to the incident laser direction plays a role in the desorption process. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) was used to analyse the protein composition in several common and durum wheat varieties. Mass spectra were obtained directly from crude and partially purified wheat gliadin and reduced glutenin subunit fractions. Mass spectra of the gliadins and the low molecular weight glutenin subunits show a complex pattern of proteins in the 30--40 kDa range. The observed gliadin patterns showed some promise for variety identification. The mass spectra of the high molecular weight glutenin subunits are much simpler and the complete high molecular weight subunit profile can be determined directly from a single mass spectrum. This may prove particularly useful in wheat breeding programs for rapid identification of lines containing subunits associated with superior quality.
Discriminating Majorana neutrino textures in light of the baryon asymmetry
NASA Astrophysics Data System (ADS)
Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar
2015-06-01
We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.
NASA Astrophysics Data System (ADS)
Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C.
2015-02-01
From the rural Global Atmosphere Watch (GAW) site Hohenpeissenberg in the pre-alpine area of southern Germany, a data set of 24 C2-C8 non-methane hydrocarbons over a period of 7 years was analyzed. Receptor modeling was performed by positive matrix factorization (PMF) and the resulting factors were interpreted with respect to source profiles and photochemical aging. Differing from other studies, no direct source attribution was intended because, due to chemistry along transport, mass conservation from source to receptor is not given. However, at remote sites such as Hohenpeissenberg, the observed patterns of non-methane hydrocarbons can be derived from combinations of factors determined by PMF. A six-factor solution showed high stability and the most plausible results. In addition to a biogenic and a background factor of very stable compounds, four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources/natural gas leakage and incomplete combustion processes. The volume or mass contribution at the site over the entire period was, in decreasing order, from the following factor categories: background, gas leakage and long-lived evaporative, residential heating and long-lived combustion, short-lived evaporative, short-lived combustion, and biogenic. The importance with respect to reactivity contribution was generally in reverse order, with the biogenic and the short-lived combustion factors contributing most. The seasonality of the factors was analyzed and compared to results of a simple box model using constant emissions and the photochemical decay calculated from the measured annual cycles of OH radicals and ozone. Two of the factors, short-lived combustion and gas leakage/long-lived evaporative, showed winter/summer ratios of about 9 and 7, respectively, as expected from constant source estimations. Contrarily, the short-lived evaporative emissions were about 3 times higher in summer than in winter, while residential heating/long-lived combustion emissions were about 2 times higher in winter than in summer.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
NASA Astrophysics Data System (ADS)
Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.
2017-12-01
To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.
Novel formulations of CKM matrix renormalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2009-12-17
We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.
Half-lives of α -decaying nuclei in the medium-mass region within the transfer matrix method
NASA Astrophysics Data System (ADS)
Wu, Shuangxiang; Qian, Yibin; Ren, Zhongzhou
2018-05-01
The α -decay half-lives of even-even nuclei from Sm to Th are systematically studied based on the transfer matrix method. For the nuclear potential, a type of cosh-parametrized form is applied to calculate the penetration probability. Through a least-squares fit to experimental half-lives, we optimize the parameters in the potential and the α preformation factor P0. During this process, P0 is treated as a constant for each parent nucleus. Eventually, the calculated half-lives are found to agree well with the experimental data, which verifies the accuracy of the present approach. Furthermore, in recent studies, P0 is regulated by the shell and paring effects plus the nuclear deformation. To this end, P0 is here associated with the structural quantity, i.e., the microscopic correction of nuclear mass (Emic). In this way, the agreement between theory and experiment is greatly improved by more than 20%, validating the appropriate treatment of P0 in the scheme of Emic.
NASA Astrophysics Data System (ADS)
Gu, Pei-Hong
2017-10-01
We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.
In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...
Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2006-05-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been shown to be an effective technique for the characterization of organometallic, coordination, and highly conjugated compounds. The preferred matrix is 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), with radical ions observed. However, MALDI-TOFMS is generally not favored for accurate mass measurement. A specific method had to be developed for such compounds to assure the quality of our accurate mass results. Therefore, in this preliminary study, two methods of data acquisition, and both even-electron (EE+) ion and odd-electron (OE+.) radical ion mass calibration standards, have been investigated to establish the basic measurement technique. The benefit of this technique is demonstrated for a copper compound for which ions were observed by MALDI, but not by electrospray (ESI) or liquid secondary ion mass spectrometry (LSIMS); a mean mass accuracy error of -1.2 ppm was obtained.
NASA Astrophysics Data System (ADS)
Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua
2018-01-01
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.
Generic Friedberg-Lee symmetry of Dirac neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo Shu; Xing Zhizhong; Li Xin
2008-12-01
We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.
NASA Astrophysics Data System (ADS)
Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.
2017-08-01
In this paper we discuss the R -matrix approach to treat the subthreshold resonances for the single-level and one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We present the relationship between the resonance width and the ANC for the general case and consider two limiting cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R -matrix approach are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are obtained using the surface-integral formalism and the generalized R -matrix approach for the three-body resonant reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α ,n )16O in low-mass AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level 1 /2+,Ex=6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.
Tao, Jun; Zhang, Leiming; Cao, Junji; Zhong, Liuju; Chen, Dongsheng; Yang, Yihong; Chen, Duohong; Chen, Laiguo; Zhang, Zhisheng; Wu, Yunfei; Xia, Yunjie; Ye, Siqi; Zhang, Renjian
2017-01-01
Daily PM 2.5 samples were collected at an urban site in Guangzhou in 2014 and at a suburban site in Zhuhai in 2014-2015. Samples were subject to chemical analysis for various chemical components including organic carbon (OC), element carbon (EC), major water-soluble inorganic ions, and trace elements. The annual average PM 2.5 mass concentration was 48±22μgm -3 and 45±25μgm -3 in Guangzhou and Zhuhai, respectively, with the highest seasonal average concentration in winter and the lowest in summer at both sites. Regional transport of pollutants accompanied with different air mass origins arriving at the two sites and pollution sources in between the two cities caused larger seasonal variations in Zhuhai (>a factor of 3.5) than in Guangzhou (17% of PM 2.5 mass concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, Subrata; Singla, Vyoma; Pandithurai, Govindan; Safai, P. D.; Meena, G. S.; Dani, K. K.; Anil Kumar, V.
2018-05-01
This manuscript reports the seasonal variation of chemically speciated sub-micron aerosol particles (diameter < 1 μm). An Aerosol Chemical Speciation Monitor (ACSM) was used to measure the mass concentration of non-refractory particulate matter (NR-PM1) at a high-altitude site in the Western Ghats, India from March 2016 to February 2017. The mass concentration of NR-PM1 averaged at 7.5 ± 6.5 μgm-3, with major contributions from organics (59%) and sulfates (23%). Positive matrix factorization (PMF) was applied on the measured mass spectra of organic aerosol (OA) to derive the sources distinctive of each season (Summer, Monsoon, Post-Monsoon and Winter). The four OA factors (two primary OA and two oxygenated OA) resolved during summer, post-monsoon and winter season. However, only one oxygenated factor resolved during monsoon and contributed only 20% to the total OA. The factors associated with primary emissions dominated during the monsoon, whereas factors related to secondary formation dominated in other three seasons. During summer, an isoprene derived SOA - IEPOX-OA (isoprene-epoxydiol OA) contributed ∼17% to the total OA. Cluster and concentration weighted trajectory (CWT) analyses were performed to identify the possible source regions of NR-PM1 mass concentration observed at the receptor site. The analysis identifies Central India as the potential source region of transported aerosol during post-monsoon and winter season. Our study suggests that contributions from both local sources and regional transport are important in governing mass concentration of PM1 over Mahabaleshwar.
Λ_{c}→Λl^{+}ν_{l} Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses.
Meinel, Stefan
2017-02-24
The first lattice QCD calculation of the form factors governing Λ_{c}→Λℓ^{+}ν_{ℓ} decays is reported. The calculation was performed with two different lattice spacings and includes one ensemble with a pion mass of 139(2) MeV. The resulting predictions for the Λ_{c}→Λe^{+}ν_{e} and Λ_{c}→Λμ^{+}ν_{μ} decay rates divided by |V_{cs}|^{2} are 0.2007(71)(74) and 0.1945(69)(72) ps^{-1}, respectively, where the two uncertainties are statistical and systematic. Taking the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{cs}| from a global fit and the Λ_{c} lifetime from experiments, this translates to branching fractions of B(Λ_{c}→Λe^{+}ν_{e})=0.0380(19)_{LQCD}(11)_{τ_{Λ_{c}}} and B(Λ_{c}→Λμ^{+}ν_{μ})=0.0369(19)_{LQCD}(11)_{τ_{Λ_{c}}}. These results are consistent with, and two times more precise than, the measurements performed recently by the BESIII Collaboration. Using instead the measured branching fractions together with the lattice calculation to determine the CKM matrix element gives |V_{cs}|=0.949(24)_{LQCD}(14)_{τ_{Λ_{c}}}(49)_{B}.
Asati, Ankita; Satyanarayana, G N V; Panchal, Smita; Thakur, Ravindra Singh; Ansari, Nasreen G; Patel, Devendra K
2017-08-04
A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93μgkg -1 respectively. The dynamic linearity range for BPA was between 4 and 100μgkg -1 and the determination of coefficient (R 2 ) was 0.996. The values of the same parameters were 3-100μgkg -1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon based sample supports and matrices for laser desorption/ ionization mass spectrometry.
Rainer, Matthias; Najam-ul-Haq, Muhammad; Huck, Christian W; Vallant, Rainer M; Heigl, Nico; Hahn, Hans; Bakry, Rania; Bonn, Günther K
2007-01-01
Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.
NASA Astrophysics Data System (ADS)
Daellenbach, Kaspar R.; El-Haddad, Imad; Karvonen, Lassi; Vlachou, Athanasia; Corbin, Joel C.; Slowik, Jay G.; Heringa, Maarten F.; Bruns, Emily A.; Luedin, Samuel M.; Jaffrezo, Jean-Luc; Szidat, Sönke; Piazzalunga, Andrea; Gonzalez, Raquel; Fermo, Paola; Pflueger, Valentin; Vogel, Guido; Baltensperger, Urs; Prévôt, André S. H.
2018-02-01
We assess the benefits of offline laser-desorption/ionization mass spectrometry in understanding ambient particulate matter (PM) sources. The technique was optimized for measuring PM collected on quartz-fiber filters using silver nitrate as an internal standard for m/z calibration. This is the first application of this technique to samples collected at nine sites in central Europe throughout the entire year of 2013 (819 samples). Different PM sources were identified by positive matrix factorization (PMF) including also concomitant measurements (such as NOx, levoglucosan, and temperature). By comparison to reference mass spectral signatures from laboratory wood burning experiments as well as samples from a traffic tunnel, three biomass burning factors and two traffic factors were identified. The wood burning factors could be linked to the burning conditions; the factors related to inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. The traffic factors were identified as primary tailpipe exhaust and most possibly aged/secondary traffic emissions. The latter attribution was supported by radiocarbon analyses of both the organic and elemental carbon. Besides these sources, factors related to secondary organic aerosol were also separated. The contribution of the wood burning emissions based on LDI-PMF (laser-desorption/ionization PMF) correlates well with that based on AMS-PMF (aerosol mass spectrometer PMF) analyses, while the comparison between the two techniques for other components is more complex.
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
NASA Astrophysics Data System (ADS)
Zollner, Peter; Stubiger, Gerald; Schmid, Erich; Pittenauer, Ernst; Allmaier, Gunter
1997-12-01
K4[Fe(CN)6]/glycerol and Na4[Fe(CN)6]/glycerol have been investigated as liquid matrix systems for UV-MALDI MS applying a N2 laser. Analyte molecules were detected as sodium or potassium adduct ions and, in the case of proteins, as well as protonated molecular ions. Mass accuracies were comparable to those found with standard solid matrix systems with -0.06 to +0.05% deviation in the reflectron mode and with -0.24 to +0.13% in the linear mode. Useful results could be obtained within a mass range of 15 000 Da for single-charged proteins and 8000 Da for potassium cationized polyethylene glycols. Detection limits were found for hydrophilic compounds in the low picomol range and for lipophilic compounds as triacylglycerols or peracetylated and partially benzylated carbohydrates in the low femtomol range. As shown by scanning electron microscopic investigations, the generation of a thin homogenous matrix layer was essential for a successful mass spectrometric experiment. A very careful cleaning of the target surface with glacial acid prior to matrix deposition improved the formation of such a matrix film that maximum sensitivity as well as good reproducibility of the experiments could be achieved.
Approximate method of variational Bayesian matrix factorization/completion with sparse prior
NASA Astrophysics Data System (ADS)
Kawasumi, Ryota; Takeda, Koujin
2018-05-01
We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.
Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K
2007-01-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.
Scalable non-negative matrix tri-factorization.
Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž
2017-01-01
Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S
2007-11-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
NASA Astrophysics Data System (ADS)
Yalcin, Talat; Li, Liang
2009-12-01
Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.
Montsko, Gergely; Vaczy, Alexandra; Maasz, Gabor; Mernyak, Erzsebet; Frank, Eva; Bay, Csaba; Kadar, Zalan; Ohmacht, Robert; Wolfling, Janos; Mark, Laszlo
2009-10-01
Neutral steroid hormones are currently analyzed by gas or liquid chromatography/mass spectrometry based methods. Most of the steroid compounds, however, lack volatility and do not contain polar groups, which results in inadequate chromatographic behavior and low ionization efficiency. Derivatization of the steroids to form more volatile, thermostable, and charged products solves this difficulty, but the derivatization of compounds with unknown chemical moieties is not an easy task. In this study, a rapid, high-throughput, sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method is described using C(70) fullerene as a matrix compound. The application of the method is demonstrated for five general sex steroids and for synthetic steroid compounds in both negative and positive ionization modes.
Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl
2011-06-01
The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.
Tambe, Suparna; Blott, Henning; Fülöp, Annabelle; Spang, Nils; Flottmann, Dirk; Bräse, Stefan; Hopf, Carsten; Junker, Hans-Dieter
2017-02-01
A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.
Bouschen, Werner; Schulz, Oliver; Eikel, Daniel; Spengler, Bernhard
2010-02-01
Matrix preparation techniques such as air spraying or vapor deposition were investigated with respect to lateral migration, integration of analyte into matrix crystals and achievable lateral resolution for the purpose of high-resolution biological imaging. The accessible mass range was found to be beyond 5000 u with sufficient analytical sensitivity. Gas-assisted spraying methods (using oxygen-free gases) provide a good compromise between crystal integration of analyte and analyte migration within the sample. Controlling preparational parameters with this method, however, is difficult. Separation of the preparation procedure into two steps, instead, leads to an improved control of migration and incorporation. The first step is a dry vapor deposition of matrix onto the investigated sample. In a second step, incorporation of analyte into the matrix crystal is enhanced by a controlled recrystallization of matrix in a saturated water atmosphere. With this latter method an effective analytical resolution of 2 microm in the x and y direction was achieved for scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS). Cultured A-498 cells of human renal carcinoma were successfully investigated by high-resolution MALDI imaging using the new preparation techniques. Copyright 2010 John Wiley & Sons, Ltd.
Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus
2013-10-01
The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.
Yoon, Donhee; Lee, Dongkun; Lee, Jong-Hyeon; Cha, Sangwon; Oh, Han Bin
2015-01-30
Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Sirlin, S. W.; Longman, R. W.; Juang, J. N.
1985-01-01
With a sufficiently great number of sensors and actuators, any finite dimensional dynamic system is identifiable on the basis of input-output data. It is presently indicated that, for conservative nongyroscopic linear mechanical systems, the number of sensors and actuators required for identifiability is very large, where 'identifiability' is understood as a unique determination of the mass and stiffness matrices. The required number of sensors and actuators drops by a factor of two, given a relaxation of the identifiability criterion so that identification can fail only if the system parameters being identified lie in a set of measure zero. When the mass matrix is known a priori, this additional information does not significantly affect the requirements for guaranteed identifiability, though the number of parameters to be determined is reduced by a factor of two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuerch, S.; Howald, M.; Schlunegger, U.P.
1995-12-31
Polysaccharides are the most abundant organic compounds in nature. Decomposition of plant and animal residues leads to a high polysaccharide content in soils. The decomposition of carbohydrates and subsequent mineralization of the products are part of the cycle of life on earth. In extracts of soils collected in the Valle Onsernone (Ticino, Switzerland), oligosaccharides of different size and structure have been identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The selected soils show identical climatic parameters and pedological factors, whereas the age of fallow land is the only varying factor. Identification and structure elucidation of the oligosaccharides is performedmore » by substrate-specific enzymatic hydrolysis. Moreover the appearance and the distribution of the oligosaccharides is correlated to soil genesis.« less
IR-MALDESI MASS SPECTROMETRY IMAGING OF BIOLOGICAL TISSUE SECTIONS USING ICE AS A MATRIX
Robichaud, Guillaume; Barry, Jeremy A.; Muddiman, David C.
2014-01-01
Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry imaging of biological tissue sections using a layer of deposited ice as an energy absorbing matrix was investigated. Dynamics of plume ablation were first explored using a nanosecond exposure shadowgraphy system designed to simultaneously collect pictures of the plume with a camera and collect the FT-ICR mass spectrum corresponding to that same ablation event. Ablation of fresh tissue analyzed with and without using ice as a matrix were both compared using this technique. Effect of spot-to-spot distance, number of laser shots per pixel and tissue condition (matrix) on ion abundance was also investigated for 50 µm thick tissue sections. Finally, the statistical method called design of experiments was used to compare source parameters and determine the optimal conditions for IR-MALDESI of tissue sections using deposited ice as a matrix. With a better understanding of the fundamentals of ablation dynamics and a systematic approach to explore the experimental space, it was possible to improve ion abundance by nearly one order of magnitude. PMID:24385399
Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2006-01-01
2-[(2E)-3-(4-tert-Butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) is a nonpolar, aprotic matrix and was used in the analysis of a variety of compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The classes of compounds include coordination compounds, organometallics, conjugated organic compounds (including porphyrins and phthalocyanines), carbohydrates, calixarenes, and macrocycles. For some samples, comparisons are made with spectra acquired with the use of 1,8,9-trihydroxyanthracene (dithranol), 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone matrixes. Traditionally, the majority of these compounds would have been analyzed by fast-atom bombardment (FAB), liquid secondary ion mass spectrometry (LSIMS), or electrospray techniques, but this work shows that MALDI-TOFMS using DCTB has advantages over these techniques, particularly FAB and LSIMS. Certain limitations of DCTB are noted, for example, in the analysis of water-soluble compounds such as peptides, proteins, and oligonucleotides, and good working practices for the use of the matrix are also outlined.
Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics
NASA Astrophysics Data System (ADS)
Savage, Martin J.; Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Beane, Silas R.; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Nplqcd Collaboration
2017-08-01
The nuclear matrix element determining the p p →d e+ν fusion cross section and the Gamow-Teller matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of mπ˜806 MeV . The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within 2 σ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated p p →d e+ν transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be L1 ,A=3.9 (0.2 )(1.0 )(0.4 )(0.9 ) fm3 at a renormalization scale set by the physical pion mass, also agreeing within the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics.
Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources
NASA Astrophysics Data System (ADS)
Presto, A. A.; Gordon, T. D.; Robinson, A. L.
2014-05-01
A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass spectra and ambient OOA factors, though this poor agreement should be expected based on the variability of ambient OOA factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.50 and -0.40, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry.
Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2008-01-01
Insoluble or low solubility organometallic and coordination compounds have been characterised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, with solvent-free sample preparation being the key step toward successful analysis.
NASA Astrophysics Data System (ADS)
Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.
2016-12-01
Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.
New leptogenesis scenario parametrized by Dirac neutrino mass matrix
NASA Astrophysics Data System (ADS)
Gu, Pei-Hong
2017-10-01
In an S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B -L left-right symmetric framework, we present a new leptogenesis scenario parametrized by the Dirac neutrino mass matrix. Benefiting from the parity symmetry motivated to solve the strong C P problem, the dimensionless couplings of the mirror fields are identified with those of the ordinary fields. In particular, the mirror Dirac neutrinos have a heavy mass matrix proportional to the light mass matrix of the ordinary Dirac neutrinos. Through the S U (2 )R gauge interactions, the mirror neutrinos can decay to generate a lepton asymmetry in the mirror muons and an opposite lepton asymmetry in the mirror electrons. Before the S U (2 )L sphaleron processes stop working, the mirror muons can efficiently decay into the ordinary right-handed leptons with a dark matter scalar, and hence the mirror muon asymmetry can be partially converted to a desired baryon asymmetry.
A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittens, Alex; Kottalam, Jey; Yang, Jiyan
We investigate the performance and scalability of the randomized CX low-rank matrix factorization and demonstrate its applicability through the analysis of a 1TB mass spectrometry imaging (MSI) dataset, using Apache Spark on an Amazon EC2 cluster, a Cray XC40 system, and an experimental Cray cluster. We implemented this factorization both as a parallelized C implementation with hand-tuned optimizations and in Scala using the Apache Spark high-level cluster computing framework. We obtained consistent performance across the three platforms: using Spark we were able to process the 1TB size dataset in under 30 minutes with 960 cores on all systems, with themore » fastest times obtained on the experimental Cray cluster. In comparison, the C implementation was 21X faster on the Amazon EC2 system, due to careful cache optimizations, bandwidth-friendly access of matrices and vector computation using SIMD units. We report these results and their implications on the hardware and software issues arising in supporting data-centric workloads in parallel and distributed environments.« less
NASA Technical Reports Server (NTRS)
Fergusson, Neil J.
1992-01-01
In addition to an extensive review of the literature on exact and corrective displacement based methods of vibration analysis, a few theorems are proven concerning the various structural matrices involved in such analyses. In particular, the consistent mass matrix and the quasi-static mass matrix are shown to be equivalent, in the sense that the terms in their respective Taylor expansions are proportional to one another, and that they both lead to the same dynamic stiffness matrix when used with the appropriate stiffness matrix.
Fujita, Yukiko; Naka, Takashi; McNeil, Michael R; Yano, Ikuya
2005-10-01
Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the mass ion distribution due to polar mycolates was shifted lower than that from the Mycobacterium avium-intracellulare group. Since the physico-chemical properties and antigenic structure of mycolic acid of TDM affect the host immune responses profoundly, the molecular characterization of TDM by MALDI-TOF mass analysis may give very useful information on the relationship of glycolipid structure to its biological activity.
Design properties of hydrogel tissue-engineering scaffolds
Zhu, Junmin; Marchant, Roger E
2011-01-01
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626
Size-dependent penetrant diffusion in polymer glasses.
Meng, Dong; Zhang, Kai; Kumar, Sanat K
2018-05-18
Molecular Dynamics simulations are used to understand the underpinning basis of the transport of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small solutes, with sizes smaller than 0.15 times the chain monomer size, move as might be expected in a medium with large pores. In contrast, the motion of larger solutes is activated and is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic fluctuations of the matrix as characterized by the Debye-Waller factor. While similar ideas have been previously proposed for the viscosity of supercooled liquids above their glass transition, to our knowledge, this is the first illustration of this concept in the context of solute mass transport in deeply quenched polymer glasses.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563
Marto, J A; White, F M; Seldomridge, S; Marshall, A G
1995-11-01
Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
2010-01-01
angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective
Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan
2016-12-15
In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright © 2016 Elsevier B.V. All rights reserved.
Neutrino and C P -even Higgs boson masses in a nonuniversal U (1 )' extension
NASA Astrophysics Data System (ADS)
Mantilla, S. F.; Martinez, R.; Ochoa, F.
2017-05-01
We propose a new anomaly-free and family nonuniversal U (1 )' extension of the standard model with the addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model. The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the C P -even 3 ×3 mass matrix of the scalar sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, R.; Passard, C.; Perot, B.
2015-07-01
The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ({sup 3}He proportional counter inside the measurement cavity).more » A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the {sup 239}Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and {sup 235}U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)« less
Hanousek, Ondrej; Berger, Torsten W; Prohaska, Thomas
2016-01-01
Analysis of (34)S/(32)S of sulfate in rainwater and soil solutions can be seen as a powerful tool for the study of the sulfur cycle. Therefore, it is considered as a useful means, e.g., for amelioration and calibration of ecological or biogeochemical models. Due to several analytical limitations, mainly caused by low sulfate concentration in rainwater, complex matrix of soil solutions, limited sample volume, and high number of samples in ecosystem studies, a straightforward analytical protocol is required to provide accurate S isotopic data on a large set of diverse samples. Therefore, sulfate separation by anion exchange membrane was combined with precise isotopic measurement by multicollector inductively coupled plasma mass spectrometry (MC ICP-MS). The separation method proved to be able to remove quantitatively sulfate from matrix cations (Ca, K, Na, or Li) which is a precondition in order to avoid a matrix-induced analytical bias in the mass spectrometer. Moreover, sulfate exchange on the resin is capable of preconcentrating sulfate from low concentrated solutions (to factor 3 in our protocol). No significant sulfur isotope fractionation was observed during separation and preconcentration. MC ICP-MS operated at edge mass resolution has enabled the direct (34)S/(32)S analysis of sulfate eluted from the membrane, with an expanded uncertainty U (k = 2) down to 0.3 ‰ (a single measurement). The protocol was optimized and validated using different sulfate solutions and different matrix compositions. The optimized method was applied in a study on solute samples retrieved in a beech (Fagus sylvatica) forest in the Vienna Woods. Both rainwater (precipitation and tree throughfall) and soil solution δ (34)SVCDT ranged between 4 and 6 ‰, the ratio in soil solution being slightly lower. The lower ratio indicates that a considerable portion of the atmospherically deposited sulfate is cycled through the organic S pool before being released to the soil solution. Nearly the same trends and variations were observed in soil solution and rainwater δ (34)SVCDT values showing that sulfate adsorption/desorption are not important processes in the studied soil.
Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin
2018-03-13
We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.
More about unphysical zeroes in quark mass matrices
NASA Astrophysics Data System (ADS)
Emmanuel-Costa, David; González Felipe, Ricardo
2017-01-01
We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.
Nucleon form factors from quenched lattice QCD with domain wall fermions
NASA Astrophysics Data System (ADS)
Sasaki, Shoichi; Yamazaki, Takeshi
2008-07-01
We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G
2013-01-30
Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.
An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.
NASA Astrophysics Data System (ADS)
Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu
2012-09-01
An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.
Core filaments of the nuclear matrix
1990-01-01
The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700
Analysis of ligand-receptor cross-linked fragments by mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, C.D.; Sargsyan, H.; Hurst, Gregory
G-protein coupled receptors (GPCRs) are a class of integral membrane receptor proteins that are characterized by a signature seven-transmembrane (7-TM) configuration. The a-factor receptor (Ste2p) from Saccharomyces cerevisiae is a GPCR that, upon binding of a peptide ligand, transduces a signal to initiate a cascade of events leading to the mating of haploid yeast cells. This study summarizes the application of affinity purification and of matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) experiments using biotinylated photoactivatable a-factor analogs. Affinity purification and enrichment of biotinylated peptides by monomeric avidin beads resulted in mass spectrometric detection of specific signals corresponding to crosslinked fragments ofmore » Ste2p. Data obtained from cyanogen bromide (CNBr) fragments of receptor cross-linked to an a-factor analog with the photoaffinity group p-benzoyl-L-phenylalanine on position 1 were in agreement with the previous results reported by our laboratory suggesting the cross-linking between position 1 of a-factor and a region of Ste2p covering residues 251 294.« less
Lou, Xianwen; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2016-12-30
Ionization in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a very complicated process. It has been reported that quaternary ammonium salts show extremely strong matrix and analyte suppression effects which cannot satisfactorily be explained by charge transfer reactions. Further investigation of the reasons causing these effects can be useful to improve our understanding of the MALDI process. The dried-droplet and modified thin-layer methods were used as sample preparation methods. In the dried-droplet method, analytes were co-crystallized with matrix, whereas in the modified thin-layer method analytes were deposited on the surface of matrix crystals. Model compounds, tetrabutylammonium iodide ([N(Bu) 4 ]I), cesium iodide (CsI), trihexylamine (THA) and polyethylene glycol 600 (PEG 600), were selected as the test analytes given their ability to generate exclusively pre-formed ions, protonated ions and metal ion adducts respectively in MALDI. The strong matrix suppression effect (MSE) observed using the dried-droplet method might disappear using the modified thin-layer method, which suggests that the incorporation of analytes in matrix crystals contributes to the MSE. By depositing analytes on the matrix surface instead of incorporating in the matrix crystals, the competition for evaporation/ionization from charged matrix/analyte clusters could be weakened resulting in reduced MSE. Further supporting evidence for this inference was found by studying the analyte suppression effect using the same two sample deposition methods. By comparing differences between the mass spectra obtained via the two sample preparation methods, we present evidence suggesting that the generation of gas-phase ions from charged matrix/analyte clusters may induce significant suppression of matrix and analyte ions. The results suggest that the generation of gas-phase ions from charged matrix/analyte clusters is an important ionization step in MALDI-MS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2016-07-01
Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Dhiman, Neelam; Hall, Leslie; Wohlfiel, Sherri L; Buckwalter, Seanne P; Wengenack, Nancy L
2011-04-01
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.
Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M
2010-07-12
The selectivity of mass traces obtained by monitoring liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was compared. A number of blank extracts (fish, pork kidney, pork liver and honey) were separated by ultra performance liquid chromatography (UPLC). Detected were some 100 dummy transitions respectively dummy exact masses (traces). These dummy masses were the product of a random generator. The range of the permitted masses corresponded to those which are typical for analytes (e.g. veterinary drugs). The large number of monitored dummy traces ensured that endogenous compounds present in the matrix extract, produced a significant number of detectable chromatographic peaks. All obtained chromatographic peaks were integrated and standardized. Standardisation was done by dividing these absolute peak areas by the average response of a set of 7 different veterinary drugs. This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis), where a false positive finding was observed. An endogenous matrix compound present in honey matrix behaved like a banned nitroimidazole drug. This included identical retention time and two MRM traces, producing an MRM ratio between them, which perfectly matched the ratio observed in the external standard. HRMS measurement clearly resolved the interfering matrix compound and unmasked the false positive MS/MS finding. Copyright 2010 Elsevier B.V. All rights reserved.
Duality in left-right symmetric seesaw mechanism.
Akhmedov, E Kh; Frigerio, M
2006-02-17
We consider type I + II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m(v) and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution [symbol: see text] = m(v)/nu(L) - f, where nu(L) is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2(n). We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f.
2011-03-01
Duchenne muscular dystrophy (DMD). To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor...extracellular matrix, and fat, characterizes muscle dystrophy , and in particular Duchenne muscular dystrophy (DMD) (1,2), as seen also in its animal model...stem cells (MDSC) into myogenic as opposed to lipofibrogenic lineages is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). To
The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...
ERIC Educational Resources Information Center
Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.
2007-01-01
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…
Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.
Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N
2018-03-05
In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations
NASA Astrophysics Data System (ADS)
Blanchet, Steve; Di Bari, Pasquale; Jones, David A.; Marzola, Luca
2013-01-01
Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation, describing the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, this reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms. However, taking into account the effect of gauge interactions, we show that they are washed out at the production with a wash-out rate that is halved compared to that one acting on the total asymmetry. In the N1-dominated scenario they cancel without contributing to the final baryon asymmetry. In other scenarios they do not in general and they have to be taken into account. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neutrinos and show that phantom terms additionally contribute to it. The other (parallel) component is washed out with the usual exponential factor, even for weak washout. Finally, as an illustration, we study the two RH neutrino model in the light of the above findings, showing that phantom terms can contribute to the final asymmetry also in this case.
Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil
2014-10-01
To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.
2005-10-01
In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.
Higgs boson mass corrections in the μ ν SSM with effective potential methods
NASA Astrophysics Data System (ADS)
Zhang, Hai-Bin; Feng, Tai-Fu; Yang, Xiu-Yi; Zhao, Shu-Min; Ning, Guo-Zhu
2017-04-01
To solve the μ problem of the MSSM, the μ from ν supersymmetric standard model (μ ν SSM ) introduces three singlet right-handed neutrino superfields ν^ic, which lead to the mixing of the neutral components of the Higgs doublets with the sneutrinos, producing a relatively large C P -even neutral scalar mass matrix. In this work, we analytically diagonalize the C P -even neutral scalar mass matrix and analyze in detail how the mixing impacts the lightest Higgs boson mass. We also give an approximate expression for the lightest Higgs boson mass. Simultaneously, we consider the radiative corrections to the Higgs boson masses with effective potential methods.
Kettling, Hans; Vens-Cappell, Simeon; Soltwisch, Jens; Pirkl, Alexander; Haier, Jörg; Müthing, Johannes; Dreisewerd, Klaus
2014-08-05
Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.
Cosmology with the largest galaxy cluster surveys: going beyond Fisher matrix forecasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khedekar, Satej; Majumdar, Subhabrata, E-mail: satej@mpa-garching.mpg.de, E-mail: subha@tifr.res.in
2013-02-01
We make the first detailed MCMC likelihood study of cosmological constraints that are expected from some of the largest, ongoing and proposed, cluster surveys in different wave-bands and compare the estimates to the prevalent Fisher matrix forecasts. Mock catalogs of cluster counts expected from the surveys — eROSITA, WFXT, RCS2, DES and Planck, along with a mock dataset of follow-up mass calibrations are analyzed for this purpose. A fair agreement between MCMC and Fisher results is found only in the case of minimal models. However, for many cases, the marginalized constraints obtained from Fisher and MCMC methods can differ bymore » factors of 30-100%. The discrepancy can be alarmingly large for a time dependent dark energy equation of state, w(a); the Fisher methods are seen to under-estimate the constraints by as much as a factor of 4-5. Typically, Fisher estimates become more and more inappropriate as we move away from ΛCDM, to a constant-w dark energy to varying-w dark energy cosmologies. Fisher analysis, also, predicts incorrect parameter degeneracies. There are noticeable offsets in the likelihood contours obtained from Fisher methods that is caused due to an asymmetry in the posterior likelihood distribution as seen through a MCMC analysis. From the point of mass-calibration uncertainties, a high value of unknown scatter about the mean mass-observable relation, and its redshift dependence, is seen to have large degeneracies with the cosmological parameters σ{sub 8} and w(a) and can degrade the cosmological constraints considerably. We find that the addition of mass-calibrated cluster datasets can improve dark energy and σ{sub 8} constraints by factors of 2-3 from what can be obtained from CMB+SNe+BAO only . Finally, we show that a joint analysis of datasets of two (or more) different cluster surveys would significantly tighten cosmological constraints from using clusters only. Since, details of future cluster surveys are still being planned, we emphasize that optimal survey design must be done using MCMC analysis rather than Fisher forecasting.« less
A DEIM Induced CUR Factorization
2015-09-18
CUR approximate matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix A, such a factorization provides a...CUR approximations based on leverage scores. 1 Introduction This work presents a new CUR matrix factorization based upon the Discrete Empirical...SUPPLEMENTARY NOTES 14. ABSTRACT We derive a CUR approximate matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given
Boskey, A L; Stiner, D; Doty, S B; Binderman, I
1991-01-01
Mesenchymal cells isolated from stage 21-24 chick limb-buds plated in a micro-mass culture differentiate to form chondrocytes and synthesize a calcifiable matrix. In the presence of inorganic phosphate (4 mM), hydroxyapatite mineral deposits around cartilage nodules. Ascorbic acid is, in general, an essential co-factor for extracellular matrix synthesis in culture, since it is required for collagen synthesis. In this study we demonstrate that in the absence of ascorbic acid supplementation in the mesenchymal cell cultures, mineral deposition (indicated by X-ray diffraction, measurement of Ca:hydroxyproline ratio, and 45Ca uptake) does not occur. Concentrations of 10-50 micrograms/ml ascorbate were compared to find the "optimal" concentration for cell mediated mineralization; 25 micrograms/ml was selected as optimal based on matrix appearance at the EM level and the rate of 45Ca uptake. High concentrations of ascorbic acid (greater than 75 micrograms/ml), while increasing the amount of hydroxyproline in the matrix synthesized, caused some cell death and hence less cell-mediated mineralization. This study demonstrates both the need for viable cells and a proper matrix for in vitro cell-mediated mineralization, and shows that varying the concentration of L-ascorbate (vitamin C) in the medium can have a marked effect on mineralization in vitro.
Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix
Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.
2018-01-01
A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.
NASA Astrophysics Data System (ADS)
Barling, J.; Shiel, A.; Weis, D.
2006-12-01
Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1989-01-01
Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.
Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less
NASA Astrophysics Data System (ADS)
Canosa, D.; Daniel, R.; Barceló, D.; Gelpí, E.; Le Goffic, F.; Abián, J.
1997-01-01
Several immunoconjugates of [beta]-lactoglobulin with different covalently bound pesticides (phenuron, chlortoluron, isoproturon, simazine, desethylatrazine, 2,4-dichlorophenoxyacetic acid) have been characterized by electrospray mass spectrometry (ESI-MS). The protein has 15 theoretical binding sites and the average number of pesticide molecules bound per protein ranged from two (phenuron) to 13 (2,4-dichlorophenoxyacetic acid). These results were compared with those obtained by a spectrophotometric method and by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The pesticide density in the immunoconjugate is very dependent on the pesticide structure, indicating that steric hindrance could be one of the limiting factors of the coupling procedure. The favored binding positions have been determined in the case of chlortoluron and isoproturon by ESI-MS analysis of the peptides obtained after enzymatic digestion of the protein with trypsin.
Matrix elements of the electromagnetic operator between kaon and pion states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, I.; Lubicz, V.; INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Roma
2011-10-01
We compute the matrix elements of the electromagnetic operator sF{sub {mu}{nu}}{sigma}{sup {mu}{nu}}d between kaon and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks (N{sub f}=2). The operator is renormalized nonperturbatively in the RI'/MOM scheme and our simulations cover pion masses as light as 270 MeV and three values of the lattice spacing from {approx_equal}0.07 up to {approx_equal}0.1 fm. At the physical point our result for the corresponding tensor form factor at zero-momentum transfer is f{sub T}{sup K{pi}}(0)=0.417(14{sub stat})(5{sub syst}), where the systematic error does not include the effect of quenching the strange andmore » charm quarks. Our result differs significantly from the old quenched result f{sub T}{sup K{pi}}(0)=0.78(6) obtained by the SPQ{sub cd}R Collaboration with pion masses above 500 MeV. We investigate the source of this difference and conclude that it is mainly related to the chiral extrapolation. We also study the tensor charge of the pion and obtain the value f{sub T}{sup {pi}{pi}}(0)=0.195(8{sub stat})(6{sub syst}) in good agreement with, but more accurate than the result f{sub T}{sup {pi}{pi}}(0)=0.216(34) obtained by the QCDSF Collaboration using higher pion masses.« less
NASA Astrophysics Data System (ADS)
Hedberg, Emma; Gidhagen, Lars; Johansson, Christer
Sampling of particles (PM10) was conducted during a one-year period at two rural sites in Central Chile, Quillota and Linares. The samples were analyzed for elemental composition. The data sets have undergone source-receptor analyses in order to estimate the sources and their abundance's in the PM10 size fraction, by using the factor analytical method positive matrix factorization (PMF). The analysis showed that PM10 was dominated by soil resuspension at both sites during the summer months, while during winter traffic dominated the particle mass at Quillota and local wood burning dominated the particle mass at Linares. Two copper smelters impacted the Quillota station, and contributed to 10% and 16% of PM10 as an average during summer and winter, respectively. One smelter impacted Linares by 8% and 19% of PM10 in the summer and winter, respectively. For arsenic the two smelters accounted for 87% of the monitored arsenic levels at Quillota and at Linares one smelter contributed with 72% of the measured mass. In comparison with PMF, the use of a dispersion model tended to overestimate the smelter contribution to arsenic levels at both sites. The robustness of the PMF model was tested by using randomly reduced data sets, where 85%, 70%, 50% and 33% of the samples were included. In this way the ability of the model to reconstruct the sources initially found by the original data set could be tested. On average for all sources the relative standard deviation increased from 7% to 25% for the variables identifying the sources, when decreasing the data set from 85% to 33% of the samples, indicating that the solution initially found was very stable to begin with. But it was also noted that sources due to industrial or combustion processes were more sensitive for the size of the data set, compared to the natural sources as local soil and sea spray sources.
Ham, Bryan M.; Cole, Richard B.; Jacob, Jean T.
2008-01-01
Purpose To identify and compare the phosphorylated lipids in normal and dry eye rabbit tears using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Methods MALDI-TOF MS studies were performed on tear samples from normal and dry eyes of female New Zealand White rabbits. Experimental dry eye was induced by complete removal of the main and accessory lacrimal glands and nictitating membranes. A solid ionic crystal MALDI matrix of paranitroaniline and butyric acid was used to enhance the mass spectral responses of the phospholipids. In addition, a novel lipid isolation, preconcentration, and clean-up method using pipettes containing immobilized metal ion affinity chromatography (IMAC) medium was used. Results The polar phospholipids present in the normal and dry eye rabbit tears showed both similarities and differences. Species related to platelet-activating factor (PAF) and/or lysophosphatidylcholine (lyso-PC), phosphatidylcholine (PC), and sphingomyelin (SM) were found in both the normal and dry eye rabbit tears. However, the number of types and the concentrations of SM molecules were markedly greater in the dry eye tears than in the normal tears. In addition, phosphatidylserine (PS) species that were readily detectable in dry eye tears were not found in normal tears. Conclusions The combination of immobilized metal ion affinity chromatography and the solid ionic crystal matrix for MALDI enabled the detection and study of phosphorylated lipids in the tears. Specific differences between phospholipid levels in normal and dry eye tears were observable with this methodology. The appearance of various SM species only in the dry eye tears may provide markers for this disease state in the future. PMID:16877399
Urban organic aerosols measured by single particle mass spectrometry in the megacity of London
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Harrison, R. M.
2011-02-01
During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative of the AMS COA cooking aerosol factor, but no convincing associations were found.
Gross, Cory T; McIntyre, Sally M; Houk, R S
2009-06-15
Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.
Lou, Xianwen; van Dongen, Joost L J; Meijer, E W
2010-07-01
A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3) with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)(n)Cs](+), and in the negative ion mode is [(CsI)(n)I](-). In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Zhou, Juan; Song, Bingxin; Duan, Xiaomei; Long, Yuming; Lu, Jinfeng; Li, Zhibin; Zeng, Sian; Zhan, Qiong; Yuan, Mei; Yang, Qidong; Xia, Jian
2014-10-01
The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.
Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition
NASA Astrophysics Data System (ADS)
Singh, Madan
2018-06-01
In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.
Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.
2008-01-01
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.
Spatial operator approach to flexible multibody system dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1991-01-01
The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.
Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
NASA Astrophysics Data System (ADS)
Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliquevis, T.; Kuwata, M.; Karl, T. G.; Guenther, A.; Allan, J. D.; Coe, H.; Andreae, M. O.; Pöschl, U.; Jimenez, J. L.; Artaxo, P.; Martin, S. T.
2015-04-01
Real-time mass spectra of the non-refractory species in submicron aerosol particles were recorded in a tropical rainforest in the central Amazon Basin during the wet season from February to March 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic material accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. There was insufficient ammonium to neutralize sulfate. In this acidic, isoprene-rich, HO2-dominant environment, positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the 99% of the variance in the signal intensities of the organic constituents. The first factor was identified as associated with regional and local pollution and labeled "HOA" for its hydrocarbon-like characteristics. A second factor was associated with long-range transport and labeled "OOA-1" for its oxygenated characteristics. A third factor, labeled "OOA-2," was implicated as associated with the reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets. A fourth factor, labeled "OOA-3," was consistent with an association with the fresh production of secondary organic material (SOM) by the mechanism of gas-phase oxidation of biogenic volatile organic precursors followed by gas-to-particle conversion of the oxidation products. The suffixes 1, 2, and 3 on the OOA labels signify ordinal ranking with respect to the extent of oxidation represented by the factor. The process of aqueous-phase oxidation of water-soluble products of gas-phase photochemistry might also have been associated to some extent with the OOA-2 factor. The campaign-average factor loadings had a ratio of 1.4:1 for OOA-2 : OOA-3, suggesting the comparable importance of particle-phase compared to gas-phase pathways for the production of SOM during the study period.
Corrigendum: New Form of Kane's Equations of Motion for Constrained Systems
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Bajodah, Abdulrahman H.; Hodges, Dewey H.; Chen, Ye-Hwa
2007-01-01
A correction to the previously published article "New Form of Kane's Equations of Motion for Constrained Systems" is presented. Misuse of the transformation matrix between time rates of change of the generalized coordinates and generalized speeds (sometimes called motion variables) resulted in a false conclusion concerning the symmetry of the generalized inertia matrix. The generalized inertia matrix (sometimes referred to as the mass matrix) is in fact symmetric and usually positive definite when one forms nonminimal Kane's equations for holonomic or simple nonholonomic systems, systems subject to nonlinear nonholonomic constraints, and holonomic or simple nonholonomic systems subject to impulsive constraints according to Refs. 1, 2, and 3, respectively. The mass matrix is of course symmetric when one forms minimal equations for holonomic or simple nonholonomic systems using Kane s method as set forth in Ref. 4.
EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide
Positive matrix factorization (PMF) is a multivariate factor analysis tool that decomposes a matrix of ambient data into two matrices - factor contributions and factor profiles - which then need to be interpreted by an analyst as to what source types are represented using measure...
Jin, Ya; Manabe, Takashi
2005-07-01
A method to analyze human plasma proteins without fractionation, directly applying a plasma-matrix mixture on the target plate of a matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS), has been described. Peaks of ionized plasma proteins could not be detected applying a mixture of an undiluted plasma sample and a matrix solution, but they appeared when the plasma was diluted before mixing with the matrix. Tenfold diluted plasma provided well-resolved protein peaks in the m/z range from 4000 to 30,000. The addition of a simple post-crystallization washing procedure performed on the target plate further improved the quality of mass spectra. We numbered 58 peaks in the range of 4-160 kDa and 32 out of which were assigned to the plasma protein species which have been reported. Especially high sensitivity and resolution were obtained in the region < 30 kDa, where multiple isoforms of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-III, and transthyretin could be assigned. Various post-translational modifications are involved in the isoforms, e.g., proteolytic cleavage, glycosylation and chemical modifications. This method will become complementary with the present electrophoretic techniques, especially for the analysis of low-molecular-mass proteins.
Najam-ul-Haq, M; Rainer, M; Szabó, Z; Vallant, R; Huck, C W; Bonn, G K
2007-03-10
At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.
Nell, Marika; Helbling, Damian E
2018-05-23
Hydraulic fracturing (HF) operations utilize millions of gallons of water amended with chemical additives including biocides, corrosion inhibitors, and surfactants. Fluids injected into the subsurface return to the surface as wastewaters, which contain a complex mixture of additives, transformation products, and geogenic chemical constituents. Quantitative analytical methods are needed to evaluate wastewater disposal alternatives or to conduct adequate exposure assessments. However, our narrow understanding of how matrix effects change the ionization efficiency of target analytes limits the quantitative analysis of polar to semi-polar HF additives by means of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). To address this limitation, we explored the ways in which matrix chemistry influences the ionization of seventeen priority HF additives with a modified standard addition approach. We then used the data to quantify HF additives in HF-associated fluids. Our results demonstrate that HF additives generally exhibit suppressed ionization in HF-associated fluids, though HF additives that predominantly form sodiated adducts exhibit significantly enhanced ionization in produced water samples, which is largely the result of adduct shifting. In a preliminary screening, we identified glutaraldehyde and 2-butoxyethanol along with homologues of benzalkonium chloride (ADBAC), polyethylene glycol (PEG), and polypropylene glycol (PPG) in HF-associated fluids. We then used matrix recovery factors to provide the first quantitative measurements of individual homologues of ADBAC, PEG, and PPG in HF-associated fluids ranging from mg L-1 levels in hydraulic fracturing fluid to low μg L-1 levels in PW samples. Our approach is generalizable across sample types and shale formations and yields important data to evaluate wastewater disposal alternatives or implement exposure assessments.
NASA Astrophysics Data System (ADS)
Perera, I. K.; Kantartzoglou, S.; Dyer, P. E.
1996-12-01
We have performed experiments to explore the characteristics of the matrix-assisted laser desorption/ionization (MALDI) process and to ascertain optimal operational conditions for observing intact molecular ions of large proteins. In this study, several methods have been adopted for the preparation of analyte samples. Of these, the samples prepared with the simple dried-droplet method were found to be the most suitable for the generation of the large molecular clusters, while the near-uniform spin-coated samples were observed to produce highly reproducible molecular ion signals of relatively high mass resolutions. A resulting mass spectrum which illustrates the formation of cluster ions up to the 26-mer [26M+H]+ of bovine insulin corresponding to a mass of about 150,000 Da, is presented. The effect of fluence on the extent of clustering of protein molecules has been studied, the results revealing the existence of an optimum fluence for detecting the large cluster ions. Investigations have also indicated that the use of polyethylene-coated metallic substrates as sample supports can considerably reduce the fragmentation of the matrix/analyte molecular ions and the desorption of "neat" MALDI matrices deposited on these polyethylene-coated sample probes enhance their aggregation, forming up to the heptamer [7M+H]+ of the matrix, ferulic acid. The dependence of the mass resolution on the applied acceleration voltage and the desorption fluence has been examined and the results obtained are discussed in terms of a simple analysis of the linear time-of-flight mass spectrometer. A spectrum of chicken egg lysozyme (M~14,306) displaying the high mass resolutions (M/[Delta]M~690) that can be attained when the mass spectrometer is operated in the reflectron mode is also presented.
Direct structural parameter identification by modal test results
NASA Technical Reports Server (NTRS)
Chen, J.-C.; Kuo, C.-P.; Garba, J. A.
1983-01-01
A direct identification procedure is proposed to obtain the mass and stiffness matrices based on the test measured eigenvalues and eigenvectors. The method is based on the theory of matrix perturbation in which the correct mass and stiffness matrices are expanded in terms of analytical values plus a modification matrix. The simplicity of the procedure enables real time operation during the structural testing.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon
1999-01-01
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-04-21
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-01-01
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138
Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong
2016-05-01
Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.
Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P
2018-03-01
A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.
Klein, Felix; Pieber, Simone M; Ni, Haiyan; Stefenelli, Giulia; Bertrand, Amelie; Kilic, Dogushan; Pospisilova, Veronika; Temime-Roussel, Brice; Marchand, Nicolas; El Haddad, Imad; Slowik, Jay G; Baltensperger, Urs; Cao, Junji; Huang, Ru-Jin; Prévôt, André S H
2018-03-06
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kg coal for bituminous coals and are below 0.1 g/kg coal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
NASA Astrophysics Data System (ADS)
Zhou, Jian; Qi, Jinyi
2011-03-01
Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
Improved Spectra for MALDI MSI of Peptides Using Ammonium Phosphate Monobasic in MALDI Matrix.
Ucal, Yasemin; Ozpinar, Aysel
2018-05-10
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, one of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well-known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increases. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha-cyano-4-hydroxycinnamic acid (α-CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α-CHCA were assessed in bovine serum albumin (BSA) tryptic digests and compared with the control (α-CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration and, specifically 8 mM AmP and 10 mM AmP increased BSA peptide signal intensities. In MALDI MSI of peptides, both 8 mM, and 10 mM AmP in α-CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α-CHCA (AUC>0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α-CHCA matrix additive in order to enhance peptide signals in formalin fixed paraffin embedded (FFPE) tissues. Further, AmP as part of α-CHCA matrix could enhance protein identifications and support MALDI MSI based proteomic approaches. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.
2012-10-01
In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.
Wu, Zengnan; Khan, Mashooq; Mao, Sifeng; Lin, Ling; Lin, Jin-Ming
2018-05-01
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool for the detection of a wide range of analytes. However, heterogeneous distribution of matrix/analyte cocrystal, variation in signal intensity and poor experimental reproducibility at different locations of the same spot means difficulty in quantitative analysis. In this work, carbon nanotubes (CNTs) were employed as adsorbent for analyte cum matrix on a conductive porous membrane as a novel mass target plate. The sample pretreatment step was achieved by enrichment and dead-end filtration and dried by a solid-liquid separation. This approach enables the homogeneous distribution of analyte in the matrix, good shot-to-shot reproducibility in signals and quantitative detection of peptide and protein at different concentrations with correlation coefficient (R 2 ) of 0.9920 and 0.9909, respectively. The simple preparation of sample in a short time, uniform distribution of analyte, easy quantitative detection, and high reproducibility makes this technique useful and may diversify the application of MALDI-MS for quantitative detection of a variety of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Rogosin, S.
2018-01-01
From the classic work of Gohberg & Krein (1958 Uspekhi Mat. Nauk. XIII, 3–72. (Russian).), it is well known that the set of partial indices of a non-singular matrix function may change depending on the properties of the original matrix. More precisely, it was shown that if the difference between the largest and the smallest partial indices is larger than unity then, in any neighbourhood of the original matrix function, there exists another matrix function possessing a different set of partial indices. As a result, the factorization of matrix functions, being an extremely difficult process itself even in the case of the canonical factorization, remains unresolvable or even questionable in the case of a non-stable set of partial indices. Such a situation, in turn, has became an unavoidable obstacle to the application of the factorization technique. This paper sets out to answer a less ambitious question than that of effective factorizing matrix functions with non-stable sets of partial indices, and instead focuses on determining the conditions which, when having known factorization of the limiting matrix function, allow to construct another family of matrix functions with the same origin that preserves the non-stable partial indices and is close to the original set of the matrix functions. PMID:29434502
Mishuris, G; Rogosin, S
2018-01-01
From the classic work of Gohberg & Krein (1958 Uspekhi Mat. Nauk. XIII , 3-72. (Russian).), it is well known that the set of partial indices of a non-singular matrix function may change depending on the properties of the original matrix. More precisely, it was shown that if the difference between the largest and the smallest partial indices is larger than unity then, in any neighbourhood of the original matrix function, there exists another matrix function possessing a different set of partial indices. As a result, the factorization of matrix functions, being an extremely difficult process itself even in the case of the canonical factorization, remains unresolvable or even questionable in the case of a non-stable set of partial indices. Such a situation, in turn, has became an unavoidable obstacle to the application of the factorization technique. This paper sets out to answer a less ambitious question than that of effective factorizing matrix functions with non-stable sets of partial indices, and instead focuses on determining the conditions which, when having known factorization of the limiting matrix function, allow to construct another family of matrix functions with the same origin that preserves the non-stable partial indices and is close to the original set of the matrix functions.
Feng, Dan; Xia, Yan
2018-07-19
Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.
Besil, Natalia; Cesio, Verónica; Heinzen, Horacio; Fernandez-Alba, Amadeo R
2017-06-14
The matrix effects of ethyl acetate extracts from seven different citrus fruits on the determination of 80 pesticide residues using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry (UHPLC-(ESI)-HR-TOF) at 4 GHz resolution mode were studied. Only 20% of the evaluated pesticides showed noticeable matrix effects (ME) due to coelution with natural products between t R = 3 and 11 min. Principal component analysis (PCA) of the detected coextractives grouped the mandarins and the orange varieties, but separated lemon, oranges, and mandarins from each other. Matrix effects were different among species but similar between varieties, forcing the determination of pesticide residues through matrix-matched calibration curves with the same fruit. Twenty-three natural products (synephrine, naringin, poncirin, glycosides of hesperitin, limonin, nomilin, and a few fatty acids, among others) were identified in the analyzed extracts. Twelve of the identified compounds coeluted with 28 of the pesticides under study, causing different matrix effects.
Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign
NASA Astrophysics Data System (ADS)
Milic, Andelija; Mallet, Marc D.; Cravigan, Luke T.; Alroe, Joel; Ristovski, Zoran D.; Selleck, Paul; Lawson, Sarah J.; Ward, Jason; Desservettaz, Maximilien J.; Paton-Walsh, Clare; Williams, Leah R.; Keywood, Melita D.; Miljevic, Branka
2017-03-01
There is a lack of knowledge of how biomass burning aerosols in the tropics age, including those in the fire-prone Northern Territory in Australia. This paper reports chemical characterization of fresh and aged aerosols monitored during the 1-month-long SAFIRED (Savannah Fires in the Early Dry Season) field study, with an emphasis on the chemical signature and aging of organic aerosols. The campaign took place in June 2014 during the early dry season when the surface measurement site, the Australian Tropical Atmospheric Research Station (ATARS), located in the Northern Territory, was heavily influenced by thousands of wild and prescribed bushfires. ATARS was equipped with a wide suite of instrumentation for gaseous and aerosol characterization. A compact time-of-flight aerosol mass spectrometer was deployed to monitor aerosol chemical composition. Approximately 90 % of submicron non-refractory mass was composed of organic material. Ozone enhancement in biomass burning plumes indicated increased air mass photochemistry. The diversity in biomass burning emissions was illustrated through variability in chemical signature (e.g. wide range in f44, from 0.06 to 0.18) for five intense fire events. The background particulate loading was characterized using positive matrix factorization (PMF). A PMF-resolved BBOA (biomass burning organic aerosol) factor comprised 24 % of the submicron non-refractory organic aerosol mass, confirming the significance of fire sources. A dominant PMF factor, OOA (oxygenated organic aerosol), made up 47 % of the sampled aerosol, illustrating the importance of aerosol aging in the Northern Territory. Biogenic isoprene-derived organic aerosol factor was the third significant fraction of the background aerosol (28 %).
Renormalization of the weak hadronic current in the nuclear medium
NASA Astrophysics Data System (ADS)
Siiskonen, T.; Hjorth-Jensen, M.; Suhonen, J.
2001-05-01
The renormalization of the weak charge-changing hadronic current as a function of the reaction energy release is studied at the nucleonic level. We have calculated the average quenching factors for each type of current (vector, axial vector, and induced pseudoscalar). The obtained quenching in the axial vector part is, at zero momentum transfer, 19% for the 1s0d shell and 23% in the 1p0f shell. We have extended the calculations also to heavier systems such as 56Ni and 100Sn, where we obtain stronger quenchings, 44% and 59%, respectively. Gamow-Teller-type transitions are discussed, along with the higher-order matrix elements. The quenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first order operators (in inverse nucleon mass) does not give any substantial contribution. The extracted renormalization to the ratio CP/CA at q=100 MeV is -3.5%, -7.1%, -28.6%, and +8.7% for mass 16, 40, 56, and 100, respectively.
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
Composite Fermi surface in the half-filled Landau level with anisotropic electron mass
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra
We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.
Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China
NASA Astrophysics Data System (ADS)
Zheng, Jing; Hu, Min; Du, Zhuofei; Shang, Dongjie; Gong, Zhaoheng; Qin, Yanhong; Fang, Jingyao; Gu, Fangting; Li, Mengren; Peng, Jianfei; Li, Jie; Zhang, Yuqia; Huang, Xiaofeng; He, Lingyan; Wu, Yusheng; Guo, Song
2017-06-01
Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1) was 5.7 ± 5.4 µg m-3 during the field campaign, ranging from 0.1 up to 33.3 µg m-3. Organic aerosol (OA) was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.
Anthropogenic Emissions Shift Pathways of Organic PM1 Production in Amazonia
NASA Astrophysics Data System (ADS)
de Sá, S. S.; Palm, B. B.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Jimenez, J. L.; Newburn, M. K.; Alexander, M. L. L.; Isaacman-VanWertz, G. A.; Yee, L.; Goldstein, A. H.; Brito, J.; Carbone, S.; Artaxo, P.; Springston, S. R.; Souza, R. A. F. D.; Manzi, A. O.; Surratt, J. D.; Martin, S. T.
2016-12-01
As part of GoAmazon2014/5, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed to characterize the composition of fine-mode particulate matter (PM) and provide insights into the production of organic PM in the central Amazon basin, Brazil. Through a combination of meteorology, emissions, and chemistry, the T3 research site (located 70 km downwind of Manaus) was affected by biogenic emissions from the tropical rainforest that were periodically mixed with urban outflow from the Manaus metropolitan area as well as with biomass burning plumes. Results from the T3 site are presented in the context of measurements at T0a (ATTO) and T2, representing predominantly clean and polluted conditions, respectively. At T3, the non-refractory PM1 mass concentration was dominated by the organic component in both the wet and dry seasons (80% by mass). The analysis of the results aims at delineating the anthropogenic impact on the measurements, especially focusing on the effect of NOx emissions on the formation of organic PM. Positive matrix factorization (PMF) analysis is applied to the time series of mass spectra of the organic component of PM1. The resulting factors provide information on the relative and time-varying contributions of different sources and pathways to organic PM production. The time trend of the different statistical factors is investigated against co-located measurements, and compared between background and polluted conditions. Results suggest that polluted conditions are associated with higher organic mass concentrations, with some pathways being favored under those conditions while others are inhibited. This analysis and results represent a step toward the goal of improving the understanding of anthropogenic influences on the mass concentrations and composition of PM1 in Amazonia.
Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S
2015-01-01
Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143
Uncertainty Modeling for Structural Control Analysis and Synthesis
NASA Technical Reports Server (NTRS)
Campbell, Mark E.; Crawley, Edward F.
1996-01-01
The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.
ERIC Educational Resources Information Center
Mittag, Kathleen Cage
Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…
Connecting Fermion Masses and Mixings to BSM Physics - Quarks
NASA Astrophysics Data System (ADS)
Goldman, Terrence; Stephenson, Gerard J., Jr.
2015-10-01
The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com
Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H
2015-01-01
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Sangwon
2008-01-01
Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternativemore » assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.« less
"Magic" Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Trimpin, Sarah
2016-01-01
The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.
Realistic simplified gaugino-higgsino models in the MSSM
NASA Astrophysics Data System (ADS)
Fuks, Benjamin; Klasen, Michael; Schmiemann, Saskia; Sunder, Marthijn
2018-03-01
We present simplified MSSM models for light neutralinos and charginos with realistic mass spectra and realistic gaugino-higgsino mixing, that can be used in experimental searches at the LHC. The formerly used naive approach of defining mass spectra and mixing matrix elements manually and independently of each other does not yield genuine MSSM benchmarks. We suggest the use of less simplified, but realistic MSSM models, whose mass spectra and mixing matrix elements are the result of a proper matrix diagonalisation. We propose a novel strategy targeting the design of such benchmark scenarios, accounting for user-defined constraints in terms of masses and particle mixing. We apply it to the higgsino case and implement a scan in the four relevant underlying parameters {μ , tan β , M1, M2} for a given set of light neutralino and chargino masses. We define a measure for the quality of the obtained benchmarks, that also includes criteria to assess the higgsino content of the resulting charginos and neutralinos. We finally discuss the distribution of the resulting models in the MSSM parameter space as well as their implications for supersymmetric dark matter phenomenology.
Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry.
Kruve, Anneli; Künnapas, Allan; Herodes, Koit; Leito, Ivo
2008-04-11
Three sample preparation methods: Luke method (AOAC 985.22), QuEChERS (quick, easy, cheap, effective, rugged and safe) and matrix solid-phase dispersion (MSPD) were applied to different fruits and vegetables for analysis of 14 pesticide residues by high-performance liquid chromatography with electrospray ionization-mass spectrometry (HPLC/ESI/MS). Matrix effect, recovery and process efficiency of the sample preparation methods applied to different fruits and vegetables were compared. The Luke method was found to produce least matrix effect. On an average the best recoveries were obtained with the QuEChERS method. MSPD gave unsatisfactory recoveries for some basic pesticide residues. Comparison of matrix effects for different apple varieties showed high variability for some residues. It was demonstrated that the amount of co-extracting compounds that cause ionization suppression of aldicarb depends on the apple variety as well as on the sample preparation method employed.
Niu, Ji-Cheng; Zhou, Ting; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Yang, Fu-Quan; Wu, Zhi-Yong
2018-02-01
In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.
Hwang, Ju-Ae; Yang, Heung-Mo; Hong, Doo-Pyo; Joo, Sung-Yeon; Choi, Yoon-La; Park, Joo-Hung; Lazar, Alexander J; Pollock, Raphael E; Lev, Dina; Kim, Sung Joo
2014-10-15
Liposarcoma is one of the most common histologic types of soft tissue sarcoma and is frequently an aggressive cancer with poor outcome. Hence, alternative approaches other than surgical excision are necessary to improve treatment of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). For this reason, we performed a two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry/mass spectrometry (MALDI-TOF/MS) analysis to identify new factors for WDLPS and DDLPS. Among the selected candidate proteins, gankyrin, known to be an oncoprotein, showed a significantly high level of expression pattern and inversely low expression of p53/p21 in WDLPS and DDLPS tissues, suggesting possible utility as a new predictive factor. Moreover, inhibition of gankyrin not only led to reduction of in vitro cell growth ability including cell proliferation, colony-formation, and migration, but also in vivo DDLPS cell tumorigenesis, perhaps via downregulation of the p53 tumor suppressor gene and its p21 target and also reduction of AKT/mTOR signal activation. This study identifies gankyrin, for the first time, as new potential predictive and oncogenic factor of WDLPS and DDLPS, suggesting the potential for service as a future LPS therapeutic approach.
Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A
2013-07-16
Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.
Computing row and column counts for sparse QR and LU factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.
2001-01-01
We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less
An Evaluation of Unit and ½ Mass Correction Approaches as a ...
Rare earth elements (REE) and certain alkaline earths can produce M+2 interferences in ICP-MS because they have sufficiently low second ionization energies. Four REEs (150Sm, 150Nd, 156Gd and 156Dy) produce false positives on 75As and 78Se and 132Ba can produce a false positive on 66Zn. Currently, US EPA Method 200.8 does not address these as sources of false positives. Additionally, these M+2 false positives are typically enhanced if collision cell technology is utilized to reduce polyatomic interferences associated with ICP-MS detection. A preliminary evaluation indicates that instrumental tuning conditions can impact the observed M+2/M+1 ratio and in turn the false positives generated on Zn, As and Se. Both unit and ½ mass approaches will be evaluated to correct for these false positives relative to the benchmark concentrations estimates from a triple quadrupole ICP-MS using standard solutions. The impact of matrix on these M+2 corrections will be evaluated over multiple analysis days with a focus on evaluating internal standards that mirror the matrix induced shifts in the M+2 ion transmission. The goal of this evaluation is to move away from fixed M+2 corrective approaches and move towards sample specific approaches that mimic the sample matrix induced variability while attempting to address intra-day variability of the M+2 correction factors through the use of internal standards. Oral Presentation via webinar for EPA Laboratory Technical Informati
USDA-ARS?s Scientific Manuscript database
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...
USDA-ARS?s Scientific Manuscript database
RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...
McTaggart, Lisa R.; Lei, Eric; Richardson, Susan E.; Hoang, Linda; Fothergill, Annette; Zhang, Sean X.
2011-01-01
Compared to DNA sequence analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability. PMID:21653762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, A. E.; Srinivasan, S.; Karra, S.
Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less
Lovell, A. E.; Srinivasan, S.; Karra, S.; ...
2018-04-24
Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less
Λb→p ℓ-ν¯ ℓ and Λb→Λcℓ-ν¯ ℓ form factors from lattice QCD with relativistic heavy quarks
NASA Astrophysics Data System (ADS)
Detmold, William; Lehner, Christoph; Meinel, Stefan
2015-08-01
Measurements of the Λb→p ℓ-ν¯ ℓ and Λb→Λcℓ-ν¯ ℓ decay rates can be used to determine the magnitudes of the Cabibbo-Kobayashi-Maskawa matrix elements Vu b and Vc b, provided that the relevant hadronic form factors are known. Here we present a precise calculation of these form factors using lattice QCD with 2 +1 flavors of dynamical domain-wall fermions. The b and c quarks are implemented with relativistic heavy-quark actions, allowing us to work directly at the physical heavy-quark masses. The lattice computation is performed for six different pion masses and two different lattice spacings, using gauge-field configurations generated by the RBC and UKQCD Collaborations. The b →u and b →c currents are renormalized with a mostly nonperturbative method. We extrapolate the form factor results to the physical pion mass and the continuum limit, parametrizing the q2 dependence using z expansions. The form factors are presented in such a way as to enable the correlated propagation of both statistical and systematic uncertainties into derived quantities such as differential decay rates and asymmetries. Using these form factors, we present predictions for the Λb→p ℓ-ν¯ℓ and Λb→Λc ℓ-ν¯ℓ differential and integrated decay rates. Combined with experimental data, our results enable determinations of |Vu b|, |Vc b|, and |Vu b/Vc b| with theory uncertainties of 4.4%, 2.2%, and 4.9%, respectively.
Source Apportionment of VOCs in Edmonton, Alberta
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.
2012-12-01
Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to VOC mass at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the mass at the East site and less than 2% of the mass at the Central site. Natural-gas-related emissions accounted for 10% to 20% of the mass at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the VOC mass at the Central site and less than 3% of the mass at the East site. Controllable emissions sources account for the bulk of the identified VOC mass. Efforts to reduce ozone or particulate matter precursors or exposure to toxic pollutants can now be directed to those sources most important to the Edmonton area.
Fujimura, Yoshinori; Miura, Daisuke
2014-01-01
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research. PMID:24957029
Chen, Jien-Lian; Lee, Chuping; Lu, I-Chung; Chien, Chia-Lung; Lee, Yuan-Tseh; Hu, Wei-Ping; Ni, Chi-Kung
2016-12-01
Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mainly generate protonated ions from peptides and proteins but sodiated (or potassiated) ions from carbohydrates. The ion intensities of sodiated (or potassiated) carbohydrates generated by ESI and MALDI are generally lower than those of protonated peptides and proteins. Ab initio calculations and transition state theory were used to investigate the reasons for the low detection sensitivity for underivatized carbohydrates. We used glucose and cellobiose as examples and showed that the low detection sensitivity is partly attributable to the following factors. First, glucose exhibits a low proton affinity. Most protons generated by ESI or MALDI attach to water clusters and matrix molecules. Second, protonated glucose and cellobiose can easily undergo dehydration reactions. Third, the sodiation affinities of glucose and cellobiose are small. Some sodiated glucose and cellobiose dissociate into the sodium cations and neutral carbohydrates during ESI or MALDI process. The increase of detection sensitivity of carbohydrates in mass spectrometry by various methods can be rationalized according to these factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tao, Shi-Yang; Zhong, Bu-Qing; Lin, Yan; Ma, Jin; Zhou, Yongzhang; Hou, Hong; Zhao, Long; Sun, Zaijin; Qin, Xiaopeng; Shi, Huading
2017-07-01
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 128 surface soil samples from Xiangfen County, northern China. The total mass concentration of these PAHs ranged from 52 to 10,524ng/g, with a mean of 723ng/g. Four-ring PAHs contributed almost 50% of the total PAH burden. A self-organizing map and positive matrix factorization were applied to investigate the spatial distribution and source apportionment of PAHs. Three emission sources of PAHs were identified, namely, coking ovens (21.9%), coal/biomass combustion (60.1%), and anthracene oil (18.0%). High concentrations of low-molecular-weight PAHs were particularly apparent in the coking plant zone in the region around Gucheng Town. High-molecular-weight PAHs mainly originated from coal/biomass combustion around Gucheng Town, Xincheng Town, and Taosi Town. PAHs in the soil of Xiangfen County are unlikely to pose a significant cancer risk for the population. Copyright © 2017 Elsevier Inc. All rights reserved.
Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.
Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul
2015-09-15
This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/z<500). The β-lactamase assay for the Escherichia coli antibiotic susceptibility test was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Limiting the effective mass and new physics parameters from 0 ν β β
NASA Astrophysics Data System (ADS)
Awasthi, Ram Lal; Dasgupta, Arnab; Mitra, Manimala
2016-10-01
In the light of the recent result from KamLAND-Zen (KLZ) and GERDA Phase-II, we update the bounds on the effective mass and the new physics parameters, relevant for neutrinoless double beta decay (0 ν β β ). In addition to the light Majorana neutrino exchange, we analyze beyond standard model contributions that arise in left-right symmetry and R-parity violating supersymmetry. The improved limit from KLZ constrains the effective mass of light neutrino exchange down to sub-eV mass regime 0.06 eV. Using the correlation between the 136Xe and 76 half-lives, we show that the KLZ limit individually rules out the positive claim of observation of 0 ν β β for all nuclear matrix element compilation. For the left-right symmetry and R-parity violating supersymmetry, the KLZ bound implies a factor of 2 improvement of the effective mass and the new physics parameters. The future ton scale experiments such as, nEXO will further constrain these models, in particular, will rule out standard as well as Type-II dominating LRSM inverted hierarchy scenario.
NASA Astrophysics Data System (ADS)
Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.
2016-02-01
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.
Wu, Xinzhou; Li, Weifeng; Guo, Pengran; Zhang, Zhixiang; Xu, Hanhong
2018-04-18
Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) has been applied for rapid, sensitive, undisputed, and quantitative detection of pesticide residues on fresh leaves with little sample pretreatment. Various pesticides (insecticides, bactericides, herbicides, and acaricides) are detected directly in the complex matrix with excellent limits of detection down to 4 μg/L. FTICR-MS could unambiguously identify pesticides with tiny mass differences (∼0.017 75 Da), thereby avoiding false-positive results. Remarkably, pesticide isomers can be totally discriminated by use of diagnostic fragments, and quantitative analysis of pesticide isomers is demonstrated. The present results expand the horizons of the MALDI-FTICR-MS platform in the reliable determination of pesticides, with integrated advantages of ultrahigh mass resolution and accuracy. This method provides growing evidence for the resultant detrimental effects of pesticides, expediting the identification and evaluation of innovative pesticides.
Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas
2014-01-01
This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.
Tisdale, Evgenia; Wilkins, Charles
2014-04-11
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer's and solvent's Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix-analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum. Copyright © 2014 Elsevier B.V. All rights reserved.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P
2016-07-26
Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.
Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry
NASA Astrophysics Data System (ADS)
Mounfield, William P.; Garrett, Timothy J.
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.
Mounfield, William P; Garrett, Timothy J
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Piezoresistive strain sensing of carbon black /silicone composites above percolation threshold
NASA Astrophysics Data System (ADS)
Shang, Shuying; Yue, Yujuan; Wang, Xiaoer
2016-12-01
A series of flexible composites with a carbon black (CB) filled silicone rubber matrix were made by an improved process in this work. A low percolation threshold with a mass ratio of 2.99% CB was achieved. The piezoresistive behavior of CB/silicone composites above the critical value, with the mass ratio of carbon black to the silicone rubber ranging from 0.01 to 0.2, was studied. The piezoresistive behavior was different from each other for the composites with different CB contents. But, the composites show an excellent repeatability of piezoresistivity under cyclic compression, no matter with low filler content or with high filler content. The most interesting phenomena were that the plots of gauge factor versus strain of the composites with different CB contents constructed a master curve and the curve could be well fitted by a function. It was showed that the gauge factor of the composites was strain-controlled showing a promising prospect of application.
Secondary production of massive quarks in thrust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, André H.; Erwin Schrödinger International Institute for Mathematical Physics, University of Vienna, Boltzmanngasse 9, A-1090 Vienna; Mateu, Vicent
2016-01-22
We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e{sup +}e{sup −} → hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N{sup 3}LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(Λ{sub QCD}) renormalon in the partonic soft function by appropriate mass-dependentmore » subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.« less
ERIC Educational Resources Information Center
Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin
2011-01-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.
The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.
DYMAFLEX: DYnamic Manipulation FLight EXperiment
2013-09-03
thrust per nozzle and minimize propellant mass and tank mass. This study compared carbon dioxide, nitrous oxide, and R134-A. These results were...equations of mo- tion of a space manipulator, showing their top- level, matrix- vector representation to be of iden- tical form to those of a fixed-base...the system inertia matrix, q is the po- sition state vector (consisting of the manipulator joint angles θ, spacecraft attitude quaternion, and
Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf
2009-06-01
An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.
Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2010-10-30
A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.
1979-07-31
3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is
Liang, H R; Foltz, R L; Meng, M; Bennett, P
2003-01-01
The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.
A Note on the Factor Analysis of Partial Covariance Matrices
ERIC Educational Resources Information Center
McDonald, Roderick P.
1978-01-01
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration
2018-04-01
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...
2018-04-13
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less
Kim, Jo-Il; Park, Jong-Min; Hwang, Seung-Ju; Kang, Min-Jung; Pyun, Jae-Chul
2014-07-11
Top-down synthesized TiO2 nanowires are presented as an ideal solid matrix to analyze small biomolecules at a m/z of less than 500. The TiO2 nanowires were synthesized as arrays using a modified hydrothermal process directly on the surface of a Ti plate. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix. The crystal and electronic structures of the top-down TiO2 nanowires were analyzed at each step of the hydrothermal process, and the optimal TiO2 nanowires were identified by checking their performance toward the ionization of analytes in surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix for SALDI-TOF mass spectrometry was demonstrated using eight types of amino acids and peptides as model analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank
2018-04-13
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
Chatterjee, Niladri S; Utture, Sagar; Banerjee, Kaushik; Ahammed Shabeer, T P; Kamble, Narayan; Mathew, Suseela; Ashok Kumar, K
2016-04-01
This paper reports a selective and sensitive method for multiresidue determination of 119 chemical residues including pesticides and polyaromatic hydrocarbons (PAH) in high fatty fish matrix. The novel sample preparation method involved extraction of the target analytes from homogenized fish meat (5 g) in acetonitrile (15 mL, 1% acetic acid) after three-phase partitioning with hexane (2 mL) and the remaining aqueous layer. An aliquot (1.5 mL) of the acetonitrile layer was aspirated and subjected to two-stage dispersive solid phase extraction (dSPE) cleanup and the residues were finally estimated by gas chromatography mass spectrometry with selected reaction monitoring (GC-MS/MS). The co-eluted matrix components were identified on the basis of their accurate mass by GC with quadrupole time of flight MS. Addition of hexane during extraction and optimized dSPE cleanup significantly minimized the matrix effects. Recoveries at 10, 25 and 50 μg/kg were within 60-120% with associated precision, RSD<11%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schubert, Patricia; Schantz, Michele M; Sander, Lane C; Wise, Stephen A
2003-01-15
An analytical approach based on gas chromatography/ mass spectrometry (GC/MS) is presented for the measurement of polycyclic aromatic hydrocarbons with molecular weight (MW) 300 and 302 in environmental samples. Three different GC stationary phases [5% and 50% phenyl methylpolysiloxane and dimethyl (50% liquid crystalline) polysiloxane] were compared, and retention indexes (RI) are given for 23 individual MW 302 isomers. Identification of MW 300 and 302 isomers in four environmental-matrix Standard Reference Materials (SRMs) (SRM 1597, coal tar extract; SRM 1648 and SRM 1649a, air particulate matter; and SRM 1941, marine sediment) was based on the comparison of RI data and mass spectra from authentic standards. Dibenzo[a,l]pyrene, which is of considerable interest because of its high carcinogenicity, was identified and quantified in the four environmental-matrix SRMs. A total of 23 isomers of MW 302 and four isomers of MW 300 were quantified in four different environmental-matrix SRMs, and the results are compared to previously reported results based on liquid chromatography with fluorescence detection.
The massive soft anomalous dimension matrix at two loops
NASA Astrophysics Data System (ADS)
Mitov, Alexander; Sterman, George; Sung, Ilmo
2009-05-01
We study two-loop anomalous dimension matrices in QCD and related gauge theories for products of Wilson lines coupled at a point. We verify by an analysis in Euclidean space that the contributions to these matrices from diagrams that link three massive Wilson lines do not vanish in general. We show, however, that for two-to-two processes the two-loop anomalous dimension matrix is diagonal in the same color-exchange basis as the one-loop matrix for arbitrary masses at absolute threshold and for scattering at 90 degrees in the center of mass. This result is important for applications of threshold resummation in heavy quark production.
THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS
The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...
Biohybrid Fibro-Porous Vascular Scaffolds: Effect of Crosslinking on Properties
Nozik, Danna; Patel, Harsh; Singh, Raj K.; Vohra, Yogesh K.
2015-01-01
Tubular grafts were fabricated from blends of polycaprolactone (PCL) and poly(glycolide -co-caprolactone) (PGC) polymers and coated with an extracellular matrix containing collagens, laminin, and proteoglycans, but not growth factors (HuBiogel™). Multifunctional scaffolds from polymer blends and membrane proteins provide the necessary biomechanics and biological functions for tissue regeneration. Two crosslinking agents, a natural crosslinker namely genipin (Gp) and a carbodiimide reagent namely 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), were used for further stabilizing the protein matrix and the effect of crosslinking was evaluated for structural, morphological, mechanical properties using SEM, DSC and DMA. SEM images and fiber diameter distribution showed fiber-size between 0.2 µm to 1 µm with the majority of fiber diameters being under 500 nm, indicating upper range of protein fiber-sizes (for example, collagen fibers in extracellular matrix are in 50 to 500 nm diameter range). HB coating did not affect the mechanical properties, but increased its hydrophilicity of the graft. Overall data showed that PCL/PGC blends with 3:1 mass ratio exhibited mechanical properties comparable to those of human native arteries (tensile strength of 1–2 MPa and Young’s modulus of <10 MPa). Additionally, the effect of crosslinking on coating stability was investigated to assure the retention of proteins on scaffold for effective cell-matrix interactions. PMID:26082566
Biohybrid Fibro-Porous Vascular Scaffolds: Effect of Crosslinking on Properties.
Thomas, Vinoy; Nozik, Danna; Patel, Harsh; Singh, Raj K; Vohra, Yogesh K
Tubular grafts were fabricated from blends of polycaprolactone (PCL) and poly(glycolide -co-caprolactone) (PGC) polymers and coated with an extracellular matrix containing collagens, laminin, and proteoglycans, but not growth factors (HuBiogel™). Multifunctional scaffolds from polymer blends and membrane proteins provide the necessary biomechanics and biological functions for tissue regeneration. Two crosslinking agents, a natural crosslinker namely genipin (Gp) and a carbodiimide reagent namely 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), were used for further stabilizing the protein matrix and the effect of crosslinking was evaluated for structural, morphological, mechanical properties using SEM, DSC and DMA. SEM images and fiber diameter distribution showed fiber-size between 0.2 µm to 1 µm with the majority of fiber diameters being under 500 nm, indicating upper range of protein fiber-sizes (for example, collagen fibers in extracellular matrix are in 50 to 500 nm diameter range). HB coating did not affect the mechanical properties, but increased its hydrophilicity of the graft. Overall data showed that PCL/PGC blends with 3:1 mass ratio exhibited mechanical properties comparable to those of human native arteries (tensile strength of 1-2 MPa and Young's modulus of <10 MPa). Additionally, the effect of crosslinking on coating stability was investigated to assure the retention of proteins on scaffold for effective cell-matrix interactions.
Features of quark and lepton mixing from differential geometry of curves on surfaces
NASA Astrophysics Data System (ADS)
Bordes, José; Hong-Mo, Chan; Pfaudler, Jakov; Sheung Tsun, Tsou
1998-09-01
It is noted that the Cabibbo-Kobayashi-Moskawa (CKM) matrix elements for both quarks and leptons as conceived in the dualized standard model (DSM) can be interpreted as direction cosines obtained by moving the Darboux trihedron (a 3-frame) along a trajectory on a sphere traced out through changing energy scales by a 3-vector factorized from the mass matrix. From the Darboux analogues of the well-known Serret-Frenet formulas for space curves, it is seen that the corner elements (Vub,Vtd for quarks, and Ue3,Uτ1 for leptons) are associated with the (geodesic) torsion, while the other off-diagonal elements (Vus,Vcd and Vcb,Vts for quarks, and Ue2,Uμ1 and Uμ3,Uτ2 for leptons) with the (respectively, geodesic and normal) curvatures of the trajectory. From this it follows that (i) the corner elements in both matrices are much smaller than the other elements, and (ii) the Uμ3,Uτ2 elements for the lepton CKM matrix are much larger than their counterparts in the quark matrix. Both these conclusions are strongly borne out by experiment, for quarks in hadron decays and for leptons in neutrino oscillations, and by previous explicit calculations within the DSM scheme.
Heavy quarkonium in a holographic basis
Li, Yang; Maris, Pieter; Zhao, Xingbo; ...
2016-05-04
Here, we study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF) as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.
The two-mass contribution to the three-loop gluonic operator matrix element Agg,Q(3)
NASA Astrophysics Data System (ADS)
Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.
2018-07-01
We calculate the two-mass QCD contributions to the massive operator matrix element Agg,Q at O (αs3) in analytic form in Mellin N- and z-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin N-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to z-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.
Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.
2014-01-01
This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920
Neutrino mass ordering and μ-τ reflection symmetry breaking
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhu, Jing-yu
2017-12-01
If the neutrino mass spectrum turns out to be m 3
NASA Astrophysics Data System (ADS)
Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko
2009-06-01
We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.
Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe 3O 4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionicmore » phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less
Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong
2016-02-15
This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimada, Kayori; Matsuyama, Shigetomo; Saito, Takeshi; Kinugasa, Shinichi; Nagahata, Ritsuko; Kawabata, Shin-Ichirou
2005-12-01
Conformational effects of polymer chains on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) were studied by using an equimolar mixture of uniform poly(ethylene glycol)s (PEGs) and by molecular dynamics simulations. Uniform PEGs with degrees of polymerization n = 8-39 were separated from commercial PEG samples by preparative supercritical fluid chromatography. MALDI-TOFMS spectra of an equimolar mixture of the uniform PEGs in aqueous ethanol were measured by adding a mixture of 2,5-dihydroxybenzoic acid (as a matrix reagent) and five alkali metal chlorides (LiCl, NaCl, KCl, RbCl, and CsCl). After optimization of the matrix concentration and laser power, five types of adduct cationized by Li+, Na+, K+, Rb+, and Cs+ could be identified simultaneously in the same spectrum. In the lower molecular-mass region around 103, the spectral intensity increase rapidly with increasing molecular mass of PEG; this rapid increase in the spectral intensity started at a lower molecular mass for smaller adduct cations. Molecular dynamics simulations were used to calculated the affinity of PEG for the adduct cations. These experimental and simulated results showed that the observed spectral intensities in MALDI-TOFMS were markedly affected by the species of adduct cations and the degree of polymerization of the PEG, and that they were dependent on the stability of the PEG-cation complex.
Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Easter, R. W.
1972-01-01
Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.
Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya
2015-08-12
A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Wagner, R M; Fraser, B A
1987-05-01
beta-Lipotrophin (62-77) or Ac-gastrin releasing peptide was incubated with immobilized carboxypeptidase Y or aminopeptidase M. Subsequent aliquots of each incubation mixture were analysed by fast atom bombardment mass spectrometry using a dithiothreitol/dithioerythritol liquid matrix. The use of immobilized enzymes and volatile buffers for exopeptidase digestions enabled rapid and facile separation of enzyme from digestion products. This approach to mass spectral peptide analysis reduced spectral background arising from a glycerol matrix, buffer salts, or enzyme proteins and contaminants, enabling analysis of as little as 200 picomoles of a suitable peptide.
Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.
Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A
2007-09-01
Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (<$200) with 5760 x 1440 dpi resolution and a six-channel piezoelectric head that delivers 3 pL/drop. The inkjet printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.
Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju
2011-12-15
The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.
Peters, Frank T; Remane, Daniela
2012-06-01
In the last decade, liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(-MS)) has become a versatile technique with many routine applications in clinical and forensic toxicology. However, it is well-known that ionization in LC-MS(-MS) is prone to so-called matrix effects, i.e., alteration in response due to the presence of co-eluting compounds that may increase (ion enhancement) or reduce (ion suppression) ionization of the analyte. Since the first reports on such matrix effects, numerous papers have been published on this matter and the subject has been reviewed several times. However, none of the existing reviews has specifically addressed aspects of matrix effects of particular interest and relevance to clinical and forensic toxicology, for example matrix effects in methods for multi-analyte or systematic toxicological analysis or matrix effects in (alternative) matrices almost exclusively analyzed in clinical and forensic toxicology, for example meconium, hair, oral fluid, or decomposed samples in postmortem toxicology. This review article will therefore focus on these issues, critically discussing experiments and results of matrix effects in LC-MS(-MS) applications in clinical and forensic toxicology. Moreover, it provides guidance on performance of studies on matrix effects in LC-MS(-MS) procedures in systematic toxicological analysis and postmortem toxicology.
Steinmann, I C; Pflüger, V; Schaffner, F; Mathis, A; Kaufmann, C
2013-03-01
Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.
Seasonal dependence of aerosol processing in urban Philadelphia
NASA Astrophysics Data System (ADS)
Avery, A. M.; Waring, M. S.; DeCarlo, P. F.
2017-12-01
Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower temperatures. Aerosol compositional differences in winter and summer indicate Philadelphia resident's aerosol exposures vary significantly with season.
NASA Astrophysics Data System (ADS)
Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang
2016-04-01
In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.
2018-01-01
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635
Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M
2018-03-12
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.
Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Sodemann, Inti; Sheng, D. N.; Fu, Liang
2017-05-01
We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n =1 ) as a function of band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods. We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger liquids residing at the stripe edges.
How good is μ- τ symmetry after results on non-zero θ 13?
NASA Astrophysics Data System (ADS)
Gupta, Shivani; Joshipura, Anjan S.; Patel, Ketan M.
2013-09-01
Viability of the μ- τ interchange symmetry imposed as an approximate symmetry (1) on the neutrino mass matrix in the flavour basis (2) simultaneously on the charged lepton mass matrix M l and the neutrino mass matrix M ν and (3) on the underlying Lagrangian is discussed in the light of recent observation of a non-zero reactor mixing angle θ 13. In case (1), μ- τ symmetry breaking may be regarded as small (less than 20-30%) only for the inverted or quasidegenerate neutrino mass spectrum and the normal hierarchy would violate it by a large amount. The case (2) is more restrictive and the requirement of relatively small breaking allows only the quasidegenerate spectrum. If neutrinos obtain their masses from the type-I seesaw mechanism then small breaking of the μ- τ symmetry in the underlying Lagrangian may result in a large breaking in and even the hierarchical neutrino spectrum may also be consistent with mildly broken μ- τ symmetry of the Lagrangian. Neutrinoless double beta decay provides a good means of distinguishing above scenarios. In particular, non-observation of signal in future experiments such as GERDA would rule out scenarios (1) and (2).
Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea
NASA Astrophysics Data System (ADS)
Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.
2013-05-01
Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.
Source apportionment of volatile organic compounds measured near a cold heavy oil production area
NASA Astrophysics Data System (ADS)
Aklilu, Yayne-abeba; Cho, Sunny; Zhang, Qianyu; Taylor, Emily
2018-07-01
This study investigated sources of volatile organic compounds (VOCs) observed during periods of elevated hydrocarbon concentrations adjacent to a cold heavy oil extraction area in Alberta, Canada. Elevated total hydrocarbon (THC) concentrations were observed during the early morning hours and were associated with meteorological conditions indicative of gravitational drainage flows. THC concentrations were higher during the colder months, an occurrence likely promoted by a lower mixing height. On the other hand, other VOCs had higher concentrations in the summer; this is likely due to increased evaporation and atmospheric chemistry during the summer months. Of all investigated VOC compounds, alkanes contributed the greatest in all seasons. A source apportionment method, positive matrix factorization (PMF), was used to identify the potential contribution of various sources to the observed VOC concentrations. A total of five factors were apportioned including Benzene/Hexane, Oil Evaporative, Toluene/Xylene, Acetone and Assorted Local/Regional Air Masses. Three of the five factors (i.e., Benzene/Hexane, Oil Evaporative, and Toluene/Xylene), formed 27% of the reconstructed and unassigned concentration and are likely associated with emissions from heavy oil extraction. The three factors associated with emissions were comparable to the available emission inventory for the area. Potential sources include solution gas venting, combustion exhaust and fugitive emissions from extraction process additives. The remaining two factors (i.e., Acetone and Assorted Local/Regional Air Mass), comprised 49% of the reconstructed and unassigned concentration and contain key VOCs associated with atmospheric chemistry or the local/regional air mass such as acetone, carbonyl sulphide, Freon-11 and butane.
Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available
ERIC Educational Resources Information Center
Hayashi, Kentaro; Arav, Marina
2006-01-01
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Natural Higgs-Flavor-Democracy Solution of the μ Problem of Supersymmetry and the QCD Axion
NASA Astrophysics Data System (ADS)
Kim, Jihn E.
2013-07-01
We show that the hierarchically small μ term in supersymmetric theories is a consequence of two identical pairs of Higgs doublets taking a democratic form for their mass matrix. We briefly discuss the discrete symmetry S2×S2 toward the democratic mass matrix. Then, we show that there results an approximate Peccei-Quinn symmetry and hence the value μ is related to the axion decay constant.
Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei
2017-10-01
In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.
Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strobel, Calvin J.
1993-01-28
The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verificationmore » of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Fast, Jerome D.; Mei, Fan
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associatedmore » with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
Algorithms for Solvents and Spectral Factors of Matrix Polynomials
1981-01-01
spectral factors of matrix polynomials LEANG S. SHIEHt, YIH T. TSAYt and NORMAN P. COLEMANt A generalized Newton method , based on the contracted gradient...of a matrix poly- nomial, is derived for solving the right (left) solvents and spectral factors of matrix polynomials. Two methods of selecting initial...estimates for rapid convergence of the newly developed numerical method are proposed. Also, new algorithms for solving complete sets of the right
Multi-boson block factorization of fermions
NASA Astrophysics Data System (ADS)
Giusti, Leonardo; Cè, Marco; Schaefer, Stefan
2018-03-01
The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.
NASA Astrophysics Data System (ADS)
Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun
2009-03-01
An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.
Computational Analyses of Complex Flows with Chemical Reactions
NASA Astrophysics Data System (ADS)
Bae, Kang-Sik
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
NASA Astrophysics Data System (ADS)
Alleman, Laurent Y.; Lamaison, Laure; Perdrix, Esperanza; Robache, Antoine; Galloo, Jean-Claude
2010-06-01
The elemental composition data of ambient aerosols collected upon selected wind sectors in the highly industrialised harbour of Dunkirk (France) were interpreted using pollution roses, elemental ratios, Enrichment Factors (EF), Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) receptor model. The objective was to identify the possible sources of PM10 aerosols, their respective chemical tracers and to determine their relative contribution at the sampling site. PM10 particles samples were collected from June 2003 to March 2005 in order to analyse up to 35 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Eu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Rb, S, Sb, Sc, Si, Sm, Sr, Th, Ti, U, V, Zn and Zr) using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES) and ICP-Mass Spectrometry (MS). A significant effort has been made on estimating the total uncertainty of each result by regularly analysing blanks, quality controls and SRM NIST standards. Based on this procedure, a selected set of 24 "robust" elements was compared to the 35-element matrix in order to evaluate the sturdiness of our PMF statistical treatment. Eight source factors were resolved by PCA for all the wind sectors explaining 90% of the total data variance. The PMF results confirmed that eight physically interpretable factors contributed to the ambient particulate pollution at the sampling site: crustal dust (11%), marine aerosols (12%), petrochemistry activities (9.2%), metallurgical sintering plant (8.6%), metallurgical coke plant (12.6%), ferromanganese plant (6.6%), road transport (15%) and a less clearly interpretable profile probably associated to dust resuspension (13%). These weighted contributions against wind direction frequencies demonstrate that industrial sources are the most important contributors to this site (37%) followed by the natural sources (detrital and marine sources) (23%) and the road transport (15%).
Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis
Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung
2015-01-01
It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360
Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212
NASA Astrophysics Data System (ADS)
Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro
2018-05-01
We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.
Watson, John G; Chow, Judith C; Lowenthal, Douglas H; Antony Chen, L-W; Shaw, Stephanie; Edgerton, Eric S; Blanchard, Charles L
2015-09-01
Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM(2.5) mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27-38% of PM(2.5), followed by biomass burning (21-24%) and motor vehicle exhaust (9-24%) at both sites, with 4-6% of PM(2.5) attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13-23% deficit for PM(2.5) mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident. Organic markers can be measured on currently acquired PM(2.5) filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.
NASA Technical Reports Server (NTRS)
Mooney, D. J.; Langer, R.; Ingber, D. E.
1995-01-01
This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In contrast, cell spreading could be completely inhibited by combining suboptimal doses of cytochalasin D and nocodazole, suggesting that intact microtubules can stabilize cell form when the microfilament lattice is partially compromised. The physiological relevance of the cytoskeleton and cell shape in hepatocyte physiology was highlighted by the finding that a short exposure (6 hour) of cells to nocodazole resulted in production of smaller cells 42 hours later that exhibited enhanced production of a liver-specific product (albumin). These data demonstrate that spreading and flattening of the entire cell body is not driven directly by net polymerization of either microfilaments or microtubules.(ABSTRACT TRUNCATED AT 400 WORDS).
Λ b → pℓ¯ν¯ ℓ and Λ b → Λ cℓ¯ν¯ ℓ form factors from lattice QCD with relativistic heavy quarks
Detmold, William; Lehner, Christoph; Meinel, Stefan
2015-08-04
Measurements of the Λ b → pℓ¯ν¯ ℓ and Λ b → Λ cℓ¯ν¯ ℓ decay rates can be used to determine the magnitudes of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb, provided that the relevant hadronic form factors are known. Here we present a precise calculation of these form factors using lattice QCD with 2+1 flavors of dynamical domain-wall fermions. The b and c quarks are implemented with relativistic heavy-quark actions, allowing us to work directly at the physical heavy-quark masses. The lattice computation is performed for six different pion masses and two different lattice spacings, usingmore » gauge-field configurations generated by the RBC and UKQCD Collaborations. The b → u and b → c currents are renormalized with a mostly nonperturbative method. We extrapolate the form factor results to the physical pion mass and the continuum limit, parametrizing the q² dependence using z expansions. The form factors are presented in such a way as to enable the correlated propagation of both statistical and systematic uncertainties into derived quantities such as differential decay rates and asymmetries. Using these form factors, we present predictions for the Λ b → pℓ¯ν¯ ℓ and Λ b → Λ cℓ¯ν¯ ℓdifferential and integrated decay rates. Combined with experimental data, our results enable determinations of |V ub|, |V cb|, and |V ub/V cb| with theory uncertainties of 4.4%, 2.2%, and 4.9%, respectively.« less
Systematic R -matrix analysis of the 13C(p ,γ )14N capture reaction
NASA Astrophysics Data System (ADS)
Chakraborty, Suprita; deBoer, Richard; Mukherjee, Avijit; Roy, Subinit
2015-04-01
Background: The proton capture reaction 13C(p ,γ )14N is an important reaction in the CNO cycle during hydrogen burning in stars with mass greater than the mass of the Sun. It also occurs in astrophysical sites such as red giant stars: the asymptotic giant branch (AGB) stars. The low energy astrophysical S factor of this reaction is dominated by a resonance state at an excitation energy of around 8.06 MeV (Jπ=1-,T =1 ) in 14N. The other significant contributions come from the low energy tail of the broad resonance with Jπ=0-,T =1 at an excitation of 8.78 MeV and the direct capture process. Purpose: Measurements of the low energy astrophysical S factor of the radiative capture reaction 13C(p ,γ )14N reported extrapolated values of S (0 ) that differ by about 30 % . Subsequent R -matrix analysis and potential model calculations also yielded significantly different values for S (0 ) . The present work intends to look into the discrepancy through a detailed R -matrix analysis with emphasis on the associated uncertainties. Method: A systematic reanalysis of the available decay data following the capture to the Jπ=1-,T =1 resonance state of 14N around 8.06 MeV excitation had been performed within the framework of the R -matrix method. A simultaneous analysis of the 13C(p ,p0 ) data, measured over a similar energy range, was carried out with the capture data. The data for the ground state decay of the broad resonance state (Jπ=0-,T =1 ) around 8.78 MeV excitations was included as well. The external capture model along with the background poles to simulate the internal capture contribution were used to estimate the direct capture contribution. The asymptotic normalization constants (ANCs) for all states were extracted from the capture data. The multichannel, multilevel R -matrix code azure2 was used for the calculation. Results: The values of the astrophysical S factor at zero relative energy, resulting from the present analysis, are found to be consistent within the error bars for the two sets of capture data used. However, it is found from the fits to the elastic scattering data that the position of the Jπ=1-,T =1 resonance state is uncertain by about 0.6 keV, preferring an excitation energy value of 8.062 MeV. Also the extracted ANC values for the states of 14N corroborate the values from the transfer reaction studies. The reaction rates from the present calculation are about 10 -15 % lower than the values of the NACRE II compilation but compare well with those from NACRE I. Conclusion: The precise energy of the Jπ=1-,T =1 resonance level around 8.06 MeV in 14N must be determined. Further measurements around and below 100 keV with precision are necessary to reduce the uncertainty in the S -factor value at zero relative energy.
NASA Astrophysics Data System (ADS)
Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.
2009-04-01
This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.
Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi
2008-08-01
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.
Waite, Mashuri; Sack, Lawren
2011-05-01
The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.
NASA Astrophysics Data System (ADS)
Kostenidou, Evangelia; Karnezi, Eleni; Hite, James R., Jr.; Bougiatioti, Aikaterini; Cerully, Kate; Xu, Lu; Ng, Nga L.; Nenes, Athanasios; Pandis, Spyros N.
2018-04-01
The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol-1 for the LO-OOA, 89 ± 10 kJ mol-1 for the MO-OOA, 55 ± 11 kJ mol-1 for the BBOA, and 63 ± 15 kJ mol-1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
NASA Astrophysics Data System (ADS)
Hueckel, T.; Hu, M.
2015-12-01
Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.
Covariance Matrix Evaluations for Independent Mass Fission Yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.
2015-01-15
Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less
NASA Astrophysics Data System (ADS)
Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.
2018-02-01
A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.
Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity
NASA Technical Reports Server (NTRS)
Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)
2000-01-01
Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.
NASA Astrophysics Data System (ADS)
Mascio, J.; Mace, G. G.
2015-12-01
CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.
Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert
2010-04-01
An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.
Liao, Hsiao-Wei; Chen, Guan-Yuan; Wu, Ming-Shiang; Liao, Wei-Chih; Lin, Ching-Hung; Kuo, Ching-Hua
2017-02-03
Quantitative metabolomics has become much more important in clinical research in recent years. Individual differences in matrix effects (MEs) and the injection order effect are two major factors that reduce the quantification accuracy in liquid chromatography-electrospray ionization-mass spectrometry-based (LC-ESI-MS) metabolomics studies. This study proposed a postcolumn infused-internal standard (PCI-IS) combined with a matrix normalization factor (MNF) strategy to improve the analytical accuracy of quantitative metabolomics. The PCI-IS combined with the MNF method was applied for a targeted metabolomics study of amino acids (AAs). D8-Phenylalanine was used as the PCI-IS, and it was postcolumn-infused into the ESI interface for calibration purposes. The MNF was used to bridge the AA response in a standard solution with the plasma samples. The MEs caused signal changes that were corrected by dividing the AA signal intensities by the PCI-IS intensities after adjustment with the MNF. After the method validation, we evaluated the method applicability for breast cancer research using 100 plasma samples. The quantification results revealed that the 11 tested AAs exhibit an accuracy between 88.2 and 110.7%. The principal component analysis score plot revealed that the injection order effect can be successfully removed, and most of the within-group variation of the tested AAs decreased after the PCI-IS correction. Finally, targeted metabolomics studies on the AAs showed that tryptophan was expressed more in malignant patients than in the benign group. We anticipate that a similar approach can be applied to other endogenous metabolites to facilitate quantitative metabolomics studies.
Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok
2016-01-21
Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of fresh and aged organic aerosol emissions from meat charbroiling
NASA Astrophysics Data System (ADS)
Kaltsonoudis, Christos; Kostenidou, Evangelia; Louvaris, Evangelos; Psichoudaki, Magda; Tsiligiannis, Epameinondas; Florou, Kalliopi; Liangou, Aikaterini; Pandis, Spyros N.
2017-06-01
Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O : C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm-3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ = 27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2018-02-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2017-12-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.
Suda, Hiromi Kimura
2015-10-01
Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.
Pathogen propagation in cultured three-dimensional tissue mass
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Hong, Doo-Pyo; Joo, Sung-Yeon; Choi, Yoon-La; Park, Joo-Hung; Lazar, Alexander J.; Pollock, Raphael E.; Lev, Dina; Kim, Sung Joo
2014-01-01
Liposarcoma is one of the most common histologic types of soft tissue sarcoma and is frequently an aggressive cancer with poor outcome. Hence, alternative approaches other than surgical excision are necessary to improve treatment of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). For this reason, we performed a two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry/mass spectrometry (MALDI-TOF/MS) analysis to identify new factors for WDLPS and DDLPS. Among the selected candidate proteins, gankyrin, known to be an oncoprotein, showed a significantly high level of expression pattern and inversely low expression of p53/p21 in WDLPS and DDLPS tissues, suggesting possible utility as a new predictive factor. Moreover, inhibition of gankyrin not only led to reduction of in vitro cell growth ability including cell proliferation, colony-formation, and migration, but also in vivo DDLPS cell tumorigenesis, perhaps via downregulation of the p53 tumor suppressor gene and its p21 target and also reduction of AKT/mTOR signal activation. This study identifies gankyrin, for the first time, as new potential predictive and oncogenic factor of WDLPS and DDLPS, suggesting the potential for service as a future LPS therapeutic approach. PMID:25238053
Parastar, Hadi; Radović, Jagoš R; Bayona, Josep M; Tauler, Roma
2013-07-01
Multivariate curve resolution-alternating least squares (MCR-ALS) analysis is proposed to solve chromatographic challenges during two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) analysis of complex samples, such as crude oil extract. In view of the fact that the MCR-ALS method is based on the fulfillment of the bilinear model assumption, three-way and four-way GC × GC-TOFMS data are preferably arranged in a column-wise superaugmented data matrix in which mass-to-charge ratios (m/z) are in its columns and the elution times in the second and first chromatographic columns are in its rows. Since m/z values are common for all measured spectra in all second-column modulations, unavoidable chromatographic challenges such as retention time shifts within and between GC × GC-TOFMS experiments are properly handled. In addition, baseline/background contributions can be modeled by adding extra components to the MCR-ALS model. Another outstanding aspect of MCR-ALS analysis is its extreme flexibility to consider all samples (standards, unknowns, and replicates) in a single superaugmented data matrix, allowing joint analysis. In this way, resolution, identification, and quantification results can be simultaneously obtained in a very fast and reliable way. The potential of MCR-ALS analysis is demonstrated in GC × GC-TOFMS analysis of a North Sea crude oil extract sample with relative errors in estimated concentrations of target compounds below 6.0 % and relative standard deviations lower than 7.0 %. The results obtained, along with reasonable values for the lack of fit of the MCR-ALS model and high values of the reversed match factor in mass spectra similarity searches, confirm the reliability of the proposed strategy for GC × GC-TOFMS data analysis.
Background recovery via motion-based robust principal component analysis with matrix factorization
NASA Astrophysics Data System (ADS)
Pan, Peng; Wang, Yongli; Zhou, Mingyuan; Sun, Zhipeng; He, Guoping
2018-03-01
Background recovery is a key technique in video analysis, but it still suffers from many challenges, such as camouflage, lighting changes, and diverse types of image noise. Robust principal component analysis (RPCA), which aims to recover a low-rank matrix and a sparse matrix, is a general framework for background recovery. The nuclear norm is widely used as a convex surrogate for the rank function in RPCA, which requires computing the singular value decomposition (SVD), a task that is increasingly costly as matrix sizes and ranks increase. However, matrix factorization greatly reduces the dimension of the matrix for which the SVD must be computed. Motion information has been shown to improve low-rank matrix recovery in RPCA, but this method still finds it difficult to handle original video data sets because of its batch-mode formulation and implementation. Hence, in this paper, we propose a motion-assisted RPCA model with matrix factorization (FM-RPCA) for background recovery. Moreover, an efficient linear alternating direction method of multipliers with a matrix factorization (FL-ADM) algorithm is designed for solving the proposed FM-RPCA model. Experimental results illustrate that the method provides stable results and is more efficient than the current state-of-the-art algorithms.
Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb
2017-06-01
Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.
Lai, Yin-Hung; Wang, Yi-Sheng
2017-01-01
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517
NASA Astrophysics Data System (ADS)
Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu
2016-01-01
Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.
Miksa, Beata J; Sochacki, Marek; Sroka-Bartnicka, Anna; Uznański, Paweł; Nosal, Andrzej; Potrzebowski, Marek J
2013-04-15
Synthetic polymers of molecular masses up to a few kDa can be analyzed without the use of any matrix by direct laser desorption/ionization mass spectrometry (LDI-MS). In this technique, the surface of the sample plate plays a crucial role, and many attempts have been made to understand the influence of the surface on the ease of desorption. Since this technique requires no tedious sample pretreatment, it is a promising method for the rapid characterization of various synthetic polymers. Parylene (poly(p-xylylenes), PPX) was tested as a surface support for studying the molecular masses of biocompatible polymers: poly(ethylene glycol) (PEG), poly(L-lactide) (PLLA), and poly(methyl methacrylate) (PMMA). The average molecular masses of the polymers were: PEG (600.0 Da and 3.5 kDa), PMMA (2.0 kDa), and PLLA (2.8 kDa). LDI mass spectra of polymers deposited on parylene were enhanced by a factor of two over those obtained directly from the gold target plate. Modification of the surface of the target plate by the addition of a PPX layer extended the functionality of LDI-TOF MS, especially for the analysis of low-mass compounds. The LDI analysis using the PPX-coated target plate provided details of polymers including: end-group, composition, monomer unit, and molecular mass distribution. The average molecular weights of four tested polymers on the gold target plate and the PPX support were unchanged, indicating that sample degradation was not occurring despite the high energy of the laser beam. The LDI investigations showed that the PPX support boosted ion yields by a factor of two compared with the gold target plate. Copyright © 2013 John Wiley & Sons, Ltd.
Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.
2013-01-01
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389
Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A
2010-05-15
Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.
Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit
2017-10-13
The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.
Liu, Gaisheng; Zheng, Chunmiao; Gorelick, Steven M.
2007-01-01
This paper evaluates the dual‐domain mass transfer (DDMT) model to represent transport processes when small‐scale high‐conductivity (K) preferential flow paths (PFPs) are present in a homogenous porous media matrix. The effects of PFPs upon solute transport were examined through detailed numerical experiments involving different realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to 200:1, different magnitudes of effective conductivities, and a range of molecular diffusion coefficients. Results suggest that the DDMT model can reproduce both the near‐source peak and the downstream low‐concentration spreading observed in the embedded dendritic network when there are large conductivity contrasts between high‐K PFPs and the low‐K matrix. The accuracy of the DDMT model is also affected by the geometry of PFP networks and by the relative significance of the diffusion process in the network‐matrix system.
Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?
Agarwal, Renu; Agarwal, Puneet
2017-02-01
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?
Agarwal, Puneet
2016-01-01
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses. PMID:27798117
NASA Astrophysics Data System (ADS)
Chan, Yiu-Chung; Cohen, David D.; Hawas, Olga; Stelcer, Eduard; Simpson, Rod; Denison, Lyn; Wong, Neil; Hodge, Mary; Comino, Eva; Carswell, Stewart
In this study, 437 days of 6-daily, 24-h samples of PM 2.5, PM 2.5-10 and PM 10 were collected over a 12-month period during 2003-2004 in Melbourne, Sydney, Brisbane and Adelaide. The elemental, ionic and polycyclic aromatic hydrocarbon composition of the particles were determined. Source apportionment was carried out by using the positive matrix factorisation software (PMF2). Eight factors were identified for the fine particle samples including 'motor vehicles', 'industry', 'other combustion sources', 'ammonium sulphates', 'nitrates', 'marine aerosols', 'chloride depleted marine aerosols' and 'crustal/soil dust'. On average combustion sources, secondary nitrates/sulphates and natural origin dust contributed about 46%, 25% and 26% of the mass of the fine particle samples, respectively. 'Crustal/soil dust', 'marine aerosols', 'nitrates' and 'road side dust' were the four factors identified for the coarse particle samples. On average natural origin dust contributed about 76% of the mass of the coarse particle samples. The contributions of the sources to the sample mass basically reflect the emission source characteristics of the sites. Secondary sulphates and nitrates were found to spread out evenly within each city. The average contribution of secondary nitrates to fine particles was found to be rather uniform in different seasons, rather than higher in winter as found in other studies. This could be due to the low humidity conditions in winter in most of the Australian cities which made the partitioning of the particle phase less favourable in the NH 4NO 3 equilibrium system. A linear relationship was found between the average contribution of marine aerosols and the distance of the site from the bay side. Wind erosion was found associated with higher contribution of crustal dust on average and episodes of elevated concentration of coarse particles in spring and summer.
Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.
Guntur, Anyonya R; Le, Phuong T; Farber, Charles R; Rosen, Clifford J
2014-05-01
Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and mineralize matrix.
Bioenergetics During Calvarial Osteoblast Differentiation Reflect Strain Differences in Bone Mass
Le, Phuong T.; Farber, Charles R.; Rosen, Clifford J.
2014-01-01
Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and mineralize matrix. PMID:24437492
NASA Astrophysics Data System (ADS)
Kim, H.; Zhang, Q.
2016-12-01
Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21%) become higher whereas the fraction of locally emitted primary (COA, HOA) and locally formed secondary species (nitrate, SVOOA) become lower. Our results indicate that NR-PM1 concentrations, compositions and sources in Korea are very complex and meteorological conditions and air mass origins have a strong influence on properties of PM.
NASA Astrophysics Data System (ADS)
Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.
2015-02-01
Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSM) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about three weeks in November and December 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). Individual application and optimisation of the ME-2 boundary conditions (profile constraints) are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative SD from the mean between 13.7 and 22.7% of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2%, COA: 15.0 ± 3.4%, OOA: 41.5 ± 5.7%, BBOA: 29.3 ± 5.0%). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2%.
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; ...
2017-06-06
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.
Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.
Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya
2014-08-01
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.
Giner Martínez-Sierra, J; Santamaria-Fernandez, R; Hearn, R; Marchante Gayón, J M; García Alonso, J I
2010-04-14
In this work, a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) was evaluated for the direct measurement of sulfur stable isotope ratios in beers as a first step toward a general study of the natural isotope variability of sulfur in foods and beverages. Sample preparation consisted of a simple dilution of the beers with 1% (v/v) HNO(3). It was observed that different sulfur isotope ratios were obtained for different dilutions of the same sample indicating that matrix effects affected differently the transmission of the sulfur ions at masses 32, 33, and 34 in the mass spectrometer. Correction for mass bias related matrix effects was evaluated using silicon internal standardization. For that purpose, silicon isotopes at masses 29 and 30 were included in the sulfur cup configuration and the natural silicon content in beers used for internal mass bias correction. It was observed that matrix effects on differential ion transmission could be corrected adequately using silicon internal standardization. The natural isotope variability of sulfur has been evaluated by measuring 26 different beer brands. Measured delta(34)S values ranged from -0.2 to 13.8 per thousand. Typical combined standard uncertainties of the measured delta(34)S values were < or = 2 per thousand. The method has therefore great potential to study sulfur isotope variability in foods and beverages.
NASA Astrophysics Data System (ADS)
Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine
2017-09-01
More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.
Mess, Aylin; Enthaler, Bernd; Fischer, Markus; Rapp, Claudius; Pruns, Julia K; Vietzke, Jens-Peter
2013-01-15
Identification of endogenous skin surface compounds is an intriguing challenge in comparative skin investigations. Notably, this short communication is focused on the analysis of small molecules, e.g. natural moisturizing factor (NMF) components and lipids, using a novel sampling method with DIP-it samplers for non-invasive examination of the human skin surface. As a result, extraction of analytes directly from the skin surface by use of various solvents can be replaced with the mentioned procedure. Screening of measureable compounds is achieved by direct analysis in real time mass spectrometry (DART-MS) without further sample preparation. Results are supplemented by dissolving analytes from the DIP-it samplers by use of different solvents, and subsequent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements. An interesting comparison of the mentioned MS techniques for determination of skin surface compounds in the mass range of 50-1000 Da is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Phenomenology with F-theory S U (5 )
NASA Astrophysics Data System (ADS)
Leontaris, George K.; Shafi, Qaisar
2017-09-01
We explore the low-energy phenomenology of an F-theory-based S U (5 ) model which, in addition to the known quarks and leptons, contains Standard Model (SM) singlets and vectorlike color triplets and S U (2 ) doublets. Depending on their masses and couplings, some of these new particles may be observed at the LHC and future colliders. We discuss the restrictions by Cabibbo-Kobayashi-Maskawa matrix constraints on their mixing with the ordinary down quarks of the three chiral families. The model is consistent with gauge coupling unification at the usual supersymmetric GUT scale; dimension-five proton decay is adequately suppressed, while dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of 5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-energy masses in reasonable agreement with observations. The hierarchical nature of the masses of lighter generations is accounted for via nonrenormalizable interactions, with the perturbative vacuum expectation values (VEVs) of the SM singlet fields playing an essential role.
Source Apportionment of PM2.5 in Delhi, India Using PMF Model.
Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit
2016-08-01
Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).
Fermion Universality Manifesting Itself in the Dirac Component of Neutrino Mass Matrix
NASA Astrophysics Data System (ADS)
Krolikowski, Wojciech
2002-02-01
An effective texture is presented for six Majorana conventional neutrinos (three active and three sterile), based on a 6× 6 neutrino mixing matrix whose 3× 3 active--active component arises from the popular bimaximal mixing matrix of active neutrinos ν e, ν μ , ν τ by three small rotations in the 14, 25, 36 planes of ν 1 , ν 2 , ν 3 and ν 4 , ν5, ν 6 neutrino mass states. The Dirac component (i.e. , 3 × 3 active-sterile component) of the resulting 6 × 6 neutrino mass matrix is conjectured to get a structure similar to the charged-lepton and quark 3 × 3 mass matrices, after the bimaximal mixing, specific for neutrinos, is transformed out unitarily from the neutrino mass matrix. The charged-lepton and quark mass matrices are taken in a universal form constructed previously by the author with a conside- rable phenomenological success. Then, for the option of m21 ≃ m22 ≃ m23 ≫ m24 ≃ m25 ≃ m26 ≃ 0, the proposed texture predicts oscillations of solar ν e's with Δ m2sol ≡ Δ m221 ˜ (1.1 to 1.2) × 10-5 eV2, not inconsistent with the LMA solar solution, if the SuperKamiokande value Δ m2atm ≡ Δ m232 ˜ (3 to 3.5) × 10-3eV2 for oscillations of atmospheric ν μ 's is taken as an input. Here, sin2 2θ sol ˜ 1 and sin2 2 θ atm ˜ 1. The texture predicts also an LSND effect with sin2 2θ LSND (1.4 to 1.9)× 10-11 (eV/m1)4 and Δ m2LSND ≡ Δ m225 ˜ m21 + (1.1 to 1.2) 10-5 eV}2. Unfortunately, the Chooz experiment imposes on the LSND effect (in our texture) a very small upper bound sin2 2θ LSND ≲ 1.3 × 10-3, which corresponds to the lower limit m1 ≳ (1.0 to 1.1)× 10-2 eV.
Double Charge Exchange Reactions and Double Beta Decay
NASA Astrophysics Data System (ADS)
Auerbach, N.
2018-05-01
The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Review of lattice results concerning low-energy particle physics
Aoki, S.; Aoki, Y.; Bernard, C.; ...
2014-09-01
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less
NASA Astrophysics Data System (ADS)
Zhu, Qiao; Huang, Xiao-Feng; Cao, Li-Ming; Wei, Lin-Tong; Zhang, Bin; He, Ling-Yan; Elser, Miriam; Canonaco, Francesco; Slowik, Jay G.; Bozzetti, Carlo; El-Haddad, Imad; Prévôt, André S. H.
2018-02-01
Organic aerosols (OAs), which consist of thousands of complex compounds emitted from various sources, constitute one of the major components of fine particulate matter. The traditional positive matrix factorization (PMF) method often apportions aerosol mass spectrometer (AMS) organic datasets into less meaningful or mixed factors, especially in complex urban cases. In this study, an improved source apportionment method using a bilinear model of the multilinear engine (ME-2) was applied to OAs collected during the heavily polluted season from two Chinese megacities located in the north and south with an Aerodyne high-resolution aerosol mass spectrometer (HR-ToF-AMS). We applied a rather novel procedure for utilization of prior information and selecting optimal solutions, which does not necessarily depend on other studies. Ultimately, six reasonable factors were clearly resolved and quantified for both sites by constraining one or more factors: hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), coal combustion (CCOA), less-oxidized oxygenated OA (LO-OOA) and more-oxidized oxygenated OA (MO-OOA). In comparison, the traditional PMF method could not effectively resolve the appropriate factors, e.g., BBOA and CCOA, in the solutions. Moreover, coal combustion and traffic emissions were determined to be primarily responsible for the concentrations of PAHs and BC, respectively, through the regression analyses of the ME-2 results.
Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R
2013-07-01
This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.
Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S
2013-01-01
RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeninger, Kevin Alexander; /Bonn U.
2004-04-01
Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.
Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina
2016-07-01
In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Alatoom, Adnan A.; Cazanave, Charles J.; Cunningham, Scott A.; Ihde, Sherry M.
2012-01-01
We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for identification of 92 clinical isolates of Corynebacterium species in comparison to identification using rpoB or 16S rRNA gene sequencing. Eighty isolates (87%) yielded a score of ≥1.700, and all of these were correctly identified to the species level with the exception of Corynebacterium aurimucosum being misidentified as the closely related Corynebacterium minutissimum. PMID:22075579
Development and Evaluation of an Order-N Formulation for Multi-Flexible Body Space Systems
NASA Technical Reports Server (NTRS)
Ghosh, Tushar K.; Quiocho, Leslie J.
2013-01-01
This paper presents development of a generic recursive Order-N algorithm for systems with rigid and flexible bodies, in tree or closed-loop topology, with N being the number of bodies of the system. Simulation results are presented for several test cases to verify and evaluate the performance of the code compared to an existing efficient dense mass matrix-based code. The comparison brought out situations where Order-N or mass matrix-based algorithms could be useful.
De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella
2012-01-01
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984
De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella
2012-07-01
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.
NASA Astrophysics Data System (ADS)
Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.
2015-06-01
Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
Measurement of the top quark mass using the matrix element technique in dilepton final states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb -1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtainmore » a top quark mass of m t = 173.93±1.84 GeV.« less
Measurement of the top quark mass using the matrix element technique in dilepton final states
Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...
2016-08-18
Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb -1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtainmore » a top quark mass of m t = 173.93±1.84 GeV.« less
Test of SU(3) Symmetry in Hyperon Semileptonic Decays
NASA Astrophysics Data System (ADS)
Pham, T. N.
2015-01-01
Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann-Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11% and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.
An Interview with Matthew P. Greving, PhD. Interview by Vicki Glaser.
Greving, Matthew P
2011-10-01
Matthew P. Greving is Chief Scientific Officer at Nextval Inc., a company founded in early 2010 that has developed a discovery platform called MassInsight™.. He received his PhD in Biochemistry from Arizona State University, and prior to that he spent nearly 7 years working as a software engineer. This experience in solving complex computational problems fueled his interest in developing technologies and algorithms related to acquisition and analysis of high-dimensional biochemical data. To address the existing problems associated with label-based microarray readouts, he beganwork on a technique for label-free mass spectrometry (MS) microarray readout compatible with both matrix-assisted laser/desorption ionization (MALDI) and matrix-free nanostructure initiator mass spectrometry (NIMS). This is the core of Nextval’s MassInsight technology, which utilizes picoliter noncontact deposition of high-density arrays on mass-readout substrates along with computational algorithms for high-dimensional data processingand reduction.
Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.
Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan
2018-02-21
Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-traditional applications of laser desorption/ionization mass spectrometry
NASA Astrophysics Data System (ADS)
McAlpin, Casey R.
Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)
Bending efficiency through property gradients in bamboo, palm, and wood-based composites.
Wegst, Ulrike G K
2011-07-01
Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.
Ennouri, Habiba; d'Abzac, Paul; Hakil, Florence; Branchu, Priscilla; Naïtali, Murielle; Lomenech, Anne-Marie; Oueslati, Ridha; Desbrières, Jacques; Sivadon, Pierre; Grimaud, Régis
2017-01-01
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n-hexadecane-water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra-cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo-proteins secreted through the type-2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n-hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
A profile of sphingolipids and related compounds tentatively identified in yak milk.
Qu, S; Barrett-Wilt, G; Fonseca, L M; Rankin, S A
2016-07-01
This work characterized a fraction of constituents in yak milk within the realm of approximately 1,000 to 3,000 Da using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Eleven samples of yak milk powder from the Sichuan province of China were received by the Department of Food Science, University of Wisconsin-Madison, and stored at room temperature until analysis. Sample preparation involved delipidation and deproteinization of yak milk samples and cold ethanol precipitation. Subsequently, MALDI time-of-flight mass spectrometry was performed in positive ion, reflector mode (AB Sciex TOF/TOF 4800 MALDI; AB Sciex, Foster City, CA). The instrument was first calibrated with the manufacturer's 6-peptide mixture, and each spectrum was internally calibrated using the accurate mass of ACTH Fragment 18-39 standard peptide (protonated mass at m/z 2464.199) present in each sample. Laser power was adjusted for the calibration standards and for each sample so that the signal obtained for the most-abundant ion in each spectrum could be maximized, or kept below ~2×10(4) to preserve spectral quality. Structure and name based on mass were matched using the Metlin metabolite database (https://metlin.scripps.edu/index.php). Results of the current work for yak milk powder showed a large variety of sphingolipid structures with clusters around 1,200, 1,600, and 2,000 Da. The profiling matched several glycosphingolipids, such as gangliosides GA1, GD1a, GD1b, GD3, GM1, GM2, GM3, and GT2 and several other unique moieties, including deaminated neuraminic acid (KDN) oligosaccharides, and fucose containing gangliosides. Matrix preparation and MALDI time-of-flight parameters were important factors established in this work to allow high resolution profiling of complex sphingolipids in yak powder milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kim, Jo-Il; Park, Jong-Min; Noh, Joo-Yoon; Hwang, Seong-Ju; Kang, Min-Jung; Pyun, Jae-Chul
2016-01-01
In this work, the wet-corrosion process for the synthesis of titanium oxide (TiO2) nanowires in the anatase phase was optimized as the solid matrix in MALDI-TOF mass spectrometry, and the solid matrix of the TiO2 nanowires was applied to the detection of antibiotics in a daily milk sample. The influence of the alkali concentration and the heat treatment temperature on the crystal structure of the TiO2 nanowires was investigated. The ionization activity of the TiO2 nanowires was estimated for each synthetic condition using amino acids as model analytes with low molecular weights. For the detection of antibiotics in milk, benzylpenicillin was spiked in daily milk samples, and MALDI-TOF mass spectrometry with the TiO2 nanowires was demonstrated to detect the benzylpenicillin at the cut-off concentration of the EU directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthetic Division and Matrix Factorization
ERIC Educational Resources Information Center
Barabe, Samuel; Dubeau, Franc
2007-01-01
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2014-03-21
We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|.
AP-MALDI Mass Spectrometry Imaging of Gangliosides Using 2,6-Dihydroxyacetophenone
NASA Astrophysics Data System (ADS)
Jackson, Shelley N.; Muller, Ludovic; Roux, Aurelie; Oktem, Berk; Moskovets, Eugene; Doroshenko, Vladimir M.; Woods, Amina S.
2018-03-01
Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. [Figure not available: see fulltext.
Source apportionment and location by selective wind sampling and Positive Matrix Factorization.
Venturini, Elisa; Vassura, Ivano; Raffo, Simona; Ferroni, Laura; Bernardi, Elena; Passarini, Fabrizio
2014-10-01
In order to determine the pollution sources in a suburban area and identify the main direction of their origin, PM2.5 was collected with samplers coupled with a wind select sensor and then subjected to Positive Matrix Factorization (PMF) analysis. In each sample, soluble ions, organic carbon, elemental carbon, levoglucosan, metals, and Polycyclic Aromatic Hydrocarbons (PAHs) were determined. PMF results identified six main sources affecting the area: natural gas home appliances, motor vehicles, regional transport, biomass combustion, manufacturing activities, and secondary aerosol. The connection of factor temporal trends with other parameters (i.e., temperature, PM2.5 concentration, and photochemical processes) confirms factor attributions. PMF analysis indicated that the main source of PM2.5 in the area is secondary aerosol. This should be mainly due to regional contributions, owing to both the secondary nature of the source itself and the higher concentration registered in inland air masses. The motor vehicle emission source contribution is also important. This source likely has a prevalent local origin. The most toxic determined components, i.e., PAHs, Cd, Pb, and Ni, are mainly due to vehicular traffic. Even if this is not the main source in the study area, it is the one of greatest concern. The application of PMF analysis to PM2.5 collected with this new sampling technique made it possible to obtain more detailed results on the sources affecting the area compared to a classical PMF analysis.
Gravitational lensing by eigenvalue distributions of random matrix models
NASA Astrophysics Data System (ADS)
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan
2017-03-31
Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.
Magnuson, Matthew L.; Owens, James H.; Kelty, Catherine A.
2000-01-01
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers. PMID:11055915
Fuzzy Mathematical Models To Remove Poverty Of Gypsies In Tamilnadu
NASA Astrophysics Data System (ADS)
Chandrasekaran, A. D.; Ramkumar, C.; Siva, E. P.; Balaji, N.
2018-04-01
In the society there are several poor people are living. One of the sympathetic poor people is gypsies. They are moving from one place to another place towards survive of life because of not having any permanent place to live. In this paper we have interviewed 895 gypsies in Tamilnadu using a linguistic questionnaire. As the problems faced by them to improve their life at large involve so much of feeling, uncertainties and unpredictabilitys. I felt that it deem fit to use fuzzy theory in general and fuzzy matrix in particular. Fuzzy matrix is the best suitable tool where the data is an unsupervised one. Further the fuzzy matrix is so powerful to identify the main development factor of gypsies.This paper has three sections. In section one the method of application of CEFD matrix. In section two, we describe the development factors of gypsies. In section three, we apply these factors to the CEFD matrix and derive our conclusions. Key words: RD matrix, AFD matrix, CEFD matrix.
NASA Astrophysics Data System (ADS)
Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.
2017-12-01
An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and atmospheric processes.
Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying
2016-04-07
A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.
Scott, Jill R.; Ham, Jason E.; Durham, Bill; ...
2004-01-01
Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy) 3 ] 1+ trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×10 7 s −1 , whilemore » the rate constant using SA was 1×10 7 s −1 . Some suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy) 3 ] 1+ generated using DHB can decompose to [Ru(bpy) 2 ] 1+ , whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.« less
Williamson, Yulanda M.; Moura, Hercules; Woolfitt, Adrian R.; Pirkle, James L.; Barr, John R.; Carvalho, Maria Da Gloria; Ades, Edwin P.; Carlone, George M.; Sampson, Jacquelyn S.
2008-01-01
Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis. PMID:18708515
Endothelial cell stimulating angiogenesis factor.
Weiss, J B; McLaughlin, B
1998-04-01
Endothelial cell stimulating angiogenesis factor (ESAF) is a small (> 1000 Da) dialysable non-peptide molecule with potent angiogenic activity. ESAF activates the major pro-matrix metalloproteinases and also uniquely reactivates the complex of these active enzymes with their tissue inhibitors resulting in both active enzyme and inhibitor. These actions may be pivotal in its role as an angiogenic factor. ESAF is primarily involved in angiogenic conditions where inflammatory cells are not evident such as foetal bone growth and electrically stimulated skeletal muscles and proliferative retinopathy. However, high levels also occur in actively growing human intracranial tumours but it is not noticeably elevated in rheumatoid arthritic synovial fluid. Its extreme potency and low molecular mass make its structural determination difficult. Possible therapeutic applications would be in the treatment of ischaemic ulcers, acceleration of fracture repair, infertility and more modestly in the correction of baldness. Analogues of ESAF could be of value in treating angiogenic diseases such as psoriasis and proliferative retinopathy.
Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew
2016-05-01
We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.
ERIC Educational Resources Information Center
Dopke, Nancy Carter; Lovett, Timothy Neal
2007-01-01
Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…
Grey, L; Nguyen, B; Yang, P
2001-01-01
A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.
Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V
2013-01-01
Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.
Nishimura, Meiko; Hayashi, Mitsuhiro; Mizutani, Yu; Takenaka, Kei; Imamura, Yoshinori; Chayahara, Naoko; Toyoda, Masanori; Kiyota, Naomi; Mukohara, Toru; Aikawa, Hiroaki; Fujiwara, Yasuhiro; Hamada, Akinobu; Minami, Hironobu
2018-04-06
The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm 2 ; P = 0.009 in paired t -test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm 3 ; P = 0.028 in paired t -test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P < 0.0001). Focal distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with laser microdissection.
Mizutani, Yu; Takenaka, Kei; Imamura, Yoshinori; Chayahara, Naoko; Toyoda, Masanori; Kiyota, Naomi; Mukohara, Toru; Aikawa, Hiroaki; Fujiwara, Yasuhiro; Hamada, Akinobu; Minami, Hironobu
2018-01-01
Background The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Results Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm2; P = 0.009 in paired t-test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm3; P = 0.028 in paired t-test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P < 0.0001). Conclusions Focal distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. Methods We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC–MS/MS) with laser microdissection. PMID:29719624
A proteomic study of the arabidopsis nuclear matrix.
Calikowski, Tomasz T; Meulia, Tea; Meier, Iris
2003-10-01
The eukaryotic nucleus has been proposed to be organized by two interdependent nucleoprotein structures, the DNA-based chromatin and the RNA-dependent nuclear matrix. The functional composition and molecular organization of the second component have not yet been resolved. Here, we describe the isolation of the nuclear matrix from the model plant Arabidopsis, its initial characterization by confocal and electron microscopy, and the identification of 36 proteins by mass spectrometry. Electron microscopy of resinless samples confirmed a structure very similar to that described for the animal nuclear matrix. Two-dimensional gel electrophoresis resolved approximately 300 protein spots. Proteins were identified in batches by ESI tandem mass spectrometry after resolution by 1D SDS-PAGE. Among the identified proteins were a number of demonstrated or predicted Arabidopsis homologs of nucleolar proteins such as IMP4, Nop56, Nop58, fibrillarins, nucleolin, as well as ribosomal components and a putative histone deacetylase. Others included homologs of eEF-1, HSP/HSC70, and DnaJ, which have also been identified in the nucleolus or nuclear matrix of human cells, as well as a number of novel proteins with unknown function. This study is the first proteomic approach towards the characterization of a higher plant nuclear matrix. It demonstrates the striking similarities both in structure and protein composition of the operationally defined nuclear matrix across kingdoms whose unicellular ancestors have separated more than one billion years ago. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Borah, Debasish; Das, Mrinal Kumar; Mukherjee, Ananya
2018-06-01
We study the possibility of generating nonzero reactor mixing angle θ13 and baryon asymmetry of the Universe within the framework of an A4 flavor symmetric model. Using the conventional type I seesaw mechanism we construct the Dirac and Majorana mass matrices that give rise to the correct light neutrino mass matrix. Keeping the right-handed neutrino mass matrix structure trivial so that it gives rise to a (quasi) degenerate spectrum of heavy neutrinos suitable for resonant leptogenesis at TeV scale, we generate the nontrivial structure of Dirac neutrino mass matrix that can lead to the light neutrino mixing through the type I seesaw formula. Interestingly, such a setup naturally leads to nonzero θ13 due to the existence of antisymmetric contraction of the product of two triplet representations of A4. Such an antisymmetric part of the triplet products usually vanishes for right-handed neutrino Majorana mass terms, leading to μ -τ symmetric scenarios in the most economical setups. We constrain the model parameters from the requirement of producing the correct neutrino data as well as baryon asymmetry of the Universe for right-handed neutrino mass scale around TeV. The A4 symmetry is augmented by additional Z3×Z2 symmetry to make sure that the splitting between right-handed neutrinos required for resonant leptogenesis is generated only by next to leading order terms, making it naturally small. We find that the inverted hierarchical light neutrino masses give more allowed parameter space consistent with neutrino and baryon asymmetry data.
Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R
2008-04-08
Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.
Quasi-Dirac neutrino oscillations
NASA Astrophysics Data System (ADS)
Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin
2018-05-01
Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
Characterization of polymer decomposition products by laser desorption mass spectrometry
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.
1993-01-01
Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.
Griffiths, Nia W; Wyatt, Mark F; Kean, Suzanna D; Graham, Andrew E; Stein, Bridget K; Brenton, A Gareth
2010-06-15
A method for the accurate mass measurement of positive radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. Initial use of a conjugated oligomeric calibration material was rejected in favour of a series of meso-tetraalkyl/tetraalkylaryl-functionalised porphyrins, from which the two calibrants required for a particular accurate mass measurement were chosen. While all measurements of monoisotopic species were within +/-5 ppm, and the method was rigorously validated using chemometrics, mean values of five measurements were used for extra confidence in the generation of potential elemental formulae. Potential difficulties encountered when measuring compounds containing multi-isotopic elements are discussed, where the monoisotopic peak is no longer the lowest mass peak, and a simple mass-correction solution can be applied. The method requires no significant expertise to implement, but care and attention is required to obtain valid measurements. The method is operationally simple and will prove useful to the analytical chemistry community. Copyright (c) 2010 John Wiley & Sons, Ltd.
Chemical composition of atmospheric aerosols resolved via positive matrix factorization
NASA Astrophysics Data System (ADS)
Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael
2017-04-01
Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and secondary aerosols via atmospheric physicochemical processes (e.g. condensation and evaporation of gases) and on the other hand the potential non-linear summation (Spracklen et al., 2011 2011) of anthropogenic and biogenic aerosol emissions. From the perspective of statistical analysis there is no definite reason why inorganics could not be included, as long as their uncertainties are estimated correctly and their influence is properly weighted in the factor model. For result validation, external, additional information available from most measurement sites, such as correlations with trace gas concentrations or size distribution derived, mode-specific mass loadings can be used instead of AMS inorganics. In recent analyses, nitrate compounds have already been added to PMF analyses and shown to interact with organic semi-volatile compounds (Hao et al., 2014). In this study we tested including all the default AMS chemical species, i.e. organics, sulfates, nitrates, ammonia and chlorides, in a PMF analysis, and present potential interpretations of the results with regard to aerosol sources and the chemical processes shaping the aerosol types. In addition to resolving organic-dominated aerosol classes, the results shed light on inorganic salt formation and may imply formation of organics salts. Canagaratna, M. et al. (2007). Mass Spectrom Rev., 26:185-222. Hao, L. et al. (2014). Atmos. Chem. Phys., 14, 13483-13495. Paatero, P. (1999). J Comput Graph Stat, 8: 854-888. Spracklen, D. et al (2011) Atmos. Chem. Phys., 11, 12109-12136.
NASA Technical Reports Server (NTRS)
Li, H.; Roux, S. J.
1992-01-01
A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.
Wang, Hang; Wang, Ying; Wang, Ge; Hong, Lizhi
2017-07-15
Matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) for the analysis of intact hair is a powerful tool for monitoring changes in drug consumption. The embedding of a low drug concentration in the hydrophobic hair matrix makes it difficult to extract and detect, and requires an improved method to increase detection sensitivity. In this study, an MSI method using MALDI-Fourier transform ion cyclotron resonance was developed for direct identification and imaging of olanzapine in hair samples using the positive ion mode. Following decontamination, scalp hair samples from an olanzapine user were scraped from the proximal to the distal end three times, and 5mm hair sections were fixed onto an Indium-Tin-Oxide (ITO)-coated microscopic glass slide. Esculetin (6,7-dihydroxy-2H-chromen-2-one) was used as a new hydrophobic matrix to increase the affinity, extraction and ionization efficiency of olanzapine in the hair samples. The spatial distribution of olanzapine was observed using five single hairs from the same drug user. This matrix improves the affinity of olanzapine in hair for molecular imaging with mass spectrometry. This method may provide a detection power for olanzapine to the nanogram level per 5mm hair. Time course changes in the MSI results were also compared with quantitative HPLC-MS/MS for each 5mm segment of single hair shafts selected from the MALDI target. MALDI imaging intensities in single hairs showed good semi-quantitative correlation with the results from conventional HPLC-MS/MS. MALDI-MSI is suitable for monitoring drug intake with a high time resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balu, Prabu; Hamid, Syed; Kovacevic, Radovan
2013-11-01
Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2013-09-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.
2017-01-01
The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.
Varenina, Ivana; Bilandžić, Nina; Kolanović, Božica Solomun; Božić, Đurđica; Sedak, Marija; Đokić, Maja; Varga, Ines
2016-01-01
A quantitative multi-residue method that includes 13 sulfonamides, trimethoprim and dapsone was developed and validated according to Commission Decision 2002/657/EC for muscle, milk egg and honey samples. For all matrices, the same extraction procedure was used. Samples were extracted with an acetone/dichloromethane mixture and cleaned up on aromatic sulfonic acid (SO3H) SPE cartridges. After elution and concentration steps, analytes were identified and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Data were acquired according to the multiple reaction-monitoring approach (MRM) and analytes were quantified both by the isotope dilution and the matrix-matched approaches calculating the response factors for the scanned product ions. The developed method shows good linearity, specificity, precision (repeatability and within-laboratory reproducibility), and trueness. Estimated CCβ for sulfonamides ranged between 5.6 and 8.2 µg kg(-1) for eggs, between 11.1 and 69.9 µg kg(-1) for milk, between 64.7 and 87.9 µg kg(-1) for muscle, and between 2.7 and 5.3 µg kg(-1) for honey. CCβ values for dapsone were 3.1, 0.6, 0.7 and 1.5 µg kg(-1) and for trimethoprim were 3.1, 6.7, 81.7 and 3.0 µg kg(-1) calculated for eggs, milk, muscle and honey, respectively. Recovery for all matrices was in the range from 89.1% and 109.7%. In matrix effect testing, no significant deviations were found between different samples of muscle and milk; however, a matrix effect was observed when testing different types of honey. The validation results demonstrate that the method is suitable for routine veterinary drug analysis and confirmation of suspect samples.
Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season
NASA Astrophysics Data System (ADS)
Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.
2015-12-01
During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.
NASA Astrophysics Data System (ADS)
Petcov, S. T.; Shindou, T.; Takanishi, Y.
2006-03-01
We consider the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with flavour-universal boundary conditions at the GUT scale, in which the lepton flavour violating (LFV) decays μ→e+γ, τ→μ+γ, etc., are predicted with rates that can be within the reach of present and planned experiments. These predictions depend critically on the matrix of neutrino Yukawa couplings Y which can be expressed in terms of the light and heavy right-handed (RH) neutrino masses, neutrino mixing matrix U, and an orthogonal matrix R. We investigate the effects of Majorana CP-violation phases in U, and of the RG running of light neutrino masses and mixing angles from M to the RH Majorana neutrino mass scale M, on the predictions for the rates of LFV decays μ→e+γ, τ→μ+γ and τ→e+γ. The case of quasi-degenerate heavy RH Majorana neutrinos is considered. Results for neutrino mass spectrum with normal hierarchy, values of the lightest ν-mass in the range 0⩽m⩽0.30 eV, and in the cases of R=1 and complex matrix R≠1 are presented. We find that the effects of the Majorana CP-violation phases and of the RG evolution of neutrino mixing parameters can change by few orders of magnitude the predicted rates of the LFV decays μ→e+γ and τ→e+γ. The impact of these effects on the τ→μ+γ decay rate is typically smaller and only possible for m≳0.10 eV. If the RG running effects are negligible, in a large region of soft SUSY breaking parameter space the ratio of the branching ratios of the μ→e+γ and τ→e+γ ( τ→μ+γ) decays is entirely determined in the case of R≅1 by the values of the neutrino mixing parameters at M.
On the Relations among Regular, Equal Unique Variances, and Image Factor Analysis Models.
ERIC Educational Resources Information Center
Hayashi, Kentaro; Bentler, Peter M.
2000-01-01
Investigated the conditions under which the matrix of factor loadings from the factor analysis model with equal unique variances will give a good approximation to the matrix of factor loadings from the regular factor analysis model. Extends the results to the image factor analysis model. Discusses implications for practice. (SLD)
NASA Astrophysics Data System (ADS)
Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.
2017-08-01
We have proposed an algorithm for the sequential construction of nonisotropic matrix elements of the collision integral, which are required to solve the nonlinear Boltzmann equation using the moments method. The starting elements of the matrix are isotropic and assumed to be known. The algorithm can be used for an arbitrary law of interactions for any ratio of the masses of colliding particles.
Li, Yan; Chen, Xi; Fan, Chunlin; Pang, Guofang
2012-11-30
A gas chromatography-mass spectrometry (GC-MS) analytical method was developed for simultaneously determining 186 pesticides in tea matrices using analyte protectants to counteract the matrix-induced effect. The matrix effects were evaluated for green, oolong and black tea, representing unfermented, partially fermented and completely fermented teas respectively and depending on the type of tea, 72%, 94% and 94% of the pesticides presented strong response enhancement effect. Several analyte protectants as well as certain combinations of these protectants were evaluated to check their compensation effects. A mixture of triglycerol and d-ribonic acid-γ-lactone (both at 2mg/mL in the injected samples) was found to be the most effective in improving the chromatographic behavior of the 186 pesticides. More than 96% of the 186 pesticides achieved recoveries within the range of 70-120% when using the selected mixture of analyte protectants. The simple addition of analyte protectants offers a more convenient solution to overcome matrix effects, results in less active sites compared to matrix-matched standardization and can be an effective approach to compensate for matrix effects in the GC-MS analysis of pesticide residues. Copyright © 2012 Elsevier B.V. All rights reserved.
Sleiman, Sue; Halliday, Catriona L.; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F.
2016-01-01
We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). PMID:27252460
Bidart, Marie; Bonnet, Isabelle; Hennebique, Aurélie; Kherraf, Zine Eddine; Pelloux, Hervé; Berger, François; Cornet, Muriel; Bailly, Sébastien; Maubon, Danièle
2015-05-01
We developed an in-house assay for the direct identification, by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, of yeasts in blood culture. Sixty-one representative strains from 12 species were analyzed in spiked blood cultures. Our assay accurately identified 95 of 107 (88.8%) positive blood cultures and outperformed the commercial Sepsityper kit (81.7% identification). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Machen, Alexandra; Kobayashi, Miwako; Connelly, Mary Robin
2013-01-01
Two novel protocols for inactivation and extraction were developed and used to identify 107 Mycobacterium clinical isolates, including Mycobacterium tuberculosis complex, from solid cultures using Vitek matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry. The protocol using heat inactivation with sonication and cell disruption with glass beads resulted in 82.2% and 88.8% species and genus level identifications, respectively. PMID:24068013
Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R
2013-01-01
The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.
Faron, Matthew L; Buchan, Blake W; Ledeboer, Nathan A
2017-12-01
Early initiation of effective antibiotics for septic patients is essential for patient survival. Matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology for isolate identification and has the possibility to impact how blood culture testing is performed. This review discusses the various uses of MALDI-TOF MS for the identification and susceptibility testing of positive blood cultures, the performance of these methods, and the outcomes involved with its implementation. Copyright © 2017 American Society for Microbiology.
Böhme, Julia; Anderegg, Ulf; Nimptsch, Ariane; Nimptsch, Kathrin; Hacker, Michael; Schulz-Siegmund, Michaela; Huster, Daniel; Schiller, Jürgen
2012-02-15
The self-healing capacity of skin is limited, and medical intervention is often unavoidable. Skin may be generated ex vivo from cultured fibroblasts. Because the molecular composition of de novo formed skin (mostly collagen and glycosaminoglycans [GAGs]) is crucial, analytical methods are required for the quality control of tissue-engineered products. Here, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of fibroblast cultures subsequent to digestion with chondroitinase ABC is a reliable and fast method to monitor the GAG content of native and bioengineered skin. Furthermore, the supplementation of the fibroblast medium with ¹³C-labeled glucose provides insights into the biosynthesis of GAGs. Copyright © 2011 Elsevier Inc. All rights reserved.
Doern, Christopher D; Butler-Wu, Susan M
2016-11-01
The performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) for routine bacterial and yeast identification as well as direct-from-blood culture bottle identification has been thoroughly evaluated in the peer-reviewed literature. Microbiologists are now moving beyond these methods to apply MS to other areas of the diagnostic process. This review discusses the emergence of advanced matrix-assisted laser desorption ionization time-of-flight MS applications, including the identification of filamentous fungi and mycobacteria and the current and future state of antimicrobial resistance testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...
Mass properties measurement system: Dynamics and statics measurements
NASA Technical Reports Server (NTRS)
Doty, Keith L.
1993-01-01
This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.
Liu, Pengyan; Chen, Yanjie; Zhao, Chunxia; Tian, Lei
2013-12-01
A method for the determination of ten photoinitiators (PIs), benzophenone, ethyl 4-dimethylaminobenzoate, 1-hydroxycyclohexyl-phenylketone, 4-methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 4-chlorobenzophenone, 2-chlorothioxanthone, 2-isopropylthio-xanthone, 2,2-dimethoxy-2-phenylacetophenone, methyl 2-benzoylbenzoate, in 13 kinds of fruit juice and 3 kinds of tea beverage has been established, using solid-phase micro-extraction (SPME) combined with chromatography/mass spectrometry (GC/MS). At first, the major factors of SPME, extraction time and temperature, were studied through orthogonal experiment. Then the optimal operation conditions were obtained via the refinement of various factors. After the sample was extracted by SPME, it was desorbed for target analytes in sampling inlet for 3 min, and separated on an HP-5MS column, then detected by MS in selected ion monitoring mode, and quantified through calibration curve. The working curves were obtained using sample matrix in order to eliminate the matrix interference. The linear range was from 0.3 microg/L to 60 microg/L and the detection limit range was from 3 ng/L to 16 ng/L. The samples were determined five times with four different spiked levels individually and the relative standard deviations of all the samples were less than 14.5%. This determination method was applied in 16 kinds of packed beverages with different brands and different species. Benzophenone had been detected from all the samples. 4-Methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 2-isopropylthioxanthone, 1-hydroxycyclohexyl-phenylketone and 2-chlorothioxanthone had been detected from a portion of samples. Simultaneous determination was achieved for the ten PIs. These results provide a reference to determine the PIs migrated from packing materials in beverage. This method is simple, high sensitive and non-polluting.
Can Condensing Organic Aerosols Lead to Less Cloud Particles?
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S.
2017-12-01
We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.
Mirabelli, Mario F; Gionfriddo, Emanuela; Pawliszyn, Janusz; Zenobi, Renato
2018-02-12
We evaluated the performance of a dielectric barrier discharge ionization (DBDI) source for pesticide analysis in grape juice, a fairly complex matrix due to the high content of sugars (≈20% w/w) and pigments. A fast sample preparation method based on direct immersion solid-phase microextraction (SPME) was developed, and novel matrix compatible SPME fibers were used to reduce in-source matrix suppression effects. A high resolution LTQ Orbitrap mass spectrometer allowed for rapid quantification in full scan mode. This direct SPME-DBDI-MS approach was proven to be effective for the rapid and direct analysis of complex sample matrices, with limits of detection in the parts-per-trillion (ppt) range and inter- and intra-day precision below 30% relative standard deviation (RSD) for samples spiked at 1, 10 and 10 ng ml -1 , with overall performance comparable or even superior to existing chromatographic approaches.
The effect of matrix properties and fiber properties on impact failure mechanics
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
The low-velocity impact problem in graphite/epoxy composite sheets must be solved before large amounts of that material can be used in commercial aircraft. Many of the low-velocity impacts that affect aircraft parts occur during normal ground operations and maintenance. Service equipment and tools have masses above 1 kg, and at velocities of less than 3 m/s can impact structural parts with energies higher than composites can endure without degradation of stiffness or strength. Simple solutions were developed for large-mass, low-velocity impacts which can be modeled as quasi-static events. Static test data and impact data show that the fiber properties control the impact energy which can be absorbed before penetration. Matrix shear strength and peel resistance control the extent of delamination. Comparison of results from tough matrix and brittle matrix composites show that although tough matrices reduce the extent of delamination, they lead to more fiber damage in the contact area.
Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya
2015-08-04
Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.
Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas
2018-02-01
Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.
NASA Astrophysics Data System (ADS)
Sinha, Roopam; Samanta, Rome; Ghosal, Ambar
2017-12-01
We investigate the consequences of a generalized ℤ 2 × ℤ 2 symmetry on a scaling neutrino Majorana mass matrix. It enables us to determine definite analytical relations between the mixing angles θ 12 and θ 13, maximal CP violation for the Dirac type and vanishing for the Majorana type. Beside the other testable predictions on the low energy neutrino parameters such as ββ 0ν decay matrix element | M ee | and the light neutrino masses m 1,2,3, the model also has intriguing consequences from the perspective of leptogenesis. With the assumption that the required CP violation for leptogenesis is created by the decay of lightest ( N 1) of the heavy Majorana neutrinos, only τ -flavored leptogenesis scenario is found to be allowed in this model. For a normal (inverted) ordering of light neutrino masses, θ 23 is found be less (greater) than its maximal value, for the final baryon asymmetry Y B to be in the observed range. Besides, an upper and a lower bound on the mass of N 1 have also been estimated. Effect of the heavier neutrinos N 2,3 on final Y B has been worked out subsequently. The predictions of this model will be tested in the experiments such as nEXO, LEGEND, GERDA-II, T2K, NO νA, DUNE etc.
1988-04-15
physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S
NASA Astrophysics Data System (ADS)
Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.
2018-05-01
Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feenstra, Adam D.
This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
NASA Astrophysics Data System (ADS)
Gutiérrez-Solís, M. C.; Muñoz-Rodríguez, D.; Medina-Peralta, S.; Carrera-Figueiras, C.; Ávila-Ortega, A.
2013-06-01
A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO2-PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 24 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO2 or SiO2-PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO2-PVI in spiked tomato with 0.2 and 0.8μg/g.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion
NASA Astrophysics Data System (ADS)
Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh
2017-04-01
Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be useful for organic aerosol emissions. The two different phases producing organic aerosol, pyrolysis and smouldering, were observed to have different mass spectra. In previous ambient experiments, two organic factors with very comparable signatures to these have been identified using positive matrix factorisation (Young et al., 2015). As such, it is postulated that these ambient organic factors are likely associated with the two combustion phases identified here. References: Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D. and Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039-4072 (2011) Young, D. E., Allan, J. D., Williams, P. I., Green, D. C., Harrison, R. M., Yin, J., Flynn, M. J., Gallagher, M. W., Coe, H., Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contribution, and seasonality. Atmos. Chem. Phys, 15, 2429-2443 (2015)
Constraints of beyond Standard Model parameters from the study of neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Stoica, Sabin
2017-12-01
Neutrinoless double beta (0νββ) decay is a beyond Standard Model (BSM) process whose discovery would clarify if the lepton number is conserved, decide on the neutrinos character (are they Dirac or Majorana particles?) and give a hint on the scale of their absolute masses. Also, from the study of 0νββ one can constrain other BSM parameters related to different scenarios by which this process can occur. In this paper I make first a short review on the actual challenges to calculate precisely the phase space factors and nuclear matrix elements entering the 0νββ decay lifetimes, and I report results of our group for these quantities. Then, taking advance of the most recent experimental limits for 0νββ lifetimes, I present new constraints of the neutrino mass parameters associated with different mechanisms of occurrence of the 0νββ decay mode.
Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W
2015-11-01
Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.
Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping
Angel, Peggi M.; Caprioli, Richard M.
2013-01-01
Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809
Sources and geographical origins of fine aerosols in Paris (France)
NASA Astrophysics Data System (ADS)
Bressi, M.; Sciare, J.; Ghersi, V.; Mihalopoulos, N.; Petit, J.-E.; Nicolas, J. B.; Moukhtar, S.; Rosso, A.; Féron, A.; Bonnaire, N.; Poulakis, E.; Theodosi, C.
2013-12-01
The present study aims at identifying and apportioning the major sources of fine aerosols in Paris (France) - the second largest megacity in Europe -, and determining their geographical origins. It is based on the daily chemical composition of PM2.5 characterised during one year at an urban background site of Paris (Bressi et al., 2013). Positive Matrix Factorization (EPA PMF3.0) was used to identify and apportion the sources of fine aerosols; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential Source Contribution Function (PSCF) and Conditional Probability Function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors named ammonium sulfate (A.S.) rich factor, ammonium nitrate (A.N.) rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metals industry were identified; a detailed discussion of their chemical characteristics is reported. They respectively contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 μg m-3) on the annual average; their seasonal variability is discussed. The A.S. and A.N. rich factors have undergone north-eastward mid- or long-range transport from Continental Europe, heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine aerosols abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites in Paris, suggesting instead more coordinated strategies amongst neighbouring countries. Similar conclusions might be drawn in other continental urban background sites given the transboundary nature of PM2.5 pollution.
Sources and geographical origins of fine aerosols in Paris (France)
NASA Astrophysics Data System (ADS)
Bressi, M.; Sciare, J.; Ghersi, V.; Mihalopoulos, N.; Petit, J.-E.; Nicolas, J. B.; Moukhtar, S.; Rosso, A.; Féron, A.; Bonnaire, N.; Poulakis, E.; Theodosi, C.
2014-08-01
The present study aims at identifying and apportioning fine aerosols to their major sources in Paris (France) - the second most populated "larger urban zone" in Europe - and determining their geographical origins. It is based on the daily chemical composition of PM2.5 examined over 1 year at an urban background site of Paris (Bressi et al., 2013). Positive matrix factorization (EPA PMF3.0) was used to identify and apportion fine aerosols to their sources; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential source contribution function (PSCF) and conditional probability function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors, namely ammonium sulfate (A.S.)-rich factor, ammonium nitrate (A.N.)-rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metal industry, were identified; a detailed discussion of their chemical characteristics is reported. They contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 μg m-3) respectively on the annual average; their seasonal variability is discussed. The A.S.- and A.N.-rich factors have undergone mid- or long-range transport from continental Europe; heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine-aerosol abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites in Paris, suggesting instead more coordinated strategies amongst neighbouring countries. Similar conclusions might be drawn in other continental urban background sites given the transboundary nature of PM2.5 pollution.
ANALYSES OF FISH TISSUE BY VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY
The analyses of fish tissue using VD/GC/MS with surrogate-based matrix corrections is described. Techniques for equilibrating surrogate and analyte spikes with a tissue matrix are presented, and equilibrated spiked samples are used to document method performance. The removal of a...
Moskovets, Eugene
2015-01-01
RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of the supersonic jet from the inlet capillary accelerating detached particles to kinetic energies suitable for matrix-assisted hypersonic-velocity impact ionization. PMID:26212165
“Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine
Yamaguchi, Dean T
2014-01-01
Repair and regeneration of bone requires mesenchymal stem cells that by self-renewal, are able to generate a critical mass of cells with the ability to differentiate into osteoblasts that can produce bone protein matrix (osteoid) and enable its mineralization. The number of human mesenchymal stem cells (hMSCs) diminishes with age and ex vivo replication of hMSCs has limited potential. While propagating hMSCs under hypoxic conditions may maintain their ability to self-renew, the strategy of using human telomerase reverse transcriptase (hTERT) to allow for hMSCs to prolong their replicative lifespan is an attractive means of ensuring a critical mass of cells with the potential to differentiate into various mesodermal structural tissues including bone. However, this strategy must be tempered by the oncogenic potential of TERT-transformed cells, or their ability to enhance already established cancers, the unknown differentiating potential of high population doubling hMSCs and the source of hMSCs (e.g., bone marrow, adipose-derived, muscle-derived, umbilical cord blood, etc.) that may provide peculiarities to self-renewal, differentiation, and physiologic function that may differ from non-transformed native cells. Tissue engineering approaches to use hMSCs to repair bone defects utilize the growth of hMSCs on three-dimensional scaffolds that can either be a base on which hMSCs can attach and grow or as a means of sequestering growth factors to assist in the chemoattraction and differentiation of native hMSCs. The use of whole native extracellular matrix (ECM) produced by hMSCs, rather than individual ECM components, appear to be advantageous in not only being utilized as a three-dimensional attachment base but also in appropriate orientation of cells and their differentiation through the growth factors that native ECM harbor or in simulating growth factor motifs. The origin of native ECM, whether from hMSCs from young or old individuals is a critical factor in “rejuvenating” hMSCs from older individuals grown on ECM from younger individuals. PMID:24772237
Minimizing the stochasticity of halos in large-scale structure surveys
NASA Astrophysics Data System (ADS)
Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias
2010-08-01
In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the stochasticity between halos and the dark matter can be reduced further when going to halo masses lower than we can resolve in current simulations.
Chen, Suming; Zheng, Huzhi; Wang, Jianing; Hou, Jian; He, Qing; Liu, Huihui; Xiong, Caiqiao; Kong, Xianglei; Nie, Zongxiu
2013-07-16
Carbon nanodots were applied for the first time as a new matrix for the analysis of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed by MALDI MS with carbon nanodots as the matrix, and the lowest 0.2 fmol limits-of-detection were obtained for octadecanoic acid. Clear sodium and potassium adducts and deprotonated signals were produced in positive- and negative-ion modes. Furthermore, the glucose and uric acid in real samples were quantitatively determined by the internal standard method with the linear range of 0.5-9 mM and 0.1-1.8 mM (R(2) > 0.999), respectively. This work gives new insight into the application of carbon nanodots and provides a general approach for rapid analysis of low-molecular-weight compounds.
Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik
2018-03-01
Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.
Careri, M; Costa, A; Elviri, L; Lagos, J-B; Mangia, A; Terenghi, M; Cereti, A; Garoffo, L Perono
2007-11-01
A liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS-MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC-MS and LC-MS-MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS-MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crisp and chocolate-based snacks as model food matrix, an LC-MS-MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h 2 (5 microg protein g(-1) matrix) and Ara h 3/4 (1 microg protein g(-1) matrix). Linearity of the method was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crisp.
Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments
NASA Astrophysics Data System (ADS)
Wolf, R.; El-Haddad, I.; Slowik, J. G.; Dällenbach, K.; Bruns, E.; Vasilescu, J.; Baltensperger, U.; Prévôt, A. S. H.
2017-07-01
We report highly time-resolved estimates of airborne bacteria-like particle concentrations in ambient aerosol using an Aerodyne aerosol mass spectrometer (AMS). AMS measurements with a newly developed PM2.5 and the standard (PM1) aerodynamic lens were performed at an urban background site (Zurich) and at a rural site (Payerne) in Switzerland. Positive matrix factorization using the multilinear engine (ME-2) implementation was used to estimate the contribution of bacteria-like particles to non-refractory organic aerosol. The success of the method was evaluated by a size-resolved analysis of the organic mass and the analysis of single particle mass spectra, which were detected with a light scattering system integrated into the AMS. Use of the PM2.5 aerodynamic lens increased measured bacteria-like concentrations, supporting the analysis method. However, at all sites, the low concentrations of this component suggest that airborne bacteria constitute a minor fraction of non-refractory PM2.5 organic aerosol mass. Estimated average mass concentrations were below 0.1 μg/m3 and relative contributions were lower than 2% at both sites. During rainfall periods, concentrations of the bacteria-like component increased considerably reaching a short-time maximum of approximately 2 μg/m3 at the Payerne site in summer.
NASA Astrophysics Data System (ADS)
Schulze, B.; Wallace, H. W., IV; Bui, A.; Flynn, J. H., III; Erickson, M. H.; Griffin, R. J.
2017-12-01
The Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recent establishment of the North American Emissions Control Area (ECA) on aerosol properties in this region are presently unknown. In order to understand better the current sources and processing mechanisms influencing coastal aerosol near Houston, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed for three weeks at a coastal location during May-June 2016. Total mass loadings of organic and inorganic non-refractory aerosol components during onshore flow periods were similar to those published before establishment of the regulations. Using estimated methanesulfonic acid (MSA) mass loadings and published biogenic MSA:non-sea-salt-sulfate (nss-SO4) ratios, we determined that over 70% of nss-SO4 over the Gulf was from anthropogenic sources, predominantly shipping emissions. Mass spectral analysis indicated that for periods with similar backward-trajectory-averaged meteorological conditions, air masses influenced by shipping emissions have an increased mass fraction of ions related to carboxylic acids and a significantly larger oxygen-to-carbon (O:C) ratio than air masses that stay within the ECA boundary, suggesting that shipping emissions impact marine organic aerosol (OA) oxidation state. Amine fragment mass loadings were positively correlated with anthropogenic nss-SO4 during onshore flow, implying anthropogenic-biogenic interaction in marine OA production. Five OA factors were resolved by positive matrix factorization, corresponding to a hydrocarbon-like OA, a semi-volatile OA, and three different oxygenated organic aerosols ranked by their O:C ratio (OOA-1, OOA-2, and OOA-3). OOA-1 constituted the majority of OA mass during a period likely influenced by aqueous-phase processing and may be linked to local glyoxal/methylglyoxal-related sources. OOA-2 was produced within the Houston urban region and was dominant during a multi-day period of air mass recirculation due to land-sea breeze effects. OOA-3, which was linked to shipping emissions, represented the majority of OA mass during onshore flow periods.
Saito, Rena; Park, Ju-Hyeong; LeBouf, Ryan; Green, Brett J.; Park, Yeonmi
2017-01-01
Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to detect fungal secondary metabolites. Detection of verrucarol, the hydrolysis product of Stachybotrys chartarum macrocyclic trichothecene (MCT), was confounded by matrix effects associated with heterogeneous indoor environmental samples. In this study, we examined the role of dust matrix effects associated with GC-MS/ MS to better quantify verrucarol in dust as a measure of total MCT. The efficiency of the internal standard (ISTD, 1,12-dodecanediol), and application of a matrix-matched standard correction method in measuring MCT in floor dust of water-damaged buildings was additionally examined. Compared to verrucarol, ISTD had substantially higher matrix effects in the dust extracts. The results of the ISTD evaluation showed that without ISTD adjustment, there was a 280% ion enhancement in the dust extracts compared to neat solvent. The recovery of verrucarol was 94% when the matrix-matched standard curve without the ISTD was used. Using traditional calibration curves with ISTD adjustment, none of the 21 dust samples collected from water damaged buildings were detectable. In contrast, when the matrix-matched calibration curves without ISTD adjustment were used, 38% of samples were detectable. The study results suggest that floor dust of water-damaged buildings may contain MCT. However, the measured levels of MCT in dust using the GC-MS/MS method could be significantly under- or overestimated, depending on the matrix effects, the inappropriate ISTD, or combination of the two. Our study further shows that the routine application of matrix-matched calibration may prove useful in obtaining accurate measurements of MCT in dust derived from damp indoor environments, while no isotopically labeled verrucarol is available. PMID:26853932
Saito, Rena; Park, Ju-Hyeong; LeBouf, Ryan; Green, Brett J; Park, Yeonmi
2016-01-01
Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to detect fungal secondary metabolites. Detection of verrucarol, the hydrolysis product of Stachybotrys chartarum macrocyclic trichothecene (MCT), was confounded by matrix effects associated with heterogeneous indoor environmental samples. In this study, we examined the role of dust matrix effects associated with GC-MS/MS to better quantify verrucarol in dust as a measure of total MCT. The efficiency of the internal standard (ISTD, 1,12-dodecanediol), and application of a matrix-matched standard correction method in measuring MCT in floor dust of water-damaged buildings was additionally examined. Compared to verrucarol, ISTD had substantially higher matrix effects in the dust extracts. The results of the ISTD evaluation showed that without ISTD adjustment, there was a 280% ion enhancement in the dust extracts compared to neat solvent. The recovery of verrucarol was 94% when the matrix-matched standard curve without the ISTD was used. Using traditional calibration curves with ISTD adjustment, none of the 21 dust samples collected from water damaged buildings were detectable. In contrast, when the matrix-matched calibration curves without ISTD adjustment were used, 38% of samples were detectable. The study results suggest that floor dust of water-damaged buildings may contain MCT. However, the measured levels of MCT in dust using the GC-MS/MS method could be significantly under- or overestimated, depending on the matrix effects, the inappropriate ISTD, or combination of the two. Our study further shows that the routine application of matrix-matched calibration may prove useful in obtaining accurate measurements of MCT in dust derived from damp indoor environments, while no isotopically labeled verrucarol is available.
Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C
2018-03-01
Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.