New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community
NASA Technical Reports Server (NTRS)
Cutright, Amanda; Shaughnessy, Brendan
2010-01-01
The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.
Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster
NASA Technical Reports Server (NTRS)
Gerstl, E.
1972-01-01
Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.
E-Standards For Mass Properties Engineering
NASA Technical Reports Server (NTRS)
Cerro, Jeffrey A.
2008-01-01
A proposal is put forth to promote the concept of a Society of Allied Weight Engineers developed voluntary consensus standard for mass properties engineering. This standard would be an e-standard, and would encompass data, data manipulation, and reporting functionality. The standard would be implemented via an open-source SAWE distribution site with full SAWE member body access. Engineering societies and global standards initiatives are progressing toward modern engineering standards, which become functioning deliverable data sets. These data sets, if properly standardized, will integrate easily between supplier and customer enabling technically precise mass properties data exchange. The concepts of object-oriented programming support all of these requirements, and the use of a JavaTx based open-source development initiative is proposed. Results are reported for activity sponsored by the NASA Langley Research Center Innovation Institute to scope out requirements for developing a mass properties engineering e-standard. An initial software distribution is proposed. Upon completion, an open-source application programming interface will be available to SAWE members for the development of more specific programming requirements that are tailored to company and project requirements. A fully functioning application programming interface will permit code extension via company proprietary techniques, as well as through continued open-source initiatives.
Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.
Numerical method to determine mechanical parameters of engineering design in rock masses.
Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong
2004-07-01
This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.
Verheggen, Kenneth; Raeder, Helge; Berven, Frode S; Martens, Lennart; Barsnes, Harald; Vaudel, Marc
2017-09-13
Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines. © 2017 Wiley Periodicals, Inc.
Rock mass classification system : transition from RMR to GSI.
DOT National Transportation Integrated Search
2013-11-01
The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...
Models for predicting the mass of lime fruits by some engineering properties.
Miraei Ashtiani, Seyed-Hassan; Baradaran Motie, Jalal; Emadi, Bagher; Aghkhani, Mohammad-Hosein
2014-11-01
Grading fruits based on mass is important in packaging and reduces the waste, also increases the marketing value of agricultural produce. The aim of this study was mass modeling of two major cultivars of Iranian limes based on engineering attributes. Models were classified into three: 1-Single and multiple variable regressions of lime mass and dimensional characteristics. 2-Single and multiple variable regressions of lime mass and projected areas. 3-Single regression of lime mass based on its actual volume and calculated volume assumed as ellipsoid and prolate spheroid shapes. All properties considered in the current study were found to be statistically significant (ρ < 0.01). The results indicated that mass modeling of lime based on minor diameter and first projected area are the most appropriate models in the first and the second classifications, respectively. In third classification, the best model was obtained on the basis of the prolate spheroid volume. It was finally concluded that the suitable grading system of lime mass is based on prolate spheroid volume.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Astrophysics Data System (ADS)
Manski, Detlef; Martin, James A.
1988-07-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Manski, Detlef; Martin, James A.
1988-01-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Effect of distributive mass of spring on power flow in engineering test
NASA Astrophysics Data System (ADS)
Sheng, Meiping; Wang, Ting; Wang, Minqing; Wang, Xiao; Zhao, Xuan
2018-06-01
Mass of spring is always neglected in theoretical and simulative analysis, while it may be a significance in practical engineering. This paper is concerned with the distributive mass of a steel spring which is used as an isolator to simulate isolation performance of a water pipe in a heating system. Theoretical derivation of distributive mass effect of steel spring on vibration is presented, and multiple eigenfrequencies are obtained, which manifest that distributive mass results in extra modes and complex impedance properties. Furthermore, numerical simulation visually shows several anti-resonances of the steel spring corresponding to impedance and power flow curves. When anti-resonances emerge, the spring collects large energy which may cause damage and unexpected consequences in practical engineering and needs to be avoided. Finally, experimental tests are conducted and results show consistency with that of the simulation of the spring with distributive mass.
Evolution of deep-bed filtration of engine exhaust particulates with trapped mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Sandeep; Rothamer, David A.; Foster, David E.
Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite themore » relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.« less
Artemis: Results of the engineering feasibility study
NASA Technical Reports Server (NTRS)
1991-01-01
Information is given in viewgraph form for the Engineering Feasibility Study of the Artemis Project, a plan to establish a permanent base on the Moon. Topics covered include the Common Lunar Lander (CLL), lunar lander engineering study results, lunar lander trajectory analysis, lunar lander conceptual design and mass properties, the lunar lander communication subsystem design, and product assurance.
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Rosner, D. E.
1984-01-01
Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan
This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less
Let Students Discover an Important Physical Property of a Slinky
ERIC Educational Resources Information Center
Gash, Philip
2016-01-01
This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.
NASA Technical Reports Server (NTRS)
Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.
1996-01-01
The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.
NASA Astrophysics Data System (ADS)
Petzold, A.; Stein, C.; Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Giebl, H.; Hitzenberger, R.; Döpelheuer, A.; Vrchoticky, S.; Puxbaum, H.; Johnson, M.; Hurley, C. D.; Marsh, R.; Wilson, C. W.
2003-07-01
The particles emitted from an aircraft engine combustor were investigated in the European project PartEmis. Measured aerosol properties were mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, and cloud condensation nuclei (CCN) activation potential. The combustor operation conditions corresponded to modern and older engine gas path temperatures at cruise altitude, with fuel sulphur contents (FSC) of 50, 410, and 1270 μg g-1. Operation conditions and FSC showed only a weak influence on the microphysical aerosol properties, except for hygroscopic and CCN properties. Particles of size D >= 30 nm were almost entirely internally mixed. Particles of sizes D < 20 nm showed a considerable volume fraction of compounds that volatilise at 390 K (10-15%) and 573 K (4-10%), while respective fractions decreased to <5% for particles of size D >= 50 nm.
Mass Uncertainty and Application For Space Systems
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.
2018-05-01
Nathan Gelino, a research engineer, manually loads materials into the Zero Launch Mass 3-D Printer at Kennedy Space Center’s Swamp Works Tuesday. The 3-D printer heated the pellets to about 600 degrees F and extruded them to produce specimens for material strength properties testing. Automated pellet delivery system will be added to the printer soon.
Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok
2015-01-01
The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
An equipment list, instrument baseline data, engineering drawings, mass properties computer printouts, electrical energy management, and control and display functional analysis pertinent to the AMPS (Satellite Payload) are presented.
Failed Collapsar Jets to Explain Low Luminosity GRB Properties
NASA Astrophysics Data System (ADS)
Hamidani, Hamid; Umeda, Hideyuki; Takahashi, Koh
Using the collapsar scenario for long GRBs [1], we present series of numerical simulations to investigate properties of expanding jets, driven by engines deploying the same total energy (1052 erg), differently. We include a wide range of engine durations (Tinj), from 0.1 to 100 s, as well as different initial opening angles (θ0) for the deployed energy. We employ an AMR 2D special relativistic hydrodynamical code, using a 25 solar mass Wolf-Rayet star as the progenitor [2]. We analyze the effect of the engine duration on the jet's hydrodynamic properties, and discuss the implications on GRB and SN emissions. Our results show that the expanding jet's hydrodynamical properties significantly differ, in particular outflow collimation and relativistic acceleration. The implication of this is that brief engines (with Tinj < Tbreakout, either due to a short Tinj or to a large θ0) represent excellent systems to explain the debated low-luminosity GRBs (llGRBs), displaying two of llGRBs peculiar features: i) the estimated llGRBs rate at least about 100 times higher than that of GRBs [3,4,5], and ii) potentially energetic SN emission [6]. We find that these two features only arise from brief engines. The conclusion is that brief engines dominate collapsars, at least at low redshift.
Pathway to oxide photovoltaics via band-structure engineering of SnO
Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; ...
2016-10-04
All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Furthermore, using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility ofmore » the approach.« less
Nonlinear Acoustic Processes in a Solid Rocket Engine
1994-03-29
conceptual framwork for the study number (M), weakly viscous internal flow sustained of solid rocket engine chamber flow dynamics which by mass...same magnitude. The formulation and results provide a conceptual framwork for the study of injected cylinder flow dynamics which supplements traditional...towards the axial direction. Until recently, conceptual understanding of this flow turning process has been based largely on the viscous properties of the
Choi, Seungmok; Myung, C. L.; Park, S.
2014-03-05
This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less
Investigating the properties of low-mass AGN and their connection to unification models
NASA Astrophysics Data System (ADS)
Hood, Carol Elizabeth
The most basic model of active galactic nuclei (AGN) suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Although there are still some unanswered questions about the structures surrounding the central engines of the AGN, such as if the obscuring region is due to a dusty torus or an outflowing wind, observations (e.g. the detections of broad lines in the polarized light of some Type 2 objects) have proved consistent with predictions and continue to strengthen the case for unification. However, many are still searching for "true" Type 2 objects. These objects optically look like other Type 2 objects, but instead of having their broad line region blocked from the line-of-sight by the obscuring region, they are believed to lack the broad line region altogether. Others have predicted that at low luminosity or low accretion rate, the broad line region will disappear, leaving all objects to optically look like Type 2 objects, despite their level of intrinsic absorption. Low-mass (< 10^6 solar masses) AGN provide interesting environments in which these unification models can be studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. In addition, we examine the X-ray properties of a sample of Type 2 objects observed with XMM-Newton and the IR properties of a sample of both Type 1 and 2 objects observed with the Spitzer Infrared Spectrograph, in order to study the absorption properties of these objects and test the validity of unification models in the low-mass regime. We find little to no evidence of any "true" Type 2 objects in any of our samples, and show that in all tests preformed, low-mass AGN appear to simply be scaled-down versions of their more massive counterparts, keeping current unification models intact down to the lowest black hole masses probed to date.
Fakhari, Amir; Berkland, Cory
2013-01-01
Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers, and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix (ECM) and is involved in cellular signaling. Degradation of HA is a step-wise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity, and elasticity. This review addresses the distribution, turnover, and tissue-specific properties of HA. This information is used as context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler, and in osteoarthritis treatment. PMID:23507088
Zero and root loci of disturbed spring–mass systems
Lecomte, Christophe
2014-01-01
Models consisting of chains of particles that are coupled to their neighbours appear in many applications in physics or engineering, such as in the study of dynamics of mono-atomic and multi-atomic lattices, the resonances of crystals with impurities and the response of damaged bladed discs. Analytical properties of the dynamic responses of such disturbed chains of identical springs and masses are presented, including when damping is present. Several remarkable properties in the location of the resonances (poles) and anti-resonances (zeros) of the displacements in the frequency domain are presented and proved. In particular, it is shown that there exists an elliptical region in the frequency–disturbance magnitude plane from which zeros are excluded and the discrete values of the frequency and disturbance at which double poles occur are identified. A particular focus is on a local disturbance, such as when a spring or damper is modified at or between the first and last masses. It is demonstrated how, notably through normalization, the techniques and results of the paper apply to a broad category of more complex systems in physics, chemistry and engineering. PMID:24711724
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Design properties of hydrogel tissue-engineering scaffolds
Zhu, Junmin; Marchant, Roger E
2011-01-01
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626
Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions
NASA Astrophysics Data System (ADS)
Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.
2013-12-01
Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Hieu, Nguyen V.; Thu, Tran V.; Hung, Nguyen M.; Ilyasov, Victor V.; Poklonski, Nikolai A.; Nguyen, Chuong V.
2018-01-01
In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer MoS_2 using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer MoS_2 were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer MoS_2 are very sensitive to biaxial strain, leading to a direct-indirect transition in semiconductor monolayer MoS_2. Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer MoS_2 a promising candidate for application in nanoelectronic and optoelectronic devices.
Lindsay, L.; Kuang, Y.
2017-03-13
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
NASA Astrophysics Data System (ADS)
Lindsay, L.; Kuang, Y.
2017-03-01
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, L.; Kuang, Y.
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
Development of structural ceramic components for automobile applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, H.
1995-12-01
Development efforts have been made in automobile technologies on heat engines to improve the power performance, the fuel economy, and so on. It is well recognized that ceramic applications are keys to succeed in such advanced heat engines, because of their good mechanical and thermal properties. This paper discusses present automobile applications of structural ceramic components and the expectations in automobile uses. The strength and reliability of mass-produced components for the engines are described with the manufacturing processes. The future R&D directions are recommended for structural ceramics.
Malmborg, V B; Eriksson, A C; Shen, M; Nilsson, P; Gallo, Y; Waldheim, B; Martinsson, J; Andersson, Ö; Pagels, J
2017-02-07
To design diesel engines with low environmental impact, it is important to link health and climate-relevant soot (black carbon) emission characteristics to specific combustion conditions. The in-cylinder evolution of soot properties over the combustion cycle and as a function of exhaust gas recirculation (EGR) was investigated in a modern heavy-duty diesel engine. A novel combination of a fast gas-sampling valve and a soot particle aerosol mass spectrometer (SP-AMS) enabled online measurements of the in-cylinder soot chemistry. The results show that EGR reduced the soot formation rate. However, the late cycle soot oxidation rate (soot removal) was reduced even more, and the net effect was increased soot emissions. EGR resulted in an accumulation of polycyclic aromatic hydrocarbons (PAHs) during combustion, and led to increased PAH emissions. We show that mass spectral and optical signatures of the in-cylinder soot and associated low volatility organics change dramatically from the soot formation dominated phase to the soot oxidation dominated phase. These signatures include a class of fullerene carbon clusters that we hypothesize represent less graphitized, C 5 -containing fullerenic (high tortuosity or curved) soot nanostructures arising from decreased combustion temperatures and increased premixing of air and fuel with EGR. Altered soot properties are of key importance when designing emission control strategies such as diesel particulate filters and when introducing novel biofuels.
NASA Technical Reports Server (NTRS)
Klich, P. J.; Macconochie, I. O.
1979-01-01
A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.
Wang, Chong; Wang, Min
2012-10-01
Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.
NASA Astrophysics Data System (ADS)
Ortega, Ismael; Chazallon, Bertrand; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier; Salm, François; Delhaye, David; Gaffié, Daniel; Yon, Jérôme
2015-04-01
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. An aircraft exhaust plume contains species emitted by the engines, species formed in the plume from the emitted species and atmospheric species that become entrained into the plume. The majority of emitted species (gases and soot particles) are produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Emissions of soot particles by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied since many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. Most likely one of the reasons behind these discrepancies resides in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g. with respect to fuel or combustion techniques. In this work, we use Raman microscopy (266, 514 and 785 nm excitation) and ablation techniques (SIMS, Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particles produced from air-plane at different engine regimes simulating a landing and taking-off (LTO) cycle. First, the spectral parameters of the first-order Raman band of various soot samples, collected from three different sources in the frame of the MERMOSE project (http://mermose.onera.fr/): PowerJet SaM-146 turbofan (four engine regimes), CAST generator (propane fuel, four different global equivalence ratios), and Kerosene laboratory flame are provided. The spectra are analyzed by performing a de-convolution using the approach described by Sadezky et al. (2005). The soot obtained at different engine regimes presents very similar spectra, with the only exception of the soot obtained at 30% engine regime. In this case, the contribution of D2 band is similar to the contribution of D3 band, while for the samples obtained at 70%, 85% and 100% engine regimes D3 contribution is larger. The results point to a very little impact of engine regime on the generated soot structure. In contrast, surrogate soots show a dependence on the initial combustion parameters and collection conditions. Second, the surface chemical composition of the soot particles with special focus on PAHs are analyzed by two-Step (Desorption/Ionization) Laser Mass Spectrometry (L2MS) and Time of Fight Secondary Ion Mass Spectrometry (ToF-SIMS) techniques. In L2MS, the adsorbed phase is probed by nanosecond laser desorption (λd=532nm), then the ejected molecules are ionized with a second ns laser (λi=266nm) and further mass-separated by ToF-MS. In both techniques the spectra are obtained using positive polarity, which is better suited for detection of PAHs. A good agreement was obtained between the two techniques for the total PAH content of the analyzed samples. Moreover, the total PAH content followed the same trend as the OC/EC ratio measured with a thermo-optic analyzer (Improve protocol): the 30% engine regime soot presents a high concentration of PAHs and a high OC content, while the three other regimes give a relatively low content of PAHs and OC. References [1] Lee et al., Atmos. Env. 44, 4678-4734, 2010 [2] IPCC 2014, Chap7: http://www.ipcc.ch [3] L. Dufour, Ciel et Terre, vol 82, p1-36, 1966 [4] C. Hoose & O. Möhler, Atmos.Chem.Phys. 12, 9817-9854, 2012 [5] Sadezky, et al., Carbon, 43, 1731-1742, 2005
NASA Astrophysics Data System (ADS)
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model
NASA Astrophysics Data System (ADS)
Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing
2016-04-01
Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.
Real-time measurements of jet aircraft engine exhaust.
Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F
2005-05-01
Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.
A thermodynamic study of the turbine-propeller engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1953-01-01
Equations and charts are presented for computing the thrust, the power output, the fuel consumption, and other performance parameters of a turbine-propeller engine for any given set of operating conditions and component efficiencies. Included are the effects of the pressure losses in the inlet duct and the combustion chamber, the variation of the physical properties of the gas as it passes through the system, and the change in mass flow of the gas by the addition of fuel.
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
Properties of Low-mass AGN as They Relate to Unification and Massive AGN
NASA Astrophysics Data System (ADS)
Hood, Carol E.
2011-01-01
Current unification models of AGN suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Observations have proved consistent with predictions and continue to strengthen the case for unification, however, many are still searching for "true" Type 2 objects, including predictions of their formation due to low luminosity or low accretion rate. Low-mass (< 106solar masses) AGN provide interesting environments in which these unification models can be studied. We also aim to compare the properties of low-mass AGN with their more massive counterparts to look for structural similarities and differences over a more substantial range of luminosities and accretion rates than previously studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. This includes data from the VLA, Spitzer, 2MASS, HST, GALEX, XMM, and Chandra, providing us with one of the most comprehensive looks into low-mass AGN. Unlike the other prototypical low-mass AGN, NGC 4395, POX 52 resides in a dwarf elliptical galaxy, accreting at ≈ 0.35 the Eddington limit. Additionally, we examine a sample 41 Type 1 and Type 2 objects, including POX 52 and NGC 4395, with the Spitzer IRS and a sub-sample of those with XMM to study the absorption properties of low-mass AGN, to test the validity of unification models in the low-mass regime, and to investigate possible structural differences between objects with low and high mass black holes and accretion rates. We will discuss the IR spectral shape and present emission-line diagnostics for Type 1 and Type 2 AGNs at low masses.
Microfluidic hydrogels for tissue engineering.
Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian
2011-03-01
With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.
Bending efficiency through property gradients in bamboo, palm, and wood-based composites.
Wegst, Ulrike G K
2011-07-01
Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.
A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Stnaley, Douglas O.
1991-01-01
A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.
A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering
Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert
2016-01-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605
A perspective on the clinical translation of scaffolds for tissue engineering.
Webber, Matthew J; Khan, Omar F; Sydlik, Stefanie A; Tang, Benjamin C; Langer, Robert
2015-03-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.
Performance Charts for the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irving M.
1947-01-01
Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells
John, Maliyakal E.; Keller, Greg
1996-01-01
Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522
NASA Astrophysics Data System (ADS)
Albanna, Mohammad Zaki
Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their utility for cardiovascular tissue engineering applications. Moreover, we evaluated the effect of various glycosaminoglycans (GAGs) on MSCs morphology and proliferation. Lastly, we studied the effect of stiffness of mechanically improved chitosan fibers on MSCs viability, attachment and proliferation. Results showed that MSCs proliferation improved in proportion to fiber stiffness.
Mass erosion and forest management
R. R. Ziemer; B. R. Thomas; R. M. Rice
1982-01-01
In Japan, landslides are such a major national hazard that in 1958 the ""Landslide Prevention Law"" was passed and an extensive program for research, engineering, and control of landslides has developed. There is no comparable legislative mandate in the United States. Contrary to the situation in Japan where lives and property are jeopardized by...
Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn
2018-01-17
Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.
A data management system for weight control and design-to-cost
NASA Technical Reports Server (NTRS)
Bryant, J. C.
1978-01-01
The definition of the mass properties data of aircraft changed on a daily basis as do design details of the aircraft. This dynamic nature of the definition has generally encouraged those responsible for the data to update the data on a weekly or monthly basis. The by-product of these infrequent updates was the requirement of manual records to maintain daily activity. The development of WAVES changed the approach to management of mass properties data. WAVES has given the ability to update the data on a daily basis thereby eliminating the need for manual records. WAVES has demonstrated that a software product can support a data management system for engineering data.
Effective density measurements of fresh particulate matter emitted by an aircraft engine
NASA Astrophysics Data System (ADS)
Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko
2014-05-01
Introduction Carbonaceous particulate matter (commonly referred to as soot), once emitted into the atmosphere affects the global radiation budget by absorbing and scattering solar radiation. Furthermore, it can alter the formation, lifetime and distribution of clouds by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). The ability of soot particles to act as CCN and IN depends on their size, morphology and chemical composition. Soot particles are known to consist of spherical, primary particles that tend to arrange in chain-like structures. The structure of soot particles typically changes in the atmosphere when the particles are coated with secondary material, thus changing their radiative and cloud microphysical properties. Bond et al. (Journal of Geophysical Research, 2013: Bounding the Role of Black Carbon in the Climate System.) estimated the total industrial-era (1750 to 2005) climate forcing of black carbon to be 1.1 W/m2 ranging from the uncertainty bonds of 0.17 W/m2 to 2.1 W/m2. Facing the large uncertainty range, there is a need for a better characterization of soot particles abundant in the atmosphere. We provide experimental data on physical properties such as size, mass, density and morphology of freshly produced soot particles from a regularly used aircraft engine and from four laboratory generated soot types. This was done using a Differential Mobility Analyzer (DMA) and a Centrifugal Particle Mass Analyzer (CPMA), a relatively new instrument that records mass distributions of aerosol particles. Experimental Aircraft engine exhaust particles were collected and analysed during the Aviation Particle Regulatory Instrumentation Demonstration Experiments (A-PRIDE) campaigns in a test facility at the Zurich airport in November 2012 and August 2013. The engines were operated at different relative thrust levels spanning 7 % to 100 %. The sample was led into a heated line in order to prevent condensation of water and evolution of secondary organic aerosols. The soot masses/densities were determined using a DMA-CPMA system as described in the following. The freshly generated soot particles were first charge equilibrated to account for multiple charging and selected according to their mobility size (dm) by a DMA. The monodisperse flow then entered the CPMA which measured the corresponding mass. A condensation particle counter counted the particle number concentration. The effective density (ρeff) can be derived using the fractal relationship between mass and dm and the definition of the effective density. Additionally, we investigated four different laboratory-generated soot types at ETHZ. In detail, a Combustion Aerosol Standard burner ((1) fuel-rich and (2) fuel-lean), a (3) PALAS GFG aerosol generator and (4) carbon black (Cabot Regal Black) from an atomizer, were used. The corresponding results are compared to the aircraft engine exhaust measurements. Results The size, mass, effective density distributions, and the corresponding mobility based fractal dimensions (Dfm) from fresh soot particles emitted by a common aircraft engine and from four laboratory generated soot types were analysed. Dfm is used to describe aggregate particles. It relates the number of primary particles to dm. In general, the effective density decreases with increasing mobility diameter and depends on engine thrust.
Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng
2013-12-01
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.
Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng
2015-01-01
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186
Development of an electrostatic propulsion engine using sub-micron powders as the reaction mass
NASA Technical Reports Server (NTRS)
Herbert, F.; Kendall, K. R.
1991-01-01
Asteroid sample return missions would benefit from development of an improved rocket engine. Chemical rockets achieve their large thrust with high mass consumption rate (dm/dt) but low exhaust velocity; therefore, a large fraction of their total mass is fuel. Present day ion thrusters are characterized by high exhaust velocity, but low dm/dt; thus, they are inherently low thrust devices. However, their high exhausy velocity is poorly matched to typical mission requirements and therefore, wastes energy. A better match would be intermediate between the two forms of propulsion. This could be achieved by electrostatically accelerating solid powder grains, raising the possibility that interplanetary material could be processed to use as reaction mass. An experiment to study the charging properties of sub-micron sized powder grains is described. If a suitable material can be identified, then it could be used as the reaction mass in an electrostatic propulsion engine. The experiment employs a time of flight measurement to determine the exhaust velocity (v) of various negatively charged powder grains that were charged and accelerated in a simple device. The purpose is to determine the charge to mass ratio that can be sustained for various substances. In order to be competitive with present day ion thrusters, a specific impulse (v/g) of 3000 to 5000 seconds is required. Preliminary results are presented. More speculatively, there are some mission profiles that would benefit from collection of reaction mass at the remote asteroid site. Experiments that examine the generation of sub-micron clusters by electrostatic self-disruption of geologically derived material are planned.
Reverse engineering nuclear properties from rare earth abundances in the r process
NASA Astrophysics Data System (ADS)
Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.
2017-03-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.
Stacking dependence of carrier transport properties in multilayered black phosphorous
NASA Astrophysics Data System (ADS)
Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.
2016-02-01
We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.
Survey of selected topics relevant to bioprocess engineering. Technical note (Final)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, J.B.; Clark, E.J.; Levelt Sengers, J.M.H.
1990-05-01
The following is a collection of reports on topics considered important and generic in biotechnology and bioprocess engineering: (1) Isoelectric points of proteins; (2) Solubility and mass transfer of oxygen in bioreactors; (3) Solubility and mass transfer of carbon dioxide in bioreactors. The reports arose from a survey of the past and current biotechnology literature with special effort given to a critique of data measurement quality. The format is as follows. The technological importance of a topic is briefly discussed, followed by a critical review of relevant physical properties, data presentation, and measurement techniques. A conclusions and recommendations section summarizesmore » the findings and contains specific recommendations for future research projects. The last section consists of an annotated bibliography and references pertaining to the survey.« less
USDA-ARS?s Scientific Manuscript database
Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...
NASA Astrophysics Data System (ADS)
Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.
2016-05-01
Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1990-01-01
Design-to-cost is a popular technique for controlling costs. Although qualitative techniques exist for implementing design to cost, quantitative methods are sparse. In the launch vehicle and spacecraft engineering process, the question whether to minimize mass is usually an issue. The lack of quantification in this issue leads to arguments on both sides. This paper presents a mathematical technique which both quantifies the design-to-cost process and the mass/complexity issue. Parametric cost analysis generates and applies mathematical formulas called cost estimating relationships. In their most common forms, they are continuous and differentiable. This property permits the application of the mathematics of differentiable manifolds. Although the terminology sounds formidable, the application of the techniques requires only a knowledge of linear algebra and ordinary differential equations, common subjects in undergraduate scientific and engineering curricula. When the cost c is expressed as a differentiable function of n system metrics, setting the cost c to be a constant generates an n-1 dimensional subspace of the space of system metrics such that any set of metric values in that space satisfies the constant design-to-cost criterion. This space is a differentiable manifold upon which all mathematical properties of a differentiable manifold may be applied. One important property is that an easily implemented system of ordinary differential equations exists which permits optimization of any function of the system metrics, mass for example, over the design-to-cost manifold. A dual set of equations defines the directions of maximum and minimum cost change. A simplified approximation of the PRICE H(TM) production-production cost is used to generate this set of differential equations over [mass, complexity] space. The equations are solved in closed form to obtain the one dimensional design-to-cost trade and design-for-cost spaces. Preliminary results indicate that cost is relatively insensitive to changes in mass and that the reduction of complexity, both in the manufacturing process and of the spacecraft, is dominant in reducing cost.
Tungsten nanoparticles influence on radiation protection properties of polymers
NASA Astrophysics Data System (ADS)
Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.
2016-02-01
In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tong; Xue, Li; Zhao, Xiao-Hong
Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, i.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermallymore » dominant GRB 101219B, whose initial jet launching radius, r {sub 0}, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass M {sub BH} ∼ 5–9 M {sub ⊙}, spin parameter a {sub *} ≳ 0.6, and disk mass 3 M {sub ⊙} ≲ M {sub disk} ≲ 4 M {sub ⊙}. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.« less
NASA Technical Reports Server (NTRS)
Mansfield, D. L.
1973-01-01
The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.
NASA Technical Reports Server (NTRS)
1976-01-01
Engineering and operational facets associated with the implementation of the first two AMPS flights are covered. The payload is described including all systems and subsystems and the mission planning and flight operations are described too. Payload integration, ground operations, and logistics are included along with key supporting analyses and mass properties.
Thematic mapper flight model preshipment review data package. Volume 3, part A: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Results of vibration, acoustical noise, and thermal vacuum are described as well as tests studies of EMI/EMC and mass properties conducted for thematic mapper systems integration. Liens are summarized and the engineering change proposal status is presented. Requests for deviation/waiver are included along with failure and nonforming material reports.
Mass-based design and optimization of wave rotors for gas turbine engine enhancement
NASA Astrophysics Data System (ADS)
Chan, S.; Liu, H.
2017-03-01
An analytic method aiming at mass properties was developed for the preliminary design and optimization of wave rotors. In the present method, we introduce the mass balance principle into the design and thus can predict and optimize the mass qualities as well as the performance of wave rotors. A dedicated least-square method with artificial weighting coefficients was developed to solve the over-constrained system in the mass-based design. This method and the adoption of the coefficients were validated by numerical simulation. Moreover, the problem of fresh air exhaustion (FAE) was put forward and analyzed, and exhaust gas recirculation (EGR) was investigated. Parameter analyses and optimization elucidated which designs would not only achieve the best performance, but also operate with minimum EGR and no FAE.
Reverse engineering nuclear properties from rare earth abundances in the r process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
Reverse engineering nuclear properties from rare earth abundances in the r process
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...
2017-02-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
NASA Astrophysics Data System (ADS)
Allan, J. D.; Alfarra, M. R. R.; Whitehead, J.; McFiggans, G.; Kong, S.; Harrison, R. M.; Alam, M. S.; Hamilton, J. F.; Pereira, K. L.; Holmes, R. E.
2014-12-01
Around 1 in 3 light duty vehicles in the UK use diesel engines, meaning that on-road emissions of particulates, NOx and VOCs and subsequent chemical processes are substantially different to countries where gasoline engines dominate. As part of the Natural Environment Research Council (NERC) Com-Part project, emissions from a diesel engine dynamometer rig representative of the EURO 4 standard were studied. The exhaust was passed to the Manchester aerosol chamber, which consists of an 18 m3 teflon bag and by injecting a sample of exhaust fumes into filtered and chemically scrubbed air, a controllable dilution can be performed and the sample held in situ for analysis by a suite of instruments. The system also allows the injection of other chemicals (e.g. ozone, additional VOCs) and the initiation of photochemistry using a bank of halogen bulbs and a filtered Xe arc lamp to simulate solar light. Because a large volume of dilute emissions can be held for a period of hours, this permits a wide range of instrumentation to be used and relatively slow processes studied. Furthermore, because the bag is collapsible, the entire particulate contents can be collected on a filter for offline analysis. Aerosol microphysical properties are studied using a Scanning Mobility Particle Sizer (SMPS) and Centrifugal Particle Mass Analyser (CPMA); aerosol composition using a Soot Particle Aerosol Mass Spectrometer (SP-AMS), Single Particle Soot Photometer (SP2), Sunset Laboratories OC EC analyser and offline gas- and high performance liquid chromatography (employing advanced mass spectrometry such as ion trap and fourier transform ion cyclotron resonance); VOCs using comprehensive 2D gas chromatography; aerosol optical properties using a Cavity Attenuated Phase Shift Single Scattering Albedo monitor (CAPS-PMSSA), 3 wavelength Photoacoustic Soot Spectrometer (PASS-3) and Multi Angle Absorption Photometer (MAAP); particle hygroscopcity using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and monodisperse Cloud Condensation Nuclei counter (CCN); and measurements of ozone, NOx and CO2. Here we present the first results, where we explored the trends as a function of engine speed, load, exhaust treatment (an oxidizing catalytic converter), dilution factor and exposure to light.
Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel
2015-11-01
Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai
2018-02-01
Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.
A Thermodynamic Study of the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1947-01-01
Charts are presented for computing thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of pressure losses in the inlet duct and the combustion chamber, of variation in physical properties of the gas as it passes through the system, of reheating of the gas due to turbine losses, and of change in mass flow by the addition of fuel are included. The principle performance chart shows the effects of primary variables and correction charts provide the effects of secondary variables and of turbine-loss reheat on the performance of the system. The influence of characteristics of a given compressor and turbine on performance of a turbojet engine containing a matched set of these given components is discussed for cases of an engine with a centrifugal-flow compressor and of an engine with an axial-flow compressor.
Intelligent Control and Health Monitoring. Chapter 3
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.
2009-01-01
Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Tulkki, Jukka
2018-02-01
Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.
NASA Astrophysics Data System (ADS)
Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.
2017-06-01
In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
NASA Technical Reports Server (NTRS)
Backlund, S. J.; Rossen, J. N.
1971-01-01
A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
2018-05-01
Packing light is the idea behind the Zero Launch Mass 3-D Printer. Instead of loading up on heavy building supplies, a large scale 3-D printer capable of using recycled plastic waste and dirt at the destination as construction material would save mass and money when launching robotic precursor missions to build infrastructure on the Moon or Mars in preparation for human habitation. To make this a reality, Nathan Gelino, a researcher engineer with NASA’s Swamp Works at Kennedy Space Center, measured the temperature of a test specimen from the 3-D printer Tuesday as an early step in characterizing printed material strength properties. Material temperature plays a large role in the strength of bonds between layers.
NASA Technical Reports Server (NTRS)
Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob
1993-01-01
Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.
2015-12-01
We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun
2015-05-01
Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.
Compact Binary Progenitors of Short Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide
2013-01-01
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.
A short review of relativistic iron lines from stellar-mass black holes
NASA Astrophysics Data System (ADS)
Miller, J. M.
2006-12-01
% In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar-mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert-1 AGN. In particular, the lines observed in stellar-mass black holes are not complicated by complex low-energy absorption or partial-covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad-band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics-plagued disk continuum. If accretion onto stellar-mass black holes simply scales with mass, then the widespread nature of lines in stellar-mass black holes may indicate that lines should be common in Seyfert-1 AGN, though perhaps harder to detect.
Evolutionary Grids of Accreting White Dwarf Companions in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Benjamin, J.; Jensen, M.; Nadeau, S.; Nelson, L. A.
2003-12-01
We analyze the evolution of accreting white dwarfs in binary systems for a wide range of initial conditions. Specifically, evolutionary tracks are calculated for CO white dwarfs with masses in the range of 0.6 - 1.3 solar masses and accreting H-rich gas at rates of between 10-6 to 10-10 solar masses per year. Since the white dwarfs in these binaries could be very young or very old at the onset of mass transfer we simulated this possibility by investigating the evolution for a large range of internal temperatures. Thus most of the sequences generated were not thermally relaxed at the onset of mass transfer (and the thermonuclear flashes were not cyclic). We discuss the temporal dependence of the interior properties (envelope readjustment on a thermal timescale and compressional heating) on the initial conditions. Particular attention is paid to the white dwarfs accretors that remained small (relative to the Roche lobe radius) during the shell flash event. Finally, we use the results of these models to comment on the observed properties of Supersoft X-ray sources. This research was supported in part by funds from the Natural Sciences and Engineering Research Council (Canada).
Optimized bio-inspired stiffening design for an engine nacelle.
Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark
2015-11-04
Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.
Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza
2016-01-01
ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875
Batur, Fulya; Dedeurwaerdere, Tom
2014-12-01
Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.
EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.; Cordaro, J.; Holland, M.
2010-06-17
Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability tomore » refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.« less
Dispersion controlled by permeable surfaces: surface properties and scaling
Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia
2016-08-25
Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering. PMID:28772836
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-04-28
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering.
NASA Technical Reports Server (NTRS)
Wey, Chown Chou
1999-01-01
Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.
Frequency response of a vaporization process to distorted acoustic disturbances
NASA Technical Reports Server (NTRS)
Heidmann, M. F.
1972-01-01
The open-loop response properties expressed as the mass vaporized in phase and out of phase with the pressure oscillations were numerically evaluated for a vaporizing n-heptane droplet. The evaluation includes the frequency dependence introduced by periodic oscillation in droplet mass and temperature. A given response was achieved over a much broader range of frequency with harmonically distorted disturbances than with sinusoidal disturbances. The results infer that distortion increases the probability of incurring spontaneous and triggered instability in any rocket engine combustor by broadening the frequency range over which the vaporization process can support an instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla
The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtainmore » additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration process. Particle mobility diameter and trapped mass within the filter appeared to be the dominant parameters that impacted filter performance.« less
Theory of deposition of condensible impurities on surfaces immersed in combustion gases
NASA Technical Reports Server (NTRS)
Rosner, D. E.
1979-01-01
The components resulting from the deposition of inorganic salts (e.g., Na2S04) and oxides present in the combustion products from gas turbine engines were investigated. Emphasis was placed on the effects of multicomponent vapor transport, thermophoretic transport of vapor and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence.
Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.
2009-01-01
Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.
Sharma, Vishnu D; Aifuwa, Eronmwon O; Heiney, Paul A; Ilies, Marc A
2013-09-01
Pyridinium gemini surfactants possess a soft charge, a high charge/mass ratio and a high molecular flexibility - all key parameters that recommend their use in synthetic gene delivery systems with in vitro and in vivo efficiency. In present study we generated a DNA delivery system through interfacial engineering of pyridinium gemini surfactants at the level of linker, hydrophobic chains and counterions. The self-assembling of the pyridinium amphiphiles and the physicochemical properties of the resultant supra-molecular assemblies were studied in bulk and in solution through a combination of techniques that included DSC, X-ray diffraction, polarized microscopy, CMC, dynamic light scattering and zeta potential measurements. We assessed the impact of different structural elements and formulation parameters of these pyridinium amphiphiles on their DNA compaction properties, transfection efficiency, cytotoxicity, in a complete structure-activity relationship study. This interfacial engineering process generated transfection systems with reduced cytotoxicity and high transfection efficiency in media containing elevated levels of serum that mimic the in vivo conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Classification of Valleytronics in Thermoelectricity
Norouzzadeh, Payam; Vashaee, Daryoosh
2016-01-01
The theory of valleytronics as a material design tool for engineering both thermal and electrical transport properties is presented. It is shown that the interplay among the valleytronics parameters such as the degeneracy of the band, intervalley transitions, effective mass, scattering exponent, and the Fermi energy may deteriorate or ameliorate any or all of the main thermoelectric properties. A flowchart classifying the different paths through which the valleytronics can influence the thermoelectric figure-of-merit ZT is derived and discussed in detail. To exemplify the application of the flowchart, valleytronics in four different semiconductors, Mg2Si, Si0.8Ge0.2, AlxGa1−xAs and clathrate Si46-VIII were studied, which showed different trends. Therefore, a degenerate multivalley bandstructure, which is typically anticipated for a good thermoelectric material, cannot be a general design rule for ZT enhancement and a detailed transport study is required to engineer the optimum bandstructure. PMID:26972331
Shinagawa, Tatsuya
2017-01-01
Abstract Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine‐tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. PMID:27984671
Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks
NASA Astrophysics Data System (ADS)
Khandelwal, Manoj
2013-04-01
In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.
NASA Astrophysics Data System (ADS)
Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank
2016-11-01
One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.
Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir
2017-10-15
Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Remotely detected vehicle mass from engine torque-induced frame twisting
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.
2017-06-01
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.
Motor vehicle nanoparticle emissions: Numerical simulations and comparisons with recent observations
NASA Astrophysics Data System (ADS)
Yu, F.
2002-05-01
Epidemiological studies have linked urban fine particles (FPs, diameter <= 2.5 um) to adverse health effects, and the EPA has proposed more stringent standards on the mass concentration of ambient FPs. Recently it has been pointed out that it is not sufficient to study only the mass of FPs. The main concern is that, while nanoparticles (NPs, diameter <= 50 nm) contribute a small fraction to the mass concentration of the ambient aerosol, they may contribute disproportionately to its toxicity. Furthermore, measurements indicate that pollution control measures to reduce FP mass emissions may paradoxically increase the number emissions of NPs. Future standards might be imposed on NP emissions and NP emissions from gasoline engines might also become a concern. Effective and least costly means of NP emission reduction must be based on a firm physical understanding of the formation mechanisms of NPs in the exhaust of motor vehicles. Measurements of NPs in motor engine exhaust have been made both in the laboratory and in the atmosphere under various conditions. In this study, we investigate the key processes and parameters controlling formation and evolution of NPs in vehicle exhaust through model simulations and comparisons with field measurements. The detailed aerosol dynamics are simulated with an advanced multi-type, multi-component, size-resolved microphysics model. The classical binary homogeneous nucleation of H2SO4-H2O fails to explain the observed NP properties. We find that chemiions generated in engine combustor may play an important role in the formation of NPs in vehicle exhaust. The predicted NP properties based on our ion-mediated nucleation of H2SO4-H2O consistently explain the measurements in terms of total NP concentrations, and their sensitivity to fuel sulfur contents, on-road vehicle speeds, soot concentrations, and dilution conditions. Our study indicates that total number of NPs formed is very sensitive to chemiion concentrations, and we propose a potentially effective technique to control vehicle NP emissions by imposing an electrical field (voltage < ~ 100 volts) on a section of the tailpipe to remove small ions.
NASA Astrophysics Data System (ADS)
Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.
2017-11-01
Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.
A network property necessary for concentration robustness
NASA Astrophysics Data System (ADS)
Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran
2016-10-01
Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.
A network property necessary for concentration robustness.
Eloundou-Mbebi, Jeanne M O; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran
2016-10-19
Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.
A network property necessary for concentration robustness
Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran
2016-01-01
Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications. PMID:27759015
Enhancing the engineering properties of expansive soil using bagasse ash
NASA Astrophysics Data System (ADS)
Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah
2017-11-01
This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.
Ultra-weak sector, Higgs boson mass, and the dilaton
Allison, Kyle; Hill, Christopher T.; Ross, Graham G.
2014-09-26
The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Gentile, D. P.
1989-01-01
A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1987-01-01
This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).
Spencer, T J; Hidalgo-Bastida, L A; Cartmell, S H; Halliday, I; Care, C M
2013-04-01
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection-diffusion-attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large-scale bioreactors. Copyright © 2012 Wiley Periodicals, Inc.
Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin
2016-01-01
The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Remotely detected vehicle mass from engine torque-induced frame twisting
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...
2017-06-08
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less
Remotely detected vehicle mass from engine torque-induced frame twisting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less
Engineering and Design: Rock Mass Classification Data Requirements for Rippability
1983-06-30
Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data
Rechargeable metal hydrides for spacecraft application
NASA Technical Reports Server (NTRS)
Perry, J. L.
1988-01-01
Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.
1986-01-01
The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.
Gaston, Joel; Bartlett, Rebecca S.; Klemuk, Sarah A.
2014-01-01
Objectives Biomaterials able to mimic the mechanical properties of vocal fold tissue may be particularly useful for furnishing three dimensional microenvironment allowing for in vitro investigation of cell and molecular responses to vibration. Motivated by the dearth of biomaterials available to be used in an in vitro model for vocal fold tissue, we investigated polyether polyurethane (PEU) matrices which are porous, mechanically tuneable biomaterials that are inexpensive and require only standard laboratory equipment for fabrication. Methods Rheology, dynamic mechanical analysis and scanning electron microscopy were performed on PEU matrices at 5%, 10% and 20% w/v mass concentrations. Results For 5%, 10%, and 20% w/v concentrations, shear storage modulus were 2 kPa, 3.4 kPa, and 6 kPa, respectively with shear loss modulus being 0.2 kPa, 0.38 kPa and 0.62 kPa, respectively. Storage modulus responded to applied frequency as a linear function. Mercury intrusion porosimetry revealed that all three mass concentrations of PEU have similar overall percent porosity, but differ in pore architecture. Conclusions 20 µm diameter pores are ideal for cell seeding, and range of mechanical properties indicates that the higher mass concentration PEU formulations are best suited for mimicking the viscoelastic properties of vocal fold tissue for in vitro research. PMID:24944281
NASA Technical Reports Server (NTRS)
1993-01-01
The information required by a programmer using the Minimum Hamiltonian AScent Trajectory Evaluation (MASTRE) Program is provided. This document enables the programmer to either modify the program or convert the program to computers other than the VAX computer. Documentation for each subroutine or function based on providing the definitions of the variables and a source listing are included. Questions concerning the equations, techniques, or input requirements should be answered by either the Engineering or User's manuals. Three appendices are also included which provide a listing of the Root-Sum-Square (RSS) program, a listing of subroutine names and definitions used in the MASTRE User Friendly Interface Program, and listing of the subroutine names and definitions used in the Mass Properties Program. The RSS Program is used to aid in the performance of dispersion analyses. The RSS program reads a file generated by the MASTRE Program, calculates dispersion parameters, and generates output tables and output plot files. UFI Program provides a screen user interface to aid the user in providing input to the model. The Mass Properties Program defines the mass properties data for the MASTRE program through the use of user interface software.
Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée
2017-11-01
Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.
ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1994-01-01
The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels of nonideal cycles. ZMOTTO has restart capabilities and permits multicycle calculations with parameters varying from cycle to cycle. ZMOTTO is written in FORTRAN IV (IBM Level H) but has also been compiled with IBM VSFORTRAN (1977 standard). It was developed on an IBM 3033 under the TSS operating system and has also been implemented under MVS. Approximately 412K of 8 bit bytes of central memory are required in a nonpaging environment. ZMOTTO was developed in 1985.
On the origin of the HLX-1 outbursts
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Gu, Wei-Min; Yan, Zhen; Wu, Qingwen; Liu, Tong
2016-11-01
HLX-1, currently the best intermediate-mass black hole candidate, has undergone seven violent outbursts, each with a peak X-ray luminosity of Lpeak,X ˜ 1042 erg s-1. Interestingly, the properties of the HLX-1 outbursts evolve with time. In this work, we aim to constrain the physical parameters of the central engine of the HLX-1 outbursts in the framework of the black hole accretion. We find that the physical properties of the HLX-1 outbursts are consistent with being driven by the radiation pressure instability. This scenario can explain the evolution of the recurrent time-scales of the HLX-1 outbursts as a function of the durations.
Removal properties of diesel exhaust particles by a dielectric barrier discharge reactor.
Suzuki, Ken-ichiro; Takeuchi, Naomi; Madokoro, Kazuhiko; Fushimi, Chihiro; Yao, Shuiliang; Fujioka, Yuichi; Nihei, Yoshimasa
2008-02-01
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions.
PepArML: A Meta-Search Peptide Identification Platform
Edwards, Nathan J.
2014-01-01
The PepArML meta-search peptide identification platform provides a unified search interface to seven search engines; a robust cluster, grid, and cloud computing scheduler for large-scale searches; and an unsupervised, model-free, machine-learning-based result combiner, which selects the best peptide identification for each spectrum, estimates false-discovery rates, and outputs pepXML format identifications. The meta-search platform supports Mascot; Tandem with native, k-score, and s-score scoring; OMSSA; MyriMatch; and InsPecT with MS-GF spectral probability scores — reformatting spectral data and constructing search configurations for each search engine on the fly. The combiner selects the best peptide identification for each spectrum based on search engine results and features that model enzymatic digestion, retention time, precursor isotope clusters, mass accuracy, and proteotypic peptide properties, requiring no prior knowledge of feature utility or weighting. The PepArML meta-search peptide identification platform often identifies 2–3 times more spectra than individual search engines at 10% FDR. PMID:25663956
An assessment of thermodynamic merits for current and potential future engine operating strategies
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; ...
2017-02-01
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
An assessment of thermodynamic merits for current and potential future engine operating strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
The characterisation of diesel exhaust particles - composition, size distribution and partitioning.
Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M
2016-07-18
A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.
Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites
Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang
2015-01-01
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013
Shinagawa, Tatsuya; Takanabe, Kazuhiro
2017-04-10
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Yang, Jiong; Wu, Lijun
2015-10-12
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co 4Sb 12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing themore » Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less
Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites
NASA Astrophysics Data System (ADS)
Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang
2015-10-01
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.
Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests
NASA Technical Reports Server (NTRS)
Plencner, R. M.
1977-01-01
A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.
Downstream reactions and engineering in the microbially reconstituted pathway for Taxol.
Jiang, Ming; Stephanopoulos, Gregory; Pfeifer, Blaine A
2012-05-01
Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.
Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C
2013-03-01
To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.
NASA Astrophysics Data System (ADS)
Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl
2017-03-01
Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Adams, M. L.; Mullen, R. L.
1985-01-01
A computer algorithm for simulation of hydrostatic journal bearing pressure-flow behavior has been generated. The effects taken into account are inertia, cavitation, variable properties (isothermal bearing) and roughness. The program has been specifically tailored for simulation of the hybrid bearing of the cryogenic turbopumps of the main shuttle engine. Due to the high pressure (515 psia) of the supply line no cavitation has been found. The influence of the roughness effects have been found to become important only when the surface-roughness order of magnitude is comparable with that of the bearing clearance itself. Pocket edge inertia and variable properties have been found to have quite an important influence upon the pocket pressure, field pressure distribution and lubricant mass flow.
Detection of Ultrahigh-Energy Cosmic Rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Krause, Raphael; Pierre Auger Collaboration
2017-02-01
Ultrahigh-energy cosmic rays interact with the Earth's atmosphere and produce great numbers of secondary particles forming an extensive air shower. These air showers emit radiation in the radio frequency range which delivers important information about the processes of radio emission in extensive air showers and properties of the primary cosmic rays, e.g. arrival direction, energy and mass with a duty cycle close to 100%. The radio extension of the world's largest cosmic-ray experiment, the Pierre Auger Observatory, is called the Auger Engineering Radio Array (AERA). In addition to the particle and fluorescence detectors of the Pierre Auger Observatory, AERA investigates the electromagnetic component of extensive air showers using 153 autonomous radio stations on an area of 17km2 .
Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system
NASA Astrophysics Data System (ADS)
Li, P.; Huang, J. Y.; Liu, G. Z.
2018-01-01
With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.
Nanomaterials in the environment
NASA Astrophysics Data System (ADS)
Mrowiec, Bozena
2017-11-01
This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.
Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing
2017-12-01
The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels
Nagarkar, Radhika P.; Schneider, Joel P.
2009-01-01
Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Lv, Qing; Nair, Lakshmi; Laurencin, Cato T
2009-12-01
Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.
1990-12-01
3,4]. This work allowed us to view the ultrashort ( - 100 fs) pulses . While this laser was being temporal characteristics of the absorption spectrum...regions of high intensity in single water drop- lets (a = 60 Ant) following excita- tion by a single 7-ns, 532-nn laser pulse . Resonant 532-nm laser ...electronic properties of cluster ions of ion beam and the laser pulse , any desired mass range for simple metals (alkali metals). Our earlier efforts
Conceptual design study of a V/STOL lift fan commercial short haul transport
NASA Technical Reports Server (NTRS)
Knight, R. G.; Powell, W. V., Jr.; Prizlow, J. A.
1973-01-01
Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluation was also studied on the basis of direct-operating costs and route structure.
Conceptual design of a V/STOL lift fan commercial short haul transport
NASA Technical Reports Server (NTRS)
1973-01-01
Conceptual designs of V/STOL lift-fan commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. Engine concepts studied included both integral remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance noise, and ride qualities evaluation. Economic evaluation was also studied on a basis of direct operating cost and route structure.
Bi-layer plate-type acoustic metamaterials with Willis coupling
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui
2018-01-01
Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.
Optimization of NTP System Truss to Reduce Radiation Shield Mass
NASA Technical Reports Server (NTRS)
Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.
2016-01-01
The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main structure of the spacecraft as the launch vehicle's payload volume would allow when comparing mass savings verse the additional structure.
Toward Mass Customization in the Age of Information: The Case for Open Engineering Systems
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Lautenschlager, Uwe; Mistree, Farrokh
1997-01-01
In the Industrial Era, manufacturers used "dedicated" engineering systems to mass produce their products. In today's increasingly competitive markets, the trend is toward mass customization, something that becomes increasingly feasible when modern information technologies are used to create open engineering systems. Our focus is on how designers can provide enhanced product flexibility and variety (if not fully customized products) through the development of open engineering systems. After presenting several industrial examples, we anchor our new systems philosophy with two real engineering applications. We believe that manufacturers who adopt open systems will achieve competitive advantage in the Information Age.
Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T
2013-08-01
Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered bone tissue. In cases of large bone voids (such as bone cancer), tissue-engineered constructs may provide alternatives to traditional bone grafts by culturing patients' own MSCs with PLAGA/n-HA scaffolds in a HARV culture system.
Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
Dias, Marta R; Guedes, José M; Flanagan, Colleen L; Hollister, Scott J; Fernandes, Paulo R
2014-04-01
In bone tissue engineering, the scaffold has not only to allow the diffusion of cells, nutrients and oxygen but also provide adequate mechanical support. One way to ensure the scaffold has the right properties is to use computational tools to design such a scaffold coupled with additive manufacturing to build the scaffolds to the resulting optimized design specifications. In this study a topology optimization algorithm is proposed as a technique to design scaffolds that meet specific requirements for mass transport and mechanical load bearing. Several micro-structures obtained computationally are presented. Designed scaffolds were then built using selective laser sintering and the actual features of the fabricated scaffolds were measured and compared to the designed values. It was possible to obtain scaffolds with an internal geometry that reasonably matched the computational design (within 14% of porosity target, 40% for strut size and 55% for throat size in the building direction and 15% for strut size and 17% for throat size perpendicular to the building direction). These results support the use of these kind of computational algorithms to design optimized scaffolds with specific target properties and confirm the value of these techniques for bone tissue engineering. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.
1979-01-01
The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.
Energy conservation through utilization of mechanical energy storage
NASA Astrophysics Data System (ADS)
Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.
Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.
Novel CAD/CAM rapid prototyping of next-generation biomedical devices
NASA Astrophysics Data System (ADS)
Doraiswamy, Anand
An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.
NASA Astrophysics Data System (ADS)
Ballantyne, D. R.
2017-01-01
The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.
The development of a lower heat concrete mixture for mass concrete placement conditions
NASA Astrophysics Data System (ADS)
Crowley, Aaron Martin
The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are considered, contractors should be responsible for monitoring and limiting maximum internal temperature to 150°F and the maximum differential temperature to 35°F. A temperature control plan should be established using various methods, and not limited to only PCC mixture design.
Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.
Leonidakis, Kimon Alexandros; Bhattacharya, Pinaki; Patterson, Jennifer; Vos, Bart E; Koenderink, Gijsje H; Vermant, Jan; Lambrechts, Dennis; Roeffaers, Maarten; Van Oosterwyck, Hans
2017-01-01
Fibrin hydrogels are promising carrier materials in tissue engineering. They are biocompatible and easy to prepare, they can bind growth factors and they can be prepared from a patient's own blood. While fibrin structure and mechanics have been extensively studied, not much is known about the relation between structure and diffusivity of solutes within the network. This is particularly relevant for solutes with a size similar to that of growth factors. A novel methodological approach has been used in this study to retrieve quantitative structural characteristics of fibrin hydrogels, by combining two complementary techniques, namely confocal fluorescence microscopy with a fiber extraction algorithm and turbidity measurements. Bulk rheological measurements were conducted to determine the impact of fibrin hydrogel structure on mechanical properties. From these measurements it can be concluded that variations in the fibrin hydrogel structure have a large impact on the rheological response of the hydrogels (up to two orders of magnitude difference in storage modulus) but only a moderate influence on the diffusivity of dextran solutes (up to 25% difference). By analyzing the diffusivity measurements by means of the Ogston diffusion model we further provide evidence that individual fibrin fibers can be semi-permeable to solute transport, depending on the average distance between individual protofibrils. This can be important for reducing mass transport limitations, for modulating fibrinolysis and for growth factor binding, which are all relevant for tissue engineering. Fibrin is a natural biopolymer that has drawn much interest as a biomimetic carrier in tissue engineering applications. We hereby use a novel combined approach for the structural characterization of fibrin networks based on optical microscopy and light scattering methods that can also be applied to other fibrillar hydrogels, like collagen. Furthermore, our findings on the relation between solute transport and fibrin structural properties can lead to the optimized design of fibrin hydrogel constructs for controlled release applications. Finally, we provide new evidence for the fact that fibrin fibers may be permeable for solutes with a molecular weight comparable to that of growth factors. This finding may open new avenues for tailoring mass transport properties of fibrin carriers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Investigation of Exoskeletal Engine Propulsion System Concept
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.
2005-01-01
An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.
Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions
NASA Astrophysics Data System (ADS)
Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.
2014-12-01
Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.
Rotating Detonation Engine Operation (Preprint)
2012-01-01
MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State
Evaluation of methods for measuring particulate matter emissions from gas turbines.
Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David
2011-04-15
The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.
Porous Networks Through Colloidal Templates
NASA Astrophysics Data System (ADS)
Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich
Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1989-01-01
The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Cement-based piezoelectric ceramic composites for sensor applications in civil engineering
NASA Astrophysics Data System (ADS)
Dong, Biqin
The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.
Gao, Yanfei; Shao, Weili; Qian, Wang; He, Jianxin; Zhou, Yuman; Qi, Kun; Wang, Lidan; Cui, Shizhong; Wang, Rui
2018-03-01
In bone tissue engineering, the fabrication of a scaffold with a hierarchical architecture, excellent mechanical properties, and good biocompatibility remains a challenge. Here, a solution of polylactic acid (PLA) and Tussah silk fibroin (TSF) was electrospun into nanofiber yarns and woven into multilayer fabrics. Then, composite scaffolds were obtained by mineralization in simulated body fluid (SBF) using the multilayer fabrics as a template. The structure and related properties of the composite scaffolds were characterized using different techniques. PLA/TSF (mass ratio, 9:1) nanofiber yarns with uniform diameters of 72±9μm were obtained by conjugated electrospinning; the presence of 10wt% TSF accelerated the nucleation and growth of hydroxyapatite on the surface of the composite scaffolds in SBF. Furthermore, the compressive mechanical properties of the PLA/TSF multilayer nanofiber fabrics were improved after mineralization; the compressive modulus and stress of the mineralized composite scaffolds were 32.8 and 3.0 times higher than that of the composite scaffolds without mineralization, respectively. Interestingly, these values were higher than those of scaffolds containing random nanofibers. Biological assay results showed that the mineralization and multilayer fabric structure of the composite nanofiber scaffolds significantly increased cell adhesion and proliferation and enhanced the mesenchymal stem cell differentiation toward osteoblasts. Our results indicated that the mineralized nanofiber scaffolds with multilayer fabrics possessed excellent cytocompatibility and good osteogenic activity, making them versatile biocompatible scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
2005-01-01
The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.
Kassler, Alexander; Pittenauer, Ernst; Doerr, Nicole; Allmaier, Guenter
2014-01-15
For the qualification and quantification of antioxidants (aromatic amines and sterically hindered phenols), most of them applied as lubricant additives, two ultrahigh-performance liquid chromatography (UHPLC) electrospray ionization mass spectrometric methods applying the positive and negative ion mode have been developed for lubricant design and engineering thus allowing e.g. the study of the degradation of lubricants. Based on the different chemical properties of the two groups of antioxidants, two methods offering a fast separation (10 min) without prior derivatization were developed. In order to reach these requirements, UHPLC was coupled with an LTQ Orbitrap hybrid tandem mass spectrometer with positive and negative ion electrospray ionization for simultaneous detection of spectra from UHPLC-high-resolution (HR)-MS (full scan mode) and UHPLC-low-resolution linear ion trap MS(2) (LITMS(2)), which we term UHPLC/HRMS-LITMS(2). All 20 analytes investigated could be qualified by an UHPLC/HRMS-LITMS(2) approach consisting of simultaneous UHPLC/HRMS (elemental composition) and UHPLC/LITMS(2) (diagnostic product ions) according to EC guidelines. Quantification was based on an UHPLC/LITMS(2) approach due to increased sensitivity and selectivity compared to UHPLC/HRMS. Absolute quantification was only feasible for seven analytes with well-specified purity of references whereas relative quantification was obtainable for another nine antioxidants. All of them showed good standard deviation and repeatability. The combined methods allow qualitative and quantitative determination of a wide variety of different antioxidants including aminic/phenolic compounds applied in lubricant engineering. These data show that the developed methods will be versatile tools for further research on identification and characterization of the thermo-oxidative degradation products of antioxidants in lubricants. Copyright © 2013 John Wiley & Sons, Ltd.
Study of an advanced General Aviation Turbine Engine (GATE)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.
1979-01-01
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.
ERIC Educational Resources Information Center
Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael
2013-01-01
We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…
NASA Technical Reports Server (NTRS)
Eldridge, W. M.; Ferrell, J. A.; Mckee, J. W.; Wayne, J. E., Jr.; Zabinsky, J. M.
1973-01-01
Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluating was also studied on a basis of direct operating costs and route structure.
Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate
NASA Astrophysics Data System (ADS)
Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.
2009-06-01
Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.
Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering
NASA Astrophysics Data System (ADS)
Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young
2018-03-01
The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.
NASA Astrophysics Data System (ADS)
Kłopotowska, Agnieszka
2018-01-01
This paper attempts to show the relationship between joints observed in flysch formations in the field and microfracture fabrics invisible to the naked eye in hand specimens. Ultrasonic measurements demonstrate that the intensity and orientations of domains "memorised" by rock specimens are associated with the historical stresses within the rock mass rather than the rock lamination. The spatial orientations of these microfractures have been measured, and their dynamic-elastic properties have been found to correlate with the orientation of macroscopic joint sets measured in the field. The elastic properties measured vary because of sedimentary diagenetic processes that occured during the tectonic deformations of these flysch rocks in the Podhale Synclinorium of Poland. The structural discontinuities detected by ultrasonic measurements can be perceived as an incipient phase of the macroscopic joints already visible in the field and are attributed to the in situ residual tectonic stresses. Such historical stresses impart a hidden mechanical anisotropy to the entire flysch sequence. The microfractures will develop into macroscopic joints during future relaxation of the exposed rock mass. Understanding the nature and orientation of the invisible microfracture anisotropy that will become macroscopic in the future is vital for the safe and efficient engineering of any rock mass.
Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, N.; Tomita, K.; Sugita, K.
2012-07-15
This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less
Preparation and characterization of bio-composite PEEK/nHA
NASA Astrophysics Data System (ADS)
Jin, Y. S.; Bian, C. C.; Zhang, Z. Q.; Zhao, Y.; Yang, L.
2017-01-01
PEEK/nHA composite material, with excellent mechanical property as polyetheretherketone (PEEK) and biological activity as hydroxyapatite (HA), has attracted wide attention of medical experts and materials science experts. The addition of hydroxyapatite was the decisive factor for biological activity in PEEK/nHA composite. In this paper, acicular nanohydroxyapatite was prepared by chemical precipitation method with Ca(NO3)2, (NH4)2HPO4 as raw material; PEEK/nHA composite was prepared by solution blending and vacuum sintering method. The composite was characterized with FT-IR, XRD, DSC, TG and mechanical property test. Results showed that the composite has good thermal stability and compressive property when the mass ratio of PEEK to nHA is 10:3; and high nHA content can improve the biological activity of the composite, which can meet the basic requirements for bone tissue engineering scaffold.
Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor
NASA Astrophysics Data System (ADS)
Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew
2016-04-01
We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.
Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta
2012-09-29
One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.
2012-01-01
Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis-Richards, J.; Watanable, K.; Yamaguchi, T.
A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect ofmore » stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.« less
Ring waves as a mass transport mechanism in air-driven core-annular flows.
Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey
2012-12-01
Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.
Abrahamson, Joseph P; Zelina, Joseph; Andac, M Gurhan; Vander Wal, Randy L
2016-11-01
The first order approximation (FOA3) currently employed to estimate BC mass emissions underpredicts BC emissions due to inaccuracies in measuring low smoke numbers (SNs) produced by modern high bypass ratio engines. The recently developed Formation and Oxidation (FOX) method removes the need for and hence uncertainty associated with (SNs), instead relying upon engine conditions in order to predict BC mass. Using the true engine operating conditions from proprietary engine cycle data an improved FOX (ImFOX) predictive relation is developed. Still, the current methods are not optimized to estimate cruise emissions nor account for the use of alternative jet fuels with reduced aromatic content. Here improved correlations are developed to predict engine conditions and BC mass emissions at ground and cruise altitude. This new ImFOX is paired with a newly developed hydrogen relation to predict emissions from alternative fuels and fuel blends. The ImFOX is designed for rich-quench-lean style combustor technologies employed predominately in the current aviation fleet.
Compacted graphite iron: Cast iron makes a comeback
NASA Astrophysics Data System (ADS)
Dawson, S.
1994-08-01
Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
Noise transmission through sidewall treatments applicable to twin-engine turboprop aircraft
NASA Technical Reports Server (NTRS)
Grosveld, F. W.
1983-01-01
The noise transmission loss characteristics of the sidewall treatment in the propeller plane of a twin-engine turboprop aircraft are experimentally investigated in the NASA Langley Research Center Transmission Loss Facility. The sound attenuation properties of the individual elements of this treatment are evaluated showing least noise transmission loss in the low frequencies (below 500 Hz) where the excitation levels at the propeller blade passage frequency and the first few harmonics are highest. It is shown that single and double wall resonances play an important role in the noise transmission loss values of the treatment at these low frequencies suggesting that a limp mass with a very low resonance frequency serves better as a trim panel than a trim panel having a high structural stiffness. It is indicated that the window structures might be a potential noise control problem.
Noise transmission through sidewall treatments applicable to twin-engine turboprop aircraft
NASA Astrophysics Data System (ADS)
Grosveld, F. W.
1983-04-01
The noise transmission loss characteristics of the sidewall treatment in the propeller plane of a twin-engine turboprop aircraft are experimentally investigated in the NASA Langley Research Center Transmission Loss Facility. The sound attenuation properties of the individual elements of this treatment are evaluated showing least noise transmission loss in the low frequencies (below 500 Hz) where the excitation levels at the propeller blade passage frequency and the first few harmonics are highest. It is shown that single and double wall resonances play an important role in the noise transmission loss values of the treatment at these low frequencies suggesting that a limp mass with a very low resonance frequency serves better as a trim panel than a trim panel having a high structural stiffness. It is indicated that the window structures might be a potential noise control problem.
Constitutive and Stability Behavior of Soils in Microgravity Environment
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein; Costes, Nicholas
2000-01-01
All aspects of soil stability, bearing capacity, slope stability, the supporting capacity of deep foundations, and penetration resistance depend on soil strength. The stress-deformation and stress-deformation-time behavior of soils are of importance in any problem where ground movements are of interest. In most engineering materials, the strength is derived from internal chemical and physico-chemical forces of interaction, which bond the atoms, molecules, and particles together. In soils, the constitutive relations are mainly derived from interparticle friction between particles and particle groups and dilatancy, and to a lesser extent from particle bonding by weak electrostatic, physico-chemical, and coulomb forces. For engineering purposes, soils are classified as cohesive (clays and silts; typical particle sizes range from 10 nm to 10 micrometers) and cohesionless (sand and gravel; typical particle sizes range from 10 micrometers to 75 mm). The mechanical or constitutive properties of cohesionless soils or granular materials are highly fabric-dependent, highly non-linear, and non-conservative with engineering properties primarily depending on the effects of gravity through self-weight and on the tractions or forces applied to the soil mass. Under moderate-to-high stress levels, the influence of gravity on the behavior of laboratory test specimens may not be pronounced and, therefore, the test results in terrestrial (1-g) environment may be sufficiently conclusive. However at low interparticle stresses, which can result either from low applied (confining) stresses or from excess pore fluid pressures developed within the soil mass without corresponding changes in the applied stresses, the presence of gravitational body forces acting on solid particles and interstitial fluids exerts a pronounced influence on movement of individual particles or particle groups. Such motions, in turn, cause changes in soil fabric which results in significant changes in the interparticle friction forces contributing to the soil's strength and deformation characteristics.
Baumann, Tobias; Schmitt, Franz-Josef; Pelzer, Almut; Spiering, Vivian Jeanette; Freiherr von Sass, Georg Johannes; Friedrich, Thomas; Budisa, Nediljko
2018-04-27
Fluorescent proteins are fundamental tools for the life sciences, in particular for fluorescence microscopy of living cells. While wild-type and engineered variants of the green fluorescent protein from Aequorea victoria (avGFP) as well as homologs from other species already cover large parts of the optical spectrum, a spectral gap remains in the near-infrared region, for which avGFP-based fluorophores are not available. Red-shifted fluorescent protein (FP) variants would substantially expand the toolkit for spectral unmixing of multiple molecular species, but the naturally occurring red-shifted FPs derived from corals or sea anemones have lower fluorescence quantum yield and inferior photo-stability compared to the avGFP variants. Further manipulation and possible expansion of the chromophore's conjugated system towards the far-red spectral region is also limited by the repertoire of 20 canonical amino acids prescribed by the genetic code. To overcome these limitations, synthetic biology can achieve further spectral red-shifting via insertion of non-canonical amino acids into the chromophore triad. We describe the application of SPI to engineer avGFP variants with novel spectral properties. Protein expression is performed in a tryptophan-auxotrophic E. coli strain and by supplementing growth media with suitable indole precursors. Inside the cells, these precursors are converted to the corresponding tryptophan analogs and incorporated into proteins by the ribosomal machinery in response to UGG codons. The replacement of Trp-66 in the enhanced "cyan" variant of avGFP (ECFP) by an electron-donating 4-aminotryptophan results in GdFP featuring a 108 nm Stokes shift and a strongly red-shifted emission maximum (574 nm), while being thermodynamically more stable than its predecessor ECFP. Residue-specific incorporation of the non-canonical amino acid is analyzed by mass spectrometry. The spectroscopic properties of GdFP are characterized by time-resolved fluorescence spectroscopy as one of the valuable applications of genetically encoded FPs in life sciences.
Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.
Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong
2015-06-01
In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.
Mass production of bulk artificial nacre with excellent mechanical properties.
Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong
2017-08-18
Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.
2018-06-01
Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.
Control method for turbocharged diesel engines having exhaust gas recirculation
Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava
2000-03-14
A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.
Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.
Yarali, Milad; Brahmi, Hatem; Yan, Zhequan; Li, Xufan; Xie, Lixin; Chen, Shuo; Kumar, Satish; Yoon, Mina; Xiao, Kai; Mavrokefalos, Anastassios
2018-02-07
It is well understood that defect engineering can give rise to exotic electronic properties in transition-metal dichalcogenides, but to this date, there is no detailed study to illustrate how defects can be engineered to tailor their thermal properties. Here, through combined experimental and theoretical approaches based on the first-principles density functional theory and Boltzmann transport equations, we have explored the effect of lattice vacancies and substitutional tungsten (W) doping on the thermal transport of the suspended molybdenum diselenide (MoSe 2 ) monolayers grown by chemical vapor deposition (CVD). The results show that even though the isoelectronic substitution of the W atoms for Mo atoms in CVD-grown Mo 0.82 W 018 Se 2 monolayers reduces the Se vacancy concentration by 50% compared to that found in the MoSe 2 monolayers, the thermal conductivity remains intact in a wide temperature range. On the other hand, Se vacancies have a detrimental effect for both samples and more so in the Mo 0.82 W 018 Se 2 monolayers, which results in thermal conductivity reduction up to 72% for a vacancy concentration of 4%. This is because the mass of the W atom is larger than that of the Mo atom, and missing a Se atom at a vacancy site results in a larger mass difference and therefore kinetic energy and potential energy difference. Furthermore, the monotonically increasing thermal conductivity with temperature for both systems at low temperatures indicates the importance of boundary scattering over defects and phonon-phonon scattering at these temperatures.
Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J
2015-06-01
Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.
41 CFR 102-80.135 - Who is a qualified fire protection engineer?
Code of Federal Regulations, 2012 CFR
2012-01-01
... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a..., spread, and suppression, meeting one of the following criteria: (a) An engineer having an undergraduate...
41 CFR 102-80.135 - Who is a qualified fire protection engineer?
Code of Federal Regulations, 2013 CFR
2013-07-01
... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a..., spread, and suppression, meeting one of the following criteria: (a) An engineer having an undergraduate...
41 CFR 102-80.135 - Who is a qualified fire protection engineer?
Code of Federal Regulations, 2011 CFR
2011-01-01
... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a..., spread, and suppression, meeting one of the following criteria: (a) An engineer having an undergraduate...
41 CFR 102-80.135 - Who is a qualified fire protection engineer?
Code of Federal Regulations, 2014 CFR
2014-01-01
... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a..., spread, and suppression, meeting one of the following criteria: (a) An engineer having an undergraduate...
Combination solar photovoltaic heat engine energy converter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1987-01-01
A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.
2006-12-01
The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.
Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.
Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiadò, Alessandro; Roppolo, Ignazio
2017-06-07
In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
DEBRISK, a Tool for Re-Entry Risk Analysis
NASA Astrophysics Data System (ADS)
Omaly, P.; Spel, M.
2012-01-01
An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the ablated object. The mass in the lumped mass equation is termed 'thermal mass' and consists of the part of the object that is exposed to the flow (so excluding the mass of the contained children). A fair amount of predefined materials is implemented, along with their thermal properties. In order to allow the users to modify the properties or to add new materials, user defined materials can be used. In that case the properties such as specific heat, emissivity and conductivity can either be entered as a constant or as being temperature dependent by entering a table. Materials can be derived from existing objects, which is useful in case only one or few of the material properties change. The code has been developed in the Java language, benefitting from the object oriented approach. Most methods that are used in DEBRISK to compute drag coefficients and heating rates are based on engineering methods developed in the 1950 to 1960's, which are used as well in similar tools (ORSAT, SESAME, ORSAT-J, ...). The paper presents a set of comparisons with literature cases of similar tools in order to verify the implementation of those methods in the developed software.
Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.
Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M; Nachon, Florian; Masson, Patrick; Furlong, Clement E; Lockridge, Oksana
2011-11-01
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such "fume events". Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. Copyright © 2011 Elsevier Inc. All rights reserved.
Exposure to tri-o-cresyl phosphate detected in jet airplane passengers
Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana
2011-01-01
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such “fume events”. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24–48 hours after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309
Hemming, C.H.; Bunde, R.L.; Liszewski, M.J.; Rosentreter, J.J.; Welhan, J.
1997-01-01
The effect of experimental technique on strontium distribution coefficients (K(d)'s) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium K(d)'s at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium K(d)'s ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium K(d)'s were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium K(d)'s may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium K(d)'s.The effect of experimental technique on strontium distribution coefficients (Kd's) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium Kd's at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium Kd's ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium Kd's were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium Kd's may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium Kd's.
Database Search Engines: Paradigms, Challenges and Solutions.
Verheggen, Kenneth; Martens, Lennart; Berven, Frode S; Barsnes, Harald; Vaudel, Marc
2016-01-01
The first step in identifying proteins from mass spectrometry based shotgun proteomics data is to infer peptides from tandem mass spectra, a task generally achieved using database search engines. In this chapter, the basic principles of database search engines are introduced with a focus on open source software, and the use of database search engines is demonstrated using the freely available SearchGUI interface. This chapter also discusses how to tackle general issues related to sequence database searching and shows how to minimize their impact.
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Holographic heat engine within the framework of massive gravity
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
Progress on a Rayleigh Scattering Mass Flux Measurement Technique
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.
2010-01-01
A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.
An Investigation into Performance Modelling of a Small Gas Turbine Engine
2012-10-01
b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a
Calculating Mass Diffusion in High-Pressure Binary Fluids
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2004-01-01
A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.
Characteristics and engineering properties of residual soil of volcanic deposits
NASA Astrophysics Data System (ADS)
Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.
2018-02-01
Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.
Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen
2018-05-01
Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.
Yan, Jingxuan; Miao, Yuting; Tan, Huaping; Zhou, Tianle; Ling, Zhonghua; Chen, Yong; Xing, Xiaodong; Hu, Xiaohong
2016-06-01
Injectable and biodegradable alginate-based composite gel scaffolds doubly integrated with hydroxyapatite (HAp) and gelatin microspheres (GMs) were cross-linked via in situ release of calcium cations. As triggers of calcium cations, CaCO3 and glucono-D-lactone (GDL) were fixed as a mass ratio of 1:1 to control pH value ranging from 6.8 to 7.2 during gelation. Synchronously, tetracycline hydrochloride (TH) was encapsulated into GMs to enhance bioactivity of composite gel scaffolds. The effects of HAp and GMs on characteristics of gel scaffolds, including pH value, gelation time, mechanical properties, swelling ratio, degradation behavior and drug release, were investigated. The results showed that HAp and GMs successfully improved mechanical properties of gel scaffolds at strain from 0.1 to 0.5, which stabilized the gel network and decreased weight loss, as well as swelling ratio and gelation time. TH could be released from this composite gel scaffold into the local microenvironment in a controlled fashion by the organic/inorganic hybrid of hydrogel network. Our results demonstrate that the HAp and GMs doubly integrated alginate-based gel scaffolds, especially the one with 6% (w/v) HAp and 5% (w/v) GMs, have suitable physical performance and bioactive properties, thus provide a potential opportunity to be used for bone tissue engineering. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with TH, the gel scaffold exhibited beneficial effects on osteoblast activity, which suggested a promising future for local treatment of pathologies involving bone loss. Copyright © 2016 Elsevier B.V. All rights reserved.
Production characterization and working characteristics in DICI engine of Pongamia biodiesel.
Srinivasa Rao, M; Anand, R B
2015-11-01
Renewable energy plays a predominant role in solving the current energy requirement problems and biodiesel is a promising alternative fuel to tide over the energy crisis and conserve fossil fuels. The present work investigates an eco-friendly substitute for the replacement of fossil fuels and the experiments are designed to determine the effects of a catalyst in the biodiesel production processes. Pongamia pinnata oil was utilized to produce the biodiesel by using catalysts namely KOH and NaOH and the properties of the fuel were found by using Carbon Hydrogen Nitrogen Sulfur (CHNS) elemental analysis, Fourier Transform Infrared (FTIR) Spectroscopy, Gas Chromatography & Mass Spectrometry (GC-MS), and Proton Nuclear Magnetic Resonance ((1)H NMR) Spectroscopy and the thermophysical properties were compared with those of neat diesel. In continuation, the working characteristics of the biodiesel and biodiesel-water emulsions were accomplished in a four stroke compression ignition engine and the results were compared to those of neat diesel. It was found that the exhaust emission characteristics like brake specific carbon monoxide (BSCO), brake specific hydrocarbons (BSHC) and smoke opacity were better for neat biodiesel (except brake specific nitric oxide BSNO) than those of neat diesel. Copyright © 2015 Elsevier Inc. All rights reserved.
Hygrothermal behavior of polybenzimidazole
Liu, Peng; Mullins, Michael; Bremner, Tim; ...
2016-04-11
Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (PBI) is used in extremely high temperature harsh environment applications. It is a unique engineering material that is formed into parts by powder-sintering at temperatures as high as 500 °C. Recently, ever increasing demands for high temperature polymers have led to significant interest in PBI such that engineering guidelines could be established for its application in high temperature and highly humid environments. The goal of this work was to understand the material science of PBI in hot-wet environments at temperatures up to 288 °C. Thermal gravimetric analysis and mass spectrometry were employed to identify the degraded volatile products. Themore » molecular scale damping behavior of PBI was probed using dynamic mechanical analysis. The changes in tensile properties and fracture toughness due to environmental exposure were also characterized. Upon heating above 250 °C, moisture-containing PBI exhibits obvious molecular structure change. Evidence of crosslinking and degradation is observed. With 288 °C hot water treatment severe degradation of PBI is observed. As a result, fundamental structure-property relationships of PBI affected by these higher temperature, high moisture content environments are discussed.« less
Farahi, Nader; Prabhudev, Sagar; Botton, Gianluigi A; Salvador, James R; Kleinke, Holger
2016-12-21
Considering the effect of CO 2 emission together with the depletion of fossil fuel resources on future generations, industries in particular the transportation sector are in deep need of a viable solution to follow the environmental regulation to limit the CO 2 emission. Thermoelectrics may be a practical choice for recovering the waste heat, provided their conversion energy can be improved. Here, the high temperature thermoelectric properties of high purity Bi doped Mg 2 (Si,Sn) are presented. The samples Mg 2 Si 1-x-y Sn x Bi y with x(Sn) ≥ 0.6 and y(Bi) ≥ 0.03 exhibited electrical conductivities and Seebeck coefficients of approximately 1000 Ω -1 cm -1 and -200 μV K -1 at 773 K, respectively, attributable to a combination of band convergence and microstructure engineering through ball mill processing. In addition to the high electrical conductivity and Seebeck coefficient, the thermal conductivity of the solid solutions reached values below 2.5 W m -1 K -1 due to highly efficient phonon scattering from mass fluctuation and grain boundary effects. These properties combined for zT values of 1.4 at 773 K with an average zT of 0.9 between 400 and 773 K. The transport properties were both highly reproducible across several measurement systems and were stable with thermal cycling.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Brogdon, James William (Inventor); Gill, David Keith (Inventor)
2000-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.
NASA Technical Reports Server (NTRS)
Gohlka, Werner
1943-01-01
The exploration of the processes accompanying engine combustion demands quick-responding pressure-recording instruments, among which the piezoelectric type has found widespread use because of its especially propitious properties as vibration-recording instruments for high frequencies. Lacking appropriate test methods, the potential errors of piezoelectric recorders in dynamic measurements could only be estimated up to now. In the present report a test method is described by means of which the resonance curves of the piezoelectric pickup can be determined; hence an instrumental appraisal of the vibration characteristics of piezoelectric recorders is obtainable.
Performance characteristics of a combination solar photovoltaic heat engine energy converter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1987-01-01
A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyasova, Mariya, E-mail: mliyasov@unmc.edu; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE; Li, Bin, E-mail: binli@unmc.edu
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such 'fume events'. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serinemore » of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. -- Highlights: Black-Right-Pointing-Pointer Travel on jet airplanes is associated with an illness, aerotoxic syndrome. Black-Right-Pointing-Pointer A possible cause is exposure to tricresyl phosphate in engine lubricating oil. Black-Right-Pointing-Pointer A blood test for exposure to tri-o-cresyl phosphate is reported.« less
Haapala, Stephenie A; Enderle, John D
2003-01-01
This paper describes the next phase of research on a parametric model of the head-neck system for dynamic simulation of horizontal head rotation. A skull has been imported into Pro/Engineer software and has been assigned mass properties such as density, surface area and moments of inertia. The origin of a universal coordinate system has been located at the center of gravity of the T1 vertebrae. Identification of this origin allows insertion and attachment points of the sternocleidomastoid (SCOM) and splenius capitis to be located. An assembly has been created, marking the location of both muscle sets. This paper will also explore the obstacles encountered when working with an imported feature in Pro/E and attempts to resolve some of these issues. The goal of this work involves the creation of a 3D homeomorphic saccadic eye and head movement system.
NASA Astrophysics Data System (ADS)
Bera, P.; Wędrychowicz, D.
2016-09-01
The article presents the influence of number and values of ratios in stepped gearbox on mileage fuel consumption in a city passenger car. The simulations were conducted for a particular vehicle characterized by its mass, body shape, size of tires and equipped with a combustion engine for which the characteristic of fuel consumption in dynamic states was already designated on the basis of engine test bed measurements. Several designs of transmission with different number of gears and their ratios were used in virtual simulations of road traffic, particularly in the NEDC test, to calculate mileage fuel consumption. This allows for a quantitative assessment of transmission parameters in terms of both vehicle economy and dynamic properties. Also, based on obtained results, recommendations for the selection of a particular vehicle for a specific type of exploitation have been formulated.
Building mud castles: a perspective from brick-laying termites.
Zachariah, Nikita; Das, Aritra; Murthy, Tejas G; Borges, Renee M
2017-07-05
Animal constructions such as termite mounds have received scrutiny by architects, structural engineers, soil scientists and behavioural ecologists but their basic building blocks remain uncharacterized and the criteria used for material selection unexplored. By conducting controlled experiments on Odontotermes obesus termites, we characterize the building blocks of termite mounds and determine the key elements defining material choice and usage by these accomplished engineers. Using biocement and a self-organized process, termites fabricate, transport and assemble spherical unitary structures called boluses that have a bimodal size distribution, achieving an optimal packing solution for mound construction. Granular, hydrophilic, osmotically inactive, non-hygroscopic materials with surface roughness, rigidity and containing organic matter are the easiest to handle and are crucial determinants of mass transfer during mound construction. We suggest that these properties, along with optimal moisture availability, are important predictors of the global geographic distribution of termites.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Guided and magnetic self-assembly of tunable magnetoceptive gels
NASA Astrophysics Data System (ADS)
Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.
2014-09-01
Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.
Nonlinear Modeling and Control of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando
2003-01-01
A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
Guided and magnetic self-assembly of tunable magnetoceptive gels
Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.
2014-01-01
Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian
2000-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.
SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.
Altuntas, Ebubekir; Yildiz, Merve
2017-01-01
Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.
Assessing exposure to diesel exhaust particles: a case study.
See, Siao Wei; Balasubramanian, Rajasekhar; Yang, Tzuo Sern; Karthikeyan, Sathrugnan
2006-11-01
The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this study, the physical (mass and number concentration, and size distribution) and chemical (PAHs) properties were investigated at a major bus interchange in Singapore, influenced only by diesel exhausts. Number concentration and size distribution of particles were determined in real time, while the mass concentrations of PM2.5, and PAHs were measured during operating and nonoperating hours. The average mass concentrations of PM2.5 and PAHs increased by a factor of 2.34 and 5.18, respectively, during operating hours. The average number concentration was also elevated by a factor of 5.07 during operating hours. This increase in the concentration of PM2.5 particles and their chemical constituents during operating hours was attributable to diesel emissions from in-use buses based on the particle size analysis, correlation among PAHs, and the commonly used PAHs diagnostic ratios. To evaluate the potential health threat due inhalation of air pollutants released from diesel engines, the incremental lifetime cancer risk was also calculated for a maximally exposed individual. The findings indicate that the air quality at the bus interchange poses adverse health effects.
Khademi, Ramin; Mohebbi-Kalhori, Davod; Hadjizadeh, Afra
2014-03-01
Successful bone tissue culture in a large implant is still a challenge. We have previously developed a porous hollow membrane sheet (HMSh) for tissue engineering applications (Afra Hadjizadeh and Davod Mohebbi-Kalhori, J Biomed. Mater. Res. Part A [2]). This study aims to investigate culture conditions and nutrient supply in a bioreactor made of HMSh. For this purpose, hydrodynamic and mass transport behavior in the newly proposed hollow membrane sheet bioreactor including a lumen region and porous membrane (scaffold) for supporting and feeding cells with a grooved section for accommodating gel-cell matrix was numerically studied. A finite element method was used for solving the governing equations in both homogenous and porous media. Furthermore, the cell resistance and waste production have been included in a 3D mathematical model. The influences of different bioreactor design parameters and the scaffold properties which determine the HMSh bioreactor performance and various operating conditions were discussed in detail. The obtained results illustrated that the novel scaffold can be employed in the large-scale applications in bone tissue engineering.
Thankam, Finosh G; Muthu, Jayabalan
2015-11-01
The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
General Properties for an Agrawal Thermal Engine
NASA Astrophysics Data System (ADS)
Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino
2018-04-01
This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.
Sampling Artifacts from Conductive Silicone Tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse
2009-05-15
We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosolmore » mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.« less
Hadidi, Pasha; Cissell, Derek D; Hu, Jerry C; Athanasiou, Kyriacos A
2017-12-01
Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The AFIT of Today is the Air Force of Tomorrow
2012-05-11
Engineering • Operations Research • Space Systems • Systems Engineering • Air Mobility • Combating Weapons of Mass Destruction • Cost Analysis • Cyber...Fight - Win Graduate Certificate Programs • Systems Engineering • Space Systems • Advanced Geospatial Intelligence • Combating Weapons of Mass ...over five years • Critical enabler for SSA: extending the satellite catalog to small objects Current Works: • Converting satellite catalog to KAM Tori
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
Model-Based Systems Engineering Approach to Managing Mass Margin
NASA Technical Reports Server (NTRS)
Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris
2012-01-01
When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).
41 CFR 102-80.135 - Who is a qualified fire protection engineer?
Code of Federal Regulations, 2010 CFR
2010-07-01
... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a thorough knowledge and understanding of the principles of physics and chemistry governing fire growth...
Wu, Jiangyu; Feng, Meimei; Yu, Bangyong; Han, Guansheng
2018-01-01
It is important to study the mechanical properties of cracked rock to understand the engineering behavior of cracked rock mass. Consequently, the influence of the length of pre-existing fissures on the strength, deformation, acoustic emission (AE) and failure characteristics of cracked rock specimen was analyzed, and the optimal selection of strength parameter in engineering design was discussed. The results show that the strength parameters (stress of dilatancy onset and uniaxial compressive strength) and deformation parameters (axial strain and circumferential strain at dilatancy onset and peak point) of cracked rock specimen decrease with the increase of the number of pre-existing fissures, and the relations which can use the negative exponential function to fit. Compared with the intact rock specimens, the different degrees of stress drop phenomena were produced in the process of cracked rock specimens when the stress exceeds the dilatancy onset. At this moment, the cracked rock specimens with the existence of stress drop are not instantaneous failure, but the circumferential strain, volumetric strain and AE signals increase burstingly. And the yield platform was presented in the cracked rock specimen with the length of pre-existing fissure more than 23mm, the yield failure was gradually conducted around the inner tip of pre-existing fissure, the development of original fissures and new cracks was evolved fully in rock. However, the time of dilatancy onset is always ahead of the the time of that point with the existence of stress drop. It indicates that the stress of dilatancy onset can be as the parameter of strength design in rock engineering, which can effectively prevent the large deformation of rock. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling and Simulation of Variable Mass, Flexible Structures
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.
2009-01-01
The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.
A model for the space shuttle main engine high pressure oxidizer turbopump shaft seal system
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1990-01-01
A simple static model is presented which solves for the flow properties of pressure, temperature, and mass flow in the Space Shuttle Main Engine pressure Oxidizer Turbopump Shaft Seal Systems. This system includes the primary and secondary turbine seals, the primary and secondary turbine drains, the helium purge seals and feed line, the primary oxygen drain, and the slinger/labyrinth oxygen seal pair. The model predicts the changes in flow variables that occur during and after failures of the various seals. Such information would be particularly useful in a post flight situation where processing of sensor information using this model could identify a particular seal that had experienced excessive wear. Most of the seals in the system are modeled using simple one dimensional equations which can be applied to almost any seal provided that the fluid is gaseous. A failure is modeled as an increase in the clearance between the shaft and the seal. Thus, the model does not attempt to predict how the failure process actually occurs (e.g., wear, seal crack initiation). The results presented were obtained using a FORTRAN implementation of the model running on a VAX computer. Solution for the seal system properties is obtained iteratively; however, a further simplified implementation (which does not include the slinger/labyrinth combination) was also developed which provides fast and reasonable results for most engine operating conditions. Results from the model compare favorably with the limited redline data available.
Identification of secondary aerosol precursors emitted by an aircraft turbofan
NASA Astrophysics Data System (ADS)
Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.
2018-05-01
Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.
Liao, Wenta; Draper, William M
2013-02-21
The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-05-04
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.
NASA Technical Reports Server (NTRS)
Gupta, P. K.; Tessarzik, J. M.; Cziglenyi, L.
1974-01-01
Dynamic properties of a commerical polybutadiene compound were determined at a constant temperature of 32 C by a forced-vibration resonant mass type of apparatus. The constant thermal state of the elastomer was ensured by keeping the ambient temperature constant and by limiting the power dissipation in the specimen. Experiments were performed with both compression and shear specimens at several preloads (nominal strain varying from 0 to 5 percent), and the results are reported in terms of a complex stiffness as a function of frequency. Very weak frequency dependence is observed and a simple power law type of correlation is shown to represent the data well. Variations in the complex stiffness as a function of preload are also found to be small for both compression and shear specimens.
A Determinate Model of Thrust-Augmenting Ejectors
NASA Astrophysics Data System (ADS)
Whitley, N.; Krothapalli, A.; van Dommelen, L.
1996-01-01
A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.
Delivering Mass-Produced Bespoke and Appealing Products
NASA Astrophysics Data System (ADS)
Childs, Thomas Hc; Dalgarno, Kenneth W.; McKay, Alison
The bottleneck in introducing successful new products quickly to market is moving from factory floor manufacturing to the product design process and interfaces between designers, manufacturers and users. ‘Quality’, for products that contact people, has moved beyond functionality and usability to satisfying people’s subjective and emotional lifestyle needs. Affective (kansei) engineering design offers approaches that can be used to bring the emotional responses of consumers into the design process. In parallel, mass customisation promises the delivery of mass-produced bespoke products to individual users. Together, affective engineering and mass customisation are having a dramatic impact on the ways in which designers, engineers and manufacturers interact with each other. The challenge for leading edge manufacture is to create new product opportunities through integration of and new developments in technology, systems and design.
Closed-Cycle Engine Program Used to Study Brayton Power Conversion
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2005-01-01
One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.
Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint
NASA Astrophysics Data System (ADS)
Nouailletas, O.; Perlot, C.; Rivard, P.; Ballivy, G.; La Borderie, C.
2017-06-01
The mechanical behaviour of structural discontinuities in rock mass is a key element of the stability analysis in civil engineering, petroleum engineering and mining engineering. In this paper, the mechanical analysis is coupled with the acidic attack of a rock joint associated with leakage of CO2 through a geological fault in the context of carbon sequestration. Experiments were conducted at the laboratory scale to assess the shear behaviour of degraded joint: direct shear tests were performed on rock joints that have been previously immersed into water or into an acidic solution (pH 0.2). The shear behaviour of joints is governed by the roughness of its walls: the parameters Z2, Z3, Z4 and RL characterize the rough surfaces. They are calculated from the scans of joint surfaces after and before immersion. Their comparison pointed out a slight impact of the acidic attack. However, the results of the direct shear tests show significant modifications in the shear behaviour for the degraded joints: the tangential stress peak disappears, the tangential stiffness decreases in the stress/displacement curve, and the contraction increases, the dilation angle decreases in the dilation curve. Acid attack has a greater impact on the mechanical properties of the asperities than their geometric characteristics. The results of this study will be used to improve chemo-mechanical modelling to better simulate with higher accuracy the fault stability in different cases of civil engineering, petroleum engineering and mining engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.
There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less
NASA Astrophysics Data System (ADS)
Vaxenburg, Roman; Lifshitz, Efrat
2012-02-01
Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.
Survey of Alternative Fuels for Corps of Engineers Diesel Engine Powered Dredges.
1984-04-01
due to its physical and chemical properties ; as a result, the extent of engine and fuel system modifications must be considered. Engine performance...17,200 17,629 18,884 Cetane Number 54 24 * 16 21 50 • Not available / 00 -30- H-Coal The physical properties shown in Table 4 would strongly...have the desirable physical and chemical properties been defined to make them totally acceptable as a fuel source. The 1973 oil embargo signaled the
Probabilistic consensus scoring improves tandem mass spectrometry peptide identification.
Nahnsen, Sven; Bertsch, Andreas; Rahnenführer, Jörg; Nordheim, Alfred; Kohlbacher, Oliver
2011-08-05
Database search is a standard technique for identifying peptides from their tandem mass spectra. To increase the number of correctly identified peptides, we suggest a probabilistic framework that allows the combination of scores from different search engines into a joint consensus score. Central to the approach is a novel method to estimate scores for peptides not found by an individual search engine. This approach allows the estimation of p-values for each candidate peptide and their combination across all search engines. The consensus approach works better than any single search engine across all different instrument types considered in this study. Improvements vary strongly from platform to platform and from search engine to search engine. Compared to the industry standard MASCOT, our approach can identify up to 60% more peptides. The software for consensus predictions is implemented in C++ as part of OpenMS, a software framework for mass spectrometry. The source code is available in the current development version of OpenMS and can easily be used as a command line application or via a graphical pipeline designer TOPPAS.
Effect of Several Factors on the Cooling of a Radial Engine in Flight
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin
1936-01-01
Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf
2015-08-01
Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.
Tendon and ligament as novel cell sources for engineering the knee meniscus.
Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A
2016-12-01
The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Tendon and ligament as novel cell sources for engineering the knee meniscus
Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559
Macroscopic balance model for wave rotors
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
Simulating nonlinear neutrino flavor evolution
NASA Astrophysics Data System (ADS)
Duan, H.; Fuller, G. M.; Carlson, J.
2008-10-01
We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.
2014-01-15
In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less
MassSieve: Panning MS/MS peptide data for proteins
Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.
2010-01-01
We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260
The Signature of the Central Engine in the Weakest Relativistic Explosions: GRB 100316D
NASA Astrophysics Data System (ADS)
Margutti, R.; Soderberg, A. M.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Barniol Duran, R.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Pian, E.
2013-11-01
We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ~1049 erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of \\dot{M}\\, {\\sim }\\, 10^{-5}\\,M_{\\odot }\\,yr^{-1} (for an assumed wind density profile and wind velocity vw = 1000 km s-1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.
Thrust Vector Control for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Ensworth, Clinton B. F.
2013-01-01
Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.
Magnetar-powered Supernovae in Two Dimensions. II. Broad-line Supernovae Ic
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Moriya, Takashi J.; Woosley, Stan; Sukhbold, Tuguldur; Whalen, Daniel J.; Suwa, Yudai; Bromm, Volker
2017-04-01
Nascent neutron stars (NSs) with millisecond periods and magnetic fields in excess of 1016 Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL, which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the NS and release it as a disk wind or a jet with energies greater than 1052 erg over ˜20 s. What fraction of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 {M}⊙ of {}56{Ni} and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium, these events are not very luminous, with peak bolometric magnitudes of {M}b˜ -16.5 due to low {}56{Ni} production.
Thermal-structural design study of an airframe-integrated Scramjet
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.
1978-01-01
Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.
Small band gap superlattices as intrinsic long wavelength infrared detector materials
NASA Technical Reports Server (NTRS)
Smith, Darryl L.; Mailhiot, C.
1990-01-01
Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... significant elastic, inertial, and aerodynamic forces, and (2) Propeller, engine, engine mount, and airplane... in use to airplanes without large mass concentrations (such as engines, floats, or fuel tanks in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... significant elastic, inertial, and aerodynamic forces, and (2) Propeller, engine, engine mount, and airplane... in use to airplanes without large mass concentrations (such as engines, floats, or fuel tanks in...
1983-01-01
BLDGS 1,269 PHILLIPS SWAGER ASSOCIATES ILLINOIS ARMY A/E CONSTRUCTION /ADMIN 9 SVC BLDGS 174 QUINLIVIAN PIERIK KRAUSE ROBSON JV NEW YORK NAVY A/E...CONSTRUCTION /AIRFIELD & MSL FAC RANCORN WILDMAN & KRAUSE VIRGINIA NAVY A/E CONSTRUCTION /AIRFIELD & MSL FAC REED ALONZO B MASS ARMY A/E CONSTRUCTION...ARCHITECT/ENGINEER - GENERAL CONTRACTOR TOTAL OUADRA ENGINEERING INC ALASKA OCE ARCHITECT/ENGINEER - GENERAL QUINLIVAN PIERIK & KRAUSE MASS ARMY ARCHITECT
Shape-memory materials as a working substance for martensitic rotary engines
NASA Astrophysics Data System (ADS)
Mandzhavidze, A. G.; Barnov, V. A.; Sobolevskaya, S. V.; Margvelashvili, O. V.
2006-05-01
A martensitic rotary engine has been designed. The physical properties of its working substance are studied, and the power characteristics of the engine are determined. Temperature and stress cycling are shown to adversely affect the properties of the working element (a coil spring made of titanium nickelide) and, thus, to decrease the engine efficiency.
Engineering Nanowire n-MOSFETs at L_{g}<8 nm
NASA Astrophysics Data System (ADS)
Mehrotra, Saumitra R.; Kim, SungGeun; Kubis, Tillmann; Povolotskyi, Michael; Lundstrom, Mark S.; Klimeck, Gerhard
2013-07-01
As metal-oxide-semiconductor field-effect transistors (MOSFET) channel lengths (Lg) are scaled to lengths shorter than Lg<8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg<8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON state currents in ultra scaled nanowire MOSFETs.
Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6
NASA Technical Reports Server (NTRS)
Brock, Charles A.; Bradford, Deborah G.
1999-01-01
This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of NOAA's Office of Global Programs and NASA's AEAP and measures particle size distributions in the 4-100 nm range.
Analysis of a Radioisotope Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.
2016-01-01
The Triton Hopper is a concept for a global hopper vehicle which uses a radioisotope rocket engine and In-situ propellant acquisition to explore the surface of Neptune's moon, Triton. The current Triton Hopper concept stores heated Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through the use of a thermal block during engine operation, as opposed to storing gas at a high temperature. Lithium, Lithium Fluoride and Beryllium were considered as possible materials for the thermal block. A heat energy analysis indicated that a lithium thermal mass would provide the highest heat energy for a temperature change from 900 Celsius to -100 Celsius. A heat transfer analysis was performed for Nitrogen at -100 Celsius flowing through 1000 passages inside a 1kg lithium thermal block at a temperature of 900 Celsius. The system was analyzed as turbulent flow through a tube with constant surface temperature. The analysis indicated that the propellant reached a maximum temperature of 877 Celsius before entering the nozzle. At this exit temperature, the average specific impulse [I(sub sp)] of the engine was determined to be 157s. Previous studies for the stored heated gas concept suggest that the engine would have an average I(sub sp) of approximately 52s. Thus, the use of a thermal block concept results in a 200 percent engine performance increase. In addition, a tank sizing study was performed to determine if the concept is feasible in terms of mass requirements. The mass for a spherical carbon fiber COPV storing 35kg of nitrogen at an initial temperature of -100 Celsius and a pressure of 1000psia, was determined to be 7.2kg. The specific impulse analysis indicated that the maximum engine performance is obtained for a mass ratio of 5kg of Nitrogen per every 1kg of lithium thermal mass. Thus for 35kg of Nitrogen the total thermal mass would be 7kg. This brings the total mass of the system to 49.2.kg which is less than the 56kg landing payload capacity of the Triton Hopper. Finally, an insulation analysis using 10mm of MLI insulation indicated that a total of 22 watts of heat are lost to the environment. With the heat loss known, the power required to heat the thermal mass to 900 Celsius in 24 days was determined to be 2.15 watts. The study's results allowed us to conclude that the thermal mass concept is the better option due to the performance increase provided, the low power requirement and its compliance with the landing mass requirement of the Triton Hopper.
A Design Method for Topologically Insulating Metamaterials
NASA Astrophysics Data System (ADS)
Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara
Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.
Optimal Concentrations in Transport Networks
NASA Astrophysics Data System (ADS)
Jensen, Kaare; Savage, Jessica; Kim, Wonjung; Bush, John; Holbrook, N. Michele
2013-03-01
Biological and man-made systems rely on effective transport networks for distribution of material and energy. Mass flow in these networks is determined by the flow rate and the concentration of material. While the most concentrated solution offers the greatest potential for mass flow, impedance grows with concentration and thus makes it the most difficult to transport. The concentration at which mass flow is optimal depends on specific physical and physiological properties of the system. We derive a simple model which is able to predict optimal concentrations observed in blood flows, sugar transport in plants, and nectar feeding animals. Our model predicts that the viscosity at the optimal concentration μopt =2nμ0 is an integer power of two times the viscosity of the pure carrier medium μ0. We show how the observed powers 1 <= n <= 6 agree well with theory and discuss how n depends on biological constraints imposed on the transport process. The model provides a universal framework for studying flows impeded by concentration and provides hints of how to optimize engineered flow systems, such as congestion in traffic flows.
Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina
2013-03-01
The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
Bioreactors for Tissue Engineering of Cartilage
NASA Astrophysics Data System (ADS)
Concaro, S.; Gustavson, F.; Gatenholm, P.
The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several potential advantages such as the ability of arthroscopic implantation, in vitro pre-differentiation of cells and implant stability among others (Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L, N Engl J Med 331(14):889-895, 1994; Henderson I, Francisco R, Oakes B, Cameron J, Knee 12(3):209-216, 2005; Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A, Clin Orthop (374):212-234, 2000; Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. Bioprocess Biosyst Eng 27(4):273-280, 2005; Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, J Biosci Bioeng 100(3):235-245, 2005; Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R, J Biotechnol 121(4):486-497, 2006; Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. Biotechnol Lett 28(20):1641-1648, 2006). The nutritional requirements of cells that are synthesizing extra-cellular matrix increase along the differentiation process. The mass transfer must be increased according to the tissue properties. Bioreactors represent an attractive tool to accelerate the biochemical and mechanical properties of the engineered tissues providing adequate mass transfer and physical stimuli. Different reactor systems have been [5] developed during the last decades based on different physical stimulation concepts. Static and dynamic compression, confined and nonconfined compression-based reactors have been described in this review. Perfusion systems represent an attractive way of culturing constructs under dynamic conditions. Several groups showed increased matrix production using confined and unconfined systems. Development of automatic culture systems and noninvasive monitoring of matrix production will take place during the next few years in order to improve the cost affectivity of tissue-engineered products.
Zhang, Jun-Jun; Lv, Li-Bing; Zhao, Tian-Jian; Lin, Yun-Xiao; Yu, Qiu-Ying; Su, Juan; Hirano, Shin-Ichi; Li, Xin-Hao; Chen, Jie-Sheng
2018-05-30
Electrochemical gas evolution and activation reactions are complicated processes, involving not only active electrocatalysts but also the interaction among solid electrodes, electrolyte, and gas-phase products and reactants. In this study, multiphase interfaces of superadsorbing graphene-based electrodes were controlled without changing the active centers to significantly facilitate mass diffusion kinetics for superior performance. The achieved in-depth understanding of how to regulate the interfacial properties to promote the electrochemical performance could provide valuable clues for electrode manufacture and for the design of more active electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of aerodynamic technology for VSTOL fighter attack aircraft
NASA Technical Reports Server (NTRS)
Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.
1978-01-01
Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.
Numerical Simulation of Creep Characteristic for Composite Rock Mass with Weak Interlayer
NASA Astrophysics Data System (ADS)
Li, Jian-guang; Zhang, Zuo-liang; Zhang, Yu-biao; Shi, Xiu-wen; Wei, Jian
2017-06-01
The composite rock mass with weak interlayer is widely exist in engineering, and it’s essential to research the creep behavior which could cause stability problems of rock engineering and production accidents. However, due to it is difficult to take samples, the losses and damages in delivery and machining process, we always cannot get enough natural layered composite rock mass samples, so the indirect test method has been widely used. In this paper, we used ANSYS software (a General Finite Element software produced by American ANSYS, Inc) to carry out the numerical simulation based on the uniaxial compression creep experiments of artificial composite rock mass with weak interlayer, after experimental data fitted. The results show that the laws obtained by numerical simulations and experiments are consistent. Thus confirmed that carry out numerical simulation for the creep characteristics of rock mass with ANSYS software is feasible, and this method can also be extended to other underground engineering of simulate the weak intercalations.
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2011 CFR
2011-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2013 CFR
2013-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2014 CFR
2014-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2011 CFR
2011-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2012 CFR
2012-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2012 CFR
2012-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2014 CFR
2014-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2013 CFR
2013-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...
Gate induced monolayer behavior in twisted bilayer black phosphorus
NASA Astrophysics Data System (ADS)
Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz
2017-09-01
Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Andrews, Sydney; Even, Wesley; Heger, Alex; Safi-Harb, Samar
2018-03-01
Core-collapse supernova science is now entering an era in which engine models are beginning to make both qualitative and, in some cases, quantitative predictions. Although the evidence in support of the convective engine for core-collapse supernova continues to grow, it is difficult to place quantitative constraints on this engine. Some studies have made specific predictions for the remnant distribution from the convective engine, but the results differ between different groups. Here we use a broad parameterization for the supernova engine to understand the differences between distinct studies. With this broader set of models, we place error bars on the remnant mass and basic yields from the uncertainties in the explosive engine. We find that, even with only three progenitors and a narrow range of explosion energies, we can produce a wide range of remnant masses and nucleosynthetic yields.
Characterization of lubrication oil emissions from aircraft engines.
Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E
2010-12-15
In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.
NASA Astrophysics Data System (ADS)
Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.
2015-09-01
We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.
Fuel property effects on USN gas turbine combustors
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mosier, S. A.; Nowack, C. J.
1984-01-01
For several years the Department of Defense has been sponsoring fuel accommodation investigations with gas turbine engine manufacturers and supporting organizations to quantify the effect of changes in fuel properties and characteristics on the operation and performance of military engine components and systems. Inasmuch as there are many differences in hardware between the operational engines in the military inventories, due to differences in design philosophy and requirements, efforts were initially expended to acquire fuel effects data from rigs simulating the hot sections of these different engines. Correlations were then sought using the data acquired to produce more general, generic relationships that could be applied to all military gas turbine engines regardless of their origin. Finally, models could be developed from these correlations that could predict the effect of fuel property changes on current and future engines. This presentation describes some of the work performed by Pratt and Whitney Aircraft, under Naval Air Propulsion Center sponsorship, to determine the effect of fuel properties on the hot section and fuel system of the Navy's TF30-P-414 gas turbine engine.
Engineering Lubrication in Articular Cartilage
McNary, Sean M.; Athanasiou, Kyriacos A.
2012-01-01
Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication. PMID:21955119
NASA Astrophysics Data System (ADS)
Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn
2017-10-01
Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.
NASA Astrophysics Data System (ADS)
Hadi Sutrisno, Himawan
2018-03-01
In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.
A novel algorithm for validating peptide identification from a shotgun proteomics search engine.
Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J
2013-03-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T
Co-Optima research and analysis have identified fuel properties that enable advanced LD and HD engines. 95 RON will directionally improve boosted SI efficiency, but higher RON and S provide additional benefits. The optimal fuel properties for future engines are still uncertain. There are a large number of blendstocks readily derived from biomass (and petroleum) that possess beneficial properties.
Selectively reflective transparent sheets
NASA Astrophysics Data System (ADS)
Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.
2015-08-01
We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.
Methane Dual Expander Aerospike Nozzle Rocket Engine
2012-03-22
include O/F ratio, thrust, and engine geometry. After thousands of iterations over the design space , the selected MDEAN engine concept has 349 s of...35 Table 7: Fluid Property Table Supported Parameters...44 Table 8: Fluid Property Input Data Independent Variable Ranges. ................................. 46 Table 9
Laser Engineered Graphene Paper for Mass Spectrometry Imaging
Qian, Kun; Zhou, Liang; Liu, Jian; Yang, Jie; Xu, Hongyi; Yu, Meihua; Nouwens, Amanda; Zou, Jin; Monteiro, Michael J.; Yu, Chengzhong
2013-01-01
A pulsed laser engineering approach is developed to prepare novel functional graphene paper with graphitic nanospheres homogeneously decorated on the surface and the superior performance of engineered paper is revealed in matrix-free mass spectrometry (MS) detection and imaging. We demonstrate that the stability of graphene paper under intense irradiation can be dramatically increased through a designed laser engineering process by forming densely packed graphitic nanospheres on the paper surface. Moreover, the surface hydrophobicity is enhanced and electric conductivity is improved. The engineered graphene paper can image the invisible micro-patterns of trace amount molecules and increases the detection limit towards diverse molecules by over two orders of magnitude compared to the pristine graphene paper and commercial products in MS analysis. PMID:23475267
Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2009-07-15
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.
Fuel system design concepts for broad property fuels
NASA Technical Reports Server (NTRS)
Versaw, E. F.
1984-01-01
The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai
2016-02-10
Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering. PMID:28772854
Biofilm based attached cultivation technology for microalgal biorefineries-A review.
Wang, Junfeng; Liu, Wen; Liu, Tianzhong
2017-11-01
The attached cultivation for microalga has many superiorities over the conventional aqua-suspend methods, which make it a promising pathway to supply feedstock for microalgae based bio-refinery attempts. In this review, the current reports on bioreactor, application, modeling, substratum material and engineering aspects were summarized and the future research and developments should be focused on the following aspects: 1) Build principles and guidelines for rational structure design by studying the relationship of physiological properties with typical structures and light regimes; 2) Set up theory foundation of substratum material selection by studying the physic-chemical properties of algal cells and substratum materials; 3) Further understanding the mass transfer behaviors of both CO 2 and nutrients in biofilm for enhanced growth rate and products accumulation; 4) New equipment and machines for inoculation, harvesting and moisture keeping should be developed and integrated with bioreactor structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.
Thermoelectric properties of La3Cu3X4 (X = P, As, Sb, and Bi) compounds are examined using first-principles density functional theory and Boltzmann transport calculations. It is well known that the lattice thermal conductivity (κl) of bulk materials typically decreases with increasing atomic masses of the constituent elements. In this study, however, we observe contrary behavior: lighter mass, larger sound velocity La3Cu3P4 and La3Cu3As4 systems have lower κl than heavier mass, smaller sound velocity La3Cu3Sb4 and La3Cu3Bi4 systems. Analysis of three phonon scattering rates and other phonon properties demonstrate that the trend in κl behavior is governed by Grüneisen parameters, a measure of phonon anharmonicity. The Grüneisen parameters and lower κl of the P and As compounds are closely related to an avoided crossing between the lowest optical branches and the longitudinal acoustic branch, which results in abrupt changes in Grüneisen parameters. Additionally, electronic structure calculations show heavy and light bands near the band edges, which lead to large power factors important for good thermoelectric performance. T. P, C. A. P, L. L. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Determining Gravitational Attraction by Mass Property Measurements
NASA Astrophysics Data System (ADS)
Swank, Aaron J.; Sun, Ke-Xun; DeBra, Dan
2006-11-01
The acceleration generated by the gradient of the mass attraction field between the spacecraft and proof mass is one parameter critical to drag-free performance. The gravitational self-attraction properties between two distributed bodies is characterized by the mass, mass center and moment of inertia for each body. Mass property measurements can therefore be used to indirectly measure the mass attraction properties. Since the ultimate goal is to demonstrate the ability to predict the system gravitational mass attraction force and force gradients to a precision below that of the LISA requirements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work introduces a new method for measuring the moment of inertia using a novel five-wire torsion pendulum, which reduces errors due to translational degrees of freedom. The five-wire pendulum is integrated with optical angular sensing using diffraction grating angular magnification to provide a sensor with both a large dynamic range and high resolution.
NASA Astrophysics Data System (ADS)
Takahashi, T.
2017-12-01
The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications from seismically derived dynamic Young's modulus. References:Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge.
Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin
2013-01-01
This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464
Booster propulsion/vehicle impact study, 2
NASA Technical Reports Server (NTRS)
Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.
1988-01-01
This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.
Chang, N B; Lin, K S; Sun, Y P; Wang, H P
2001-12-01
This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.
Lobo, Prem; Hagen, Donald E; Whitefield, Philip D
2011-12-15
Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.
Carbon-carbon piston development
NASA Technical Reports Server (NTRS)
Gorton, Mark P.
1994-01-01
A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.
1980-09-01
Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4
Study of thermal and fire behavior of wood fiber/thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Oladipo, Adedejo Bukola
The fire safety characteristics of wood fiber/thermoplastic composite materials were investigated in this study. Composites comprising wood fiber fillers and polymeric binders are known to offer many advantages such as good strength to weight ratio, ease of manufacture, low cost, and the possibility for recycling. In spite of these advantages however, the fire safety question of plastic-based materials is an important one since they can, under certain conditions, drip or run, under fire, thereby potentially spreading fire from one location to the other. It is important therefore to understand the fire behavior of such a composite if the advantages it offers are to be fully utilized. To this end, numerical and experimental studies of opposed flow flame spread over the composite were conducted with emphasis on the influences of gravity, material thermal property variations, and finite-rate chemistry on the rate of spread. The thermal properties of the composite material, needed for opposed flame spread computations, were first determined using a combination of inverse heat conduction and non-linear parameter estimation procedures. The influences of wood fiber mass fraction and temperature on the effective thermal properties of the composite were established. The means for predicting the effective properties from those of the individual constituents were also examined and the results showed that the composite is close to being isotropic. The experimental and numerical methods used to determine the thermal properties of the composite were also adapted for the investigation of various proprietary automobile sound blanket materials to assess their effectiveness as thermal barriers separating the engine compartment from the passenger cabin. The results of opposed flame spread study over the composite suggests that, for opposed flow velocities lower than about 245 cm/s, finite rate chemistry will dominate the spread process when the oxygen mass fraction is 70% or less. Above this limit, heat transfer from the flame to the unburned fuel ahead seems to be the dominant factor. Also, the composite was observed to exhibit wood-like fire behavior when the wood fiber mass fraction is 40% or more.
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
ERIC Educational Resources Information Center
Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan
2011-01-01
We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…
NASA Astrophysics Data System (ADS)
Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.
2017-12-01
In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.
Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A
2016-06-14
Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang
2013-01-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei
2013-02-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.
Thermophysical properties of helium-4 from 4 to 3000 R with pressures to 15000 psia
NASA Technical Reports Server (NTRS)
Mccarty, R. D.
1972-01-01
Data on many of the properties of helium commonly used in engineering calculations are compiled over as wide a temperature and pressure range as is practical. These properties are presented in a form which is convenient to the engineer. All of these properties have been critically evaluated and represent the best values for that property at this time.
Ethanol used as an environmentally sustainable energy resource for thermal power plants
NASA Astrophysics Data System (ADS)
Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.
2016-09-01
Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.
Characterization of large-pore polymeric supports for use in perfusion biochromatography.
Whitney, D; McCoy, M; Gordon, N; Afeyan, N
1998-05-22
Perfusion chromatography is uniquely characterized by the flow of a portion of the column eluent directly through the resin in the packed bed. The benefits of this phenomenon and some of the properties of perfusive resins have been described before, and can be summarized as enhanced mass transport to interior binding sites. Here we extend the understanding of this phenomenon by comparing resins with different pore size distributions. Resins are chosen to give approximately the same specific pore volumes (as shown in the characterization section) but the varying contribution of large pores is used to control the amount of liquid flowing through the beads. POROS R1 has the largest contribution of throughpores, and therefore the greatest intraparticle flow. POROS R2 has a lower contribution of throughpores, and a higher surface area coming from a greater population of diffusive pores, but still shows significant mass transport enhancements relative to a purely diffusive control. Oligo R3 is dominated by a high population of diffusive pores, and is used comparatively as a non-perfusive resin. Although the pore size distribution can be engineered to control mass transport rates, the resulting surface area is not the only means by which binding capacity can be controlled. Surface coatings are employed to increase binding capacity without fundamentally altering the mass transport properties. Models are used to describe the amount of flow transecting the beads, and comparisons of coated resins to uncoated (polystyrene) resins leads to the conclusion that these coatings do not obstruct the throughpore structures. This is an important conclusion since the binding capacity of the coated product, in some cases, is shown to be over 10-fold higher than the precursor polystyrene scaffold (i.e., POROS R1 or POROS R2).
Mars 2020 Model Based Systems Engineering Pilot
NASA Technical Reports Server (NTRS)
Dukes, Alexandra Marie
2017-01-01
The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and verifications leading up to launch. The model allows IE to understand the relationships between disciplines throughout test activities and verifications. Additionally, the relationships between disciplines and integration tasks are generally consistent. The model allows for the generic relationships and tasks to be captured and used throughout multiple mission models should LSP further pursue MBSE. A con of MBSE is the amount of time it takes upfront to understand MBSE and create a useful model. The upfront time it takes to create a useful model is heavily discussed in MBSE literature and is a consistent con throughout the known applications of MBSE. The need to understand SysML and the software chosen also poses the possibility of a "bottleneck" or one person being the sole MBSE user for the working group. The utility of MBSE will continue to be evaluated through the remainder of the study. In conclusion, the original objectives of the pilot study were to use artifacts from MSL to model key aspects of Mars 2020 and demonstrate how MBSE could be used by LSP to gain insight into the spacecraft and launch vehicle interfaces. Progress has been made in modeling and identifying the utility of MBSE to LSP IE and will continue to be made until the pilot study's conclusion in mid-August. The results of this study will produce initial models, modeling instructions and examples, and a summary of MBSE's utility for future use by LSP.
NASA Astrophysics Data System (ADS)
2011-12-01
Jacobo Bielak, university professor of civil and environmental engineering at Carnegie Mellon University, in Pittsburgh, Pa., has been recognized as a distinguished member of the American Society of Civil Engineers, the highest recognition the organization confers. Bielak was noted as “an internationally-known researcher in the area of structural responses to earthquakes, developing sophisticated numerical simulations to pinpoint earthquake effects.” Alan Strahler, professor of geography and environment at Boston University, Boston, Mass., received a 2011 William T. Pecora Award for his achievements in Earth remote sensing. The award, presented by NASA and the U.S. Department of the Interior on 15 November, recognized Strahler for “his contributions to remote-sensing science, leadership and education, which have improved the fundamental understanding of the remote-sensing process and its applications for observing land surface properties.” The Pecora award is named for the former director of the U.S. Geological Survey and undersecretary of the Interior department, who was influential in the establishment of the Landsat satellite program.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.
Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei
2017-12-05
In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.
Bringing Outreach into the Engineering Classroom--A Mass and Heat Transfer Course Project
ERIC Educational Resources Information Center
Eniola-Adefeso, Omolola
2010-01-01
One major contributing factor to the low number of students receiving degrees in engineering is the two decades of steady decline in student enrollment in engineering disciplines. Evidence in the literature suggests that this decline can be linked to K-12 students' lack of knowledge of engineering careers and their perception of engineering as…
'Food for Engineers': Intellectual Property Education for Innovators
ERIC Educational Resources Information Center
Soetendorp, Ruth
2004-01-01
Intellectual property competence can assist individuals and organizations to capitalize on opportunities presented by accelerating developments in the knowledge economy. Engineers translate ideas into concrete solutions, which are frequently useful and commercially valuable, if the intrinsic intellectual property has been identified and protected.…
Analysis of possibilities of waste heat recovery in off-road vehicles
NASA Astrophysics Data System (ADS)
Wojciechowski, K. T.; Zybala, R.; Leszczynski, J.; Nieroda, P.; Schmidt, M.; Merkisz, J.; Lijewski, P.; Fuc, P.
2012-06-01
The paper presents the preliminary results of the waste heat recovery investigations for an agricultural tractor engine (7.4 dm3) and excavator engine (7.2 dm3) in real operating conditions. The temperature of exhaust gases and exhaust mass flow rate has been measured by precise portable exhaust emissions analyzer SEMTECH DS (SENSORS Inc.). The analysis shows that engines of tested vehicles operate approximately at constant speed and load. The average temperature of exhaust gases is in the range from 300 to 400 °C for maximum gas mass flows of 1100 kg/h and 1400 kg/h for tractor and excavator engine respectively. Preliminary tests show that application of TEGs in tested off-road vehicles offers much more beneficial conditions for waste heat recovery than in case of automotive engines.
F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Wey, Chowen C.
1998-01-01
Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc. Tunable Diode Laser System to measure the concentrations of SO2, SO3, NO, NO2, CO2, and H2O. By September 1997, an F100 engine operating at several power levels at sea level and up to six simulated altitudes had been tested with commercial jet fuels with three levels of sulfur content and one military jet fuel. The data are being vigorously analyzed. A complete report is anticipated for the 1998 Atmospheric Effects of Aviation Project Annual Conference.
Computing Mass Properties From AutoCAD
NASA Technical Reports Server (NTRS)
Jones, A.
1990-01-01
Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).
Digoxin and Adenosine Triphosphate Enhance the Functional Properties of Tissue-Engineered Cartilage
Makris, Eleftherios A.; Huang, Brian J.; Hu, Jerry C.; Chen-Izu, Ye
2015-01-01
Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca2+-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca2+ modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10–14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52–110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca2+ imaging experiments revealed that both digoxin and ATP were able to increase Ca2+ oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca2+ modulators. PMID:25473799
Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J
2016-07-15
Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an increase in mechanical properties. Nondestructive assays based on mechanical and ultrasonic properties were also investigated using a novel instrument and found to correlate with matrix deposition and evolution. In sum, this study presents a new hydrogel platform combined with nondestructive assessments, which together have potential for in vitro cartilage tissue engineering. Copyright © 2016 Acta Materialia Inc. All rights reserved.
Effects of Various Heat Treatments on the Ballistic Impact Properties of Inconel 718 Investigated
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Lerch, Bradley A.
2000-01-01
Uncontained failures of aircraft engine fan blades are serious events that can cause equipment damage and loss of life. Federal Aviation Administration (FAA) certification requires that all engines demonstrate the ability to contain a released fan blade with the engine running at full power. However, increased protection generally comes at the expense of weight. Proper choice of materials is therefore imperative to an optimized design. The process of choosing a good casing material is done primarily through trial and error. This costly procedure could be minimized if there was a better understanding of the relationships among static material properties, impact properties, and failure mechanisms. This work is part of a program being conducted at the NASA Glenn Research Center at Lewis Field to study these relationships. Ballistic impact tests were conducted on flat, square sheets of Inconel 718 that had been subjected to different heat treatments. Two heat treatments and the as-received condition were studied. In addition, results were compared with those from an earlier study involving a fourth heat treatment. The heat treatments were selected on the basis of their effects on the static tensile properties of the material. The impact specimens used in this study were 17.8-cm square panels that were centered and clamped over a 15.2-cm square hole in a 1.27-cm-thick steel plate. Three nominal plate thickness dimensions were studied, 1.0, 1.8, and 2.0 mm. For each thickness, all the specimens were taken from the same sheet of material. The projectile was a Ti-6Al-4V cylinder with a length of 25.4 mm, a diameter of 12.7 mm, and a mass ranging from 14.05 to 14.20 g. The projectiles were accelerated toward the specimens at normal incidence using a gas gun with a 2-m-long, 12.7-mm inner-diameter barrel. The ballistic limit for each heat treatment condition and thickness was determined by conducting a number of impact tests that bracketed as closely as possible the velocity required to penetrate the specimen.
NASA Technical Reports Server (NTRS)
Smith, A. L.
1980-01-01
The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.
Jaiprakash; Habib, Gazala
2017-05-15
This study reports emission factors of PM 2.5 , elemental carbon (EC), organic carbon (OC), ions, trace elements and mass absorption cross-sections (MAC) of aerosol emitted from the on-road operation of light duty vehicles of different vintages. A portable dilution system was used to achieve complete quenching of aerosol at near ambient condition. The particles were collected on the filters and analyzed for chemical and light absorbing properties of aerosol. The diesel-powered passenger cars emitted higher PM 2.5 (56-356mgkm -1 ) with a large fraction of EC (37-65%), while emissions from gasoline (46-78mgkm -1 ), and CNG vehicles (33-34mgkm -1 ) were low and contained low EC (5-15%) and remarkably high OC (46-91%). The MAC of aerosols for diesel vehicles (32-208m 2 g -1 of PM 2.5 ) were well explained by EC content (31-62%) and showed similarity with MAC values reported for wood fuel combustion in cooking stoves indicating the two sources cannot be resolved on the basis of light absorption properties in source apportionment studies. Ionic contributions to PM 2.5 were highest for 4W-gasoline (11-19%) compared to 4W-diesel (7-11%), and CNG (9-10%). The abundance of ions such as Na + , Ca 2+ , SO 4 2- , NO 3 - , and NH 4 + could be due to use of lubricant oil and abrasive nature of engine of old vehicles. Trace elements (Al, Fe, Zn, Pb, and Cu) emitted from after-treatment devices, additives in lube oil, and wearing of engine components, were found to be 2-14%, 3-8% and 11-12% of total PM 2.5 for 4W of diesel, gasoline, and CNG respectively. This study indicates that aerosol emissions from on-road vehicles show a strong dependency on vehicle maintenance, engine type and after-treatment techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
Garg, Saryu; Chandra, Boggarapu Praphulla; Sinha, Vinayak; Sarda-Esteve, Roland; Gros, Valerie; Sinha, Baerbel
2016-01-19
Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.
de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M.; Sheen, David A.; Chu, Pamela M.; Lippa, Katrice A.
2017-01-01
As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the fuels. The SOM was able to find a descriptive classification model which has the potential for practical recognition and perhaps prediction of fuel properties. PMID:28603295
Optimization of wave rotors for use as gas turbine engine topping cycles
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
1995-01-01
Use of a wave rotor as a topping cycle for a gas turbine engine can improve specific power and reduce specific fuel consumption. Maximum improvement requires the wave rotor to be optimized for best performance at the mass flow of the engine. The optimization is a trade-off between losses due to friction and passage opening time, and rotational effects. An experimentally validated, one-dimensional CFD code, which includes these effects, has been used to calculate wave rotor performance, and find the optimum configuration. The technique is described, and results given for wave rotors sized for engines with sea level mass flows of 4, 26, and 400 lb/sec.
Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme
Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella
2014-01-01
The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596
Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties
NASA Astrophysics Data System (ADS)
Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq
2018-02-01
This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.
Development of Coconut Trunk Fiber Geopolymer Hybrid Composite for Structural Engineering Materials
NASA Astrophysics Data System (ADS)
Amalia, F.; Akifah, N.; Nurfadilla; Subaer
2017-03-01
A research on the influence of coconut fiber trunk on mechanical properties based on fly ash has been conducted. The aims of this study was to examine the mechanical properties of geopolymer composites by varrying the concentration of coconut trunk fiber. Geopolymer synthesized by alkali activated (NaOH+H2O+Na2O.3SiO2) and cured at the temperature 700C for one hour. Specimens were synthesized into 5 different mass of fiber 0 g, 0.25 g, 0.50 g, 0.75 g, and 1.00 g keeping fly ash constant. The highest compressive strength was 89.44 MPa for specimen added with 0.50 g of fiber. The highest flexural strength was 7.64 MPa for the same sample. The interfacial transition zone (ITZ) between the matrix of geopolymers and coconut fiber was conducted by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The chemical composition of the specimen was examined by using X-Ray Diffraction (XRD). The thermal properties of coconut fiber trunk was analyzed using Differential Scanning Calorimetry (DSC). It was found that coconut fiber was able to improve the mechanical and microstructure properties of geopolymers composites.
2006-11-28
nonuniform permeability fields using the University of Texas Chemical Flooding Simulator ( UTCHEM 9.0) [Center for Petroleum and Geosystems Engineering...Engineering (2000), UTCHEM , Ver- sion 9.0 technical documentation, Univ. of Tex. at Austin, Austin. Chambers, J. E., M. H. Loke, R. D. Ogilvy, and P. I
Cloud parallel processing of tandem mass spectrometry based proteomics data.
Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus
2012-10-05
Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.
The PIT MkV pulsed inductive thruster
NASA Technical Reports Server (NTRS)
Dailey, C. Lee; Lovberg, Ralph H.
1993-01-01
The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.
NASA Astrophysics Data System (ADS)
Medini, Khaled
2018-01-01
The increase of individualised customer demands and tough competition in the manufacturing sector gave rise to more customer-centric operations management such as products and services (mass) customisation. Mass customisation (MC), which inherits the 'economy of scale' from mass production (MP), aims to meet specific customer demands with near MP efficiency. Such an overarching concept has multiple impacts on operations management. This requires highly qualified and multi-skilled engineers who are well prepared for managing MC. Therefore, this concept should be properly addressed by engineering education curricula which needs to keep up with the emerging business trends. This paper introduces a novel course about MC and variety in operations management which recalls several Experiential Learning (EL) practices consistently with the principle of an active learning. The paper aims to analyse to which extent EL can improve the efficiency of the teaching methods and the retention rate in the context of operations management. The proposed course is given to engineering students whose' perceptions are collected using semi-structured questionnaires and analysed quantitatively and qualitatively. The paper highlights the relevance (i) of teaching MC, and (ii) of active learning in engineering education, through the specific application in the domain of MC.
Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei
2016-01-13
Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.
NASA Astrophysics Data System (ADS)
Park, A. J.; Tuncay, K.; Ortoleva, P. J.
2003-12-01
An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.
Sun, Changquan Calvin
2017-05-01
To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.
Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing
2015-11-17
Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.
O'Hara, R P; Palazotto, A N
2012-12-01
To properly model the structural dynamics of the forewing of the Manduca sexta species, it is critical that the material and structural properties of the biological specimen be understood. This paper presents the results of a morphological study that has been conducted to identify the material and structural properties of a sample of male and female Manduca sexta specimens. The average mass, area, shape, size and camber of the wing were evaluated using novel measurement techniques. Further emphasis is placed on studying the critical substructures of the wing: venation and membrane. The venation cross section is measured using detailed pathological techniques over the entire venation of the wing. The elastic modulus of the leading edge veins is experimentally determined using advanced non-contact structural dynamic techniques. The membrane elastic modulus is randomly sampled over the entire wing to determine global material properties for the membrane using nanoindentation. The data gathered from this morphological study form the basis for the replication of future finite element structural models and engineered biomimetic wings for use with flapping wing micro air vehicles.
Fuel property effects on low-speed pre-ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jatana, Gurneesh S.; Splitter, Derek A.; Kaul, Brian C.
This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less
Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng
2016-12-01
Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.
NASA Astrophysics Data System (ADS)
Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng
2016-07-01
Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.
Fuel property effects on low-speed pre-ignition
Jatana, Gurneesh S.; Splitter, Derek A.; Kaul, Brian C.; ...
2018-05-30
This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less
Building on the Legacy of Professor Keenan. Entropy An Intrinsic Property of Matter
NASA Astrophysics Data System (ADS)
Gyftopoulos, Elias P.
2008-08-01
In the scientific and engineering literature, entropy—the distinguishing feature of thermodynamics from other branches of physics—is viewed with skepticism, and thought to be not a physical property of matter—like mass or energy—but a measure either of disorder in a system, or of lack of information about the physics of a system in a thermodynamic equilibrium state, and a plethora of expressions are proposed for its analytical representation. In this article, I present briefly two revolutionary nonstatistical expositions of thermodynamics (revolutionary in the sense of Thomas Kuhn, The Structure of Scientific Revolutions, U. Chicago Press, 1970) that apply to all systems (both macroscopic and microscopic, including one spin or a single particle), to all states (thermodynamic equilibrium, and not thermodynamic equilibrium), and that disclose entropy as an intrinsic property of matter. The first theory is presented without reference to quantum mechanics even though quantum theoretic ideas are lurking behind the exposition. The second theory is a unified quantum theory of mechanics and thermodynamics without statistical probabilities, that is, I am not presenting another version of statistical quantum mechanics.
Effects of a constructed Technosol on mortality, survival and reproduction of earthworms
NASA Astrophysics Data System (ADS)
Pey, Benjamin; Cortet, Jerome; Capowiez, Yvan; Mignot, Lenaic; Nahmani, Johanne; Watteau, Francoise; Schwartz, Christophe
2010-05-01
Soils, whose properties and pedogenesis are dominated by artificial materials or transported materials, are classified as Technosols. Some of these Technosols are used in soil engineering, which is the voluntary action to combine technical materials in a given objective to restore an ecosystem. Primary by products that are used to build these Technosols need to be assessed on an ecotoxicological point of view. The following study aims to assess the effects of a constructed Technosol made from different primary by-products on the mortality, survival and reproductions of two earthworm species. The model of Technosol used here is a combination of green-waste compost (GWC) and papermill sludge (PS) mixed with thermally treated industrial soil (TIS). OECD soil is used as a control soil. Three different experiments have been managed: i) the first, to assess the potential toxicity effect on Eisenia foetida biomass (28 days) and reproduction (56 days), ii) the second to assess the short-term effect (7 days) on Lumbricus terrestris biomass, iii) and the third to assess the medium-term effect (30 days) on L. terrestris biomass. Reproduction of E. foetida is enhanced with high proportions of GWC. For biomass, GWC seems to improve body mass contrary to other materials which lead to losses of body mass. Thus, for E. foetida, GWC seems to be a high-quality and long-term source of food. Body mass of L. terrestris decreased with GWC and OECD. At short-term only, TIS/PS leads to a gain of body mass. Only equilibrium of 25% GWC - 75% TIS/PS allows a gain of body mass at medium term. TIS/PS appears to be a low-quality and short-term food resource but an excellent water tank. It can be concluded that the constructed Technosol is not toxic for fauna but some differences appear between different tested material combinations, depending on nature, proportion and trophic properties of materials.
NASA Astrophysics Data System (ADS)
Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.
2006-12-01
Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.
Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Mark, L.
1982-01-01
Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.
Widened photonic functionality of asymmetric high-index contrast/photonic crystal gratings
NASA Astrophysics Data System (ADS)
Nguyen, Hai Son; Dubois, Florian; Letartre, Xavier; Leclercq, Jean-Louis; Seassal, Christian; Viktorovitch, Pierre
2016-03-01
In this presentation we emphasize that, within the variety of parameters usable for the design of HCGs, the transverse (vertical) symmetry properties of HCGs provide a power-full joystick for the dispersion engineering of guided mode resonances. We concentrate on asymmetric HCGs designed to accommodate guided mode resonances with ultra-flat zero-curvature dispersion characteristics (or photons with ultra-heavy effective mass), as well as with Dirac cone shaped linear dispersion characteristics. Examples of the great potential of this family of asymmetric HCGs will include the development of a platform for polaritonic devices and the production of micro-lasers particularly suited for hybrid III-V / silicon heterogeneous photonic integration, along CMOS compatible technological schemes.
Lynd; Wyman; Gerngross
1999-10-01
The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of xylose and other nonglucose sugars, and "consolidated bioprocessing" in which cellulase production, cellulose hydrolysis, and fermentation of soluble carbohydrates to desired products occur in a single process step. With respect to product diversification, a distinction is made between replacement of a fossil resource-derived chemical with a biomass-derived chemical of identical composition and substitution of a biomass-derived chemical with equivalent functional characteristics but distinct composition. The substitution strategy involves larger transition issues but is seen as more promising in the long term. Metabolic engineering pursuant to the production of biocommodity products requires host organisms with properties such as the ability to use low-cost substrates, high product yield, competitive fitness, and robustness in industrial environments. In many cases, it is likely to be more successful to engineer a desired pathway into an organism having useful industrial properties rather than trying to engineer such often multi-gene properties into host organisms that do not have them naturally. Identification of host organisms with useful industrial properties and development of genetic systems for these organisms is a research challenge distinctive to biocommodity engineering. Chemical catalysis and separations technologies have important roles to play in downstream processing of biocommodity products and involve a distinctive set of challenges relative to petrochemical processing. At its current nascent state of development, the definition and advancement of the biocommodity field can benefit from integration at multiple levels. These include technical issues associated with integrating unit operations with each other, integrating production of individual products into a multi-product biorefinery, and integrating biorefineries into the broader resource, economic, and environmental systems in which they function. We anticipate that coproduction of multiple products, for example, production of fuels, chemicals, power, and/or feed, is likely to be essential for economic viability. Lifecycle analysis is necessary to verify the sustainability and environmental quality benefits of a particular biocommodity product or process. We see biocommodity engineering as a legitimate focus for graduate study, which is responsive to an established personnel demand in an industry that is expected to grow in the future. Graduate study in biocommodity engineering is supported by a distinctive blend of intellectual elements, including biotechnology, process engineering, and resource and environmental systems.
The Observer's Guide to the Gamma-Ray Burst-Supernova Connection
NASA Astrophysics Data System (ADS)
Cano, Z.
2016-10-01
In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity-decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the "average" GRB-SNe: which has a kinetic energy of EK≈2.5×10^52 erg, an ejecta mass of Mej≈6 M⊙, a nickel mass of MNi≈0.4 M⊙, a peak photospheric velocity of vph≈21,000 km s-1, a peak bolometric luminosity of Lp≈1×10^43 erg s-1, and it reaches peak bolometric light in tp≈13 days. We discuss their geometry, consider the various physical processes that are thought to power the luminosity of GRB-SNe, and whether differences exist between GRB-SNe and the SNe associated with ultra-long duration GRBs. We discuss how observations of the environments of GRB-SNe further constrain the physical properties of their progenitor stars, and give an overview of the current theoretical paradigms of their suspected central engines. We also present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs. We conclude the review by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe (abridged).
Injectable PolyMIPE Scaffolds for Soft Tissue Regeneration
Moglia, Robert S.; Robinson, Jennifer L.; Muschenborn, Andrea D.; Touchet, Tyler J.; Maitland, Duncan J.; Cosgriff-Hernandez, Elizabeth
2013-01-01
Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20–200 kPa) and strengths (4–60 kPa) as well as high recovery after the first conditioning cycle (97–99%). The resultant pore architecture was highly interconnected with large voids (0.5–2 mm) from carbon dioxide generation surrounded by water-templated pores (50–300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair. PMID:24563552
Short-term variability and mass loss in Be stars. I. BRITE satellite photometry of η and μ Centauri
NASA Astrophysics Data System (ADS)
Baade, D.; Rivinius, Th.; Pigulski, A.; Carciofi, A. C.; Martayan, Ch.; Moffat, A. F. J.; Wade, G. A.; Weiss, W. W.; Grunhut, J.; Handler, G.; Kuschnig, R.; Mehner, A.; Pablo, H.; Popowicz, A.; Rucinski, S.; Whittaker, G.
2016-04-01
Context. Empirical evidence for the involvement of nonradial pulsations (NRPs) in the mass loss from Be stars ranges from (I) a singular case (μ Cen) of repetitive mass ejections triggered by multi-mode beating to (II) several photometric reports about enormous numbers of pulsation modes that suddenly appear during outbursts and on to (III) effective single-mode pulsators. Aims: The purpose of this study is to develop a more detailed empirical description of the star-to-disk mass transfer and to check the hypothesis that spates of transient nonradial pulsation modes accompany and even drive mass-loss episodes. Methods: The BRITE Constellation of nanosatellites was used to obtain mmag photometry of the Be stars η and μ Cen. Results: In the low-inclination star μ Cen, light pollution by variable amounts of near-stellar matter prevented any new insights into the variability and other properties of the central star. In the equator-on star η Cen, BRITE photometry and Heros echelle spectroscopy from the 1990s reveal an intricate clockwork of star-disk interactions. The mass transfer is modulated with the frequency difference of two NRP modes and an amplitude three times as large as the amplitude sum of the two NRP modes. This process feeds a high-amplitude circumstellar activity running with the incoherent and slightly lower so-called Štefl frequency. The mass-loss-modulation cycles are tightly coupled to variations in the value of the Štefl frequency and in its amplitude, albeit with strongly drifting phase differences. Conclusions: The observations are well described by the decomposition of the mass loss into a pulsation-related engine in the star and a viscosity-dominated engine in the circumstellar disk. Arguments are developed that large-scale gas-circulation flows occur at the interface. The propagation rates of these eddies manifest themselves as Štefl frequencies. Bursts in power spectra during mass-loss events can be understood as the noise inherent to these gas flows. Based on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN). Based in part also on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 093.D-0367(A).
Mei, Jeng-Chun; Wu, Aden Yuan Kun; Wu, Po-Chen; Cheng, Nai-Chen; Tsai, Wei-Bor; Yu, Jiashing
2014-11-01
To repair damaged cardiac tissue, the important principle of in vitro cell culture is to mimic the in vivo cell growth environment. Thus, micro-sized cells are more suitably cultured in three-dimensional (3D) than in two-dimensional (2D) microenvironments (ex: culture dish). With the matching dimensions of works produced by microfluidic technology, chemical engineering and biochemistry applications have used this technology extensively in cellular works. The 3D scaffolds produced in our investigation has essential properties, such has high mass transfer efficiency, and variable pore sizes, to adapt to various needs of different cell types. In addition to the malleability of these innovative scaffolds, fabrication procedure was effortless and fast. Primary neonatal mice cardiomyocytes were successfully harvested and cultured in 3D scaffolds made of gelatin and collagen. Gelatin and gelatin-collagen scaffold were produced by the formation of microbubbles through a microfluidic device, and the mechanical properties of gelatin scaffold and gelatin-collagen scaffold were measured. Cellular properties in the microbubbles were also monitored. Fluorescence staining results assured that cardiomyocytes could maintain in vivo morphology in 3D gelatin scaffold. In addition, it was found that 3D scaffold could prolong the contraction behavior of cardiomyocytes compared with a conventional 2D culture dish. Spontaneously contracted behavior was maintained for the longest (about 1 month) in the 3D gelatin scaffold, about 19 days in the 3D gelatin-collagen scaffold. To sum up, this 3D platform for cell culture has promising potential for myocardial tissue engineering.
Turbo Pump Fed Micro-Rocket Engine
NASA Astrophysics Data System (ADS)
Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.
2004-10-01
Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.
Metallic Induction Reaction Engine.
1984-12-28
FODA CLAIJ TY Figure 2: Experimental Setup 2 A EML Research Metallic Induction Reaction Engine page 3 Figure 3: Aluminum Reaction Mass Ring in Flight...reaction mass materials. Furthur analysis performed with the *] numerical model indicates that there exists a back EMF saturation effect which inhibits the...instrumentation difficulties, a detailed analysis of it’s performance has not been established. r Outer Coil Projectile- Coil Inner Coil Figure 4
Jaramillo, Isabel C.; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J.; Deering-Rice, Cassandra E.; Lighty, JoAnn S.; Paine, Robert; Reilly, Christopher; Kelly, Kerry E.
2017-01-01
The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/BD, and butanol and dodecane/AD) and compared to a widely studied reference diesel particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions affect the physicochemical properties of particles, and these differences, in turn, affect commonly studied biological/toxicological responses. PMID:29227181
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
NASA Astrophysics Data System (ADS)
Keith, D.; Dykema, J. A.; Keutsch, F. N.
2017-12-01
Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Using PHP/MySQL to Manage Potential Mass Impacts
NASA Technical Reports Server (NTRS)
Hager, Benjamin I.
2010-01-01
This paper presents a new application using commercially available software to manage mass properties for spaceflight vehicles. PHP/MySQL(PHP: Hypertext Preprocessor and My Structured Query Language) are a web scripting language and a database language commonly used in concert with each other. They open up new opportunities to develop cutting edge mass properties tools, and in particular, tools for the management of potential mass impacts (threats and opportunities). The paper begins by providing an overview of the functions and capabilities of PHP/MySQL. The focus of this paper is on how PHP/MySQL are being used to develop an advanced "web accessible" database system for identifying and managing mass impacts on NASA's Ares I Upper Stage program, managed by the Marshall Space Flight Center. To fully describe this application, examples of the data, search functions, and views are provided to promote, not only the function, but the security, ease of use, simplicity, and eye-appeal of this new application. This paper concludes with an overview of the other potential mass properties applications and tools that could be developed using PHP/MySQL. The premise behind this paper is that PHP/MySQL are software tools that are easy to use and readily available for the development of cutting edge mass properties applications. These tools are capable of providing "real-time" searching and status of an active database, automated report generation, and other capabilities to streamline and enhance mass properties management application. By using PHP/MySQL, proven existing methods for managing mass properties can be adapted to present-day information technology to accelerate mass properties data gathering, analysis, and reporting, allowing mass property management to keep pace with today's fast-pace design and development processes.
Cellular interactions with tissue-engineered microenvironments and nanoparticles
NASA Astrophysics Data System (ADS)
Pan, Zhi
Tissue-engineered hydrogels composed of intermolecularlly crosslinked hyaluronan (HA-DTPH) and fibronectin functional domains (FNfds) were applied as a physiological relevant ECM mimic with controlled mechanical and biochemical properties. Cellular interactions with this tissue-engineered environment, especially physical interactions (cellular traction forces), were quantitatively measured by using the digital image speckle correlation (DISC) technique and finite element method (FEM). By correlating with other cell functions such as cell morphology and migration, a comprehensive structure-function relationship between cells and their environments was identified. Furthermore, spatiotemporal redistribution of cellular traction stresses was time-lapse measured during cell migration to better understand the dynamics of cell mobility. The results suggest that the reinforcement of the traction stresses around the nucleus, as well as the relaxation of nuclear deformation, are critical steps during cell migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. Besides single cell migration, en masse cell migration was studied by using agarose droplet migration assay. Cell density was demonstrated to be another important parameter to influence cell behaviors besides substrate properties. Findings from these studies will provide fundamental design criteria to develop novel and effective tissue-engineered constructs. Cellular interactions with rutile and anatase TiO2 nanoparticles were also studied. These particles can penetrate easily through the cell membrane and impair cell function, with the latter being more damaging. The exposure to nanoparticles was found to decrease cell area, cell proliferation, motility, and contractility. To prevent this, a dense grafted polymer brush coating was applied onto the nanoparticle surface. These modified nanoparticles failed to adhere to and penetrate through the cell membrane. As a consequence, the coating effectively decreased reactive oxygen species (ROS) formation and protected the cells. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating will likely play an important role in protecting cells and tissue from damage.
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment
NASA Technical Reports Server (NTRS)
Duchemin Olivier B.; Polk, James E.
1999-01-01
The sputtering yield of molybdenum under xenon ion bombardment was measured using a Quartz Crystal Microbalance. The measurements were made for ion kinetic energies in the range 100-1keV on molybdenum films deposited by magnetron sputtering in conditions optimized to reproduce or approach bulk-like properties. SEM micrographs for different anode bias voltages during the deposition are compared, and four different methods were implemented to estimate the density of the molybdenum films. A careful discussion of the Quartz Crystal Microbalance is proposed and it is shown that this method can be used to measure mass changes that are distributed unevenly on the crystal electrode surface, if an analytical expression is known for the differential mass-sensitivity of the crystal and the erosion profile. Finally, results are presented that are in good agreement with previously published data, and it is concluded that this method holds the promise of enabling sputtering yield measurements at energies closer to the threshold energy in the very short term.
The discovery and measurements of a Higgs boson.
Gianotti, F; Virdee, T S
2015-01-13
In July 2012, the ATLAS and CMS collaborations at CERN's Large Hadron Collider announced the discovery of a Higgs-like boson, a new heavy particle at a mass more than 130 times the mass of a proton. Since then, further data have revealed its properties to be strikingly similar to those of the Standard Model Higgs boson, a particle expected from the mechanism introduced almost 50 years ago by six theoreticians including British physicists Peter Higgs from Edinburgh University and Tom Kibble from Imperial College London. The discovery is the culmination of a truly remarkable scientific journey and undoubtedly the most significant scientific discovery of the twenty-first century so far. Its experimental confirmation turned out to be a monumental task requiring the creation of an accelerator and experiments of unprecedented capability and complexity, designed to discern the signatures that correspond to the Higgs boson. Thousands of scientists and engineers, in each of the ATLAS and CMS teams, came together from all four corners of the world to make this massive discovery possible.
Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Powell, Richard W.; Kipp, Devin M.; Adams, Douglas S.; Witkowski, Al; Kandis, Mike
2013-01-01
An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed.
NASA Technical Reports Server (NTRS)
Wong, Wing; Starkovich, John; Adams, Scott; Palaszewski, Bryan; Davison, William; Burt, William; Thridandam, Hareesh; Hu-Peng, Hsiao; Santy, Myrrl J.
1994-01-01
An experimental program to determine the viability of nanoparticulate gellant materials for gelled hydrocarbons and gelled liquid hydrogen was conducted. The gellants included alkoxides (BTMSE and BTMSH) and silica-based materials. Hexane, ethane, propane and hydrogen were gelled with the newly-formulated materials and their rheological properties were determined: shear stress versus shear rate and their attendant viscosities. Metallized hexane with aluminum particles was also rheologically characterized. The propellant and gellant formulations were selected for the very high surface area and relatively-high energy content of the gellants. These new gellants can therefore improve rocket engine specific impulse over that obtained with traditional cryogenic-fuel gellant materials silicon dioxide, frozen methane, or frozen ethane particles. Significant reductions in the total mass of the gellant were enabled in the fuels. In gelled liquid hydrogen, the total mass of gellant was reduced from 10-40 wt percent of frozen hydrocarbon particles to less that 8 wt percent with the alkoxide.
Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database
ERIC Educational Resources Information Center
Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.; Chard, Kyle; Foster, Ian T.; de Pablo, Juan
2016-01-01
Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The…
NASA Astrophysics Data System (ADS)
Cheung, C. S.; Di, Yage; Huang, Zuohua
Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Nano Icy Moons Propellant Harvester
NASA Technical Reports Server (NTRS)
VanWoerkom, Michael (Principal Investigator)
2017-01-01
As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon. We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.
Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan
2015-06-01
This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Park, Geon-Tae; Kim, Seung U.; Choi, Kyung-Chul
2017-01-01
Purpose Genetically engineered stem cells may be advantageous for gene therapy against various human cancers due to their inherent tumor-tropic properties. In this study, genetically engineered human neural stem cells (HB1.F3) expressing Escherichia coli cytosine deaminase (CD) (HB1.F3.CD) and human interferon-β (IFN-β) (HB1.F3.CD.IFN-β) were employed against lymph node–derived metastatic colorectal adenocarcinoma. Materials and Methods CD can convert a prodrug, 5-fluorocytosine (5-FC), to active 5-fluorouracil, which inhibits tumor growth through the inhibition of DNA synthesis,while IFN-β also strongly inhibits tumor growth by inducing the apoptotic process. In reverse transcription polymerase chain reaction analysis, we confirmed that HB1.F3.CD cells expressed the CD gene and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β genes. Results In results of a modified trans-well migration assay, HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward SW-620, human lymph node–derived metastatic colorectal adenocarcinoma cells. The viability of SW-620 cells was significantly reduced when co-cultured with HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. In addition, it was found that the tumor-tropic properties of these engineered human neural stem cells (hNSCs) were attributed to chemoattractant molecules including stromal cell-derived factor 1, c-Kit, urokinase receptor, urokinase-type plasminogen activator, and C-C chemokine receptor type 2 secreted by SW-620 cells. In a xenograft mouse model, treatment with hNSC resulted in significantly inhibited growth of the tumor mass without virulent effects on the animals. Conclusion The current results indicate that engineered hNSCs and a prodrug treatment inhibited the growth of SW-620 cells. Therefore, hNSC therapy may be a clinically effective tool for the treatment of lymph node metastatic colorectal cancer. PMID:27188205
NASA Astrophysics Data System (ADS)
Shepard, Michele N.
Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From application and evaluation of qualitative risk assessment approaches, differences in control banding models and results were identified, although output generally agreed with conclusions from air sampling as to whether an upgrade in site engineering controls was recommended. This research helped to improve understanding of potential worker exposures to ENMs in CMP processes, as well as the methods for risk assessment and management of metal oxide nanoparticles in occupational environments.
NASA Astrophysics Data System (ADS)
Khanlari, G. R.; Heidari, M.; Noori, M.; Momeni, A.
2016-07-01
To assess relationship between engineering characteristics and petrographic features, conglomerates samples related to Qom formation from Famenin region in northeast of Hamedan province were studied. Samples were tested in laboratory to determine the uniaxial compressive strength, point load strength index, modulus of elasticity, porosity, dry and saturation densities. For determining petrographic features, textural and mineralogical parameters, thin sections of the samples were prepared and studied. The results show that the effect of textural characteristics on the engineering properties of conglomerates supposed to be more important than mineralogical composition. It also was concluded that the packing proximity, packing density, grain shape and mean grain size, cement and matrix frequency are as textural features that have a significant effect on the physical and mechanical properties of the studied conglomerates. In this study, predictive statistical relationships were developed to estimate the physical and mechanical properties of the rocks based on the results of petrographic features. Furthermore, multivariate linear regression was used in four different steps comprising various combinations of petrographical characteristics for each engineering parameters. Finally, the best equations with specific arrangement were suggested to estimate engineering properties of the Qom formation conglomerates.
Modeling Meteor Flares for Spacecraft Safety
NASA Technical Reports Server (NTRS)
Ehlert, Steven
2017-01-01
NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.
Concept Development of a Mach 1.6 High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Shields, Elwood W.; Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.
1999-01-01
A high-speed civil transport configuration with a Mach number of 1.6 was developed as part of the NASA High-Speed Research Program to serve as a baseline for assessing advanced technologies required for an aircraft with a service entry date of 2005. This configuration offered more favorable solutions to environmental concerns than configurations with higher Mach numbers. The Mach 1.6 configuration was designed for a 6500 n.mi. mission with a 250-passenger payload. The baseline configuration has a wing area of 8732 square feet a takeoff gross weight of 591570 lb, and four 41000-lb advanced turbine bypass engines defined by NASA. These engines have axisymmetric mixer-ejector nozzles that are assumed to yield 20 dB of noise suppression during takeoff, which is assumed to satisfy, the FAR Stage III noise requirements. Any substantial reduction in this assumed level of suppression would require oversizing the engines to meet community noise regulations and would severly impact the gross weight of the aircraft at takeoff. These engines yield a ratio of takeoff thrust to weight of 0.277 and a takeoff wing loading of 67.8 lb/square feet that results in a rotation speed of 169 knots. The approach velocity of the sized configuration at the end of the mission is 131 knots. The baseline configuration was resized with an engine having a projected life of 9000 hr for hot rotating parts and 18000 hr for the rest of the engine, as required for commercial use on an aircraft with a service entry date of 2005. Results show an increase in vehicle takeoff gross weight of approximately 58700 lb. This report presents the details of the configuration development, mass properties, aerodynamic design, propulsion system and integration, mission performance, and sizing.
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1981-01-01
An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.
Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application
NASA Astrophysics Data System (ADS)
Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive
2018-01-01
We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ˜1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ˜32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ˜100 nA cm-2 at 2.5 V when held for 72 h.
Apparatus and method for producing an artificial gravitational field
NASA Technical Reports Server (NTRS)
Mccanna, Jason (Inventor)
1993-01-01
An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.
Conducting Rock Mass Rating for tunnel construction on Mars
NASA Astrophysics Data System (ADS)
Beemer, Heidi D.; Worrells, D. Scott
2017-10-01
Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.
Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.; Li, H.; Neill, S.
The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.
Review of Thermal Properties of Snow, Ice and Sea Ice,
1981-06-01
AD-AL03 734 COLD RE61ONS RESEARCH AND ENGINEERING LAS HANOVER NH F/G 8/12AI3 3REVIEW OF THERMAL PROPERTIES OF SNOW. ICE AND SEA ICE,(U)UNCLASSIFIlED...Distribution/ Availability Codes Avail and/or D~ Dis~t Special D 1 7 C- T > L) UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING...PROGRAM ELEMENT, PROJECT. TASK AREA A WORK UNIT NUMBERS U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755 DA Pr
Black holes in massive gravity as heat engines
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.
2018-06-01
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
Navya, P N; Daima, Hemant Kumar
2016-01-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
NASA Astrophysics Data System (ADS)
Navya, P. N.; Daima, Hemant Kumar
2016-02-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs
NASA Astrophysics Data System (ADS)
Luong, E.; Gerecht, S.
The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Radiation shielding estimates for manned Mars space flight.
Dudkin, V E; Kovalev, E E; Kolomensky, A V; Sakovich, V A; Semenov, V F; Demin, V P; Benton, E V
1992-01-01
In the analysis of the required radiation shielding protection of spacecraft during a Mars flight, specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low- and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons.
Service Modeling for Service Engineering
NASA Astrophysics Data System (ADS)
Shimomura, Yoshiki; Tomiyama, Tetsuo
Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.
Christie, Simon; Lobo, Prem; Lee, David; Raper, David
2017-01-17
This study evaluates the relationship between the emissions parameters of smoke number (SN) and mass concentration of nonvolatile particulate matter (nvPM) in the exhaust of a gas turbine engine for a conventional Jet A-1 and a number of alternative fuel blends. The data demonstrate the significant impact of fuel composition on the emissions and highlight the magnitude of the fuel-induced uncertainty for both SN within the Emissions Data Bank as well as nvPM mass within the new regulatory standard under development. Notwithstanding these substantial differences, the data show that correlation between SN and nvPM mass concentration still adheres to the first order approximation (FOA3), and this agreement is maintained over a wide range of fuel compositions. Hence, the data support the supposition that the FOA3 is applicable to engines burning both conventional and alternative fuel blends without adaptation or modification. The chemical composition of the fuel is shown to impact mass and number concentration as well as geometric mean diameter of the emitted nvPM; however, the data do not support assertions that the emissions of black carbon with small mean diameter will result in significant deviations from FOA3.
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. Brad
1995-01-01
Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. B.
1995-01-01
Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance
NASA Astrophysics Data System (ADS)
Koh, W. C.; Mazlan, N. M.; Rajendran, P.; Ismail, M. A.
2018-05-01
This study presents an investigation on the effect of operational altitudes on the performance of the deteriorated engine. A two-spool high bypass ratio turbofan engine is used as the test subject for this study. The engine is modelled in Gas Turbine Simulation Program (GSP) based on an existing engine model from literature. Real flight data were used for the validation. Deterioration rate of 0.1% per day is applied for all turbofan components engine. The simulation is performed by varying the altitude from sea level until 9000m. Results obtained show reduction in air mass flow rate and engine thrust as altitude increases. The reduction in air mass flow rate is due to the lower air density at higher altitude hence reduces amount of engine thrust. At 1000m to 4000m, thrust specific fuel consumption (TSFC) of the engine is improved compared to sea level. However depleted in TSFC is shown when the aircraft flies at altitude higher than 4000m. At this altitude, the effect of air density is dominant. As a result, the engine is required to burn more fuel to provide a higher thrust to sustain the aircraft speed. More fuel is consumed hence depletion in TSFC is obtained.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved Rhenium Thrust Chambers
NASA Technical Reports Server (NTRS)
O'Dell, John Scott
2015-01-01
Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.
A 1050 K Stirling space engine design
NASA Technical Reports Server (NTRS)
Penswick, L. Barry
1988-01-01
As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.
Engineering properties of resin modified pavement (RMP) for mechanistic design
NASA Astrophysics Data System (ADS)
Anderton, Gary Lee
1997-11-01
The research study described in this report focuses on determining the engineering properties of the resin modified pavement (RMP) material relating to pavement performance, and then developing a rational mechanistic design procedure to replace the current empirical design procedure. A detailed description of RMP is provided, including a review of the available literature on this relatively new pavement technology. Field evaluations of four existing and two new RMP project sites were made to assess critical failure modes and to obtain pavement samples for subsequent laboratory testing. Various engineering properties of laboratory-produced and field-recovered samples of RMP were measured and analyzed. The engineering properties evaluated included those relating to the material's stiffness, strength, thermal properties, and traffic-related properties. Comparisons of these data to typical values for asphalt concrete and portland cement concrete were made to relate the physical nature of RMP to more common pavement surfacing materials. A mechanistic design procedure was developed to determine appropriate thickness profiles of RMP, using stiffness and fatigue properties determined by this study. The design procedure is based on the U.S. Army Corps of Engineers layered elastic method for airfield flexible pavements. The WESPAVE computer program was used to demonstrate the new design procedure for a hypothetical airfield apron design. The results of the study indicated that RMP is a relatively stiff, viscoelastic pavement surfacing material with many of its strength and stiffness properties falling between those of typical asphalt concrete and portland cement concrete. The RMP's thermal and traffic-related properties indicated favorable field performance. The layered elastic design approach appeared to be a reasonable and practical method for RMP mechanistic pavement design, and this design procedure was recommended for future use and development.
Simple models for rope substructure mechanics: application to electro-mechanical lifts
NASA Astrophysics Data System (ADS)
Herrera, I.; Kaczmarczyk, S.
2016-05-01
Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.
Additional support for the TDK/MABL computer program
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dunn, Stuart S.
1993-01-01
An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Taylor; Guo, Yi; Veers, Paul
Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less
NASA Technical Reports Server (NTRS)
Zirin, R. M.; Witmer, E. A.
1972-01-01
An approximate collision analysis, termed the collision-force method, was developed for studying impact-interaction of an engine rotor blade fragment with an initially circular containment ring. This collision analysis utilizes basic mass, material property, geometry, and pre-impact velocity information for the fragment, together with any one of three postulated patterns of blade deformation behavior: (1) the elastic straight blade model, (2) the elastic-plastic straight shortening blade model, and (3) the elastic-plastic curling blade model. The collision-induced forces are used to predict the resulting motions of both the blade fragment and the containment ring. Containment ring transient responses are predicted by a finite element computer code which accommodates the large deformation, elastic-plastic planar deformation behavior of simple structures such as beams and/or rings. The effects of varying the values of certain parameters in each blade-behavior model were studied. Comparisons of predictions with experimental data indicate that of the three postulated blade-behavior models, the elastic-plastic curling blade model appears to be the most plausible and satisfactory for predicting the impact-induced motions of a ductile engine rotor blade and a containment ring against which the blade impacts.
Automotive Stirling Engine Mod 1 Design Review, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert L
It is possible to significantly improve the efficiency of spark-ignition engines given fuels with improved autoignition, evaporative cooling, and particle emission properties. At the same time, a vast range of different fuel chemistries are accessible from biomass - leading to questions about how fuel chemistries outside the range available from petroleum and ethanol can impact engine operation. This presentation will briefly describe the factors leading to poor efficiency in current SI engines, and the technologies available for improving efficiency. Improved fuel properties that enable high efficiency engine designs to be pursued aggressively will be reviewed, including octane index and sensitivity.more » A screening process based on fuel properties was applied to a large set of proposed biomass-derived gasoline blendstocks, and the properties of the best blendstocks were evaluated. Some of these fuels exhibit poor stability towards oxidation in the liquid phase, and storage stability studies for alkyl furans and cyclopentanone will be presented in brief. The importance of fuel heat of vaporization for direct injection engines, along with new research on measurement of this parameter, will be presented including an SI engine study of the impact of heat of vaporization on octane index and engine knock. Fuel effects on fine particle emissions and how our understanding breaks down for oxygenates will be discussed. Engine combustion experiments, droplet evaporation simulations, and heat of vaporization measurements conducted to better understand how oxygenates affect particle emissions will be described. This research defines a process that can be used to evaluate fuels for other types of combustion such as diesel, gasoline compression ignition, or strategies with mixed modes.« less
A modular approach to creating large engineered cartilage surfaces.
Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D
2018-01-23
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A
2018-01-30
This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Egleston, Robert W. (Inventor)
2002-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.
Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity
It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...
Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.
Pogorielov, Maksym; Hapchenko, Andrii; Deineka, Volodymyr; Rogulska, Larysa; Oleshko, Olexandr; Vodseďálková, Kateřina; Berezkinová, Liliana; Vysloužilová, Lucie; Klápšťová, Andrea; Erben, Jakub
2018-04-10
Nanofibrous materials present unique properties favorable in many biomedicine and industrial applications. In this research we evaluated biodegradation, tissue response and general toxicity of nanofibrous poly(lactic acid) (PLA) and polycaprolactone (PCL) scaffolds produced by conventional method of electrospinning and using NanoMatrix3D ® (NM3D ® ) technology. Mass density, scanning electron microscopy and in vitro degradation (static and dynamic) were used for material characterization, and subcutaneous, intramuscular and intraperitoneal implantation - for in vivo tests. Biochemical blood analysis and histology were used to assess toxicity and tissue response. Pore size and fiber diameter did not differ in conventional and NM3D ® PLA and PCL materials, but mass density was significantly lower in NM3D ® ones. Scaffolds made by conventional method showed toxic effect during the in-vivo tests due to residual concentration of chloroform that released with material degradation. NM3D ® method allowed cleaning scaffolds from residual solutions that made them nontoxic and biocompatible. Subcutaneous, intramuscular and intraperitoneal implantation of PCL and PLA NM3D ® electrospun nanofibrous scaffolds showed their appropriate cell conductive properties, tissue and vessels formation in all sites. Thus, NM3D ® PCL and PLA nanofibrous electrospun scaffolds can be used in the field of tissue engineering, surgery, wound healing, drug delivery, and so forth, due to their unique properties, nontoxicity and biocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A:000-000, 2018. © 2018 Wiley Periodicals, Inc.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Leontsev, Serhiy O.; Eitel, Richard E.
2010-08-01
Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
2018-06-01
Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at z = 0, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe (10 ≳ z ≳ 4). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST; M1500 ≈ -17). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFs with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 5. The James Webb Space Telescope (JWST) will be able to directly detect individual GCs at z ˜ 6 in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-redshift sources with -19 ≲ M_{1500} ≲ -14 in HST lensing fields indicate that they may actually be GCs in formation.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-01-01
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285
NASA Astrophysics Data System (ADS)
Eggers, Jens; Villermaux, Emmanuel
2008-03-01
Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the universe. Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-03-04
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.
2013-01-01
The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.
Jan, Kulsum; Riar, C S; Saxena, D C
2015-12-01
Different agro-industrial wastes were mixed with different plasticizers and extruded to form the pellets to be used further for development of biodegradable molded pots. Bulk density and macro-porosity are the important engineering properties used to determine the functional characteristics of the biodegradable pellets viz., expansion volume, water solubility, product colour, flowability and compactness. Significant differences in the functional properties of pellets with varying bulk densities (loose and tapped) and macro-porosities (loose, tapped) were observed. The observed mean bulk density of biodegradable pellets made from different formulations ranged between 0.213 and 0.560 g/ml for loose fill conditions and 0.248 to 0.604 g/ml for tapped fill conditions. Biodegradable pellets bear a good compaction for both loose and tapped fill methods. The mean macro-porosity of biodegradable pellets ranged between 1.19 and 54.48 % for loose fill condition and 0.29 to 53.35 % for tapped fill condition. Hausner ratio (HR) for biodegradable pellets varied from 1.026 to 1.328, indicating a good flowability of biodegradable pellets. Pearson's correlation between engineering properties and functional properties of biodegradable pellets revealed that from engineering properties functional properties can be predicted.
DOT National Transportation Integrated Search
2009-06-01
A comprehensive laboratory study was undertaken to determine engineering properties of cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway pavements in accordance with the AASHTO 2002 Mechanistic-Empirical Pavement D...
Sensitivities of Internal Combustion Automotive Engines to Variations in Fuel Properties
DOT National Transportation Integrated Search
1982-02-01
An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H/C ratio, distillation range, aromatic content, ignition quality as determined by the octane...
DOT National Transportation Integrated Search
1974-01-01
A survey of diesel engine, truck, intake system, and exhaust system manufacturers was made for the purpose of compiling detailed information on all major mass-produced diesel engines currently used in the United States for trucks and buses, and on ex...
Teaching Process Engineering Principles Using an Ice Cream Maker
ERIC Educational Resources Information Center
Kaletunc, Gonul; Duemmel, Kevin; Gecik, Christopher
2007-01-01
The ice cream laboratory experiment is designed to illustrate and promote discussion of several engineering and science topics including material and energy balances, heat transfer, freezing, mass transfer, mixing, viscosity, and freezing point depression in a sophomore level engineering class. A pre-lab assignment requires the students to develop…
40 CFR 90.301 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the test engine is operated using a steady state test cycle on an engine dynamometer. The exhaust... concentrations are converted to mass emission rates in grams per hour based on either fuel flow, fuel flow and engine intake air flow, or exhaust volume flow. Weighted emission rates are reported as grams per brake...
Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering
NASA Astrophysics Data System (ADS)
Jose, Moncy V.
Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed favorable cell adhesion and proliferation. Protein adsorption studies showed the higher surface area as well as the presence of collagen resulted in higher fibronectin and vitronectin adsorption. Crosslinking by EDC resulted in enhanced mechanical property in hydrated state and enhanced degradation stability. These results suggest that such a multi-component system can take advantage of the mechanical benefit available from the individual components and also provide specific biological cues necessary for a successful scaffold.
Practical and Efficient Searching in Proteomics: A Cross Engine Comparison
Paulo, Joao A.
2014-01-01
Background Analysis of large datasets produced by mass spectrometry-based proteomics relies on database search algorithms to sequence peptides and identify proteins. Several such scoring methods are available, each based on different statistical foundations and thereby not producing identical results. Here, the aim is to compare peptide and protein identifications using multiple search engines and examine the additional proteins gained by increasing the number of technical replicate analyses. Methods A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 technical replicates. The data were combined and searched using Mascot, SEQUEST, and Andromeda. Comparisons were made of peptide and protein identifications among the search engines. In addition, searches using each engine were performed with incrementing number of technical replicates. Results The number and identity of peptides and proteins differed across search engines. For all three search engines, the differences in proteins identifications were greater than the differences in peptide identifications indicating that the major source of the disparity may be at the protein inference grouping level. The data also revealed that analysis of 2 technical replicates can increase protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%. Conclusions The data emphasize two practical methods of increasing the robustness of mass spectrometry data analysis. The data show that 1) using multiple search engines can expand the number of identified proteins (union) and validate protein identifications (intersection), and 2) analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, information can be extracted from a dataset by performing database searching with different engines and performing technical repeats, which requires no additional sample preparation and effectively utilizes research time and effort. PMID:25346847
Practical and Efficient Searching in Proteomics: A Cross Engine Comparison.
Paulo, Joao A
2013-10-01
Analysis of large datasets produced by mass spectrometry-based proteomics relies on database search algorithms to sequence peptides and identify proteins. Several such scoring methods are available, each based on different statistical foundations and thereby not producing identical results. Here, the aim is to compare peptide and protein identifications using multiple search engines and examine the additional proteins gained by increasing the number of technical replicate analyses. A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 technical replicates. The data were combined and searched using Mascot, SEQUEST, and Andromeda. Comparisons were made of peptide and protein identifications among the search engines. In addition, searches using each engine were performed with incrementing number of technical replicates. The number and identity of peptides and proteins differed across search engines. For all three search engines, the differences in proteins identifications were greater than the differences in peptide identifications indicating that the major source of the disparity may be at the protein inference grouping level. The data also revealed that analysis of 2 technical replicates can increase protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%. The data emphasize two practical methods of increasing the robustness of mass spectrometry data analysis. The data show that 1) using multiple search engines can expand the number of identified proteins (union) and validate protein identifications (intersection), and 2) analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, information can be extracted from a dataset by performing database searching with different engines and performing technical repeats, which requires no additional sample preparation and effectively utilizes research time and effort.
Fundamentals of biomechanics in tissue engineering of bone.
Athanasiou, K A; Zhu, C; Lanctot, D R; Agrawal, C M; Wang, X
2000-08-01
The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.
Pyrolysis Model Development for a Multilayer Floor Covering
McKinnon, Mark B.; Stoliarov, Stanislav I.
2015-01-01
Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556
DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike
2017-11-01
This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.
Avian and Herpetological Survey Results for Fairchild Air Force Base and Ancillary Properties
2014-10-02
unlimited. The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC...Herpetological Survey Results for Fairchild Air Force Base and Ancillary Properties Jinelle H. Sperry Construction Engineering Research Laboratory (CERL) US ...Air Force Base (FAFB) and used survey results to extrapolate guidelines for species management. DISCLAIMER: The contents of this report are not to be
Moroni, L; de Wijn, J R; van Blitterswijk, C A
2006-03-01
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2014-01-01
A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157
NASA Astrophysics Data System (ADS)
Molea, A.; Visuian, P.; Barabás, I.; Suciu, R. C.; Burnete, N. V.
2017-10-01
In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.
Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources
NASA Astrophysics Data System (ADS)
Presto, A. A.; Gordon, T. D.; Robinson, A. L.
2014-05-01
A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass spectra and ambient OOA factors, though this poor agreement should be expected based on the variability of ambient OOA factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.50 and -0.40, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry.
Bartlett, Richard D; Choi, David; Phillips, James B
2016-10-01
Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.
Douglas, Timothy E L; Piwowarczyk, Wojciech; Pamula, Elzbieta; Liskova, Jana; Schaubroeck, David; Leeuwenburgh, Sander C G; Brackman, Gilles; Balcaen, Lieve; Detsch, Rainer; Declercq, Heidi; Cholewa-Kowalska, Katarzyna; Dokupil, Agnieszka; Cuijpers, Vincent M J I; Vanhaecke, Frank; Cornelissen, Ria; Coenye, Tom; Boccaccini, Aldo R; Dubruel, Peter
2014-08-01
Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.
Improved Tandem Measurement Techniques for Aerosol Particle Analysis
NASA Astrophysics Data System (ADS)
Rawat, Vivek Kumar
Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.
2017-01-01
Summary Hypoallergenic antibacterial low-molecular-mass peptides were produced from defatted soybean meal in a membrane bioreactor. In the first step, soybean meal proteins were digested with trypsin in the bioreactor, operated in batch mode. For the tryptic digestion of soybean meal protein, optimum initial soybean meal concentration of 75 g/L, temperature of 40 °C and pH=9.0 were determined. After enzymatic digestion, low-molecular-mass peptides were purified with cross-flow flat sheet membrane (pore size 100 µm) and then with tubular ceramic ultrafiltration membrane (molecular mass cut-off 5 kDa). Effects of transmembrane pressure and the use of a static turbulence promoter to reduce the concentration polarization near the ultrafiltration membrane surface were examined and their positive effects were proven. For the filtration with ultrafiltration membrane, transmembrane pressure of 3·105 Pa with 3-stage discontinuous diafiltration was found optimal. The molecular mass distribution of purified peptides using ultrafiltration membrane was determined by a liquid chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry setup. More than 96% of the peptides (calculated as relative frequency) from the ultrafiltration membrane permeate had the molecular mass M≤1.7 kDa and the highest molecular mass was found to be 3.1 kDa. The decrease of allergenic property due to the tryptic digestion and membrane filtration was determined by an enzyme-linked immunosorbent assay and it was found to exceed 99.9%. It was also found that the peptides purified in the ultrafiltration membrane promoted the growth of Pediococcus acidilactici HA6111-2 and they possessed antibacterial activity against Bacillus cereus. PMID:29089846
Goloborodko, Anton A; Levitsky, Lev I; Ivanov, Mark V; Gorshkov, Mikhail V
2013-02-01
Pyteomics is a cross-platform, open-source Python library providing a rich set of tools for MS-based proteomics. It provides modules for reading LC-MS/MS data, search engine output, protein sequence databases, theoretical prediction of retention times, electrochemical properties of polypeptides, mass and m/z calculations, and sequence parsing. Pyteomics is available under Apache license; release versions are available at the Python Package Index http://pypi.python.org/pyteomics, the source code repository at http://hg.theorchromo.ru/pyteomics, documentation at http://packages.python.org/pyteomics. Pyteomics.biolccc documentation is available at http://packages.python.org/pyteomics.biolccc/. Questions on installation and usage can be addressed to pyteomics mailing list: pyteomics@googlegroups.com.
NASA Technical Reports Server (NTRS)
1977-01-01
Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.
Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors
NASA Astrophysics Data System (ADS)
Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano
2018-03-01
We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.
This cost calculator is designed as a guide for municipal or local governments to assist in calculating their expected costs of implementing and conducting long-term stewardship of institutional controls and engineering controls at brownfield properties.
Characteristics and engineering properties of the soft soil layer in highway soil subgrades.
DOT National Transportation Integrated Search
2006-06-01
The objective of this research was to examine the conditions and characteristics of soil subgrades that had been stabilized using mechanical compaction. Goals of the study are to identify and examine the engineering properties and behavior of the ...
Cooling system having reduced mass pin fins for components in a gas turbine engine
Lee, Ching-Pang; Jiang, Nan; Marra, John J
2014-03-11
A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.