Sample records for mass scattering efficiency

  1. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  2. Optical properties of aerosols at Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.

    Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.

  3. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets

    NASA Astrophysics Data System (ADS)

    Marino, Sebastian; Bonsor, Amy; Wyatt, Mark C.; Kral, Quentin

    2018-06-01

    Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ˜7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (˜20RH, m).

  4. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  5. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  6. Exploring the applicability and limitations of selected optical scattering instruments for PM mass measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Marto, Joseph P.; Schwab, James J.

    2018-05-01

    Two optical scattering instruments for particle mass measurement, the Thermo Personal Data RAM (PDR-1500) and the TSI Environmental DustTrak DRX (Model 8543) were evaluated by (1) using poly- and mono-disperse test aerosol in the laboratory, and (2) sampling ambient aerosol. The responses of these optical scattering instruments to different particle characteristics (size, composition, concentration) were compared with responses from reference instruments. A Mie scattering calculation was used to explain the dependence of the optical instruments' response to aerosol size and composition. Concurrently, the detection efficiency of one Alphasense Optical Particle Counter (OPC-N2) was evaluated in the laboratory as well. The relationship between aerosol mass concentration and optical scattering was determined to be strongly dependent on aerosol size and to a lesser extent on aerosol composition (as reflected in the refractive indices of the materials tested) based on ambient measurements. This confirms that there is no simple way to use optical scattering instruments over a wide range of conditions without adjustments based on knowledge of aerosol size and composition. In particular, a test period measuring ambient aerosol with optical scattering instruments and a mass based method (an Aerodyne Aerosol Mass Spectrometer) determined that roughly two thirds of the variance (R2 = 0.64) of the optical to mass signal ratio is explained by the aerosol mass median diameter alone. These observations and calculations help evaluate the applicability and limitations of these optical scattering instruments, and provide guidance to designing suitable applications for each instrument by considering aerosol sources and aerosol size.

  7. The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Lagos, Claudia del P.; Baker, Ashley D.; Berlind, Andreas A.; Stark, David V.; Moffett, Amanda J.; Nasipak, Zachary; Norris, Mark A.

    2017-11-01

    We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass {M}{bary}{cold} ˜ 1011 {M}⊙ . The SAM, however, has significantly fewer groups at the transition mass ˜1011 {M}⊙ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ˜2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of {M}{halo}˜ {10}11.4-12 {M}⊙ , which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.

  8. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2017-05-01

    We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, haloes of the same present-day mass but different formation histories will have different z = 0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, σlog M*. For massive haloes that undergo rapid quenching of star formation at z ˜ 2, different mechanisms that trigger this quenching yield different values of σlog M*. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find σlog M* = 0.16 dex for 1011 M⊙ galaxies. Under the assumption that the threshold is constant with time, such a low value of σlog M* rules out all of these models with the exception of quenching by a stellar mass threshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why σlog M* is so small may be key to understanding the physics of galaxy formation.

  9. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.

  10. Aerosol optical properties at rural background area in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  11. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  12. High-pressure 4He drift tubes for fissile material detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Morris, Christopher L.; Gray, F. E.; Bacon, J. D.; Brockwell, M. I.; Chang, D. Y.; Chung, K.; Dai, W. G.; Greene, S. J.; Hogan, G. E.; Lisowski, P. W.; Makela, M. F.; Mariam, F. G.; McGaughey, P. L.; Mendenhall, M.; Milner, E. C.; Miyadera, H.; Murray, M. M.; Perry, J. O.; Roybal, J. D.; Saunders, A.; Spaulding, R. J.; You, Z.

    2013-03-01

    A detector efficiency model based on energy extraction from neutrons is described and used to compare 4He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of 4He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors (4He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but 4He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure 4He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.

  13. A Simple Non-equilibrium Model of Star Formation and Scatter in the Kennicutt-Schmidt Relation and Star Formation Efficiencies in Galaxies

    NASA Astrophysics Data System (ADS)

    Orr, Matthew; Hopkins, Philip F.

    2018-06-01

    I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.

  14. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Andreae, Tracey W.; Andreae, Meinrat O.; Ichoku, Charles; Maenhaut, Willy; Cafmeyer, Jan; Karnieli, Arnon; Orlovsky, Leah

    2002-01-01

    We investigated aerosol optical properties, mass concentration, and chemical composition over a 2 year period at a remote site in the Negev desert, Israel (Sde Boker, 30° 51'N, 34° 47'E, 470 m above sea level). Light-scattering measurements were made at three wavelengths (450, 550, and 700 nm), using an integrating nephelometer, and included the separate determination of the backscatter fraction. Aerosol coarse and fine fractions were collected with stacked filter units; mass concentrations were determined by weighing, and the chemical composition by proton-induced X-ray emission and instrumental neutron activation analysis. The total scattering coefficient at 550 nm showed a median of 66.7 Mm-1(mean value 75.2 Mm-1, standard deviation 41.7 Mm-1) typical of moderately polluted continental air masses. Values of 1000 Mm-1and higher were encountered during severe dust storm events. During the study period, 31 such dust events were detected. In addition to high scattering levels, they were characterized by a sharp drop in the Ångström coefficient (i.e., the spectral dispersion of the light scattering) to values near zero. Mass-scattering efficiencies were obtained by a multivariate regression of the scattering coefficients on dust, sulfate, and residual components. An analysis of the contributions of these components to the total scattering observed showed that anthropogenic aerosol accounted for about 70% of scattering. The rest was dominated by the effect of the large dust events mentioned above and of small dust episodes typically occurring during midafternoon.

  15. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  16. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2008-09-01

    A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  17. Single particles measured by a light scattering module coupled to a time-of-flight aerosol mass spectrometer onboard the NOAA P-3 aircraft during SENEX

    NASA Astrophysics Data System (ADS)

    Liao, J.; Middlebrook, A. M.; Welti, A.; Sueper, D.; Murphy, D. M.

    2014-12-01

    Single particles in the eastern US were characterized by a light scattering module coupled to a time-of-flight aerosol mass spectrometer (LS-ToF-AMS) onboard the NOAA P-3 aircraft during the Southeastern Nexus (SENEX) campaign. Single particle data were collected for 30 seconds every 5 minutes. Aerosols larger than 200-300 nm in vacuum aerodynamic diameter can be optically detected by the 405 nm crystal laser and trigger the saving of single particle mass spectra. The measured single particles are internally-mixed as expected. The single particles were classified as prompt, delayed, and null based on the chemical ion signal arrival time difference between prediction from the light scattering signal and measurement by mass spectrometer and the presence or absence of a mass spectrum. On average the number fraction of particles detected as prompt, delayed, and null (no spectrum) is about 30%, 10%, and 60%. The number fraction of these three particle types varied with aerosol size, chemical composition and the investigation region and will be discussed in detail. For example, the number fraction of prompt particles was significantly higher for the flight to the Pennsylvania natural gas shale region on July 6, 2013, which is probably related to the chemical composition (more acidic) and phase of the ambient particles. These particle types and detection efficiency are related to the bouncing effect on the vaporizer and may provide insight into the non-unit AMS collection efficiency. Moreover, most of the particles larger than 800 nm in vacuum aerodynamic diameter sized with the traditional AMS PToF mode are delayed particles and their mass spectral signals appear to be affected by this process.

  18. A covariant multiple scattering series for elastic projectile-target scattering

    NASA Technical Reports Server (NTRS)

    Gross, Franz; Maung-Maung, Khin

    1989-01-01

    A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.

  19. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  20. Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2017-11-01

    Factorization of scattering is the hallmark of integrable 1 +1 dimensional quantum field theories. For factorization of scattering to be possible the set of masses and momenta must be conserved in any two-to-two scattering process. We use this fact to constrain the form of the Ramond-Ramond fluxes for integrable supergravity anti-de Sitter (AdS) backgrounds by analyzing tree-level scattering of two AdS bosons into two fermions on the worldsheet of a Berenstein-Maldacena-Nastase string. We find a condition which can be efficiently used to rule out integrability of AdS strings and therefore of the corresponding AdS/conformal field theory dualities, as we demonstrate for some simple examples.

  1. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  2. Unstable low-mass planetary systems as drivers of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Villaver, Eva; Veras, Dimitri; Gänsicke, Boris T.; Bonsor, Amy

    2018-05-01

    At least 25 {per cent} of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

  3. Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.

    2012-12-01

    In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).

  4. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    NASA Astrophysics Data System (ADS)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  5. Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2017-10-02

    The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less

  6. Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn

    The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less

  7. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  8. Scattering of hydrogen, nitrogen and water ions from micro pore optic plates for application in spaceborne plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Stude, Joan; Wieser, Martin; Barabash, Stas

    2016-10-01

    Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.

  9. Scattering of Dirac waves off Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata

    2000-10-01

    Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.

  10. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  11. Dynamics of CO2 scattering off a perfluorinated self-assembled monolayer. Influence of the incident collision energy, mass effects, and use of different surface models.

    PubMed

    Nogueira, Juan J; Vázquez, Saulo A; Mazyar, Oleg A; Hase, William L; Perkins, Bradford G; Nesbitt, David J; Martínez-Núñez, Emilio

    2009-04-23

    The dynamics of collisions of CO2 with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) on gold were investigated by classical trajectory calculations using explicit atom (EA) and united atom (UA) models to represent the F-SAM surface. The CO2 molecule was directed perpendicularly to the surface at initial collision energies of 1.6, 4.7, 7.7, and 10.6 kcal/mol. Rotational distributions of the scattered CO2 molecules are in agreement with experimental distributions determined for collisions of CO2 with liquid surfaces of perfluoropolyether. The agreement is especially good for the EA model. The role of the mass in the efficiency of the energy transfer was investigated in separate simulations in which the mass of the F atoms was replaced by either that of hydrogen or chlorine, while keeping the potential energy function unchanged. The calculations predict the observed trend that less energy is transferred to the surface as the mass of the alkyl chains increases. Significant discrepancies were found between results obtained with the EA and UA models. The UA surface leads to an enhancement of the energy transfer efficiency in comparison with the EA surface. The reason for this is in the softer structure of the UA surface, which facilitates transfer from translation to interchain vibrational modes.

  12. The structure of the distant Kuiper belt in a Nice model scenario

    NASA Astrophysics Data System (ADS)

    Pike, Rosemary E.; Lawler, Samantha; Brasser, Ramon; Shankman, Cory; Alexandersen, Mike; Kavelaars, J. J.

    2016-10-01

    By utilizing a well-sampled migration model and characterized survey detections, we demonstrate that the Nice-model scenario results in consistent populations of scattering trans-Neptunian objects (TNOs) and several resonant TNO populations, but fails to reproduce the large population of 5:1 resonators discovered in surveys. We examine in detail the TNO populations implanted by the Nice model simulation from Brasser and Morbidelli (2013, B&M). This analysis focuses on the region from 25-155 AU, probing the classical, scattering, detached, and major resonant populations. Additional integrations were necessary to classify the test particles and determine population sizes and characteristics. The classified simulation objects are compared to the real TNOs from the Canada-France Ecliptic Plane Survey (CFEPS), CFEPS high latitude fields, and the Alexandersen (2016) survey. These surveys all include a detailed characterization of survey depth, pointing, and tracking efficiency, which allows detailed testing of this independently produced model of TNO populations. In the B&M model, the regions of the outer Solar System populated via capture of scattering objects are consistent with survey constraints. The scattering TNOs and most n:1 resonant populations have consistent orbital distributions and population sizes with the real detections, as well as a starting disk mass consistent with expectations. The B&M 5:1 resonators have a consistent orbital distribution with the real detections and previous models. However, the B&M 5:1 Neptune resonance is underpopulated by a factor of ~100 and would require a starting proto-planetesimal disk with a mass of ~100 Earth masses. The large population in the 5:1 Neptune resonance is unexplained by scattering capture in a Nice-model scenario, however this model accurately produces the TNO subpopulations that result from scattering object capture and provides additional insight into sub-population orbital distributions.

  13. Hierarchical Galaxy Growth and Scatter in the Stellar Mass-Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Conroy, Charlie; Behroozi, Peter

    2016-12-01

    The relation between galaxies and dark matter halos reflects the combined effects of many distinct physical processes. Observations indicate that the z = 0 stellar mass-halo mass (SMHM) relation has remarkably small scatter in stellar mass at fixed halo mass (≲0.2 dex), with little dependence on halo mass. We investigate the origins of this scatter by combining N-body simulations with observational constraints on the SMHM relation. We find that at the group and cluster scale ({M}{vir}\\gt {10}14 {M}⊙ ) the scatter due purely to hierarchical assembly is ≈ 0.16 dex, which is comparable to recent direct observational estimates. At lower masses, mass buildup since z≈ 2 is driven largely by in situ growth. We include a model for the in situ buildup of stellar mass and find that an intrinsic scatter in this growth channel of 0.2 dex produces a relation between scatter and halo mass that is consistent with observations from {10}12 {M}⊙ \\lt {M}{vir}\\lt {10}14.75 {M}⊙ . The approximately constant scatter across a wide range of halo masses at z = 0 thus appears to be a coincidence, as it is determined largely by in situ growth at low masses and by hierarchical assembly at high masses. These results indicate that the scatter in the SMHM relation can provide unique insight into the regularity of the galaxy formation process.

  14. Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Trinchieri, G.; Moretti, A.; Wang, J.

    2017-10-01

    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (I.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050 < z < 0.135) Universe, mostly with 14 < log M500/M⊙ ≲ 14.5, and with caustic masses. We found a 35% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06 ± 0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.

  15. Characterization of Optical Properties of Desert Dust and Other Aerosols Using Postive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-12-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.

  16. Linking Dense Gas from the Milky Way to External Galaxies

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.

    2016-06-01

    In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.

  17. Quenching star formation with quasar outflows launched by trapped IR radiation

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (< 10 Myr). Outflowing material is multi-phase, though predominantly composed of cool gas, forming via a thermal instability in the shocked swept-up component. Radiation pressure- and thermally-driven outflows both affect their host galaxies significantly, but in different, complementary ways. Thermally-driven outflows couple more efficiently to diffuse halo gas, generating more powerful, hotter and more volume-filling outflows. IR radiation, through its ability to penetrate dense gas via diffusion, is more efficient at ejecting gas from the bulge. The combination of gas ejection through outflows with internal pressurisation by trapped IR radiation leads to a complete shut down of star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  18. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  19. I = 1 and I = 2 π-π scattering phase shifts from Nf = 2 + 1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Bulava, John; Fahy, Brendan; Hörz, Ben; Juge, Keisuke J.; Morningstar, Colin; Wong, Chik Him

    2016-09-01

    The I = 1 p-wave and I = 2 s-wave elastic π-π scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with Nf = 2 + 1 dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume V =(3.7 fm)3, pion mass mπ = 230 MeV, and spatial lattice spacing as = 0.11 fm. Calculation of the necessary temporal correlation matrices is efficiently performed using the stochastic LapH method, while the large volume enables an improved energy resolution compared to previous work. For this single ensemble we obtain mρ /mπ = 3.350 (24), gρππ = 5.99 (26), and a clear signal for the I = 2 s-wave. The success of the stochastic LapH method in this proof-of-principle large-volume calculation paves the way for quantitative study of the lattice spacing effects and quark mass dependence of scattering amplitudes using state-of-the-art ensembles.

  20. ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighipour, Nader; Scott, Edward R. D., E-mail: nader@ifa.hawaii.edu

    2012-04-20

    In their model for the origin of the parent bodies of iron meteorites, Bottke et al. proposed differentiated planetesimals, formed in 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit ofmore » Jupiter on the early scattering of planetesimals from the terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 M{sub Circled-Plus }, its effects on the interactions among planetesimals and planetary embryos are negligible. However, when the planet mass is between 10 and 50 M{sub Circled-Plus }, simulations point to a transitional regime with {approx}50 M{sub Circled-Plus} being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation.« less

  1. Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies

    NASA Astrophysics Data System (ADS)

    Garrison-Kimmel, Shea; Bullock, James S.; Boylan-Kolchin, Michael; Bardwell, Emma

    2017-01-01

    We use Local Group galaxy counts together with the ELVIS N-body simulations to explore the relationship between the scatter and slope in the stellar mass versus halo mass relation at low masses, M⋆ ≃ 105-108 M⊙. Assuming models with lognormal scatter about a median relation of the form M_star ∝ M_halo^α, the preferred log-slope steepens from α ≃ 1.8 in the limit of zero scatter to α ≃ 2.6 in the case of 2 dex of scatter in M⋆ at fixed halo mass. We provide fitting functions for the best-fitting relations as a function of scatter, including cases where the relation becomes increasingly stochastic with decreasing mass. We show that if the scatter at fixed halo mass is large enough (≳ 1 dex) and if the median relation is steep enough (α ≳ 2), then the `too-big-to-fail' problem seen in the Local Group can be self-consistently eliminated in about ˜5-10 per cent of realizations. This scenario requires that the most massive subhaloes host unobservable ultra-faint dwarfs fairly often; we discuss potentially observable signatures of these systems. Finally, we compare our derived constraints to recent high-resolution simulations of dwarf galaxy formation in the literature. Though simulation-to-simulation scatter in M⋆ at fixed Mhalo is large among different authors (˜2 dex), individual codes produce relations with much less scatter and usually give relations that would overproduce local galaxy counts.

  2. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo Velona, A. D.; Gavignaud, I.; Meza, A.

    2013-06-20

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevantmore » evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. Finally, the [O/Fe] abundance ratio is presented too: we report a strong increasing evolution with redshift at given mass, especially at z {approx}> 1. The expected increasing trend with mass is recovered when only considering the more massive galaxies. We discuss these results in terms of the mechanisms driving the evolution within the high- and low-mass regimes at different epochs: mergers, feedback-driven outflows, and the intrinsic variation of the star formation efficiency.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{submore » B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.« less

  4. Infrared chemiluminescence study of the reaction Cl + HI yielding HCl + I at enhanced collision energies.

    NASA Technical Reports Server (NTRS)

    Cowley, L. T.; Horne, D. S.; Polanyi, J. C.

    1971-01-01

    Performed chemiluminescence and beam experiments show a markedly increased efficiency of conversion of the reaction energy into vibration and a markedly enhanced tendency for forward scattering in the reaction Cl + HI yields HCl + I as compared with H + Cl2 yields HCl + Cl. These differences appear to be due predominantly to the difference in the masses involved.

  5. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants

    NASA Astrophysics Data System (ADS)

    Hsiao, Ta-Chih; Chen, Wei-Nai; Ye, Wei-Cheng; Lin, Neng-Huei; Tsay, Si-Chee; Lin, Tang-Huang; Lee, Chung-Te; Chuang, Ming-Tung; Pantina, Peter; Wang, Sheng-Hsiang

    2017-02-01

    The Lulin Atmospheric Background Station (LABS, 23.47°N 120.87°E, 2862 m ASL) in Central Taiwan was constructed in 2006 and is the only high-altitude background station in the western Pacific region for studying the influence of continental outflow. In this study, extensive optical properties of aerosols, including the aerosol light scattering coefficient (σs) and light absorption coefficient (σa), were collected from 2013 to 2014. The intensive optical properties, including mass scattering efficiency (αs), mass absorption efficiency (αa), single scattering albedo (ω), scattering Ångstrӧm exponent (Å), and backscattering fraction (b), were determined and investigated, and the distinct seasonal cycle was observed. The value of αs began to increase in January and reached a maximum in April; the mean in spring was 5.89 m2 g-1 with a standard deviation (SD) of 4.54 m2 g-1 and a 4.48 m2 g-1 interquartile range (IQR: 2.95-7.43 m2 g-1). The trend was similar in αa, with a maximum in March and a monthly mean of 0.84 m2 g-1. The peak values of ω (Mean = 0.92, SD = 0.03, IQR: 0.90-0.93) and Å (Mean = 2.22, SD = 0.61, IQR: 2.12-2.47) occurred in autumn. These annual patterns of optical properties were associated with different long-range transport patterns of air pollutants such as biomass burning (BB) aerosol in spring and potential anthropogenic emissions in autumn. The optical measurements performed at LABS during spring in 2013 were compared with those simultaneously performed at the Doi Ang Kang Meteorology Station, Chiang Mai Province, Thailand (DAK, 19.93°N, 99.05°E, 1536 m a.s.l.), which is located in the Southeast Asia BB source region. Furthermore, the relationships among αs, αa, and b were used to characterize the potential aerosol types transported to LABS during different seasons, and the data were inspected according to the HYSPLIT 5-day backward trajectories, which differentiate between different regions of air mass origin.

  6. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  7. Consistent analytic approach to the efficiency of collisional Penrose process

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Ogasawara, Kota; Miyamoto, Umpei

    2016-07-01

    We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the colliding particles has its angular momentum fine-tuned to the critical value to enter the horizon. We show that if the fine-tuned particle is ingoing on the collision, the upper limit of the efficiency is (2 +√{3 })(2 -√{2 })≃2.186 , while if the fine-tuned particle is bounced back before the collision, the upper limit is (2 +√{3 })2≃13.93 . Despite earlier claims, the former can be attained for inverse Compton scattering if the fine-tuned particle is massive and starts at rest at infinity, while the latter can be attained for various particle reactions, such as inverse Compton scattering and pair annihilation, if the fine-tuned particle is either massless or highly relativistic at infinity. We discuss the difference between the present and earlier analyses.

  8. The fate of scattered planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less

  9. Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique

    2018-01-01

    The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.

  10. Mass-energy and momentum extraction by gravitational wave emission in the merger of two colliding black holes: The non-head-on case

    NASA Astrophysics Data System (ADS)

    Aranha, R. F.; Soares, I. Damião; Tonini, E. V.

    2012-01-01

    We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.

  11. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  12. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by about 0.15 μg/m3. Semi-continuous carbon concentrations did not compare favorably with 24-hour measurements. Fine mass closure calculations suggested that the factor for estimating organic mass from measurements of carbon was approximately 1.8. Furthermore, fine scattering closure calculations showed that the use of 4.0 m2/g for the fine organic mass scattering coefficient was an underestimate by at least 30% for periods with high organic mass concentrations.

  13. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGES

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  14. Gamma rays from Penrose powered black holes in Centaurus A, 3C 273, and NGC 4151

    NASA Technical Reports Server (NTRS)

    Kafatos, M.

    1980-01-01

    Gamma-ray observations of Cen A, 3C 273, and NGC 4151 are examined under the assumption that Penrose collision processes in the ergospheres of massive black holes power their nuclei. The observed sharp break in the MeV region of the NGC spectrum is attributed to Penrose Compton scattering, and the absence of an MeV break in the spectra of Cen A and 3C 273 implies Penrose pair production. Central black hole masses of tens of millions of solar masses for NGC 4151 and Cen A, and tens of billions of solar masses for 3C 273, are obtained. Attention is also given to accretion rate, the efficiency of accretion, QSOs and Seyferts.

  15. On the Scatter of the Present-day Stellar Metallicity–Mass Relation of Cluster Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Engler, Christoph; Lisker, Thorsten; Pillepich, Annalisa

    2018-04-01

    We examine the scatter of the relation between stellar mass and stellar metallicity for cluster dwarf galaxies in the cosmological simulation Illustris. The mass-metallicity relation exhibits the smallest intrinsic scatter at the galaxies' times of peak stellar mass, suggesting stellar mass stripping to be the primary effect responsible for the rather broad relation at present. However, for about 40% of galaxies in the high-metallicity tail of the relation, we find mass stripping to coincide with an increased enrichment of stellar metallicity, possibly caused by the stripping of low-metallicity stars in the galaxy outskirts.

  16. Physical and chemical characteristics of aerosols over the Negev Desert (Israel) during summer 1996

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Andreae, M. O.; Andreae, T. W.; Ichoku, C.; Schebeske, G.; Kettle, J.; Maenhaut, W.; Cafmeyer, J.; Ptasinsky, J.; Karnieli, A.; Lelieveld, J.

    2001-03-01

    Sde Boker, in the Negev Desert of Israel (30°51'N, 34°47'E; 470 m above sea level (asl), is a long-term station to investigate anthropogenic and natural aerosols in the eastern Mediterranean in the framework of the Aerosol, Radiation and Chemistry Experiment (ARACHNE). Ground-level measurements of physical and chemical properties of aerosols and supporting trace gases were performed during an intensive campaign in summer 1996 (ARACHNE-96). Fine non sea salt (nss)-SO42- averaged 8±3 μg m-3 and fine black carbon averaged 1.4±0.5 μg m-3, comparable to values observed off the east coast of the United States. Optical parameters relevant for radiative forcing calculations were determined. The backscatter ratio for ARACHNE-96 was β = 0.13±0.01. The mass absorption efficiency for fine black carbon (αa,BCEf) was estimated as 8.9±1.3 m2 g-1 at 550 nm, while the mass scattering efficiency for fine nss-SO42- (αs,nss-SO42-f) was 7.4±2.0 m2 g-1. The average dry single-scattering albedo, ω0 characterizing polluted conditions was 0.89, whereas during "clean" periods ω0 was 0.94. The direct radiative effect of the pollution aerosols is estimated to be cooling. At low altitudes (below 800 hPa), the area was generally impacted by polluted air masses traveling over the Balkan region, Greece, and Turkey. Additional pollution was often added to these air masses along the Israeli Mediterranean coast, where population and industrial centers are concentrated. At higher altitudes (700 and 500 hPa), air masses came either from eastern Europe or from North Africa (Algerian or Egyptian deserts). The combination of measurements of SO2, CO, CN (condensation nuclei), and accumulation mode particles allowed to characterize the air masses impacting the site in terms of a mixture of local and long-range transported pollution. In particular, the lack of correlation between SO2 and nss-SO42- indicates that the conversion of regional SO2 into the particulate phase is not an efficient process in summer and that aged pollution dominates the accumulation mode particle concentrations.

  17. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    PubMed Central

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-01-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices. PMID:27698368

  18. Aerosol Optical Properties at the Lulin Atmospheric Background Station in Taiwan and the Influences of Long-Range Transport of Air Pollutants

    NASA Technical Reports Server (NTRS)

    Hsiao, Ta-Chih; Chen, Wei-Nai; Ye, Wei-Cheng; Lin, Neng-Huei; Tsay, Si-Chee; Lin, Tang-Huang; Lee, Chung-Te; Chuang, Ming-Tung; Pantina, Peter; Wang, Sheng-Hsiang

    2016-01-01

    The Lulin Atmospheric Background Station (LABS, 23.47 deg. N 120.87 deg. E, 2862 m ASL) in Central Taiwan was constructed in 2006 and is the only high-altitude background station in the western Pacific region for studying the influence of continental outflow. In this study, extensive optical properties of aerosols, including the aerosol light scattering coefficient [Sigma(sub s)] and light absorption coefficient [Sigma(sub a)], were collected from 2013 to 2014. The intensive optical properties, including mass scattering efficiency [Sigma(sub s)], mass absorption efficiency [Sigma(sub a)] single scattering albedo (Omega), scattering Angstrom exponent (A), and backscattering fraction (b), were determined and investigated, and the distinct seasonal cycle was observed. The value of [Alpha(sub a)] began to increase in January and reached a maximum in April; the mean in spring was 5.89 m(exp. 2) g(exp. -1) with a standard deviation (SD) of 4.54 m(exp. 2) g(exp. -1) and a 4.48 m(exp. 2) g(exp. -1) interquartile range (IQR: 2.95-7.43 m(exp. 2) g(exp. -1). The trend was similar in [Sigma(sub a)], with a maximum in March and a monthly mean of 0.84 m(exp. 2) g(exp. -1). The peak values of Omega (Mean = 0.92, SD = 0.03, IQR: 0.90 - 0.93) and A (Mean = 2.22, SD = 0.61, IQR: 2.12 = 2.47) occurred in autumn. These annual patterns of optical properties were associated with different long-range transport patterns of air pollutants such as biomass burning (BB) aerosol in spring and potential anthropogenic emissions in autumn. The optical measurements performed at LABS during spring in 2013 were compared with those simultaneously performed at the Doi Ang Kang Meteorology Station, Chiang Mai Province, Thailand (DAK, 19.93 deg. N, 99.05 deg. E, 1536 m a.s.l.), which is located in the Southeast Asia BB source region. Furthermore, the relationships among [Sigma(sub s)], [Sigma(sub a)], and (b) were used to characterize the potential aerosol types transported to LABS during different seasons, and the data were inspected according to the HYSPLIT 5-day backward trajectories, which differentiate between different regions of air mass origin.

  19. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    PubMed

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.

    2013-12-01

    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  2. Ab initio optical potentials and nucleon scattering on medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Barbieri, C.; Navrátil, P.

    2018-03-01

    We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.

  3. The 0.5 micrometer-2.2 micrometer Scattered Light Spectrum of the Disk Around TW Hya

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberg, Aki; Schneider, Glenn

    2012-01-01

    We present a 0.5-2.2micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. \\Ve investigate the morphology at the disk at distances> 40 AU over this wide range of wavelengths. We measure the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. We find that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partial gap of 30% depth at 80 AU and with steep disk truncation exterior to 100 AU. If the gap is caused by a planetary companion in the process of accreting disk gas, it must be less than 20 Solar mass.

  4. Amplitude-Mode Spectroscopy of Charge Excitations in PTB7 π -Conjugated Donor-Acceptor Copolymer for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Vardeny, Shai R.; Lafalce, Evan; Peygambarian, Nasser; Vardeny, Z. Valy

    2017-06-01

    We measure the spectra of resonant Raman scattering and doping-induced absorption of pristine films of the π -conjugated donor-acceptor (D -A ) copolymer, namely, thieno[3,4 b]thiophene-alt-benzodithiophene (PTB7), as well as photoinduced absorption spectrum in a blend of PTB7 with fullerene phenyl-C61-butyric acid methyl ester molecules used for organic photovoltaic (OPV) applications. We find that the D -A copolymer contains six strongly coupled vibrational modes having relatively strong Raman-scattering intensity, which are renormalized upon adding charge polarons onto the copolymer chains either by doping or photogeneration. Since the lower-energy charge-polaron absorption band overlaps with the renormalized vibrational modes, they appear as antiresonance lines superposed onto the induced polaron absorption band in the photoinduced absorption spectrum but less so in the doping-induced absorption spectrum. We show that the Raman-scattering, doping-, and photoinduced absorption spectra of PTB7 are well explained by the amplitude mode model, where a single vibrational propagator describes the renormalized modes and their related intensities in detail. From the relative strengths of the induced infrared activity of the polaron-related vibrations and electronic transitions, we obtain the polaron effective kinetic mass in PTB7 using the amplitude mode model to be approximately 3.8 m* , where m* is the electron effective mass. The enhanced polaronic mass in PTB7 may limit the charge mobility, which, in turn, reduces the OPV solar-cell efficiency based on the PTB7-fullerene blend.

  5. The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations

    NASA Astrophysics Data System (ADS)

    Le Brun, Amandine M. C.; McCarthy, Ian G.; Schaye, Joop; Ponman, Trevor J.

    2017-04-01

    We use the cosmo-OverWhelmingly Large Simulation (cosmo-OWLS) suite of cosmological hydrodynamical simulations to investigate the scatter and evolution of the global hot gas properties of large simulated populations of galaxy groups and clusters. Our aim is to compare the predictions of different physical models and to explore the extent to which commonly adopted assumptions in observational analyses (e.g. self-similar evolution) are violated. We examine the relations between (true) halo mass and the X-ray temperature, X-ray luminosity, gas mass, Sunyaev-Zel'dovich (SZ) flux, the X-ray analogue of the SZ flux (YX) and the hydrostatic mass. For the most realistic models, which include active galactic nuclei (AGN) feedback, the slopes of the various mass-observable relations deviate substantially from the self-similar ones, particularly at late times and for low-mass clusters. The amplitude of the mass-temperature relation shows negative evolution with respect to the self-similar prediction (I.e. slower than the prediction) for all models, driven by an increase in non-thermal pressure support at higher redshifts. The AGN models predict strong positive evolution of the gas mass fractions at low halo masses. The SZ flux and YX show positive evolution with respect to self-similarity at low mass but negative evolution at high mass. The scatter about the relations is well approximated by log-normal distributions, with widths that depend mildly on halo mass. The scatter decreases significantly with increasing redshift. The exception is the hydrostatic mass-halo mass relation, for which the scatter increases with redshift. Finally, we discuss the relative merits of various hot gas-based mass proxies.

  6. ORFEUS spectroscopy of the O BT VI lines in symbiotic stars and the Raman scattering process

    NASA Astrophysics Data System (ADS)

    Schmid, H. M.; Krautter, J.; Appenzeller, I.; Barnstedt, J.; Dumm, T.; Fromm, A.; Gölz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Krämer, G.; Lindenberger, A.; Mandel, H.; Mürset, U.; Schild, H.; Schmutz, W.; Widmann, H.

    1999-08-01

    We present orfeus spectra of the O vi lambda lambda 1032,1038 emission lines in the symbiotic stars AG Dra, V1016 Cyg, RR Tel, CD-43(deg) 14304, AG Peg and Z And. The O vi emission lines can convert into broad and highly polarized emission lines at lambda 6825 and lambda 7082 in a Raman scattering process by neutral hydrogen. From a comparison of direct and Raman scattered radiation we extract new information on the scattering geometry in symbiotic systems. The nebular O vi emission lines are in all objects redshifted by about +40 km s(-1) . This can be explained as a radiative line transfer effect in a slowly expanding emission region. A comparable redshift is measured in the Raman scattered O vi lines. In AG Peg the O vi emissions show beside a narrow nebular line a broad component from a fast stellar wind outflow. Many interstellar absorption lines of molecular hydrogen are detected, particularly near the O vi lambda 1038 component. With model calculations we investigate their impact on the O vi lines. From the dereddened line fluxes of the direct and Raman scattered O vi lines we derive the scattering efficiency, which is defined as photon flux ratio N_Raman/N_O VI. The efficiencies derived for RR Tel, V1016 Cyg and Z And indicate that about 30% of the released O vi lambda 1032 photons interact with the neutral scattering region. The efficiencies for AG Dra and CD-43(deg14304) are much higher, which may suggest that the O vi nebulosity is embedded in a H(0) -region. The D-type system RR Tel shows strong line profile differences between the direct O vi emission, which is single-peaked, and the Raman scattered emission, which is double-peaked. This indicates that the neutral scattering region in RR Tel ``sees'' different O vi line profiles, implying that the O vi nebulosity is far from spherically symmetric. In a tentative model we suggest for RR Tel an O vi flow pattern where material streams from the cool giant towards the hot component, which further accelerates the gas radially. For the S-type systems AG Dra, CD-43(deg14304) and Z And the line profile differences between the direct and the Raman scattered O vi emissions are less pronounced. This may suggest that the O vi profiles depend less on the emission direction than in the D-type system RR Tel. For AG Peg we detect for the first time the Raman scattered emission at lambda 6825. The Raman line shows a narrow, nebular component as the O vi line, but no equivalent emission to the broad O vi wind component. The higher conversion efficiency for the narrow component indicates that the nebular O vi emission is significantly closer to the cool giant than the hot, mass losing component, and strongly supports previous colliding wind models for this object. Based on observations taken during the orfeus-spas i and orfeus-spas ii space shuttle missions, and ground based data collected at the ESO 2.2m and 3.6m telescopes at La Silla, Chile, and the 4.2m William Herschel Telescope at La Palma, Canary Islands. ESO observations were granted for the programs 52.7-040 and 58.D-0866.

  7. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  8. Optical readout of displacements of nanowires along two mutually perpendicular directions

    NASA Astrophysics Data System (ADS)

    Fu, Chenghua

    2017-05-01

    Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  9. Quark-mass dependence of the H dibaryon in Λ Λ scattering

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro; Hyodo, Tetsuo

    2016-12-01

    We study the quark mass dependence of the H dibaryon in the strangeness S =-2 baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the Λ Λ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N Ξ threshold at the physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N Ξ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the Λ Λ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of the "H matter" in the unphysical quark mass region.

  10. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  11. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  12. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    PubMed

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter < or = 2.5 microm) have been performed at a mountaintop location adjacent to the White Mountain National Forest in northern NH, USA. A 1-month long sampling campaign was conducted at Cranmore Mountain during spring 2000. We report on the apportionment of light extinction by fine aerosols into its major chemical components, and relationships between variations in aerosol parameters and changes in air mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.

  13. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  14. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bergin, M. H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C. M.; Baumann, K.

    In order to understand the possible influence of aerosols on the environment in the agricultural Yangtze delta region of China, a one-month field sampling campaign was carried out during November 1999 in Linan, China. Measurements included the aerosol light scattering coefficient at 530 nm, σsp, measured at both dry relative humidity (RH<40%) and under ambient conditions (sample RH=63±19%), and the absorption coefficient at 565 nm, σap, for aerosol particles having diameters <2.5 μm (PM 2.5). At the same time, daily filter samples of PM 2.5 as well as aerosol particles having diameters <10 μm (PM 10) were collected and analyzed for mass, major ion, organic compound (OC), and elemental carbon (EC) concentrations in order to determine which anthropogenic chemical species were primarily responsible for aerosol light extinction. The aerosol loading in the rural Yangtze delta region was comparable to highly polluted urban areas, with mean and standard deviation (S.D.) values for σsp, σap and PM 2.5 of 353 Mm -1 (202 Mm -1), 23 Mm -1 (14 Mm -1) and 90 μg m -3 (47 μg m -3), respectively. A clear diurnal pattern was observed in σsp and σap with minimum values occurring in the middle of the day, most likely associated with the maximum midday mixing height. The ratio of the change in light scattering coefficient at ambient RH to that at controlled RH (RH<40%), Fσsp (RH), indicates that condensed water typically contributed ˜40% to the light scattering budget in this region. The mass scattering efficiency of the dry aerosol, E scat_2.5, and mass absorption efficiency of EC, E abs_2.5, have mean and S.D. values of 4.0 m 2 g -1 (0.4 m 2 g -1) and 8.6 m 2 g -1 (7.0 m 2 g -1), respectively. PM 2.5 concentrations in Linan and two other locations in the Yangtze delta, Sheshan and Changshu (which have monthly mean values ranging from ˜80 to 110 μg m -3), are all significantly higher than the proposed 24-h average US PM 2.5 NAAQS of 65 μg m -3. Organic compounds are the dominant chemical species accounting for ˜50% of the PM 2.5 mass at all three sites. The results indicate that aerosol loadings in the agricultural Yangtze delta region of China are relatively high, and suggest that aerosols have a significant impact on visibility, climate, crop production, and human health in this region.

  15. Poly[n]catenanes: Synthesis of molecular interlocked chains

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.

    2017-12-01

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixturemore » of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.« less

  17. Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, L.L.; Hendricks, J.S.

    1983-01-01

    The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.

  18. EMERGE - an empirical model for the formation of galaxies since z ˜ 10

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Naab, Thorsten; White, Simon D. M.

    2018-06-01

    We present EMERGE, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ˜ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Galaxies that are quenched at z = 0 typically have a higher peak star formation rate compared to their star-forming counterparts. EMERGE predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intracluster mass in massive haloes can be up to eight times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.

  19. Ultrafast Hot Carrier Dynamics in GaN and Its Impact on the Efficiency Droop.

    PubMed

    Jhalani, Vatsal A; Zhou, Jin-Jian; Bernardi, Marco

    2017-08-09

    GaN is a key material for lighting technology. Yet, the carrier transport and ultrafast dynamics that are central in GaN light-emitting devices are not completely understood. We present first-principles calculations of carrier dynamics in GaN, focusing on electron-phonon (e-ph) scattering and the cooling and nanoscale dynamics of hot carriers. We find that e-ph scattering is significantly faster for holes compared to electrons and that for hot carriers with an initial 0.5-1 eV excess energy, holes take a significantly shorter time (∼0.1 ps) to relax to the band edge compared to electrons, which take ∼1 ps. The asymmetry in the hot carrier dynamics is shown to originate from the valence band degeneracy, the heavier effective mass of holes compared to electrons, and the details of the coupling to different phonon modes in the valence and conduction bands. We show that the slow cooling of hot electrons and their long ballistic mean free paths (over 3 nm at room temperature) are a possible cause of efficiency droop in GaN light-emitting diodes. Taken together, our work sheds light on the ultrafast dynamics of hot carriers in GaN and the nanoscale origin of efficiency droop.

  20. Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers.

    PubMed

    Kim, Hye-Na; Vahidinia, Sanaz; Holt, Amanda L; Sweeney, Alison M; Yang, Shu

    2017-11-01

    It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment

    ERIC Educational Resources Information Center

    Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.

    2012-01-01

    We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…

  2. [Influence of the difference in the pollen count on medical costs in an allergen-specific immunotherapy for Japanese cedar pollinosis].

    PubMed

    Yuta, Atsushi; Miyamoto, Yukiko; Hattori, Reiko; Ogihara, Hitomi; Takeuchi, Kazuhiko; Majima, Yuichi

    2007-11-01

    We studied medical economic efficacy and influence by the different number of pollen scattering in patients treated with allergen-specific immunotherapy for Japanese cedar pollinosis. We calculated medical treatment costs and the medicine expense from medical records in eighteen cedar pollinosis patients treated with allergen-specific immunotherapy (IT-G) and with medications (M-G). We examined with the same patients for three years of different pollen scattering, mass scattering year (2005), moderate scattering year (2003), a few scattering year (2004). Furthermore, satisfaction of treatment and symptom score measured by visual analog scale in both subjects was studied in a mass scattering year. Total medical costs at hospital was cheaper in IT-G than in M-G. The result was depended on prescribed medical costs. In addition, prescribed medicine agents and total medical costs did not increase by the mass scattering year of pollen. Satisfaction of treatment and symptom score in IT-G was better than that in M-G. Immunotherapy had a benefit on a medical economy.

  3. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  4. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  5. Light scattering by marine algae: two-layer spherical and nonspherical models

    NASA Astrophysics Data System (ADS)

    Quirantes, Arturo; Bernard, Stewart

    2004-11-01

    Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.

  6. Scattering of Airy elastic sheets by a cylindrical cavity in a solid.

    PubMed

    Mitri, F G

    2017-11-01

    The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  8. Hubble Space Telescope Scattered-light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-Hα 569

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.

    2017-12-01

    We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.

  9. On the scatter in the relation between stellar mass and halo mass: random or halo formation time dependent?

    NASA Astrophysics Data System (ADS)

    Wang, Lan; De Lucia, Gabriella; Weinmann, Simone M.

    2013-05-01

    The empirical traditional halo occupation distribution (HOD) model of Wang et al. fits, by construction, both the stellar mass function and correlation function of galaxies in the local Universe. In contrast, the semi-analytical models of De Lucia & Blazoit (hereafter DLB07) and Guo et al. (hereafter Guo11), built on the same dark matter halo merger trees than the empirical model, still have difficulties in reproducing these observational data simultaneously. We compare the relations between the stellar mass of galaxies and their host halo mass in the three models, and find that they are different. When the relations are rescaled to have the same median values and the same scatter as in Wang et al., the rescaled DLB07 model can fit both the measured galaxy stellar mass function and the correlation function measured in different galaxy stellar mass bins. In contrast, the rescaled Guo11 model still overpredicts the clustering of low-mass galaxies. This indicates that the detail of how galaxies populate the scatter in the stellar mass-halo mass relation does play an important role in determining the correlation functions of galaxies. While the stellar mass of galaxies in the Wang et al. model depends only on halo mass and is randomly distributed within the scatter, galaxy stellar mass depends also on the halo formation time in semi-analytical models. At fixed value of infall mass, galaxies that lie above the median stellar mass-halo mass relation reside in haloes that formed earlier, while galaxies that lie below the median relation reside in haloes that formed later. This effect is much stronger in Guo11 than in DLB07, which explains the overclustering of low mass galaxies in Guo11. Assembly bias in Guo11 model might be overly strong. Nevertheless, in case that a significant assembly bias indeed exists in the real Universe, one needs to use caution when applying current HOD and abundance matching models that employ the assumption of random scatter in the relation between stellar and halo mass.

  10. The 0.5-2.22 micrometer Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU*

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.

  11. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  12. Hydrodynamical simulations and semi-analytic models of galaxy formation: two sides of the same coin

    NASA Astrophysics Data System (ADS)

    Neistein, Eyal; Khochfar, Sadegh; Dalla Vecchia, Claudio; Schaye, Joop

    2012-04-01

    In this work we develop a new method to turn a state-of-the-art hydrodynamical cosmological simulation of galaxy formation (HYD) into a simple semi-analytic model (SAM). This is achieved by summarizing the efficiencies of accretion, cooling, star formation and feedback given by the HYD, as functions of the halo mass and redshift. The SAM then uses these functions to evolve galaxies within merger trees that are extracted from the same HYD. Surprisingly, by turning the HYD into a SAM, we conserve the mass of individual galaxies, with deviations at the level of 0.1 dex, on an object-by-object basis, with no significant systematics. This is true for all redshifts, and for the mass of stars and gas components, although the agreement reaches 0.2 dex for satellite galaxies at low redshift. We show that the same level of accuracy is obtained even in case the SAM uses only one phase of gas within each galaxy. Moreover, we demonstrate that the formation history of one massive galaxy provides sufficient information for the SAM to reproduce the population of galaxies within the entire cosmological box. The reasons for the small scatter between the HYD and SAM galaxies are as follows. (i) The efficiencies are matched as functions of the halo mass and redshift, meaning that the evolution within merger trees agrees on average. (ii) For a given galaxy, efficiencies fluctuate around the mean value on time-scales of 0.2-2 Gyr. (iii) The various mass components of galaxies are obtained by integrating the efficiencies over time, averaging out these fluctuations. We compare the efficiencies found here to standard SAM recipes and find that they often deviate significantly. For example, here the HYD shows smooth accretion that is less effective for low-mass haloes, and is always composed of hot or dilute gas; cooling is less effective at high redshift, and star formation changes only mildly with cosmic time. The method developed here can be applied in general to any HYD, and can thus serve as a common language for both HYDs and SAMs.

  13. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  14. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  15. Long-term variability of aerosol optical properties and radiative effects in Northern Finland

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö

    2017-04-01

    We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.

  16. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  17. Seven years of aerosol scattering hygroscopic growth measurements from SGP: Factors influencing water uptake: Aerosol Scattering Hygroscopic Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferson, A.; Hageman, D.; Morrow, H.

    Long-term measurements of changes in the aerosol scattering coefficient hygroscopic growth at the U.S. Department of Energy Southern Great Plains site provide information on the seasonal as well as size and chemical dependence of aerosol water uptake. Annual average sub-10 μm fRH values (the ratio of aerosol scattering at 85%/40% relative humidity (RH)) were 1.78 and 1.99 for the gamma and kappa fit algorithms, respectively. Our study found higher growth rates in the winter and spring seasons that correlated with a high aerosol nitrate mass fraction. fRH exhibited strong, but differing, correlations with the scattering Ångström exponent and backscatter fraction,more » two optical size-dependent parameters. The aerosol organic mass fraction had a strong influence on fRH. Increases in the organic mass fraction and absorption Ångström exponent coincided with a decrease in fRH. Similarly, fRH declined with decreases in the aerosol single scatter albedo. The uncertainty analysis of the fit algorithms revealed high uncertainty at low scattering coefficients and increased uncertainty at high RH and fit parameters values.« less

  18. Seven years of aerosol scattering hygroscopic growth measurements from SGP: Factors influencing water uptake: Aerosol Scattering Hygroscopic Growth

    DOE PAGES

    Jefferson, A.; Hageman, D.; Morrow, H.; ...

    2017-09-11

    Long-term measurements of changes in the aerosol scattering coefficient hygroscopic growth at the U.S. Department of Energy Southern Great Plains site provide information on the seasonal as well as size and chemical dependence of aerosol water uptake. Annual average sub-10 μm fRH values (the ratio of aerosol scattering at 85%/40% relative humidity (RH)) were 1.78 and 1.99 for the gamma and kappa fit algorithms, respectively. Our study found higher growth rates in the winter and spring seasons that correlated with a high aerosol nitrate mass fraction. fRH exhibited strong, but differing, correlations with the scattering Ångström exponent and backscatter fraction,more » two optical size-dependent parameters. The aerosol organic mass fraction had a strong influence on fRH. Increases in the organic mass fraction and absorption Ångström exponent coincided with a decrease in fRH. Similarly, fRH declined with decreases in the aerosol single scatter albedo. The uncertainty analysis of the fit algorithms revealed high uncertainty at low scattering coefficients and increased uncertainty at high RH and fit parameters values.« less

  19. THE THOMSON SURFACE. I. REALITY AND MYTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu

    2012-06-20

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90 Degree-Sign range of solar exit angles at each given position in the imagemore » plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.« less

  20. Skeletal light-scattering accelerates bleaching response in reef-building corals.

    PubMed

    Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A

    2016-03-21

    At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ'(S,m) as one of the key determinants of differential bleaching response.

  1. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  2. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  3. A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS-HALO MASS RELATION FOR 0 < z < 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2010-07-01

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass-halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertaintiesmore » from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z = 0 to z = 4. The shape and the evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10%-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub sun} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M {sup 2.3}{sub h} at low masses and M{sub *} {approx} M {sup 0.29}{sub h} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub sun} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less

  4. A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Conroy, Charlie; Wechsler, Risa H.

    2010-06-07

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (includingmore » cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub {circle_dot}} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M{sub h}{sup 2.3} at low masses and M{sub *} {approx} M{sub h}{sup 0.29} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub {circle_dot}} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, DS; Alsum, S; Araújo, HM

    The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  6. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2018-05-01

    The LUX experiment has performed searches for dark-matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from 1.4 ×104 kg days of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.

  7. Dark matter sensitivity of multi-ton liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvementsmore » in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.« less

  8. Preparative isolation and purification of chemical constituents from the root of Adenophora tetraphlla by high-speed counter-current chromatography with evaporative light scattering detection.

    PubMed

    Yao, Shun; Liu, Renming; Huang, Xuefeng; Kong, Lingyi

    2007-01-19

    Preparative high-speed counter-current chromatography (HSCCC), as a continuous liquid-liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of non-chromophoric chemical components from Chinese medicinal herb Adenophora tetraphlla (Thunb.), Fisch. Nine compounds, including alpha-spinasterol, beta-sitosterol, nonacosan-10-ol, 24-methylene cycloartanol, lupenone, 3-O-palmitoyl-beta-sitosterol, 3-O-beta-d-glucose-beta-sitosterol, eicosanoic acid and an unknown compound, were obtained. The compounds were all above 95% determined by high-performance liquid chromatography (HPLC)-ELSD, and their structures were identified by (1)H NMR and chemical ionization mass spectroscopy (CI-MS). The results demonstrate that HSCCC coupled with ELSD is a feasible and efficient technique for systematic isolation of non-chromophoric components from traditional medicinal herbs.

  9. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  10. Evaluation of a scattering correction method for high energy tomography

    NASA Astrophysics Data System (ADS)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where experimental complexities must be avoided. This approach has been previously tested successfully in the energy range of 100 keV - 6 MeV. In this paper, the kernels are simulated using MCNP in order to take into account both photons and electronic processes in scattering radiation contribution. We present scatter correction results on a large object scanned with a 9 MeV linear accelerator.

  11. Linking CO 2 Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering

    DOE PAGES

    Holewinski, Adam; Sakwa-Novak, Miles A.; Jones, Christopher W.

    2015-08-26

    Composites of poly(ethylenimine) (PEI) and mesoporous silica are effective, reversible adsorbents for CO 2, both from flue gas and in direct air-capture applications. The morphology of the PEI within the silica can strongly impact the overall carbon capture efficiency and rate of saturation. Here, we directly probe the spatial distribution of the supported polymer through small-angle neutron scattering (SANS). Combined with textural characterization from physisorption analysis, the data indicate that PEI first forms a thin conformal coating on the pore walls, but all additional polymer aggregates into plug(s) that grow along the pore axis. This model is consistent with observedmore » trends in amine-efficiency (CO 2/N binding ratio) and pore size distributions, and points to a trade-off between achieving high chemical accessibility of the amine binding sites, which are inaccessible when they strongly interact with the silica, and high accessibility for mass transport, which can be hampered by diffusion through PEI plugs. In conclusion, we illustrate this design principle by demonstrating higher CO 2 capacity and uptake rate for PEI supported in a hydrophobically modified silica, which exhibits repulsive interactions with the PEI, freeing up binding sites.« less

  12. Efficient scatter model for simulation of ultrasound images from computed tomography data

    NASA Astrophysics Data System (ADS)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  13. Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy

    NASA Astrophysics Data System (ADS)

    Lo, H. Y.; Chan, C. Y.; Ong, H. C.

    2012-11-01

    We have measured the radiative scattering from two-dimensional metallic arrays by using polarization-resolved reflectivity spectroscopy. We find the reflectivity spectra follow the Fano-like model that can be derived from temporal coupled mode theory and Jones matrix calculus. By orthogonally orienting the incident polarizer and the detection analyzer, reflectivity dips flip into peaks and the radiative scattering efficiency can be determined accordingly. The dependence of total radiative scattering efficiency on wavelength and hole diameter is found to agree well with Rayleigh scattering by single hole.

  14. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  15. Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.

    2017-01-01

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.

  16. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  17. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scattermore » low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.« less

  18. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  19. Calibration of Thomson scattering system on VEST

    NASA Astrophysics Data System (ADS)

    Kim, Y.-G.; Lee, J.-H.; Kim, D.; Yoo, M.-G.; Lee, H.; Hwang, Y. S.; Na, Y.-S.

    2017-12-01

    The Thomson scattering system has been recently installed on Versatile Experiment Spherical Torus (VEST) to measure the electron temperature and the density of the core plasmas. Since the calibration of the system is required for the accurate measurement of these parameters, a polychromator and the system efficiency are calibrated. The bias voltage of the detector is optimized and the relative responsivity of the polychromator is measured to analyse the spectral broadening. The tendency of decreasing responsivity because of the ambient temperature change is addressed together. The efficiencies of the alignments using HeNe laser and Nd:YAG laser are compared. After the alignment using Rayleigh scattering, it is improved ~ 7 times while the peak signal of the stray light is decreased. To evaluate the efficiencies of the alignment using HeNe laser, it is compared with the efficiency of the fine alignment by Rayleigh scattering. After absolute calibration is done, the Thomson scattering signal is estimated theoretically. The Bayesian analysis is tried using the synthetic data, and the results show that the input temperature and the density are inside the contour of the 90% confident level. The calibrated Thomson scattering system will provide the meaningful information of the core plasma of the VEST.

  20. Improvements to the construction of binary black hole initial data

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla

    2015-12-01

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  1. Light Scattering in Exoplanet Transits

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Fortney, Jonathan J.

    2016-10-01

    Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major influence on an exoplanet transit spectrum.

  2. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions

    NASA Astrophysics Data System (ADS)

    Woźniak, Sławomir B.; Sagan, Sławomir; Zabłocka, Monika; Stoń-Egiert, Joanna; Borzycka, Karolina

    2018-06-01

    The empirical relationships were examined of spectral characteristics of light scattering and backscattering by particles suspended in seawater in relation to the dry mass concentration of particles and the bulk proportions of their organic and inorganic fractions. The analyses were based on empirical data collected in the surface waters of the southern and central Baltic Sea at different times of the year. It was found that the average scattering and backscattering coefficients, normalized to the dry mass concentration of particles for all our Baltic Sea data (i.e. mass-specific optical coefficients), were characterized by large coefficients of variation (CV) of the order of 30% at all the visible light wavelengths analysed. At wavelength 555 nm the average mass-specific scattering coefficient was ca 0.75 m2 g- 1 (CV = 31%); the corresponding value for backscattering was 0.0072 m2 g- 1 (CV = 29%). The analyses confirmed that some of the observed variations could be explained by changes in the proportions of organic and inorganic fractions of suspended matter. The average organic fraction in all the samples was as high as 83% of the total dry mass concentration but in individual cases it varied between < 50% and up to 100%. Simple, two-variable parameterizations of scattering and backscattering coefficients were derived as functions of the organic and inorganic fraction concentrations. The statistical relationship between the backscattering ratio and the ratio of the organic fraction to the total dry mass of suspended matter was also found: this can be used in practical interpretations of in situ optical measurements. In addition, the variability in particle size distributions recorded with a Coulter counter indicated its potentially highly significant influence on the light scattering properties of particles suspended in Baltic Sea waters.

  3. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  4. Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid.

    PubMed

    Lopes, J H; Leão-Neto, J P; Silva, G T

    2017-11-01

    Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.

  5. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  6. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less

  7. Wrinkled silica/titania nanoparticles with tunable interwrinkle distances for efficient utilization of photons in dye-sensitized solar cells.

    PubMed

    Kang, Jin Soo; Lim, Joohyun; Rho, Won-Yeop; Kim, Jin; Moon, Doo-Sik; Jeong, Juwon; Jung, Dongwook; Choi, Jung-Woo; Lee, Jin-Kyu; Sung, Yung-Eun

    2016-08-04

    Efficient light harvesting is essential for the realization of high energy conversion efficiency in dye-sensitized solar cells (DSCs). State-of-the-art mesoporous TiO2 photoanodes fall short for collection of long-wavelength visible light photons, and thus there have been efforts on introduction of scattering nanoparticles. Herein, we report the synthesis of wrinkled silica/titania nanoparticles with tunable interwrinkle distances as scattering materials for enhanced light harvesting in DSCs. These particles with more than 20 times larger specific surface area (>400 m(2)/g) compared to the spherical scattering particles (<20 m(2)/g) of the similar sizes gave rise to the dye-loading amounts, causing significant improvements in photocurrent density and efficiency. Moreover, dependence of spectral scattering properties of wrinkled particles on interwrinkle distances, which was originated from difference in overall refractive indices, was observed.

  8. The dependence of halo mass on galaxy size at fixed stellar mass using weak lensing

    NASA Astrophysics Data System (ADS)

    Charlton, Paul J. L.; Hudson, Michael J.; Balogh, Michael L.; Khatri, Sumeet

    2017-12-01

    Stellar mass has been shown to correlate with halo mass, with non-negligible scatter. The stellar mass-size and luminosity-size relationships of galaxies also show significant scatter in galaxy size at fixed stellar mass. It is possible that, at fixed stellar mass and galaxy colour, the halo mass is correlated with galaxy size. Galaxy-galaxy lensing allows us to measure the mean masses of dark matter haloes for stacked samples of galaxies. We extend the analysis of the galaxies in the CFHTLenS catalogue by fitting single Sérsic surface brightness profiles to the lens galaxies in order to recover half-light radius values, allowing us to determine halo masses for lenses according to their size. Comparing our halo masses and sizes to baselines for that stellar mass yields a differential measurement of the halo mass-galaxy size relationship at fixed stellar mass, defined as Mh(M_{*}) ∝ r_{eff}^{η }(M_{*}). We find that, on average, our lens galaxies have an η = 0.42 ± 0.12, i.e. larger galaxies live in more massive dark matter haloes. The η is strongest for high-mass luminous red galaxies. Investigation of this relationship in hydrodynamical simulations suggests that, at a fixed M*, satellite galaxies have a larger η and greater scatter in the Mh and reff relationship compared to central galaxies.

  9. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less

  10. An efficient algorithm for the generalized Foldy-Lax formulation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, Peijun; Zhao, Hongkai

    2013-02-01

    Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.

  11. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.

  12. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    DTIC Science & Technology

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  13. Scattering theory of efficient quantum transport across finite networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Buchleitner, Andreas

    2017-11-01

    We present a scattering theory for the efficient transmission of an excitation across a finite network with designed disorder. We show that the presence of randomly positioned network sites allows significant acceleration of the excitation transfer processes as compared to a dimer structure, but only if the disordered Hamiltonians are constrained to be centrosymmetric and exhibit a dominant doublet in their spectrum. We identify the cause of this efficiency enhancement to be the constructive interplay between disorder-induced fluctuations of the dominant doublet’s splitting and the coupling strength between the input and output sites to the scattering channels. We find that the characteristic strength of these fluctuations together with the channel coupling fully control the transfer efficiency.

  14. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE PAGES

    Lovato, A.; Gandolfi, S.; Carlson, J.; ...

    2018-02-28

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  15. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovato, A.; Gandolfi, S.; Carlson, J.

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  16. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho

    2016-09-01

    In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.

  17. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco

    NASA Astrophysics Data System (ADS)

    Heo, Jeong-Eun; Angeloni, Rodolfo; Di Mille, Francesco; Palma, Tali; Chang, Seok-Jun; Hong, Chae-Lin; Lee, Hee-Won

    2016-07-01

    Raman-scattering by atomic hydrogen is a unique spectroscopic process that may probe the mass transfer and mass loss phenomena in symbiotic stars(SSs). In the optical high- resolution spectra of the S-type SS V455 Sco, we note the presence of two Raman-scattered features, one at around 6825 Å with a triple-peak profile formed from Raman-scattering of O VI λ1032 and the other Raman-scattered He II λ1025 at around 6545 Å. Adopting an accretion flow model with additional contribution from a collimated bipolar outflow, we propose that the blue and central peaks are contributed from the accretion flow and the bipolar flow is responsible for the remaining red peak. With the absence of [N II] λ6548, the Raman-scattered He II λ1025 at around 6545 Å is immersed in the broad Ha wings that appear to be formed by Raman-scattering of far-UV continuum near Lyman series.

  18. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    PubMed

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  20. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  1. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  2. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE PAGES

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; ...

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q 2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

  3. A comparative study between titania and zirconia as material for scattering layer in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nursam, N. M.; Hidayat, J.; Shobih; Rosa, E. S.; Pranoto, L. M.

    2018-04-01

    The photoanode of dye-sensitized solar cells (DSSC) is typically composed of nanocrystalline titania (TiO2) layer that has been sensitized with light-absorbing dye molecules. Large portion of the light, however, could not be efficiently absorbed due to some physical reasons, such as TiO2 crystal size (typically 10-25 nm) that makes the photoanode remains partially transparent to the visible region in the solar spectrum. One of the ways to improve the light harvesting efficiency in DSSC could be achieved by employing an additional scattering layer over the TiO2 electron transport material. In this contribution, we evaluate the effect of light scattering properties on the performance of DSSC. Specifically, the light scattering properties provided from two different scattering materials, i.e. additional TiO2 scattering layer and zirconia (ZrO2) scattering layer, were compared. Both layers were deposited using screen printing technique under the same condition on top of 8 µm thick TiO2 photoanode layer. All samples subsequently received the same thermal annealing treatment at 500 °C and sensitized with ruthenium-based synthetic dyes. Our results revealed that the thickness of the scattering layer for both TiO2 and ZrO2 had a significant effect on the solar cell performance. The best photoconversion efficiency was achieved by samples that were coated with one screen-printing cycle, giving an overall efficiency of 3.50 % and 4.02% for TiO2 and ZrO2, respectively.

  4. Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Bonsor, Amy

    2014-07-01

    Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.

  5. On the evolution process of two-component dark matter in the Sun

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Shu; Lin, Yen-Hsun

    2018-04-01

    We introduce dark matter (DM) evolution process in the Sun under a two-component DM (2DM) scenario. Both DM species χ and ξ with masses heavier than 1 GeV are considered. In this picture, both species could be captured by the Sun through DM-nucleus scattering and DM self-scatterings, e.g. χχ and ξξ collisions. In addition, the heterogeneous self-scattering due to χ and ξ collision is essentially possible in any 2DM models. This new introduced scattering naturally weaves the evolution processes of the two DM species that was assumed to evolve independently. Moreover, the heterogeneous self-scattering enhances the number of DM being captured in the Sun mutually. This effect significantly exists in a broad range of DM mass spectrum. We have studied this phenomena and its implication for the solar-captured DM annihilation rate. It would be crucial to the DM indirect detection when the two masses are close. General formalism of the 2DM evolution in the Sun as well as its kinematics are studied.

  6. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

  8. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  9. The variation of rotation curve shapes as a signature of the effects of baryons on dark matter density profiles

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.

    2015-12-01

    Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.

  10. Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 less than z Less Than 3

    NASA Technical Reports Server (NTRS)

    Kurczynski, Peter; Gawiser, Eric; Acquaviva, Viviana; Bell, Eric F.; Dekel, Avishai; De Mello, Duilia F.; Ferguson, Henry C.; Gardner, Jonathan P.; Grogin, Norman A.

    2016-01-01

    We present estimates of intrinsic scatter in the star formation rate (SFR)--stellar mass (M*) correlation in the redshift range 0.5 less than z less than 3.0 and in the mass range 10(exp 7) less than M* less than 10(exp 11) solar mass. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5 sigma depth) probes the SFR--M* correlation down to M* approximately 10(exp 7) solar mass, a factor of 10-100 x lower in M* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR-M* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter approximately 100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10(exp 7) solar mass.

  11. LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mulroy, Sarah L.; Smith, Graham P.; Haines, Chris P.; Marrone, Daniel P.; Okabe, Nobuhiro; Pereira, Maria J.; Egami, Eiichi; Babul, Arif; Finoguenov, Alexis; Martino, Rossella

    2014-10-01

    We present the first scaling relation between weak-lensing galaxy cluster mass, MWL, and near-infrared luminosity, LK. Our results are based on 17 clusters observed with wide-field instruments on Subaru, the United Kingdom Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the relation between projected 2D weak-lensing mass and spectroscopically confirmed luminosity within 1 Mpc, modelled as M_WL ∝ LK^b, obtaining a power-law slope of b=0.83^{+0.27}_{-0.24} and an intrinsic scatter of σ _{lnM_WL|LK}=10^{+8}_{-5} per cent. Intrinsic scatter of ˜10 per cent is a consistent feature of our results regardless of how we modify our approach to measuring the relationship between mass and light. For example, deprojecting the mass and measuring both quantities within r500, that is itself obtained from the lensing analysis, yields σ _{lnM_WL|LK}=10^{+7}_{-5} per cent and b=0.97^{+0.17}_{-0.17}. We also find that selecting members based on their (J - K) colours instead of spectroscopic redshifts neither increases the scatter nor modifies the slope. Overall our results indicate that near-infrared luminosity measured on scales comparable with r500 (typically 1 Mpc for our sample) is a low scatter and relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity may therefore be a useful mass proxy for cluster cosmology experiments.

  12. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE PAGES

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...

    2017-01-03

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  13. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  14. Study of central light concentration in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Aswathy, S.; Ravikumar, C. D.

    2018-06-01

    We propose a novel technique to estimate the masses of supermassive black holes (SMBHs) residing at the centres of massive galaxies in the nearby Universe using simple photometry. Aperture photometry using SEXTRACTOR is employed to determine the central intensity ratio (CIR) at the optical centre of the galaxy image for a sample of 49 nearby galaxies with SMBH mass estimations. We find that the CIR of ellipticals and classical bulges is strongly correlated with SMBH masses whereas pseudo-bulges and ongoing mergers show significant scatter. Also, the CIR of low-luminosity AGNs in the sample shows significant connection with the 5 GHz nuclear radio emission suggesting a stronger link between the former and the SMBH evolution in these galaxies. In addition, it is seen that various structural and dynamical properties of the SMBH host galaxies are correlated with the CIR making the latter an important parameter in galaxy evolution studies. Finally, we propose the CIR to be an efficient and simple tool not only to distinguish classical bulges from pseudo-bulges but also to estimate the mass of the central SMBH.

  15. Evaluation of assumptions for estimating chemical light extinction at U.S. national parks.

    PubMed

    Lowenthal, Douglas; Zielinska, Barbara; Samburova, Vera; Collins, Don; Taylor, Nathan; Kumar, Naresh

    2015-03-01

    Studies were conducted at Great Smoky Mountains National Park (NP) (GRSM), Tennessee, Mount Rainier NP (MORA), Washington, and Acadia NP (ACAD), Maine, to evaluate assumptions used to estimate aerosol light extinction from chemical composition. The revised IMPROVE equation calculates light scattering from concentrations of PM2.5 sulfates, nitrates, organic carbon mass (OM), and soil. Organics are assumed to be nonhygroscopic. Organic carbon (OC) is converted to OM with a multiplier of 1.8. Experiments were conducted to evaluate assumptions on aerosol hydration state, the OM/OC ratio, OM hygroscopicity, and mass scattering efficiencies. Sulfates were neutralized by ammonium during winter at GRSM (W, winter) and at MORA during summer but were acidic at ACAD and GRSM (S, summer) during summer. Hygroscopic growth was mostly smooth and continuous, rarely exhibiting hysteresis. Deliquescence was not observed except infrequently during winter at GRSM (W). Water-soluble organic carbon (WSOC) was separated from bulk OC with solid-phase absorbents. The average OM/OC ratios were 2.0, 2.7, 2.1, and 2.2 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Hygroscopic growth factors (GF) at relative humidity (RH) 90% for aerosols generated from WSOC extracts averaged 1.19, 1.06, 1.13, and 1.16 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Thus, the assumption that OM is not hygroscopic may lead to underestimation of its contribution to light scattering. Studies at IMPROVE sites conducted in U.S. national parks showed that aerosol organics comprise more PM2.5 mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE equation for calculating chemical light extinction. Future strategies for reducing regional haze may therefore need to focus more heavily on understanding the origins and control of anthropogenic sources of organic aerosols.

  16. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, David Z., E-mail: David.Z.Ting@jpl.nasa.gov; Soibel, Alexander; Gunapala, Sarath D.

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass thanmore » its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.« less

  17. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Martinez-Consentino, V. L.; Amaro, J. E.; Ruiz Arriola, E.

    2018-06-01

    We use a recent scaling analysis of the quasielastic electron scattering data from C 12 to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the (e ,e') cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short-range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.

  18. High-energy gravitational scattering and the general relativistic two-body problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  19. Toward scatter-free phosphors in white phosphor-converted light-emitting diodes

    PubMed Central

    Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young

    2012-01-01

    Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113

  20. A time-domain finite element boundary integral approach for elastic wave scattering

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  1. Aerosol chemical composition and light scattering during a winter season in Beijing

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zhang, Leiming; Gao, Jian; Wang, Han; Chai, Faihe; Wang, Shulan

    2015-06-01

    To evaluate PM2.5 contributions to light scattering under different air pollution levels, PM2.5 and its major chemical components, PM10, size-segregated water-soluble ions, and aerosol scattering coefficient (bsp) under dry conditions were measured at an urban site in Beijing in January 2013 when heavy pollution events frequently occurred. Measurements were categorized into three pollution levels including heavy-polluted (Air Quality Index (AQI) ≥ 200), light-polluted (200 > AQI ≥ 100) and clean periods (AQI < 100). The average PM2.5 mass concentration was 248 μg m-3 during the heavy-polluted period, which was 2.4 and 5.6 times of those during the light-polluted (104 μg m-3) and clean (44 μg m-3) periods, respectively. The concentrations of SO42-, NO3- and NH4+ increased much more than those of OC and EC during the heavy-polluted period compared with those during the light-polluted and clean periods. Good correlations between PM2.5 and bsp were found (R2 > 0.95) during the different pollution levels. The mass scattering efficiency (MSE) of PM2.5 was 4.9 m2 g-1 during the heavy-polluted period, which was higher than those during the light-polluted (4.3 m2 g-1) and clean periods (3.6 m2 g-1). To further evaluate the impact of individual chemical components of PM2.5 on light scattering, a multiple linear regression equation of measured bsp against the mass concentration of (NH4)2SO4, NH4NO3, Organic Matter (OM), EC, Fine Soil (FS), Coarse Matter (CM) and Other chemical compounds were performed. (NH4)2SO4, NH4NO3 and OM were the dominant species contributing to bsp under both dry and ambient conditions. OM contributed more to bsp than the sum of (NH4)2SO4 and NH4NO3 did under the dry condition during all the pollution periods and this was also the case under the ambient condition during the light-polluted and clean periods. However, the total contributions of (NH4)2SO4 and NH4NO3 to bsp under the ambient condition was 55%, much more than the 29% contribution from OM during the heavy-polluted period. High (NH4)2SO4 and NH4NO3 concentrations and their hygroscopicity were the main reasons causing visibility degradation during the heavy-polluted period, and the effect can be enhanced under high RH conditions.

  2. Seven years of aerosol scattering hygroscopic growth measurements from SGP: Factors influencing water uptake: Aerosol Scattering Hygroscopic Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferson, A.; Hageman, D.; Morrow, H.

    Long-term measurements of changes in the aerosol scattering coefficient hygroscopic growth at the U.S. Department of Energy Southern Great Plains site provide information on the seasonal as well as size and chemical dependence of aerosol hygroscopic growth. Annual average sub 10 um fRH values (the ratio of aerosol scattering at 85%/40% RH) were 1.75 and 1.87 for the gamma and kappa fit algorithms, respectively. The study found higher growth rates in the winter and spring seasons that correlated with high aerosol nitrate mass fraction. FRH, exhibited strong, but differing correlations with the scattering Ångström exponent and backscatter fraction, two opticalmore » size-dependent parameters. The aerosol organic fraction had a strong influence, with fRH decreasing with increases in the organic mass fraction and absorption Ångström exponent and increasing with the aerosol single scatter albedo. Uncertainty analysis if the fit algorithms revealed high uncertainty at low scattering coefficients and slight increases in uncertainty at high RH and fit parameters values.« less

  3. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  4. Calibration, event reconstruction, data analysis and limits calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, DS; Alsum, S; Araújo, HM; ...

    2018-01-05

    The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  5. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  6. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  7. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2018-05-31

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  8. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  9. Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.

    2001-12-01

    Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.

  10. Observation of shape isomers states in fission fragments

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Yu V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-06-01

    We discuss the manifestations of a new original effect appeared at crossing of the metal foils by fission fragments. We have observed significant mass deficit in the total mass Ms of the fission fragments detected in coincidence with ions knocked out from the foil. It was shown that at the large angles of scattering of the knocked-out ions from the foil predominantly conventional elastic Rutherford scattering takes place. As the result Ms corresponds to the mean mass of the mother system after emission of fission neutrons (no missing mass). In contrast, in near frontal impacts fission fragment misses essential part of its mass. Residual nuclei at least for the fragments from the heavy mass peak show magic nucleon composition.

  11. Characteristics of aerosol light scattering and absorption properties observed at Gosan, Korea, during GOPOEX 2014

    NASA Astrophysics Data System (ADS)

    Cho, C.; Kim, S. W.; Sheridan, P. J.; Gustafsson, O.; Lee, M.; Yoon, S. C.

    2016-12-01

    Anthropogenic fine pollution and wind-blown mineral dust aerosols have a significant effect on the regional radiation budget by scattering or absorbing the solar radiation reaching the Earth's surface. We investigate the optical and physical properties of dust and pollution aerosols at Gosan Climate Observatory (GCO), Korea during Gosan Pollution Experiment 2014 (GOPOEX 2014; January 2014).Mean values of aerosol scattering coefficient and absorption coefficient during GOPOEX 2014 were 72 ± 86 Mm-1 and 6 ± 5 Mm-1 at 550 nm, respectively. Aerosol scattering coefficient and absorption coefficient during dust episodes were 245 ± 171 Mm-1 and 22 ± 13 Mm-1 at 550 nm, which were approximately 3.5 times greater than mean values during GOPOEX 2014. Values for scattering and absorption coefficient of pollution episodes were recorded as 153 ± 95 Mm-1 and 12 ± 7 Mm-1 at 550 nm. Therefore, single scattering albedo of pollution episodes (0.92 ± 0.02) was slightly higher than those of dust episodes (0.90 ± 0.03). This is because that pollutant aerosols include more scattering fraction such as SO42-, and NO3- in fine particulate matter emitted from industrial areas in the eastern coastal region of China while dust aerosols are transported from North China to Gosan.Aerosol optical properties are influenced by where the air mass is transported from, either South China or North China. The mean values of aerosol scattering coefficient and absorption coefficient when air mass was transported from South China were 136 ± 132 Mm-1 and 15 ± 14 Mm-1 at 550 nm whereas those from North China were 108 ± 112 Mm-1 and 8 ± 7 Mm-1 at 550 nm. Single scattering albedo are almost identical as 0.9 ± 0.03 for both air masses.Carbonaceous composition of aerosols, which occupy a considerable fraction of fine particulate matter, also depends on the origin of the air mass. Radiocarbon (14C) is a good indicator for distinguishing between fossil combustion and biomass combustion. Detailed source contribution based on radiocarbon measurements and its relationship to aerosol optical properties at GCO will be presented.

  12. Molar mass, radius of gyration and second virial coefficient from new static light scattering equations for dilute solutions: application to 21 (macro)molecules.

    PubMed

    Illien, Bertrand; Ying, Ruifeng

    2009-05-11

    New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2500 kg mol(-1)), for which the scattered intensity is no longer independent of the scattering angle, the new equations give the same value of the radius of gyration as the CZ equation and consistent values of the second virial coefficient.

  13. An Accurate Analytic Approximation for Light Scattering by Non-absorbing Spherical Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.

    2017-12-01

    The scattering of light by particles in the atmosphere is a ubiquitous and important phenomenon, with applications to numerous fields of science and technology. The problem of scattering of electromagnetic radiation by a uniform spherical particle can be solved by the method of Mie and Debye as a series of terms depending on the size parameter, x=2πr/λ, and the complex index of refraction, m. However, this solution does not provide insight into the dependence of the scattering on the radius of the particle, the wavelength, or the index of refraction, or how the scattering varies with relative humidity. Van de Hulst demonstrated that the scattering efficiency (the scattering cross section divided by the geometric cross section) of a non-absorbing sphere, over a wide range of particle sizes of atmospheric importance, depends not on x and m separately, but on the quantity 2x(m-1); this is the basis for the anomalous diffraction approximation. Here an analytic approximation for the scattering efficiency of a non-absorbing spherical particle is presented in terms of this new quantity that is accurate over a wide range of particle sizes of atmospheric importance and which readily displays the dependences of the scattering efficiency on particle radius, index of refraction, and wavelength. For an aerosol for which the particle size distribution is parameterized as a gamma function, this approximation also yields analytical results for the scattering coefficient and for the Ångström exponent, with the dependences of scattering properties on wavelength and index of refraction clearly displayed. This approximation provides insight into the dependence of light scattering properties on factors such as relative humidity, readily enables conversion of scattering from one index of refraction to another, and demonstrates the conditions under which the aerosol index (the product of the aerosol optical depth and the Ångström exponent) is a useful proxy for the number of cloud condensation nuclei.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.

    Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less

  15. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    PubMed

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  16. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  17. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  18. Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Niu, Peng-Bin; Zhang, Chao; Xu, Wei-Ping; Li, Zhi-Jian; Nie, Yi-Hang

    2018-03-01

    We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.

  19. Reply. [to the comment by Anderson et al. (1993)

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.; Ferek, Ronald G.; Hobbs, Peter V.

    1994-01-01

    While Hegg et al. (1993) accepts the criticism of Anderson et al. (1994) in principle, this involves the adoption of an aerosol composition model and the model that they propose to reconcile these observations with the assertion of Charlson et al. (1992) does not agree with many observations, particularly those made over the North Atlantic Ocean. Although the use of a gain factor (i.e. the partial derivative of aerosol mass with respect to the sulfate ion), proposed by Anderson et al., may be valid for particular cases where a proposed composition model really reflects the actual aerosol composition, this procedure is considered questionable in general. The use of sulfate as a tracer for nonsulfate aerosol mass is questionable, because in the present authors' data set, sulfate averaged only about 26% of the dry aerosol mass. The ammonium mass associated with sulfate mass is not analogous to that betwen the oxygen mass and sulfur mass in the sulfate ion. Strong chemical bonds are present between sulfur and oxygen in sulfate, whereas ammonium and sulfate in haze droplets are ions in solution that may or may not be associated with one another. Thus, there is no reason to assume that sulfate will act as a reliable tracer of ammonium mass. Hegg et al. expresses the view that their approach used for estimating sulfate light scattering efficiency is appropriate for the current level of understanding of atmospheric aerosols.

  20. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  1. Extrinsic Sources of Scatter in the Richness-mass Relation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rozo, Eduardo; Rykoff, Eli; Koester, Benjamin; Nord, Brian; Wu, Hao-Yi; Evrard, August; Wechsler, Risa

    2011-10-01

    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low-mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using Sloan Digital Sky Survey data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (≈1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is ≈5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.

  2. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  3. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  4. CO observations of nearby galaxies and the efficiency of star formation

    NASA Technical Reports Server (NTRS)

    Young, Judith S.

    1987-01-01

    The CO distributions and total molecular content of 160 galaxies were observed using the 14 meter millimeter telescope of the FCRAO. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, while for the Sb and Sa galaxies the Co distributions often exhibit central CO holes up to 5 kpc across. None of the Sc galaxies have CO distributions which resemble the Milky Way. A general correlation was found between total CO and IR luminosities in galaxies. The scatter in this relation is highly correlated with dust temperature. No strong correlation of IR luminosities was found with HI masses, and it was thereby concluded that the infrared emission is more directly tied to the molecular content of galaxies. It is suggested that galaxies which have high Star Formation Effiencies (SFEs) produce more stars per unit molecular mass, thereby increasing the average temperature of the dust in the star forming regions. Irregular galaxies and galaxies previously identified as mergers have the highest observed star formation efficiencies. For the mergers, evidence was found that the IR/CO luminosity ratio increases with the merger age estimated by Joseph and Wright (1985).

  5. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  6. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  7. SEARCHING FOR SCATTERERS: HIGH-CONTRAST IMAGING OF YOUNG STARS HOSTING WIDE-SEPARATION PLANETARY-MASS COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Marta L.; Mawet, Dimitri; Bowler, Brendan P.

    2016-08-20

    We have conducted an angular differential imaging survey with NIRC2 at Keck in search of close-in substellar companions to a sample of seven systems with confirmed planetary-mass companions (PMCs) on wide orbits (>50 au). These wide-separation PMCs pose significant challenges to all three possible formation mechanisms: core accretion plus scattering, disk instability, and turbulent fragmentation. We explore the possibility that these companions formed closer in and were scattered out to their present-day locations by searching for other massive bodies at smaller separations. The typical sensitivity for this survey is Δ K ∼ 12.5 at 1″. We identify eight candidate companions,more » whose masses would reach as low as one Jupiter mass if gravitationally bound. From our multi-epoch astrometry we determine that seven of these are conclusively background objects, while the eighth near DH Tau is ambiguous and requires additional monitoring. We rule out the presence of >7 M {sub Jup} bodies in these systems down to 15–50 au that could be responsible for scattering. This result combined with the totality of evidence suggests that dynamical scattering is unlikely to have produced this population of PMCs. We detect orbital motion from the companions ROXs 42B b and ROXs 12 b, and from this determine 95% upper limits on the companions’ eccentricities of 0.58 and 0.83 respectively. Finally, we find that the 95% upper limit on the occurrence rate of additional planets with masses between 5 and 15 M {sub Jup} outside of 40 au in systems with PMCs is 54%.« less

  8. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation.

    PubMed

    Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F

    2013-12-21

    There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.

  9. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  10. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.

  11. Multi-peaks scattering of light in glasses

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.

    2018-04-01

    Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.

  12. Meson-meson scattering: K{anti K}-thresholds and f{sub 0}(980)-a{sub 0}(980) mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O. Krehl; R. Rapp; J. Speth

    1996-09-01

    The authors study the influence of mass splitting between the charged and neutral pions and kaons in the Juelich meson exchange model for {pi}{pi} and {pi}{eta} scattering. The calculations are performed in the particle basis, which permits the use of physical masses for the pseudoscalar mesons and a study of the distinct thresholds associated with the neutral and the charged kaons. Within this model the authors also investigate the isospin violation which arises from the mass splitting and an apparent violation of G-parity in {pi}{pi} scattering which stems from the coupling to the K{anti K} channel. Nonvanishing cross sections formore » {pi}{pi} {r_arrow} {pi}{sup 0}{eta} indicate a mixing of the f{sub 0}(980) and a{sub 0}(980) states.« less

  13. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  14. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration

    2017-12-01

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the S U (3 ) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of ≈806 MeV ). Specifically, the S -wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering parameters in the two-nucleon systems that were previously obtained at these quark masses are determined with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons are constrained for the first time. It is found that the values of these parameters are consistent with an approximate S U (6 ) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-Nc limit of QCD. The two distinct S U (6 )-invariant interactions between two baryons are constrained for the first time at this value of the quark masses, and their values indicate an approximate accidental S U (16 ) symmetry. The S U (3 ) irreps containing the N N (1S0), N N (3S1) and 1/√{2 } (Ξ0n +Ξ-p )(3S1) channels unambiguously exhibit a single bound state, while the irrep containing the Σ+p (3S1) channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.

  15. A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses

    NASA Astrophysics Data System (ADS)

    Gifford, Daniel; Miller, Christopher; Kern, Nicholas

    2013-08-01

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z <=0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to "orphan" galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit). We find that the caustic technique recovers the known halo masses (M 200) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N gal > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N gal = 150 (25), the caustic technique has a per cluster scatter in ln (M|M 200) of 0.3 (0.5) and bias 1% ± 3} (16% ± 5}) for clusters with masses >1014 M ⊙ at z < 0.15.

  16. Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.

    2006-04-01

    An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.

  17. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  18. Biological Small Angle Scattering: Techniques, Strategies and Tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less

  19. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco

    2018-01-01

    Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both σsp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).

  20. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE PAGES

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; ...

    2016-05-27

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  1. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  2. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    NASA Astrophysics Data System (ADS)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; Atkinson, Dean B.; Pekour, Mikhail S.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2016-05-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM1, PM2.5 and PM10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM10 and the fraction of the scattering that is contributed by submicron particles (fsca, PM1) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the fsca, PM1 increased with photochemical age, whereas at the downwind, more rural T1 site the fsca, PM1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles ( ˜ 15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM2.5 distribution was dominated by smaller particles.

  3. Connecting physical resonant amplitudes and lattice QCD

    DOE PAGES

    Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.

    2016-03-18

    Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less

  4. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  5. Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.

    PubMed

    Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M

    2015-10-16

    We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.

  6. Efficient bifacial dye-sensitized solar cells through disorder by design† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ta10091g Click here for additional data file.

    PubMed Central

    Miranda-Muñoz, José M.; Carretero-Palacios, Sol; Jiménez-Solano, Alberto; Li, Yuelong; Lozano, Gabriel

    2016-01-01

    Herein we realize an optical design that optimizes the performance of bifacial solar cells without modifying any of the usually employed components. In order to do so, dielectric scatterers of controlled size and shape have been successfully integrated in the working electrodes of dye-sensitized solar cells (DSSCs), resulting in bifacial devices of outstanding performance. Power conversion efficiencies (PCEs) as high as 6.7% and 5.4% have been attained under front and rear illumination, respectively, which represent a 25% and a 33% PCE enhancement with respect to an 8 μm-thick standard solar cell electrode using platinum as the catalytic material. The remarkable bifacial character of our approach is demonstrated by the high rear/front efficiency ratio attained, around 80%, which is among the largest reported for this sort of device. The proposed optimized design is based on a Monte Carlo approach in which the multiple scattering of light within the cell is fully accounted for. We identified that the spherical shape of the scatterers is the key parameter controlling the angular distribution of the scattering, the most efficient devices being those in which the inclusions provide a narrow forward-oriented angular distribution of the scattered light. PMID:27019714

  7. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  8. Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008.

    PubMed

    Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng

    2012-12-01

    Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing.

    PubMed

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-28

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface.

    PubMed

    Shao, Yu; Wang, Shumin

    2016-12-01

    The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.

  11. Tables of thermospheric temperature, density and composition derived from satellite and ground based measurements. Volume 3: Ap=100

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.

    1979-01-01

    The neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model are presented in tabular form. The predictions are based on selected altitudes, latitudes, local times, days and other geophysical conditions. The model is dependent on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20.

  12. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    NASA Astrophysics Data System (ADS)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system containing a new pre-processor code, NDPP, and a Monte Carlo neutron transport code, OpenMC. This method is then tested in a pin cell problem and a larger problem designed to accentuate the importance of scattering moment matrices. These tests show that accuracy was retained while the figure-of-merit for generating scattering moment matrices and fission energy spectra was significantly improved.

  13. Low-energy ion beamline scattering apparatus for surface science investigations

    NASA Astrophysics Data System (ADS)

    Gordon, M. J.; Giapis, K. P.

    2005-08-01

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100μA/cm2) of a single ion species at low, tunable energy (50-1400±5eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving Ne+20 with Mg /Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less

  15. Study of coherent reflectometer for imaging internal structures of highly scattering media

    NASA Astrophysics Data System (ADS)

    Poupardin, Mathieu; Dolfi, Agnes

    1996-01-01

    Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.

  16. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    NASA Astrophysics Data System (ADS)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  17. Analysis of X-ray spectral variability and black hole mass determination of the NLS1 galaxy Mrk 766

    NASA Astrophysics Data System (ADS)

    Giacchè, S.; Gilli, R.; Titarchuk, L.

    2014-02-01

    We present an XMM-Newton time-resolved spectral analysis of the narrow-line Seyfert 1 galaxy Mrk 766. We analysed eight available observations taken between May 2000 and June 2005 with the EPIC-pn camera in order to investigate the X-ray spectral variability produced by changes in the mass accretion rate. The 0.2 - 10 keV spectra are extracted in time bins longer than 3 ks to have at least 3 × 104 net counts in each bin and then accurately trace the variations of the best-fit parameters of our adopted Comptonization spectral model. We tested a bulk-motion Comptonization (BMC) model which is in general applicable to any physical system powered by accretion onto a compact object, and assumes that soft seed photons are efficiently up-scattered via inverse Compton scattering in a hot and dense electron corona. The Comptonized spectrum has a characteristic power law shape, whose slope was found to increase for large values of the normalization of the seed component, which is proportional to the mass accretion rate ṁ (in Eddington units). Our baseline spectral model also includes a warm absorber lying on the line of sight and radiation reprocessing from the accretion disc or from outflowing matter in proximity to the central compact object. Our study reveals that the normalization-slope correlation, observed in Galactic black hole sources (GBHs), also holds for Mrk 766: variations of the photon index in the range Γ ~ 1.9-2.4 are indeed likely to be related to the variations of ṁ, as observed in X-ray binary systems. We finally applied a scaling technique based on the observed correlation to estimate the BH mass in Mrk 766. This technique is commonly and successfully applied to measure masses of GBHs, and this is the first time it has been applied in detail to estimate the BH mass in an AGN. We obtained a value of MBH = 1.26-0.77+1.00×106 M⊙, which is in very good agreement with that estimated by the reverberation mapping. Appendix A is available in electronic form at http://www.aanda.org

  18. Light Scattering by Coated Sphere Immersed in Absorbing Medium: A Comparison between the FDTD and Analytic Solutions

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Fu, Q.

    2004-01-01

    A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed. (C) 2003 Elsevier Ltd. All rights reserved.

  19. WTO — a deterministic approach to 4-fermion physics

    NASA Astrophysics Data System (ADS)

    Passarino, Giampiero

    1996-09-01

    The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.

  20. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.

  1. Energy flow and charged particle spectra in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Aid, S.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Braemer, A.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Chyla, J.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; di Nezza, P.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kazarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegener, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-09-01

    Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as with e + e - dat from LEP.

  2. Neutron crosstalk between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  3. Scattering theory derivation of a 3D acoustic cloaking shell.

    PubMed

    Cummer, Steven A; Popa, Bogdan-Ioan; Schurig, David; Smith, David R; Pendry, John; Rahm, Marco; Starr, Anthony

    2008-01-18

    Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.

  4. Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, José A.; Maradudin, Alexei A.

    2005-06-01

    The scattering of surface-plasmon polaritons (SPP) by finite arrays of one-dimensional nanodefects on metal surfaces is theoretically investigated on the basis of the reduced Rayleigh equation. Numerical calculations are carried out that rigorously account for all the scattering channels: SPP reflection and transmission, and radiative leakage. We analyze the range of parameters (defect size and number) for which high SPP reflection efficiency (low radiative losses) is achieved within a SPP band gap (negligible SPP transmission), neglecting ohmic losses (justified for array lengths significantly shorter than the SPP inelastic length): Smaller defects play better as SPP mirrors (e.g., efficiency >90% at λ ˜650nm for Gaussian ridges/grooves with sub-30nm height and half-width) than larger defects, since the latter yield significant radiative losses.

  5. Nitrogen oxides in the arctic stratosphere: Implications for ozone abundances. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slusser, J.R.

    1994-01-01

    In the high latitude winter stratosphere, NO2 sequesters chlorine compounds which are extremely efficient at destroying ozone. During the nighttime, NO2 reacts with ozone to form N2O5 which acts as a reservoir of NO2. Under heavy aerosol loading, N2O5 may react with water on aerosol surfaces to form HNO3, a reservoir more resistant to photolysis. This heterogeneous reaction results in reduced NO2 concentration when the sun returns at the end of the winter. A spectrograph system has been developed to measure scattered zenith skylight and thereby determine stratospheric NO2 slant column abundance. Conversion of the measured slant column abundance tomore » vertical column abundance requires dividing by the air mass. The air mass is the enhancement in the optical path for the scattered twilight as compared to a vertical path. Air mass values determined using a multiple scattering radiative transfer code have been compared to those derived using a Monte Carlo code and were found to agree to within 6% at a 90 deg solar zenith angle for a stratospheric absorber. Six months of NO2 vertical column abundance measured over Fairbanks during the winter 1992-93 exhibited the daylight diminished and increased as the sunlight hours lengthened. The overall seasonal behavior was similar to high-latitude measurements made in the Southern Hemisphere. The ratios of morning to evening column abundance were consistent with predictions based on gas-phase chemistry. The possible heterogeneous reaction of N2O5 on sulfate aerosols was investigated using FTIR Spectrometer measurements of HNO3 column abundance and lidar determinations of the aerosol profile. Using an estimated N2O5 column abundance and aerosol profile as input to a simple model, significant HNO3 production was expected. No increase in HNO3 column abundance was measured. From this set of data, it was not possible to determine whether significant amounts of N2O5 were converted to HNO3 by this heterogeneous reaction.« less

  6. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign.

    PubMed

    Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia

    2009-08-01

    Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.

  7. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  8. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  9. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2014-01-01

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630

  10. Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David

    2005-06-01

    The discovery that many trans-Neptunian objects exist in pairs, or binaries, is proving invaluable for shedding light on the formation, evolution and structure of the outer Solar system. Based on recent systematic searches it has been estimated that up to 10 per cent of Kuiper-belt objects might be binaries. However, all examples discovered to date are unusual, as compared with near-Earth and main-belt asteroid binaries, for their mass ratios of the order of unity and their large, eccentric orbits. In this article we propose a common dynamical origin for these compositional and orbital properties based on four-body simulations in the Hill approximation. Our calculations suggest that binaries are produced through the following chain of events. Initially, long-lived quasi-bound binaries form by two bodies getting entangled in thin layers of dynamical chaos produced by solar tides within the Hill sphere. Next, energy transfer through gravitational scattering with a low-mass intruder nudges the binary into a nearby non-chaotic, stable zone of phase space. Finally, the binary hardens (loses energy) through a series of relatively gentle gravitational scattering encounters with further intruders. This produces binary orbits that are well fitted by Kepler ellipses. Dynamically, the overall process is strongly favoured if the original quasi-bound binary contains comparable masses. We propose a simplified model of chaotic scattering to explain these results. Our findings suggest that the observed preference for roughly equal-mass ratio binaries is probably a real effect; that is, it is not primarily due to an observational bias for widely separated, comparably bright objects. Nevertheless, we predict that a sizeable population of very unequal-mass Kuiper-belt binaries is probably awaiting discovery.

  11. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    PubMed

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A SYSTEMATIC ANALYSIS OF CAUSTIC METHODS FOR GALAXY CLUSTER MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gifford, Daniel; Miller, Christopher; Kern, Nicholas

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z {<=}0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to ''orphan'' galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit).more » We find that the caustic technique recovers the known halo masses (M{sub 200}) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N{sub gal} > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N{sub gal} = 150 (25), the caustic technique has a per cluster scatter in ln (M|M{sub 200}) of 0.3 (0.5) and bias 1% {+-} 3{r_brace} (16% {+-} 5{r_brace}) for clusters with masses >10{sup 14} M{sub Sun} at z < 0.15.« less

  13. A new strategy on utilizing nitrogen doped TiO{sub 2} in nanostructured solar cells: Embedded multifunctional N-TiO{sub 2} scattering particles in mesoporous photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shogh, Shiva; Mohammadpour, Raheleh; Iraji zad, Azam, E-mail: Iraji@sharif.edu

    2015-12-15

    Highlights: • N-doped TiO{sub 2} scattering particles were synthesized for embedding into commercial photoanode of dye sensitized solar cells. • Embedded scatterers improved optical and electrical features of the cells. • These multifunctional scatterers increased cell performance up to 17%. - Abstract: Aggregated sub-micron size nitrogen doped TiO{sub 2} (N-TiO{sub 2}) particles with superior optical and electrical features were successfully synthesized for embedding into commercial mesoporous TiO{sub 2} photoelectrode of dye sensitized solar cells (DSSCs) as the light scattering particles compared to undoped one. X-ray photoelectron spectroscopy and absorption spectra confirmed that the titanium dioxide is sufficiently doped by nitrogenmore » in N-TiO{sub 2} sample. Employing these high-surface N-TiO{sub 2} in mesoporous photoelectrode of solar cells, the power conversion efficiency of 8% has been achieved which shows 17% improvement for the optimum embedded level of doping (30 wt%) compared to commercial photoelectrode without additive; while enhanced efficiency is only 3% embedding undoped sub-micron size TiO{sub 2} particles. These results can introduce the novel multifunctional photoelectrode for nanostructured solar cells with enhanced values of scattering efficiency and improved electrical features including trap states density reduction in comparison to commercial mesoporous photoelectrodes.« less

  14. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume, D.; Daily, K. M.

    We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less

  15. A MEASUREMENT OF THE SPIN CORRELATION COEFFICIENT Cnn IN p-p SCATTERING AT 382 Mev, FOR 90 CENTRE OF MASS SCATTERING ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashmore, A.; Diddens, A.N.; Huxtable, G.B.

    1958-08-01

    BS>The experimental plan is described including a diagram of the apparaths. The measurement of C /sub nn/ was made in runs of 64 and 74 hours duration using a beam of about 1.4 x 10/sup 9/ protons sec/sup -1/ intercepting the target. The most important contribution was from p-p scattering events causing the operation of three counters which were set up on one side and only the first of three counters set up on the other side, with the assymetry in such measurements defined by the formula e=RR +LL--LR-RL/RR +LL +LR+RL;for a scattering angle of 90 deg in the centermore » of mass it should be found that RR = LL and LR = RL. The value of ssymmetry was e = +0.192 plus or minus 0.035. (J.R.D.)« less

  16. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  17. Axial mass in quasielastic antineutrino-nucleon scattering accompanied by strange-hyperon production

    NASA Astrophysics Data System (ADS)

    Kuzmin, K. S.; Naumov, V. A.

    2009-09-01

    Reactions of quasielastic Λ-, Σ--, and Σ0-hyperon production in antineutrino-nucleon interactions are studied. An axial-mass ( M A ) value that agrees with a fit to all accelerator data on exclusive and inclusive νN and νN reactions was extracted from a global statistical analysis of experimental data on differential and total cross sections for Δ Y = 0 and 1 quasielastic reactions of neutrino and antineutrino scattering on various nuclear targets.

  18. Effects of melamine formaldehyde resin and CaCO3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs.

    PubMed

    Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng

    2013-08-01

    Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.

  19. Interfacial engineering of pyridinium gemini surfactants for the generation of synthetic transfection systems.

    PubMed

    Sharma, Vishnu D; Aifuwa, Eronmwon O; Heiney, Paul A; Ilies, Marc A

    2013-09-01

    Pyridinium gemini surfactants possess a soft charge, a high charge/mass ratio and a high molecular flexibility - all key parameters that recommend their use in synthetic gene delivery systems with in vitro and in vivo efficiency. In present study we generated a DNA delivery system through interfacial engineering of pyridinium gemini surfactants at the level of linker, hydrophobic chains and counterions. The self-assembling of the pyridinium amphiphiles and the physicochemical properties of the resultant supra-molecular assemblies were studied in bulk and in solution through a combination of techniques that included DSC, X-ray diffraction, polarized microscopy, CMC, dynamic light scattering and zeta potential measurements. We assessed the impact of different structural elements and formulation parameters of these pyridinium amphiphiles on their DNA compaction properties, transfection efficiency, cytotoxicity, in a complete structure-activity relationship study. This interfacial engineering process generated transfection systems with reduced cytotoxicity and high transfection efficiency in media containing elevated levels of serum that mimic the in vivo conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We review experimental results concerning polarization phenomena in nucleon-nucleon scattering in which both the elastic scattering and hadron-production reaction are included. We also present summary of S = 0 dibaryon resonances and candidates by reviewing experimental data in the nucleon-nucleon system, ..gamma..d channel, ..pi..d elastic scattering, pp ..-->.. ..pi..d channel, deuteron break-up reactions, and narrow structures in missing-mass spectra. 93 refs., 26 figs.

  1. Detection of related substances in polyene phosphatidyl choline extracted from soybean and in its commercial capsule by comprehensive supercritical fluid chromatography with mass spectrometry compared with HPLC with evaporative light scattering detection.

    PubMed

    Jiang, Qikun; Liu, Wanjun; Li, Xiaoting; Zhang, Tianhong; Wang, Yongjun; Liu, Xiaohong

    2016-01-01

    Supercritical fluid chromatography with tandem mass spectrometry was used to comprehensively profile polyene phosphatidyl choline (PPC) extracted from soybean. We achieved an efficient chromatographic analysis using a BEH-2EP column (3 × 100 mm(2) , 1.7 μm) with a mobile phase consisting of CO2 and a cosolvent in gradient combination at a flow rate of 1.0 mL/min. The cosolvent consisted of methanol, acetonitrile, and water (containing 10 mM ammonium acetate and 0.2% formic acid). The total single-run time was 7 min. We used this method to accurately detect ten different phospholipids (PLs) during extraction. The limits of quantification for phosphatidyl choline, lyso-phosphatidylcholine (LPC), phosphatidic acid (PA), sphingomyelin, phosphatidyl glycerol, phosphatidyl inositol (PI), cholesterol, cardiolipin, phosphatidyl serine, and phosphatidyl ethanolamine (PE) were 20.6, 19.52, 1.21, 2.38, 0.50, 2.28, 54.3, 0.60, 0.65, and 4.85 ng/mL, respectively. However, adopting the high-performance liquid chromatography with evaporative light scattering detection method issued by the China Food and Drug Administration, only PA, LPC, PE, PI, and PPC could be analyzed accurately, and the limits of quantification were 33.89, 60.5, 30.3, 10.9, and 61.79 μg/mL, respectively. The total single-run time was at the least 20 min. Consequently, the supercritical fluid chromatography with tandem mass spectrometry method was more suitable for the analysis of related PLs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  3. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Elisabeth A. C.; Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less

  4. Strong anharmonic phonon scattering induced giant reduction of thermal conductivity in PbTe nanotwin boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Yang, Jia-Yue; Cheng, Long; Hu, Ming

    2018-02-01

    Lead telluride (PbTe) is a renowned thermoelectric material with high energy conversion efficiency in medium to high temperature range. However, the performance of PbTe at room temperature is poor due to its relatively high lattice thermal conductivity, which is difficult to be engineered due to its intrinsic very short phonon mean-free path. By performing systematic first-principles and molecular-dynamics simulations, we report that the room-temperature lattice thermal conductivity of PbTe can be reduced by almost one order of magnitude (86%) using the recent experimentally observed nanotwin structure. The mechanism responsible for the dramatic decrease of thermal conductivity strongly depends on the type and mass of atoms at the twin boundary. For PbTe nanotwinned structures with Te at the twin boundary, phonon transport is dominated by the phonon confinement effect and phonon-twin boundary scattering, and the thermal conductivity converges to the bulk value when half of the periodic length is larger than the dominant phonon mean-free path. The same phenomenon is found in another comparison system of KCl nanotwinned structures. However, when Pb is present at the twin boundary, a scattering mechanism occurs: anharmonicity induced by the twin boundary. Due to the mass difference between Pb and Te, the thermal resistance for Pb residing at the twin boundary is found to be one order of magnitude larger than the case with Te at the twin boundary, which results in much stronger phonon-twin boundary scattering. Consequently, the lowest thermal conductivity of such PbTe nanotwinned structure is only 0.4 W/mK, which is reduced by about sevenfold compared to the bulk value of 2.85 W/mK; finally, the converged thermal conductivity cannot restore the bulk value even when half of the periodic length is much larger than the dominant mean-free path. These results offer useful guidance for the development of PbTe-based thermoelectrics and also suggest that nanotwins are excellent building blocks for enhancing the performance of existing thermoelectrics.

  5. Expansion of Tabulated Scattering Matrices in Generalized Spherical Functions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Yang, Ping

    2016-01-01

    An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public-domain FORTRAN program.

  6. A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

    PubMed Central

    Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert

    2012-01-01

    We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845

  7. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  8. Weighing the giants- V. Galaxy cluster scaling relations

    NASA Astrophysics Data System (ADS)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja; Applegate, Douglas E.; Kelly, Patrick L.; Burke, David L.; Donovan, David; Ebeling, Harald

    2016-12-01

    We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness-mass relation is in excellent agreement with recent work, the measured Y-mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.

  9. Erratum: Weighing the giants – V. Galaxy cluster scaling relations

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2017-02-21

    We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginningmore » to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness{mass relation is in excellent agreement with recent work, the measured Y {mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.« less

  10. Weighing the giants– V. Galaxy cluster scaling relations

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2016-09-07

    Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data aremore » beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.« less

  11. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  12. A mass census of the nearby universe with the RESOLVE survey

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen

    The galaxy mass function, i.e., the distribution of galaxies as a function of mass, is a useful way to characterize the galaxy population. In this work, we examine the stellar and baryonic mass function, and the velocity function of galaxies and galaxy groups for two volume-limited surveys of the nearby universe. Stellar masses are estimated from multi-band photometry, and we add cold atomic gas from measurements and a newly calibrated estimator to obtain baryonic mass. Velocities are measured from the internal motions of galaxies and groups and account for all matter within the system. We compare our observed mass and velocity functions with the halo mass function from theoretical simulations of dark matter, which predict a much more steeply rising low-mass slope than is normally observed for the galaxy mass function. We show that taking into account the cold gas mass, which dominates the directly detectable mass of low-mass galaxies, steepens the low-mass slope of the galaxy mass function. The low- mass slope of the baryonic mass function, however, is still much shallower than that of the halo mass function. The discrepancy in low-mass slope persists when examining the velocity function, which accounts for all matter in galaxies (detectable or not), suggesting that some mechanism must reduce the mass in halos or destroy them completely. We investigate the role of environment by performing group finding and examining the mass and velocity functions as a function of group halo mass. Broken down by halo mass regime, we find dips and varying low-mass slopes in the mass and velocity functions, suggesting that group formation processes such as merging and stripping, which destroy and lower the mass of low-mass satellites respectively, potentially contribute to the discrepancy in low-mass slope. In particular, we focus on the nascent group regime, groups of mass 10 11.4-12 [solar mass] with few members, which has a depressed and flat low-mass slope in the galaxy mass and velocity function. We find that nascent groups are at the peak baryonic collapse efficiency (group-integrated cold baryonic mass divided by the group halo mass), while isolated dwarfs in lower mass halos are rapidly growing in their collapsed baryonic mass and larger groups are increasingly dominated by their hot halo gas. Scatter in this collapsed baryon efficiency could indicate varying hot gas fractions in nascent groups, suggestive of a wide variety of group formation processes occurring at these scales. We point to this nascent group regime as a period of transition in group evolution, where merging and stripping remove galaxies from the population, contributing to the discrepancy in low-mass slope between observations and dark matter simulations.

  13. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    PubMed

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  14. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  15. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE PAGES

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...

    2017-12-28

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  16. Gauge invariance and kaon production in deep inelastic scattering at low scales

    NASA Astrophysics Data System (ADS)

    Guerrero, Juan V.; Accardi, Alberto

    2018-06-01

    This paper focuses on hadron mass effects in calculations of semi-inclusive kaon production in lepton-Deuteron deeply inelastic scattering at HERMES and COMPASS kinematics. In the collinear factorization framework, the corresponding cross section is shown to factorize, at leading order and leading twist, into products of parton distributions and fragmentation functions evaluated in terms of kaon- and nucleon-mass-dependent scaling variables, and to respect gauge invariance. It is found that hadron mass corrections for integrated kaon multiplicities sizeably reduce the apparent large discrepancy between measurements of K++K- multiplicities performed by the two collaborations, and fully reconcile their K+/K- ratios.

  17. Light scattering properties of spheroidal particles

    NASA Technical Reports Server (NTRS)

    Asano, S.

    1979-01-01

    In the present paper, the light scattering characteristics of spheroidal particles are evaluated within the framework of a scattering theory developed for a homogeneous isotropic spheroid. This approach is shown to be well suited for computing the scattering quantities of spheroidal particles of fairly large sizes (up to a size parameter of 30). The effects of particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are studied and interpreted physically. It is shown that, in the case of oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder.

  18. Neutron Scattering Differential Cross Sections for 12C

    NASA Astrophysics Data System (ADS)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  19. Low dose scatter correction for digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Inscoe, Christina R.; Wu, Gongting; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2015-03-01

    Digital chest tomosynthesis (DCT) provides superior image quality and depth information for thoracic imaging at relatively low dose, though the presence of strong photon scatter degrades the image quality. In most chest radiography, anti-scatter grids are used. However, the grid also blocks a large fraction of the primary beam photons requiring a significantly higher imaging dose for patients. Previously, we have proposed an efficient low dose scatter correction technique using a primary beam sampling apparatus. We implemented the technique in stationary digital breast tomosynthesis, and found the method to be efficient in correcting patient-specific scatter with only 3% increase in dose. In this paper we reported the feasibility study of applying the same technique to chest tomosynthesis. This investigation was performed utilizing phantom and cadaver subjects. The method involves an initial tomosynthesis scan of the object. A lead plate with an array of holes, or primary sampling apparatus (PSA), was placed above the object. A second tomosynthesis scan was performed to measure the primary (scatter-free) transmission. This PSA data was used with the full-field projections to compute the scatter, which was then interpolated to full-field scatter maps unique to each projection angle. Full-field projection images were scatter corrected prior to reconstruction. Projections and reconstruction slices were evaluated and the correction method was found to be effective at improving image quality and practical for clinical implementation.

  20. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties.

  1. Library based x-ray scatter correction for dedicated cone beam breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Linxi; Zhu, Lei, E-mail: leizhu@gatech.edu

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the GEANT4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correctionmore » on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging.« less

  2. Library based x-ray scatter correction for dedicated cone beam breast CT

    PubMed Central

    Shi, Linxi; Karellas, Andrew; Zhu, Lei

    2016-01-01

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the geant4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging. PMID:27487870

  3. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.

    PubMed Central

    Williams, S P; Langmore, J P

    1991-01-01

    Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522

  4. The MOSDEF Survey: Direct Observational Constraints on the Ionizing Photon Production Efficiency, ξ ion, at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen A.; Siana, Brian; Shapley, Alice E.; Kriek, Mariska; Mobasher, Bahram; Freeman, William R.; Sanders, Ryan L.; Coil, Alison L.; Price, Sedona H.; Fetherolf, Tara; Azadi, Mojegan; Leung, Gene; Zick, Tom

    2018-03-01

    We combine Hα and Hβ spectroscopic measurements and UV photometry for a sample of 673 galaxies from the MOSDEF survey to constrain hydrogen-ionizing photon production efficiencies ({ξ }ion}) at z = 1.4–2.6. We find < {log}({ξ }ion}/[{{{s}}}-1/{erg} {{{s}}}-1 {Hz}}-1])> = 25.06 (25.34), assuming the Calzetti (SMC) curve for the UV dust correction and a scatter of 0.28 dex in the {ξ }ion} distribution. After accounting for observational uncertainties and variations in dust attenuation, we conclude that the remaining scatter in {ξ }ion} is likely dominated by galaxy-to-galaxy variations in stellar populations, including the slope and upper-mass cutoff of the initial mass function, stellar metallicity, star formation burstiness, and stellar evolution (e.g., single/binary star evolution). Moreover, {ξ }ion} is elevated in galaxies with high ionization states (high [O III]/[O II]) and low oxygen abundances (low [N II]/Hα and high [O III]/Hβ) in the ionized ISM. However, {ξ }ion} does not correlate with the offset from the z ∼ 0 star-forming locus in the BPT diagram, suggesting no change in the hardness of the ionizing radiation accompanying the offset from the z ∼ 0 sequence. We also find that galaxies with blue UV spectral slopes (< β > =-2.1) have {ξ }ion} elevated by a factor of ∼2 relative to the average {ξ }ion} of the sample (< β > =-1.4). If these blue galaxies are similar to those at z > 6, our results suggest that a lower Lyman-continuum escape fraction is required for galaxies to maintain reionization, compared to the canonical {ξ }ion} predictions from stellar population models. Furthermore, we demonstrate that even with robustly dust-corrected Hα, the UV dust attenuation can cause on average a ∼0.3 dex systematic uncertainty in {ξ }ion} calculations.

  5. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    NASA Technical Reports Server (NTRS)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  6. Aerosol optical properties at SORPES in Nanjing, east China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Virkkula, Aki; Ding, Aijun; Wang, Jiaping; Chi, Xuguang; Nie, Wei; Qi, Ximeng; Huang, Xin; Liu, Qiang; Zheng, Longfei; Xu, Zheng; Petäjä, Tuukka; Aalto, Pasi P.; Fu, Congbin; Kulmala, Markku

    2018-04-01

    Aerosol optical properties (AOPs) and supporting parameters - particle number size distributions, PM2.5 mass concentrations, and the concentrations of trace gases (NOx and NOy) - were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp = 403 ± 314 Mm-1, the absorption coefficient σap = 26 ± 19 Mm-1, and the single-scattering albedo SSA = 0.93 ± 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370-950 nm was 1.04 and the AAE range was 0.7-1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and low ones in summer: the averages were σsp = 544 ± 422 and σap = 36 ± 24 Mm-1 in winter and σsp = 342 ± 281 and σap = 20 ± 13 Mm-1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high σsp and σap are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3-7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of PM2.5 grew during the extended pollution episodes from ˜ 4 to ˜ 6 m2 g-1 and the mass fraction of BCe decreased from ˜ 10 to ˜ 3 % during the growth phase of the episodes. Particle growth resulted in the backscatter fraction decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95, and radiative forcing efficiency (RFE) changing from less than -26 W m-2 to more than -24 W m-2, which means that the magnitude of RFE decreased. The RFE probability distribution at SORPES was clearly narrower than at a clean background site which is in agreement with a published RFE climatology.

  7. Diamond Scattering Detectors for Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Bloser, Peter

    The objective of the proposed work is to demonstrate the suitability of artificial singlecrystal diamond detectors (SCDDs) for use as the scattering medium in Compton telescopes for medium-energy gamma-ray astronomy. SCDDs offer the possibility of position and energy resolution comparable to those of silicon solid-state detectors (SSDs), combined with efficiency and timing resolution so-far only achievable using fast scintillators. When integrated with a calorimeter composed of fast inorganic scintillator, such as CeBr3, read out by silicon photomultipliers (SiPMs), SCDDs will enable a compact and efficient Compton telescope using time-of-flight (ToF) discrimination to achieve low background and high sensitivity. This detector development project will be a collaboration between the University of New Hampshire (UNH) and Southwest Research Institute (SwRI). The proposed work represents an innovative combination of detector technologies originally conceived separately for high-energy astronomy (fast scintillators read out by SiPMs; UNH) and space plasma/particle physics (SCDDs; SwRI). Recently SwRI has demonstrated that SCDDs fabricated using chemical vapor deposition (CVD) show good energy resolution ( 7 keV FWHM), comparable to silicon SSDs, with much faster time response ( ns rise time) due to higher electron/hole mobilities. They are also temperature- and lightinsensitive, and radiation hard. In addition, diamond is low-Z, composed entirely of carbon, but relatively high-density (3.5 g cm-3) compared to silicon or organic scintillator. SCDDs are therefore an intriguing possibility for a new Compton scattering element: if patterned with mm-sized readout electrodes and combined with a fast inorganic scintillator calorimeter, SCDDs could enable a compact but efficient Compton telescope with superior angular and energy resolution, while maintaining ToF background rejection. Such an instrument offers the exciting potential for unprecedented sensitivity, especially at energies < 1 - 2 MeV, on a small-scale mission utilizing recently available SmallSat buses (payload mass <100 kg). We propose to demonstrate this by constructing and testing a small proof-of-concept prototype and, based on its performance, using Monte Carlo simulations to explore the possibilities of furthering MeV science using relatively small-scale space missions.

  8. Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M

    2011-01-01

    A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressedmore » as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.« less

  9. Extending semi-numeric reionization models to the first stars and galaxies

    NASA Astrophysics Data System (ADS)

    Koh, Daegene; Wise, John H.

    2018-03-01

    Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.

  10. Multiphoton Scattering Tomography with Coherent States.

    PubMed

    Ramos, Tomás; García-Ripoll, Juan José

    2017-10-13

    In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.

  11. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  12. Stimulated low-frequency Raman scattering in plant virus suspensions

    NASA Astrophysics Data System (ADS)

    Donchenko, E. K.; Karpova, O. V.; Kudryavtseva, A. D.; Pershin, S. M.; Savichev, V. I.; Strokov, M. A.; Tcherniega, N. V.; Zemskov, K. I.

    2017-11-01

    The study deals with laser pulse interaction with plant viruses: we investigated tobacco mosaic virus (TMV) and two types of potato viruses (PVX and PVA) in Tris-HCl pH7.5 buffer and in water. We used 20 ns ruby laser pulses for excitation. We employed Fabry-Pérot interferometers to record spectra of the light passing through the sample and reflected from it. For TMV and PVX in Tris-HCl pH7.5 buffer, same as for PVA in water, we observed additional spectral lines corresponding to the stimulated low-frequency Raman scattering (SLFRS). We believe we were the first to measure SLFRS frequency shifts, conversion efficiency and threshold. High conversion efficiency of the scattered light is evidence of laser pulses efficiently exciting gigahertz vibrations in viruses. SLFRS can be used to identify and affect biological nanoparticles.

  13. Mass spectra and fusion cross sections for /sup 20/Ne+/sup 24/Mg interaction at 55 and 85 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Belery, P.; Delbar, T.

    1981-06-01

    Inclusive ..gamma.. spectra from the /sup 20/Ne+/sup 24/Mg interaction have been measured using 55- and 85-MeV /sup 20/Ne ions. The identification of ..gamma.. lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated.

  14. Chiral symmetry constraints on resonant amplitudes

    NASA Astrophysics Data System (ADS)

    Bruns, Peter C.; Mai, Maxim

    2018-03-01

    We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.

  15. Lattice QCD studies on baryon interactions in the strangeness -2 sector with physical quark masses

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya

    2018-03-01

    We investigate baryon-baryon (BB) interactions in the strangeness S = -2 sector via the coupled-channel HAL QCD method which enables us to extract the scattering observables from Nambu-Bethe-Salpeter (NBS) wave function on the lattice. The simulations are performed with (almost) physical quark masses (mπ = 146MeV) and a huge lattice volume of La = 8.1fm. We discuss the fate of H-dibaryon state through the ΛΛ and NΞ coupled-channel scatterings

  16. Landslide Failure Likelihoods Estimated Through Analysis of Suspended Sediment and Streamflow Time Series Data

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Rudd, S.; Lall, U.; Hovius, N.; Dadson, S.; Chen, M.-C.

    Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.

  17. Measurement of chemical composition and optical properties of PM2.5 at Rudong, China

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Pan, X.; Irie, H.; Takashima, H.; Tanimoto, H.; Saito, S.; Akimoto, H.; Wang, Z.

    2013-12-01

    Intensive field campaign in Rudong(32.26 deg N, 121.37 deg E), located 100 km north of the city center of Shanghai, China, in May and June 2010 was carried out. To investigate chemical and optical property of aerosol particles, in this study, 9 or 14-hours PM2.5 samples were collected on the quartz filters using High-volume(500L/min) samplers. Using these filters, EC (elemental carbon) and OC(organic carbon), water-soluble ions(SO42-, NO3-, NH4+, Cl-, Ca2+, Mg2+, K+, and Na+) and metals(Al, Fe, Cu, Mn, Zn, Pb) were measured by Sunset lab EC/OC instrument, ion-chromatography, and ICP-AES, respectively. Furthermore, to monitor PM2.5 total mass, we employed SHARP monitor. During the campaign, total mass concentration monitored by SHARP instrument ranged from 3.2 to 172.1 ug/m3 with a mean of 55.3 ug/m3, and major components were sulfate, nitrate, and organics. The total mass concentration of PM2.5 monitored by the SHARP instrument was overestimated with sum of observed mass concentrations of each species. By taking into account the water amount in the particles measured by the SHARP instrument using thermodynamics model with the compositions on the filter and measured RH, we found mass closure should be achieved. We also performed particle source apportionment analysis using Positive Matrix Factorization (PMF) to investigate the source categories. Furthermore, scattering coefficient was reconstructed in an empirical manner by summing the contributions from various chemical species, which were calculated by multiplying observed mass concentrations of each species with empirical mass scattering coefficient. The reconstructed scattering coefficient had good correlation with directly measured coefficients by nephelometer at RH < 40%. We found the importance of ammonium sulfate and organics in determining the ambient scattering coefficient.

  18. Measurement of collective dynamical mass of Dirac fermions in graphene.

    PubMed

    Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee

    2014-08-01

    Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

  19. LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-Y.; Finoguenov, A.; Böhringer, H.; Kneib, J.-P.; Smith, G. P.; Kneissl, R.; Okabe, N.; Dahle, H.

    2008-05-01

    The Local Cluster Substructure Survey (LoCuSS, Smith et al.) is a systematic multi-wavelength survey of more than 100 X-ray luminous galaxy clusters in the redshift range 0.14-0.3 selected from the ROSAT All Sky Survey. We used data on 37 LoCuSS clusters from the XMM-Newton archive to investigate the global scaling relations of galaxy clusters. The scaling relations based solely on the X-ray data (S-T, S-Y_X, P-Y_X, M-T, M-Y_X, M-M_gas, M_gas-T, L-T, L-Y_X, and L-M) obey empirical self-similarity and reveal no additional evolution beyond the large-scale structure growth. They also reveal up to 17 per cent segregation between all 37 clusters and non-cool core clusters. Weak lensing mass measurements are also available in the literature for 19 of the clusters with XMM-Newton data. The average of the weak lensing mass to X-ray based mass ratio is 1.09± 0.08, setting the limit of the non-thermal pressure support to 9 ± 8 per cent. The mean of the weak lensing mass to X-ray based mass ratio of these clusters is ~1, indicating good agreement between X-ray and weak lensing masses for most clusters, although with 31-51 per cent scatter. The scatter in the mass-observable relations (M-Y_X, M-M_gas, and M-T) is smaller using X-ray based masses than using weak lensing masses by a factor of 2. With the scaled radius defined by the YX profile - r500 Y_X,X, r500YX,wl, and r500Y_X,si, we obtain lower scatter in the weak lensing mass based mass-observable relations, which means the origin of the scatter is M^wl and MX instead of Y_X. The normalization of the M-YX relation using X-ray mass estimates is lower than the one from simulations by up to 18-24 per cent at 3σ significance. This agrees with the M-YX relation based on weak lensing masses, the normalization of the latter being ~20 per cent lower than the one from simulations at ~2σ significance. This difference between observations and simulations is also indicated in the M-M_gas and M-T relations. Despite the large scatter in the comparison of X-ray to lensing, the agreement between these two completely independent observational methods is an important step towards controlling astrophysical and measurement systematics in cosmological scaling relations. This work is based on observations made with the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). Appendices A-C are only available in electronic form at http://www.aanda.org

  20. Neutrino-electron scattering: general constraints on Z ' and dark photon models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    We study the framework of U(1) X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas of fermion gauge interactions and the cross sections of neutrino-electron scattering in such models. Then we derive limits on a variety of U(1) X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z ' models.

  1. Two Massive White Dwarfs from NGC 2323 and the Initial-Final Mass Relation for Progenitors of 4 to 6.5 M

    NASA Astrophysics Data System (ADS)

    Cummings, Jeffrey D.; Kalirai, Jason S.; Tremblay, P.-E.; Ramirez-Ruiz, Enrico

    2016-02-01

    We observed a sample of 10 white dwarf candidates in the rich open cluster NGC 2323 (M50) with the Keck Low-Resolution Imaging Spectrometer. The spectroscopy shows eight to be DA white dwarfs, with six of these having high signal-to-noise ratio appropriate for our analysis. Two of these white dwarfs are consistent with singly evolved cluster membership, and both are high mass ˜1.07 M⊙, and give equivalent progenitor masses of 4.69 M⊙. To supplement these new high-mass white dwarfs and analyze the initial-final mass relation (IFMR), we also looked at 30 white dwarfs from publicly available data that are mostly all high-mass (≳ 0.9 M⊙). These original published data exhibited significant scatter, and to test if this scatter is true or simply the result of systematics, we have uniformly analyzed the white dwarf spectra and have adopted thorough photometric techniques to derive uniform cluster parameters for their parent clusters. The resulting IFMR scatter is significantly reduced, arguing that mass-loss rates are not stochastic in nature and that within the ranges of metallicity and mass analyzed in this work mass loss is not highly sensitive to variations in metallicity. Lastly, when adopting cluster ages based on Y2 isochrones, the slope of the high-mass IFMR remains steep and consistent with that found from intermediate-mass white dwarfs, giving a linear IFMR from progenitor masses between 3 and 6.5 M⊙. In contrast, when adopting the slightly younger cluster ages based on PARSEC isochrones, the high-mass IFMR has a moderate turnover near an initial mass of 4 M⊙. Based on observations with the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W.M. Keck Foundation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less

  3. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    PubMed

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  4. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  5. Characterizing near-surface firn from the scattered signal component of glacier surface reflections detected in airborne radio-echo sounding measurements

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.

    2016-12-01

    With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.

  6. The Black Hole Mass-Bulge Luminosity Relationship for Reverberation-Mapped AGNs in the Near-IR

    NASA Astrophysics Data System (ADS)

    Nicholas, Emily; Bentz, M. C.

    2014-01-01

    We present preliminary results for a near-IR M-L scaling relationship for active galaxies in the reverberation sample. We are particularly interested in the effect of host-galaxy morphology on the M-L scaling relationship. In order to study evolution over cosmic time we must employ scaling relations, which are calibrated to the direct methods of black hole mass measurement and rely on correlations between host galaxy properties and black hole masses. However, it remains uncertain which scaling relation most reliably predicts black hole masses based on host galaxy observables. Recent studies of the M- relationship have uncovered a possible offset in the relationship due to the presence of a pseudobulge or bar in the host galaxy. This offset would adversely affect one's ability to use the M-relationship as a way to estimate black hole masses efficiently because it would require the detailed morphology of the galaxy to be known a priori. Preliminary results based on optical HST data suggest that the M-L relation for active galaxies with reverberation-based black hole masses is not plagued by the same offsets. However, due to dust and on-going star formation, the optical data yield an M-L relationship with a slightly higher scatter than the M- relation. We have carried out near-IR imaging with the WIYN High-Resolution Infrared Camera (WHIRC) on the WIYN telescope to minimize the effects of dust and star formation in order to test whether the M-L relationship is a more accurate predictor of black hole masses and a potentially more fundamental relationship. The imaging campaign has been completed, and we are currently in the process of carefully modeling the galaxy surface brightness features so that we can accurately remove the contribution from the point spread function of the active nucleus. We present our preliminary results here, and we expect that the final results will prove to be quite useful in conjunction with future large imaging surveys, such as LSST, which have no dedicated spectroscopic component. Our team is also in the process of improving distance measurements to these galaxies, which could potentially help to decrease the scatter in bulge luminosity measurements for the reverberation sample.

  7. LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.

    2009-08-20

    We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z {approx_equal} 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M {sub GL}) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M {sub GL} and Y, with a scatter in mass at fixed Y of 32%.more » This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T{sub X} . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T{sub X} on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M {sub GL} = 0.98 {+-} 0.13 M {sub HSE}), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.« less

  8. Backscattering spectrometry device for identifying unknown elements present in a workpiece

    DOEpatents

    Doyle, Barney L.; Knapp, James A.

    1991-01-01

    A backscattering spectrometry method and device for identifying and quantifying impurities in a workpiece during processing and manufacturing of that workpiece. While the workpiece is implanted with an ion beam, that same ion beam backscatters resulting from collisions with known atoms and with impurities within the workpiece. Those ions backscatter along a predetermined scattering angle and are filtered using a self-supporting filter to stop the ions with a lower energy because they collided with the known atoms of the workpiece of a smaller mass. Those ions which pass through the filter have a greater energy resulting from impact with impurities having a greater mass than the known atoms of the workpiece. A detector counts the number and measures the energy of the ions which pass through the filter. From the energy determination and knowledge of the scattering angle, a mass calculation determines the identity, and from the number and solid angle of the scattering angle, a relative concentration of the impurity is obtained.

  9. Modeling of scattering from ice surfaces

    NASA Astrophysics Data System (ADS)

    Dahlberg, Michael Ross

    Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkert, Andreas; Tremaine, Scott, E-mail: burkert@usm.lmu.d, E-mail: tremaine@ias.ed

    Elliptical, lenticular, and early-type spiral galaxies show a remarkably tight power-law correlation between the mass M {sub .} of their central supermassive black hole (SMBH) and the number N {sub GC} of globular clusters (GCs): M{sub .} = m {sub ./*} x N {sup 1.08{+-}0.04} {sub GC} with m{sub ./*} = 1.7 x 10{sup 5} M{sub sun}. Thus, to a good approximation the SMBH mass is the same as the total mass of the GCs. Based on a limited sample of 13 galaxies, this relation appears to be a better predictor of SMBH mass (rms scatter 0.2 dex) than themore » M{sub .}-{sigma} relation between SMBH mass and velocity dispersion {sigma}. The small scatter reflects the fact that galaxies with high GC specific frequency S{sub N} tend to harbor SMBHs that are more massive than expected from the M{sub .}-{sigma} relation.« less

  11. Quantitative mass imaging of single biological macromolecules.

    PubMed

    Young, Gavin; Hundt, Nikolas; Cole, Daniel; Fineberg, Adam; Andrecka, Joanna; Tyler, Andrew; Olerinyova, Anna; Ansari, Ayla; Marklund, Erik G; Collier, Miranda P; Chandler, Shane A; Tkachenko, Olga; Allen, Joel; Crispin, Max; Billington, Neil; Takagi, Yasuharu; Sellers, James R; Eichmann, Cédric; Selenko, Philipp; Frey, Lukas; Riek, Roland; Galpin, Martin R; Struwe, Weston B; Benesch, Justin L P; Kukura, Philipp

    2018-04-27

    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Characterization of plant polysaccharides from Dendrobium officinale by multiple chromatographic and mass spectrometric techniques.

    PubMed

    Ma, Huiying; Zhang, Keke; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Chen, David Da Yong

    2018-04-27

    Plant polysaccharides have numerous medicinal functions. Due to the differences in their origins, regions of production, and cultivation conditions, the quality and the functions of polysaccharides can vary significantly. They are macromolecules with large molecular weight (MW) and complex structure, and pose great challenge for the analytical technology used. Taking Dendrobium officinale (DO) from various origins and locations as model samples. In this investigation, mechanochemical extraction method was used to successfully extract polysaccharides from DO using water as solvent, the process is simple, fast (40 s) and with high yield. The MWs of the intact saccharides from calibration curve and light scattering measurement were determined and compared after separation with size exclusion chromatography (SEC). The large polysaccharide was acid hydrolyzed to oligosaccharides and the products were efficiently separated and identified using liquid chromatography coupled to a high resolution tandem mass spectrometry (LC-MS 2 ). Obvious differences were observed among LC-MS 2 chromatograms of digested products, and the chemical structures for the products were proposed based on accurate mass values. More importantly, isomeric digested carbohydrate compounds were explored and characterized. All the chromatographic and mass spectrometric results in this study provided a multi-dimensional characterization, fingerprint analysis, and molecular structure level assessment of plant polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A self-consistent high- and low-frequency scattering model for cirrus

    NASA Astrophysics Data System (ADS)

    Baran, Anthony J.; Cotton, Richard; Havemann, Stephan; C.-Labonnote, Laurent; Marenco, Franco

    2013-05-01

    This paper demonstrates that an ensemble model of cirrus ice crystals that follows observed mass-dimensional power laws can predict the scattering properties of cirrus across the electromagnetic spectrum, without the need for tailor made scattering models for particular regions of the spectrum. The ensemble model predicts a mass-dimensional power law of the following form, mass ∝ D2 (where D is the maximum dimension of the ice crystal). This same mass-dimensional power law is applied across the spectrum to predict the particle size distribution (PSD) using a moment estimation parameterization of the PSD. The PSD parameterization predicts the original PSD, using in-situ estimates (bulk measurements) of the ice water content (IWC) and measurements of the in-cloud temperature; the measurements were obtained from a number of mid-latitude cirrus cases, which occurred over the U.K. during the winter and spring of 2010. It is demonstrated that the ensemble model predicts lidar backscatter estimates, at 0.355 μm, of the volume extinction coefficient and total solar optical depth to within current experimental uncertainties, hyperspectral brightness temperature measurements of the terrestrial region (800 cm-1 - 1200 cm-1) to generally well within ±1 K in the window regions, and the 35 GHz radar reflectivity to within ±2 dBZ. Therefore, for simulation of satellite radiances within general circulation models, and retrieval of cirrus properties, scattering models, which are demonstrated to be physically consistent across the electromagnetic spectrum, should be preferred.

  14. Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu.; Anitas, Eugen M.; Osipov, Vladimir A.; Kuklin, Alexander I.

    The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with a good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, the correlations can be build in the mass fractal amplitudes, which explains the decay of the scattering intensity $I(q)\\sim q^{D_{\\mathrm{s}}-4}$ with $1 < D_{\\mathrm{s}} < 2$ being the fractal dimension of the perimeter. The curve $I(q)q^{4-D_{\\mathrm{s}}}$ is found to be log-periodic in the fractal region with the period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.

  15. Stochastic Sampling in the IMF of Galactic Open Clusters

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Hancock, M.; Canalizo, G.; Smith, B. J.; Giroux, M. L.

    2010-01-01

    We sought observational evidence of the effects of stochastic sampling of the initial mass function by investigating the integrated colors of a sample of Galactic open clusters. In particular we looked for scatter in the integrated (V-K) color as previous research resulted in little scatter in the (U-B) and (B-V) colors. Combining data from WEBDA and 2MASS we determined three different colors for 287 open clusters. Of these clusters, 39 have minimum uncertainties in age and formed a standard set. A plot of the (V-K) color versus age showed much more scatter than the (U-B) versus age. We also divided the sample into two groups based on a lowest luminosity limit which is a function of age and V magnitude. We expected the group of clusters fainter than this limit to show more scatter than the brighter group. Assuming the published ages, we compared the reddening corrected observed colors to those predicted by Starburst99. The presence of stochastic sampling should increase scatter in the distribution of the differences between observed and model colors of the fainter group relative to the brighter group. However, we found that K-S tests cannot rule out that the distribution of color difference for the brighter and fainter sets come from the same parent distribution. This indistinguishabilty may result from uncertainties in the parameters used to define the groups. This result constrains the size of the effects of stochastic sampling of the initial mass function.

  16. Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues

    DOE PAGES

    Old, L.; Wojtak, R.; Mamon, G. A.; ...

    2015-03-26

    Our paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18–1.08 dex, i.e. a factor of ~1.5–12), with abundance-matchingmore » and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We also see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. Finally, we did not observe significantly higher scatter for either mock galaxy catalogues. These results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.« less

  17. Estimating the mass of the Local Group using machine learning applied to numerical simulations

    NASA Astrophysics Data System (ADS)

    McLeod, M.; Libeskind, N.; Lahav, O.; Hoffman, Y.

    2017-12-01

    We present a new approach to calculating the combined mass of the Milky Way (MW) and Andromeda (M31), which together account for the bulk of the mass of the Local Group (LG). We base our work on an ensemble of 30,190 halo pairs from the Small MultiDark simulation, assuming a ΛCDM (Cosmological Constant and Cold Dark Matter) cosmology. This is used in conjunction with machine learning methods (artificial neural networks, ANN) to investigate the relationship between the mass and selected parameters characterising the orbit and local environment of the binary. ANN are employed to take account of additional physics arising from interactions with larger structures or dynamical effects which are not analytically well understood. Results from the ANN are most successful when the velocity shear is provided, which demonstrates the flexibility of machine learning to model physical phenomena and readily incorporate new information. The resulting estimate for the Local Group mass, when shear information is included, is 4.9×1012Msolar, with an error of ±0.8×1012Msolar from the 68% uncertainty in observables, and a r.m.s. scatter interval of +1.7‑1.3×1012Msolar estimated scatter from the differences between the model estimates and simulation masses for a testing sample of halo pairs. We also consider a recently reported large relative transverse velocity of M31 and the Milky Way, and produce an alternative mass estimate of 3.6±0.3+2.1‑1.3×1012Msolar. Although the methods used predict similar values for the most likely mass of the LG, application of ANN compared to the traditional Timing Argument reduces the scatter in the log mass by approximately half when tested on samples from the simulation.

  18. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    2016-01-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of the scatteringmore » that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  19. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Couder, M.; Moran, M. T.; Smith, K.; Wiescher, M.; Schatz, H.; Hager, U.; Wrede, C.; Montes, F.; Perdikakis, G.; Wu, X.; Zeller, A.; Smith, M. S.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Blackmon, J.; Greife, U.; Rehm, K. E.; Janssens, R. V. F.

    2018-01-01

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p , γ) and (α , γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolving power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. The present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.

  20. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    DOE PAGES

    Berg, G. P. A.; Couder, M.; Moran, M. T.; ...

    2017-09-25

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p,γ) and (α,γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolvingmore » power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. Furthermore, the present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.« less

  1. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output.

    PubMed

    Widmer, Rolf; Du, Xiaoyue; Haag, Olaf; Restrepo, Eliette; Wäger, Patrick A

    2015-04-07

    Concurrent with the demand for cleaner, lighter, and more efficient vehicles, many scarce metals (SMs) are used in passenger vehicles because of their unique physical and chemical properties. To explore the recycling potential of these metals, it is important to understand their distribution in the vehicles as well as their fate at the vehicles' end-of-life. However, this information remains very scattered and sparse. In this paper, we present a study investigating the distribution of 31 SMs in selected electrical and electronic (EE) components of conventional passenger vehicles and in the end-of-life vehicle shredder fractions from a shredder plant in Switzerland. The results of the chemical analyses show that the mass fractions of Co, Sn, Sr, Ta, Y, and Zr were dominant with >20,000 g/t in the selected EE components and Ag, Ga, Mo, Sb, Sn, Sr, and Zr with >50 g/t in the analyzed shredder fractions. The largest masses of 17 SMs were found in the shredder light fraction, which is incinerated in municipal waste treatment plants mainly in Switzerland; thus, these SMs are currently not recovered. The SM mass fractions in both the EE components and the shredder fractions were projected to their total masses in 100 hypothetical midrange passenger vehicles. The resulting mass balance showed a mismatch of >50% for 23 metals, which indicates other important SM sources such as alloys.

  2. Invited review article: physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors.

    PubMed

    Leman, Steven W

    2012-09-01

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  3. A Practical Cone-beam CT Scatter Correction Method with Optimized Monte Carlo Simulations for Image-Guided Radiation Therapy

    PubMed Central

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun

    2015-01-01

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 HU to 3 HU and from 78 HU to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 sec including the time for both the scatter estimation and CBCT reconstruction steps. The efficacy of our method and its high computational efficiency make our method attractive for clinical use. PMID:25860299

  4. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.

    PubMed

    Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man

    2012-01-01

    The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.

  5. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE PAGES

    Laroche, D.; Huang, S. -H.; Chuang, Y.; ...

    2016-06-06

    We report the magneto-transport, scattering mechanisms, and e ective mass analysis of an ultralow density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0:2Ge0:8 heterostructure. This fabrication technique allows hole densities as low as p 1:1 1010 cm² to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, / n , is found to be 0:29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration modelmore » is used to explain the mobility decrease at the highest achievable densities. The hole e ective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p 1:0 1011cm², the e ective mass m is 0:105 m0, which is signi cantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  6. Stimulated scattering in Ag nanoparticle colloids

    NASA Astrophysics Data System (ADS)

    Averyushkin, A. S.; Bulychev, N. A.; Efimkov, V. F.; Erokhin, A. I.; Kazaryan, M. A.; Mikhailov, S. I.; Saraeva, I. N.; Zubarev, I. G.

    2017-05-01

    A number of features of stimulated thermal Rayleigh scattering (STRS) in pure liquids and nanoparticle solutions are investigated in this work. It is shown that scattering efficiency is not reduced in the case of wide spectral bandwidth pump radiation. It is shown experimentally that the frequency shift of the scattered signal relative to the pump frequency greatly exceeds the theoretical value. It is also shown theoretically that the frequency shift value does not depend on the linewidth of the pump.

  7. Gauge invariance and kaon production in deep inelastic scattering at low scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Juan V.; Accardi, Alberto

    This work focuses on hadron mass effects in calculations of semi-inclusive kaon production in lepton-Deuteron deeply inelastic scattering at HERMES and COMPASS kinematics. In the collinear factorization framework, the corresponding cross section is shown to factorize, at leading order and leading twist, into products of parton distributions and fragmentation functions evaluated in terms of kaon- and nucleon-mass-dependent scaling variables, and to respect gauge invariance. It is found that hadron mass corrections for integrated kaon multiplicities sizeably reduce the apparent large discrepancy between measurements of K + + K - multiplicities performed by the two collaborations, and fully reconcile their Kmore » +/K - ratios.« less

  8. Gauge invariance and kaon production in deep inelastic scattering at low scales

    DOE PAGES

    Guerrero, Juan V.; Accardi, Alberto

    2018-06-08

    This work focuses on hadron mass effects in calculations of semi-inclusive kaon production in lepton-Deuteron deeply inelastic scattering at HERMES and COMPASS kinematics. In the collinear factorization framework, the corresponding cross section is shown to factorize, at leading order and leading twist, into products of parton distributions and fragmentation functions evaluated in terms of kaon- and nucleon-mass-dependent scaling variables, and to respect gauge invariance. It is found that hadron mass corrections for integrated kaon multiplicities sizeably reduce the apparent large discrepancy between measurements of K + + K - multiplicities performed by the two collaborations, and fully reconcile their Kmore » +/K - ratios.« less

  9. Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO2 photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2018-03-01

    Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.

  10. Recent Progress in the Development of Metabolome Databases for Plant Systems Biology

    PubMed Central

    Fukushima, Atsushi; Kusano, Miyako

    2013-01-01

    Metabolomics has grown greatly as a functional genomics tool, and has become an invaluable diagnostic tool for biochemical phenotyping of biological systems. Over the past decades, a number of databases involving information related to mass spectra, compound names and structures, statistical/mathematical models and metabolic pathways, and metabolite profile data have been developed. Such databases complement each other and support efficient growth in this area, although the data resources remain scattered across the World Wide Web. Here, we review available metabolome databases and summarize the present status of development of related tools, particularly focusing on the plant metabolome. Data sharing discussed here will pave way for the robust interpretation of metabolomic data and advances in plant systems biology. PMID:23577015

  11. Concept for a dark matter detector using liquid helium-4

    NASA Astrophysics Data System (ADS)

    Guo, W.; McKinsey, D. N.

    2013-06-01

    Direct searches for light dark matter particles (mass<10GeV) are especially challenging because of the low energies transferred in elastic scattering to typical heavy nuclear targets. We investigate the possibility of using liquid helium-4 as a target material, taking advantage of the favorable kinematic matching of the helium nucleus to light dark matter particles. Monte Carlo simulations are performed to calculate the charge, scintillation, and triplet helium molecule signals produced by recoil He ions, for a variety of energies and electric fields. We show that excellent background rejection might be achieved based on the ratios between different signal channels. The sensitivity of the helium-based detector to light dark matter particles is estimated for various electric fields and light collection efficiencies.

  12. Electron-beam-driven RI separator for SCRIT (ERIS) at RIKEN RI beam factory

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Ichikawa, S.; Koizumi, K.; Kurita, K.; Miyashita, Y.; Ogawara, R.; Tamaki, S.; Togasaki, M.; Wakasugi, M.

    2013-12-01

    We constructed a radioactive isotope (RI) separator named ERIS (electron-beam-driven RI separator for SCRIT) for the SCRIT (Self-Confinement RI Target) electron scattering facility at RIKEN RI Beam Factory (RIBF). In ERIS, production rate of fission products in the photofission of uranium is estimated to be 2.2 ×1011 fissions/s with 30 g of uranium and a 1-kW electron beam. During the commissioning of ERIS, the mass resolution and overall efficiency, including ionization, extraction, and transmission, were found to be 1660 and 21%, respectively, using natural xenon gas. The preparation of uranium carbide (UC2) RI production targets is described from which a 132Sn beam was successfully separated in our first attempt at RI production.

  13. Method for measuring multiple scattering corrections between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  14. The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Stanek, Rebecca; Evrard, A.; Boehringer, H.; Schuecker, P.; Nord, B.

    2006-12-01

    My thesis is centered on investigating scaling relations of galaxy clusters. Focusing on the relationship between soft X-ray luminosity and mass (L-M) for low-redshift clusters of galaxies, I have determined the mean parameters to 5%, and calculated a formal measure of the scatter in the L-M relation. I model the L-M relation with a conditional probability function including a mean power-law scaling relation, L Mpρsc(z), and log-normal scatter in mass at fixed luminosity, σlnM. Convolving with the halo mass function, I compute expected counts in redshift and flux that, after appropriate survey effects are included, are compared to REFLEX survey data. Combining the likelihood analysis with the measured variance in L-T relation from HIFLUGCS, I obtain fit parameters p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution (s = 7/6) in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. I find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. I accommodate the new WMAP constraints with a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25. I will also present work in progress from galaxy cluster population statistics in the Millennium Simulation with Gas (MSG), specifically focusing on the scatter and covariance between cluster properties at a fixed epoch.

  15. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    DOE PAGES

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less

  16. The time resolved SBS and SRS research in heavy water and its application in CARS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  17. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for statisically modeling distributions of galaxies over cosmic time, in a manner particularly indpendent of the thorny uncertainties in sub-grid astrophysics of modern cosmological simulations.

  18. Calculation and Measurement of Low-Energy Radiative Moller Scattering

    NASA Astrophysics Data System (ADS)

    Epstein, Charles; DarkLight Collaboration

    2017-09-01

    A number of current nuclear physics experiments have come to rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Some of these experiments, having lepton beams on targets containing atomic electrons, use these purely-QED processes as normalization. In other scenarios, with electron beams at low energy and very high intensity, Moller scattering and radiative Moller scattering have such enormous cross-sections that the backgrounds they produce must be understood. In this low-energy regime, the electron mass is also not negligible in the calculation of the cross section. This is important, for example, in the DarkLight experiment (100 MeV). As a result, we have developed a new event generator for the radiative Moller and Bhabha processes, with new calculations that keep all terms of the electron mass. The MIT High Voltage Research Laboratory provides us a unique opportunity to study this process experimentally and compare it with our work, at a low beam energy of 2.5 MeV where the effects of the electron mass are significant. We are preparing a dedicated apparatus consisting of a magnetic spectrometer in order to directly measure this process. An overview of the calculation and the status of the experiment will be presented.

  19. On-road measurement of black carbon mass, absorption, and single-scattering albedo

    EPA Science Inventory

    Absorption and scattering of solar radiation by aerosols emitted from combustion sources can affect the earth’s radiative balance and may potentially affect local and regional climate. Optical properties of aerosols emitted from mobile sources have not been thoroughly characteri...

  20. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  1. Hadron production in diffractive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    H1 Collaboration; Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Isolarş Sever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehmann, M.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Lipinski, J.; List, B.; Lobo, G.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1998-05-01

    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (xF) variable for charged particles, the squared transverse momentum of charged particles (pT*2), and the mean pT*2 as a function of xF. These distributions are compared with results in the γ*p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q2 by hard gluons.

  2. Protoplanetary disc `isochrones' and the evolution of discs in the M˙-Md plane

    NASA Astrophysics Data System (ADS)

    Lodato, Giuseppe; Scardoni, Chiara E.; Manara, Carlo F.; Testi, Leonardo

    2017-12-01

    In this paper, we compare simple viscous diffusion models for the disc evolution with the results of recent surveys of the properties of young protoplanetary discs. We introduce the useful concept of 'disc isochrones' in the accretion rate-disc mass plane and explore a set of Monte Carlo realization of disc initial conditions. We find that such simple viscous models can provide a remarkable agreement with the available data in the Lupus star forming region, with the key requirement that the average viscous evolutionary time-scale of the discs is comparable to the cluster age. Our models produce naturally a correlation between mass accretion rate and disc mass that is shallower than linear, contrary to previous results and in agreement with observations. We also predict that a linear correlation, with a tighter scatter, should be found for more evolved disc populations. Finally, we find that such viscous models can reproduce the observations in the Lupus region only in the assumption that the efficiency of angular momentum transport is a growing function of radius, thus putting interesting constraints on the nature of the microscopic processes that lead to disc accretion.

  3. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  4. Electromagnetic Scattering Analysis of Large Size Asteroids/Comets for Reflection/Transmission Tomography (RTT)

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar

    2011-01-01

    A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.

  5. Modeling of particle radiative properties in coal combustion depending on burnout

    NASA Astrophysics Data System (ADS)

    Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold

    2017-04-01

    In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.

  6. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  7. Threshold e- p⟶ nνe scattering and the electron neutrino mass

    NASA Astrophysics Data System (ADS)

    Ciborowski, Jacek; Rembieliński, Jakub

    2017-12-01

    The most precise measurement of the electron neutrino mass has been obtained from the shape of the electron energy spectrum near the endpoint in tritium decay. The Mainz and Troitsk experiments indicated an excess instead of expected depletion of counts in that region. Results derived from such measurements are subject to numerous atomic corrections which are absent in the scattering e- p ⟶ nνe. This new idea is presented in the article, with its advantages and difficulties, and is compared to the method of tritium decay.

  8. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE PAGES

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  9. Raman Scattered He II 4332 and Photoionization Model in the Symbiotic Star V1016 Cygni

    NASA Astrophysics Data System (ADS)

    Lee, H.-W.; Heo, J.-E.; Lee, B.-C.

    2014-08-01

    Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant. They exhibit unique Raman scattered features as a result of inelastic scattering of far UV line photons by atomic hydrogen. Co-existence of a far UV He II emission region and a thick H I region in symbiotic stars is necessary for the formation of Raman-scattered features blueward of hydrogen Balmer emission lines. Being a single electron atom, He II has the same atomic structure as the hydrogen atom and hence emits far UV emission lines that are slightly blueward of hydrogen Lyman lines. These far UV He II emission lines can be Raman scattered to appear blueward of hydrogen Balmer lines. In particular, the symbiotic star V1016 Cyg is found to exhibit Raman scattered He II 4332 feature in the BOES high resolution spectrum. Our profile fitting of Raman scattered He II 4332 is consistent with the mass loss geometry proposed by Jung & Lee (2004). We use the photoionization code ‘ CLOUDY' to estimate the far UV He II emission lines and make comparisons with the observed Raman scattered He II 4332 blueward of Hγ in the high resolution echelle V1016 Cyg. The emission nebula is assumed to be of uniform density of 108 cm-3 that is illuminated by a black body characterized by its temperature and total luminosity. With our comparisons we conclude that the Raman scattered He II features are consistent with the existence of a photoionized nebula by a hot black body source with temperature 7-8× 104 K with a luminosity 1038erg s-1.

  10. Few-body resonances of unequal-mass systems with infinite interspecies two-body s-wave scattering length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume, D.; Daily, K. M.

    Two-component Fermi and Bose gases with infinitely large interspecies s-wave scattering length a{sub s} exhibit a variety of intriguing properties. Among these are the scale invariance of two-component Fermi gases with equal masses, and the favorable scaling of Efimov features for two-component Bose gases and Bose-Fermi mixtures with unequal masses. This paper builds on our earlier work [Phys. Rev. Lett. 105, 170403 (2010)] and presents a detailed discussion of our studies of small unequal-mass two-component systems with infinite a{sub s} in the regime where three-body Efimov physics is absent. We report on nonuniversal few-body resonances. Just like with two-body systemsmore » on resonance, few-body systems have a zero-energy bound state in free space and a diverging generalized scattering length. Our calculations are performed within a nonperturbative microscopic framework and investigate the energetics and structural properties of small unequal-mass two-component systems as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light atoms. For purely attractive Gaussian two-body interactions, we find that the (N{sub 1},N{sub 2})=(2,1) and (3,1) systems exhibit three-body and four-body resonances at mass ratios {kappa}=12.314(2) and 10.4(2), respectively. The three- and four-particle systems on resonance are found to be large. It seems feasible that the features discussed in this paper can be probed experimentally with present-day technology.« less

  11. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

    DOE PAGES

    Bondarev, I. V.

    2015-01-01

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.

  12. Vector-Vector Scattering on the Lattice

    NASA Astrophysics Data System (ADS)

    Romero-López, Fernando; Urbach, Carsten; Rusetsky, Akaki

    2018-03-01

    In this work we present an extension of the LüScher formalism to include the interaction of particles with spin, focusing on the scattering of two vector particles. The derived formalism will be applied to Scalar QED in the Higgs Phase, where the U(1) gauge boson acquires mass.

  13. Steady increase of secondary organic aerosol mass concentration and light extinction during the CARES 2010 Field Campaign

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Arnott, W. P.; Flowers, B. A.; Dubey, M. K.; Atkinson, D. B.; Song, C.; Zaveri, R. A.; Setyan, A.; Zhang, Q.; Mazzoleni, C.; Gorkowski, K.

    2011-12-01

    We present multispectral (355, 375, 405, 532, 870, 781, and 1047 nm) aerosol light absorption and scattering measurements for the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) campaign in Sacramento, CA and the Sierra Nevada foothills. The short wavelength scattering at both sites gradually increased during the last 10 days of the campaign as diagnosed by a systematic increase in the Ångström exponent of scattering. The UV and near UV enhanced scattering was likely a consequence of the ultra and sub-micron aerosol which began to grow vigorously in the size range where scattering at shorter wavelengths begins to increase. Multispectral aerosol light absorption coefficients suggest the absence of short wavelength light absorption by brown carbon. Aerosol mass spectrometer data also shows the steady increase of secondary organic aerosol during the last 10 days of CARES. The time series of the measurements made between the two sites (T0 and T1) separated by the slope of the foothills are strikingly similar, except for isolated night time episodes of enhanced absorption at T0. This is possibly due to paving events or other nocturnal emissions markers

  14. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  15. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T. Y.; -Labonnote, L. C.; Baran, A. J.; Nagao, T. M.; Skiguchi, M.

    2015-11-01

    Various ice particle habits are investigated in conjunction with inferring the optical properties of ice cloud for the Global Change Observation Mission-Climate (GCOM-C) satellite program. A database of the single-scattering properties of five ice particle habits, namely, plates, columns, droxtals, bullet-rosettes, and Voronoi, is developed. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor onboard the GCOM-C satellite, which is scheduled to be launched in 2017 by Japan Aerospace Exploration Agency (JAXA). A combination of the finite-difference time-domain (FDTD) method, Geometric Optics Integral Equation (GOIE) technique, and geometric optics method (GOM) are applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible-to-infrared spectral region, covering the SGLI channels for the size parameter, which is defined with respect to the equivalent-volume radius sphere, which ranges between 6 and 9000. The database includes the extinction efficiency, absorption efficiency, average geometrical cross-section, single-scattering albedo, asymmetry factor, size parameter of an equivalent volume sphere, maximum distance from the center of mass, particle volume, and six non-zero elements of the scattering phase matrix. The characteristics of the calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, the optical thickness and spherical albedo of ice clouds using the five ice particle habit models are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL). The optimal ice particle habit for retrieving the SGLI ice cloud properties was investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD, for bullet-rosette particle, with radii of equivalent volume spheres (r~) ranging between 6 to 10 μm, and the Voronoi particle, with r~ ranging between 28 to 38 μm, and 70 to 100 μm, is distributed stably as the scattering angle increases. It is confirmed that the SAD of small bullet rosette and all sizes of voronoi particles has a low angular dependence, indicating that the combination of the bullet-rosette and Voronoi models are sufficient for retrieval of the ice cloud spherical albedo and optical thickness as an effective habit models of the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particles (r~ = 30 μm) is compared to the conventional General Habit Mixture (GHM), Inhomogeneous Hexagonal Monocrystal (IHM), 5-plate aggregate and ensemble ice particle model. It is confirmed that the Voronoi habit model has an effect similar to the counterparts of some conventional models on the retrieval of ice cloud properties from space-borne radiometric observations.

  16. Testing the Reliability of Cluster Mass Indicators with a Systematics Limited Dataset

    NASA Technical Reports Server (NTRS)

    Juett, Adrienne M.; Davis, David S.; Mushotzky, Richard

    2009-01-01

    We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.

  17. Tables of thermospheric temperature, density and composition derived from satellite and ground based measurements. Volume 1: Ap=4

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.

    1979-01-01

    The tables contain the neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model for selected altitudes, latitudes, local times, days and other geophysical conditions. The model is based on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20. Included in the model data base are longitudinally average N3, He, and O densities from the OGO-6 mass spectrometer longitudinally average N2, He, O and Ar densities from the AEROS-A (NATE) mass spectrometer the N2, He, O, and Ar densities from the San Marco 3 mass spectrometer the N2 densities from the AE-B mass spectrometer and the N2, He, O, and Ar densities from the AE-C (OSS, NACE, NATE) mass spectrometers. The O2 and H densities are inferred using ion mass spectrometer data from AE-C (BIMS). Neutral exospheric temperature data are included from Arecibo, St. Santin, Millstone Hill and Jicamarca.

  18. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  19. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  20. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.

  1. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  2. Multifunctional Silicon Optoelectronics Integrated with Plasmonic Scattering Color.

    PubMed

    Wen, Long; Chen, Qin; Hu, Xin; Wang, Huacun; Jin, Lin; Su, Qiang

    2016-12-27

    Plasmonic scattering from metallic nanoparticles has been used for centuries to create the colorful appearance of stained glass. Besides their use as passive spectral filtering components, multifunctional optoelectronic applications can be achieved by integrating the nanoscatters with semiconductors that generate electricity using the complementary spectral components of plasmonic colors. To suppress the usual degradation of both efficiency and the gamut of plasmonic scattering coloration in highly asymmetric index configurations like a silicon host, aluminum nanodisks on indium tin oxide (ITO) coated silicon were experimentally studied and demonstrated color sorting in the full visible range along with photocurrent generation. Interestingly, the photocurrents were found to be comparable to the reference devices with only antireflection coatings in spite of the power loss for coloration. Detailed investigation shows that ITO serves as both the impedance matching layer for promoting the backward scattering and schottky contact with silicon, and moreover, plasmonic nanoscatters efficiently harvest the complement spectrum components for charge generation. The present approach combines the capacities of nanoscale color sorting and photoelectric converting at a negligible cost of efficiency, thus providing a broad flexibility of being utilized in various optoelectronic applications including self-powered display, filter-free imaging, and colorful photovoltaics.

  3. Simulations of planet migration driven by planetesimal scattering

    NASA Astrophysics Data System (ADS)

    Kirsh, David R.; Duncan, Martin; Brasser, Ramon; Levison, Harold F.

    2009-01-01

    Evidence has mounted for some time that planet migration is an important part of the formation of planetary systems, both in the Solar System [Malhotra, R., 1993. Nature 365, 819-821] and in extrasolar systems [Mayor, M., Queloz, D., 1995. Nature 378, 355-359; Lin, D.N.C., Bodenheimer, P., Richardson, D.C., 1996. Nature 380, 606-607]. One mechanism that produces migration (the change in a planet's semi-major axis a over time) is the scattering of comet- and asteroid-size bodies called planetesimals [Fernandez, J.A., Ip, W.-H., 1984. Icarus 58, 109-120]. Significant angular momentum exchange can occur between the planets and the planetesimals during local scattering, enough to cause a rapid, self-sustained migration of the planet [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445]. This migration has been studied for the particular case of the four outer planets of the Solar System (as in Gomes et al. [Gomes, R.S., Morbidelli, A., Levison, H.F., 2004. Icarus 170, 492-507]), but is not well understood in general. We have used the Miranda [McNeil, D., Duncan, M., Levison, H.F., 2005. Astron. J. 130, 2884-2899] computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. Migration is found to be predominantly inwards, and the migration rate is found to be independent of planet mass for low-mass planets in relatively high-mass disks. Indeed, a simple scaling relation from Ida et al. [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445] matches well with the dependencies of the migration rate: |{da}/{dt}|=aT{4πΣa/M; with T the orbital period of the planet and Σ the surface density of the planetesimal disk. When the planet's mass exceeds that of the planetesimals within a few Hill radii (the unit of the planet's gravitational reach), the migration rate decreases strongly with planet mass. Other trends are identified with the root-mean-squared eccentricity of the planetesimal disk, the mass of the particles dragged by the planet in the corotation region, and the index of the surface density power law. The trends are discussed in the context of an analysis of the scattering process itself, which was performed using a large simulation of massless planetesimals. The scattering process alters semi-major axes, eccentricities and timescales of interaction for the planetesimals. In particular, a bias in scattering timescales on either side of the planet's orbit leads to a very strong tendency for the planet to migrate inwards, towards the star, instead of outwards. The detection of this tendency relies on a level of resolution that may not have been achieved in past studies. The results of this work show that planet migration driven by planetesimal scattering should be a widespread phenomenon, especially for low-mass planets such as still-forming protoplanets.

  4. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    PubMed

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  5. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon.

    PubMed

    Cheng, Yuan; He, Ke-Bin; Engling, Guenter; Weber, Rodney; Liu, Jiu-Meng; Du, Zhen-Yu; Dong, Shu-Ping

    2017-12-01

    Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (E abs ) by black carbon. E abs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in E abs . Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    PubMed

    Burkova, Evgeniya E; Dmitrenok, Pavel S; Sedykh, Sergey E; Buneva, Valentina N; Soboleva, Svetlana E; Nevinsky, Georgy A

    2014-01-01

    Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa) from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs) 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa) as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  7. Spectral methods for coupled channels with a mass gap

    NASA Astrophysics Data System (ADS)

    Weigel, H.; Quandt, M.; Graham, N.

    2018-02-01

    We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kinklike soliton built from two real scalar fields with different mass parameters.

  8. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  9. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    NASA Astrophysics Data System (ADS)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), I.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant z< 6 in the first four Hubble Space Telescope (HST) Frontier Fields, on the basis of rest-frame UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}⊙ ˜ 7.5 at z≲ 4 and {log} M/{M}⊙ ˜ 8 at higher redshifts, a factor of ˜10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  10. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  11. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zhang, Leiming; Cao, Junji; Zhang, Renjian

    2017-08-01

    To obtain a thorough knowledge of PM2. 5 chemical composition and its impact on aerosol optical properties across China, existing field studies conducted after the year 2000 are reviewed and summarized in terms of geographical, interannual and seasonal distributions. Annual PM2. 5 was up to 6 times the National Ambient Air Quality Standards (NAAQS) in some megacities in northern China. Annual PM2. 5 was higher in northern than southern cities, and higher in inland than coastal cities. In a few cities with data longer than a decade, PM2. 5 showed a slight decrease only in the second half of the past decade, while carbonaceous aerosols decreased, sulfate (SO42-) and ammonium (NH4+) remained at high levels, and nitrate (NO3-) increased. The highest seasonal averages of PM2. 5 and its major chemical components were typically observed in the cold seasons. Annual average contributions of secondary inorganic aerosols to PM2. 5 ranged from 25 to 48 %, and those of carbonaceous aerosols ranged from 23 to 47 %, both with higher contributions in southern regions due to the frequent dust events in northern China. Source apportionment analysis identified secondary inorganic aerosols, coal combustion and traffic emission as the top three source factors contributing to PM2. 5 mass in most Chinese cities, and the sum of these three source factors explained 44 to 82 % of PM2. 5 mass on annual average across China. Biomass emission in most cities, industrial emission in industrial cities, dust emission in northern cities and ship emission in coastal cities are other major source factors, each of which contributed 7-27 % to PM2. 5 mass in applicable cities. The geographical pattern of scattering coefficient (bsp) was similar to that of PM2. 5, and that of aerosol absorption coefficient (bap) was determined by elemental carbon (EC) mass concentration and its coating. bsp in ambient condition of relative humidity (RH) = 80 % can be amplified by about 1.8 times that under dry conditions. Secondary inorganic aerosols accounted for about 60 % of aerosol extinction coefficient (bext) at RH greater than 70 %. The mass scattering efficiency (MSE) of PM2. 5 ranged from 3.0 to 5.0 m2 g-1 for aerosols produced from anthropogenic emissions and from 0.7 to 1.0 m2 g-1 for natural dust aerosols. The mass absorption efficiency (MAE) of EC ranged from 6.5 to 12.4 m2 g-1 in urban environments, but the MAE of water-soluble organic carbon was only 0.05 to 0.11 m2 g-1. Historical emission control policies in China and their effectiveness were discussed based on available chemically resolved PM2. 5 data, which provides the much needed knowledge for guiding future studies and emissions policies.

  12. Poster - Thur Eve - 69: Electron beam dosimetry in heterogeneous phantoms using the MAGIC normoxic polymer gel.

    PubMed

    Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A

    2012-07-01

    Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.

  13. Light Scattering by Polymers: Two Experiments for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Matthews, G. P.

    1984-01-01

    Background information, procedures, equipment, and results for two experiments are presented. The first involves the measurement of the mass-average and degree of coiling of polystyrene and is interpreted by the full mathematical theory of light scattering. The second is the study of transitions in gelatin. (JN)

  14. Light-by-Light Scattering Constraint on Born-Infeld Theory

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; You, Tevong

    2017-06-01

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV , a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1 ) Y hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ˜90 GeV , which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1 ) Y Born-Infeld theory.

  15. Quasielastic neutrino charged-current scattering off 12C: Effects of the meson exchange currents and large nucleon axial mass

    NASA Astrophysics Data System (ADS)

    Butkevich, A. V.; Luchuk, S. V.

    2018-04-01

    The quasielastic scattering of muon neutrino and electrons on a carbon target are analyzed using the relativistic distorted-wave impulse approximation (RDWIA). We also evaluate the contribution of the two-particle and two-hole meson exchange current (2 p -2 h MEC) to electroweak response functions. The nuclear model dependence of the (anti)neutrino cross sections is studied within the RDWIA+MEC approach and RDWIA model with the large nucleon axial mass. It is shown that the results for the squared momentum transfer distribution d σ /d Q2 and for invariant mass of the final hadronic system distribution d σ /d W obtained within these models are substantially different.

  16. LoCuSS: THE SUNYAEV-ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Daniel P.; Carlstrom, John E.; Gralla, Megan

    2012-08-01

    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M{sub WL}, and integrated Compton parameter Y{sub sph}. Observations of 18 galaxy clusters at z {approx_equal} 0.2 were obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich Array. The M{sub WL}-Y{sub sph} scaling relations, measured at {Delta} = 500, 1000, and 2500 {rho}{sub c}, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M{sub WL} at fixed Y{sub sph} of 20%, larger than both previous measurements of M{sub HSE}-Y{sub sph} scatter as well asmore » the scatter in true mass at fixed Y{sub sph} found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30%-40% larger M{sub WL} for undisturbed compared to disturbed clusters at the same Y{sub sph} at r{sub 500}. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line of sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.« less

  17. Exact first order scattering correction for vector radiative transfer in coupled atmosphere and ocean systems

    NASA Astrophysics Data System (ADS)

    Zhai, Peng-Wang; Hu, Yongxiang; Josset, Damien B.; Trepte, Charles R.; Lucker, Patricia L.; Lin, Bing

    2012-06-01

    We have developed a Vector Radiative Transfer (VRT) code for coupled atmosphere and ocean systems based on the successive order of scattering (SOS) method. In order to achieve efficiency and maintain accuracy, the scattering matrix is expanded in terms of the Wigner d functions and the delta fit or delta-M technique is used to truncate the commonly-present large forward scattering peak. To further improve the accuracy of the SOS code, we have implemented the analytical first order scattering treatment using the exact scattering matrix of the medium in the SOS code. The expansion and truncation techniques are kept for higher order scattering. The exact first order scattering correction was originally published by Nakajima and Takana.1 A new contribution of this work is to account for the exact secondary light scattering caused by the light reflected by and transmitted through the rough air-sea interface.

  18. Charged mediators in dark matter scattering

    NASA Astrophysics Data System (ADS)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  19. A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.

    1996-01-01

    In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

  20. Tunneling effects in electromagnetic wave scattering by nonspherical particles: A comparison of the Debye series and physical-geometric optics approximations

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Ping

    2016-07-01

    The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.

  1. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, Thomas, J., IV

    2004-08-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Comptonmore » scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.« less

  2. X-ray scattering study

    NASA Technical Reports Server (NTRS)

    Wriston, R. S.; Froechtenigt, J. F.

    1972-01-01

    A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.

  3. Nemesis, Tyche, Planet Nine Hypotheses. I. Can We Detect the Bodies Using Gravitational Lensing?

    NASA Astrophysics Data System (ADS)

    Philippov, J. P.; Chobanu, M. I.

    2016-08-01

    In this paper, the hypothesis of the existence of a massive dark body (Nemesis, Tyche, Planet Nine, or any other trans-Plutonian planet) at the Solar system periphery is analysed. Basic physical properties and orbital characteristics of such massive bodies are considered. The problem of the definition of a scattering angle of a photon in the gravitational field of a spherical lens is studied. It is shown that, the required value of the scattering angle can be measured for the cases of Nemesis and Tyche. The formation of gravitational lensing images is studied here for a point mass event. It is demonstrated that in most cases of the close rapprochement of a source and the lens (for Nemesis and Tyche), it is possible to resolve two images. The possibility of resolving these images is one of the main arguments favouring the gravitational lensing method as its efficiency in searching for dark massive objects at the edge of the Solar System is higher than the one corresponding to other methods such as stellar occultation. For the cases of Planet Nine and any other trans-Plutonian planet, the strong gravitational lensing is impossible because at least one of the images is always eclipsed.

  4. Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.

  5. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  6. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  7. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E ν~3.5 GeV

    DOE PAGES

    Fields, L.; Chvojka, J.; Aliaga, L.; ...

    2013-07-11

    We have isolated ν¯ μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M A, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our datamore » at higher Q² favor this interpretation over an alternative in which the axial mass is increased.« less

  8. Near-infrared scattering as a dust diagnostic

    NASA Astrophysics Data System (ADS)

    Saajasto, Mika; Juvela, Mika; Malinen, Johanna

    2018-06-01

    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.

  9. Interplay of threshold resummation and hadron mass corrections in deep inelastic processes

    DOE PAGES

    Accardi, Alberto; Anderle, Daniele P.; Ringer, Felix

    2015-02-01

    We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering lN-->l'X and semi-inclusive annihilation e +e - → hX processes, and provide a prescription how to consistently combine these two corrections respecting all kinematic thresholds. We find an interesting interplay between threshold resummation and target mass corrections for deep-inelastic scattering at large values of Bjorken x B. In semi-inclusive annihilation, on the contrary, the two considered corrections are relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless of interest in the light of recent high precision data from BaBar and Belle onmore » pion and kaon production, with which we compare our calculations. For both deep inelastic scattering and single inclusive annihilation, the size of the combined corrections compared to the precision of world data is shown to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in order to extract precise parton distributions at large Bjorken x B, and fragmentation functions over the whole kinematic range.« less

  10. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOEpatents

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  11. Optical, Physical and Chemical Properties of Tar Balls Observed During the Yosemite Aerosol Characterization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Jenny L.; Malm, W. C.; Laskin, Alexander

    2005-11-09

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurredmore » during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.« less

  12. Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

    DOE PAGES

    Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; ...

    2017-05-08

    Here, we present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleonmore » force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N 3LO) contributions are included. Finally, we stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing.« less

  13. Mu- and Tau-Neutrino Spectra Formation in Supernovae

    NASA Astrophysics Data System (ADS)

    Raffelt, Georg G.

    2001-11-01

    The μ- and τ-neutrinos emitted from a proto-neutron star are produced by nucleonic bremsstrahlung NN-->NNνν and pair annihilation e+e--->νν, reactions that freeze out at the ``energy sphere.'' Before escaping from there to infinity, the neutrinos diffuse through the ``scattering atmosphere,'' a layer in which their main interaction is elastic scattering on nucleons νN-->Nν. If these collisions are taken to be isoenergetic, as in all numerical supernova simulations, the neutrino flux spectrum escaping to infinity depends only on the medium temperature TES and the thermally averaged optical depth τES at the energy sphere. For τES=10-50, one finds for the spectral flux temperature of the escaping neutrinos Tflux=0.5-0.6TES. Including energy exchange (nucleon recoil) in νN-->Nν can shift Tflux both up and down. ΔTflux depends on τES, on the scattering atmosphere's temperature profile, and on TES. Based on a numerical study, we find that for typical conditions, ΔTflux/Tflux is between -10% and -20% and even for extreme parameter choices does not exceed -30%. The exact value of ΔTflux/Tflux is surprisingly insensitive to the assumed value of the nucleon mass; i.e., the exact efficiency of energy transfer between neutrinos and nucleons is not important as long as it can occur at all. Therefore, calculating the νμ and ντ spectra does not seem to require a precise knowledge of the nuclear medium's dynamical structure functions.

  14. Is radiative electroweak symmetry breaking consistent with a 125 GeV Higgs mass?

    PubMed

    Steele, T G; Wang, Zhi-Wei

    2013-04-12

    The mechanism of radiative electroweak symmetry breaking occurs through loop corrections, and unlike conventional symmetry breaking where the Higgs mass is a parameter, the radiatively generated Higgs mass is dynamically predicted. Padé approximations and an averaging method are developed to extend the Higgs mass predictions in radiative electroweak symmetry breaking from five- to nine-loop order in the scalar sector of the standard model, resulting in an upper bound on the Higgs mass of 141 GeV. The mass predictions are well described by a geometric series behavior, converging to an asymptotic Higgs mass of 124 GeV consistent with the recent ATLAS and CMS Collaborations observations. Similarly, we find that the Higgs self-coupling converges to λ=0.23, which is significantly larger than its conventional symmetry breaking counterpart for a 124 GeV Higgs mass. In addition to this significant enhancement of the Higgs self-coupling and HH→HH scattering, we find that Higgs decays to gauge bosons are unaltered and the scattering processes WL(+)WL(+)→HH, ZLZL→HH are also enhanced, providing signals to distinguish conventional and radiative electroweak symmetry breaking mechanisms.

  15. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laroche, D.; Lu, T. M., E-mail: tlu@sandia.gov; Huang, S.-H.

    2016-06-06

    We report the magneto-transport, scattering mechanisms, and effective mass analysis of an ultra-low density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si{sub 0.2}Ge{sub 0.8} heterostructure. This fabrication technique allows hole densities as low as p ∼ 1.1 × 10{sup 10 }cm{sup −2} to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, μ ∝ n{sup α}, is found to be α ∼ 0.29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migrationmore » model is used to explain the mobility decrease at the highest achievable densities. The hole effective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p ∼ 1.0 × 10{sup 11 }cm{sup −2}, the effective mass m* is ∼0.105 m{sub 0}, which is significantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  16. Measuring the scatter in the cluster optical richness-mass relation with machine learning

    NASA Astrophysics Data System (ADS)

    Boada, Steven Alvaro

    The distribution of massive clusters of galaxies depends strongly on the total cosmic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their line-of- sight velocity dispersions (LOSVD) using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over 420 degree2 on the sky with a 1/4.5 fill factor. VIRUS covers the blue/optical portion of the spectrum (3500 - 5500 A), allowing surveys to measure redshifts for a large sample of galaxies out to z < 0.5 based on their absorption or emission (e.g., [O II], Mg II, Ne V) features. We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) Survey, a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) Targeted, a survey which targets clusters directly, obtaining spectra of all galaxies in a VIRUS-sized field. For both surveys, we include realistic uncertainties from galaxy magnitude and line-flux limits. We benchmark both surveys against spectroscopic observations with perfect" knowledge of galaxy line-of-sight velocities. With Survey observations, we can recover cluster masses to ˜ 0.1 dex which can be further improved to < 0.1 dex with Targeted observations. This level of cluster mass recovery provides important measurements of the intrinsic scatter in the optical richness-cluster mass relation, and enables constraints on the key cosmological parameter, sigma 8, to < 20%. As a demonstration of the methods developed previously, we present a pilot survey with integral field spectroscopy of ten galaxy clusters optically selected from the Sloan Digital Sky Survey's DR8 at z = 0.2 - 0.3. Eight of the clusters are rich (lambda > 60) systems with total inferred masses (1.58 -17.37) x1014 M (M 200c), and two are poor (lambda < 15) systems with inferred total masses ˜ 0.5 x 1014 M? (M200c ). We use the Mitchell Spectrograph, (formerly the VIRUS-P spectrograph, a prototype of the HETDEX VIRUS instrument) located on the McDonald Observatory 2.7m telescope, to measure spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, determine cluster membership and derive LOSVDs. We test both a LOSVD-cluster mass scaling relation and a machine learning based approach to infer total cluster mass. After comparing the cluster mass estimates to the literature, we use these independent cluster mass measurements to estimate the absolute cluster mass scale, and intrinsic scatter in the optical richness-mass relationship. We measure the intrinsic scatter in richness at fixed cluster mass to be sigmaM/lambda = 0.27 +/- 0.07 dex in excellent agreement with previous estimates of sigmaM/lambda ˜ 0.2 - 0.3 dex. We discuss the importance of the data used to train the machine learning methods and suggest various strategies to import the accuracy of the bias (offset) and scatter in the optical richness-cluster mass relation. This demonstrates the power of blind spectroscopic surveys such as HETDEX to provide robust cluster mass estimates which can aid in the determination of cosmological parameters and help to calibrate the observable-mass relation for future photometric large area-sky surveys.

  17. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less

  18. In situ construction of g-C3N4/TiO2 heterojunction films with enhanced photocatalytic activity over magnetic-driven rotating frame

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Jia, Jia; Hu, Xiaoyun; Fan, Jun; Liu, Enzhou

    2018-02-01

    Corn-shaped TiO2 nanofilms were fabricated by a glycerol-assisted hydrothermal method, and then g-C3N4 was deposited on the surface of TiO2 films using melamine as precursor under air atmosphere by an in site microwave-heating technique. The investigations indicate that microwave-heating process is a facile strategy to obtain g-C3N4 by thermal polymerization of melamine, which can achieve in situ constructing of g-C3N4/TiO2 heterojunction films with high stability. The as-prepared TiO2 films with crack and holes have visible light scattering capability, and the scattering light overlaps with the intrinsic absorption of g-C3N4, leading to an absorption plateau in the range of 400-550 nm. Besides, a magnetic-driven rotating frame was developed to enhance the mass transfer processes during the photocatalytic water splitting. The result shows that g-C3N4/TiO2 films exhibit excellent activities under simulated-sunlight irradiation, in addition to the enhanced mass transfer, the overlapped visible light absorption, stable contact and effective charge transfer between g-C3N4 and TiO2 can facilitate the hydrogen production and light utilization efficiency as well. The hydrogen production rate can reach 13.8 mmol h-1 m-2 over g-C3N4/TiO2 films prepared using 0.5 g of melamine and 16.0 cm2 of TiO2.

  19. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Jaffe, Daniel A.; Hee, Jonathan R.

    2016-12-01

    The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4-10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs/ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs/ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g-1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm) ranging from 138 to 229 nm and geometric standard deviations (σg) ranging from 1.53 to 1.89. We found MSEs for BB events to be positively correlated with the geometric mean of the aerosol size distributions (R2 = 0.73), which agrees with Mie theory. We did not find any dependence on event size distribution to transport time or fire source location.

  20. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  1. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  2. Gaussian basis functions for highly oscillatory scattering wavefunctions

    NASA Astrophysics Data System (ADS)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  3. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia.

    PubMed

    Noh, Young M; Müller, Detlef; Lee, Hanlim; Lee, Kwonho; Kim, Young Joon

    2012-08-01

    The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low Ångström exponent (<0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest Ångström exponents (α) at Gwangju and Anmyeon were 1.43 ± 0.30 and 1.49 ± 0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (ω) at 440 nm observed at Gwangju and Anmyeon were 0.89 ± 0.02 and 0.88 ± 0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest ω values at Gwangju and Anmyeon were 0.95 ± 0.02 and 0.96 ± 0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (β) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

  4. Rational and Efficient Preparative Isolation of Natural Products by MPLC-UV-ELSD based on HPLC to MPLC Gradient Transfer.

    PubMed

    Challal, Soura; Queiroz, Emerson Ferreira; Debrus, Benjamin; Kloeti, Werner; Guillarme, Davy; Gupta, Mahabir Prashad; Wolfender, Jean-Luc

    2015-11-01

    In natural product research, the isolation of biomarkers or bioactive compounds from complex natural extracts represents an essential step for de novo identification and bioactivity assessment. When pure natural products have to be obtained in milligram quantities, the chromatographic steps are generally labourious and time-consuming. In this respect, an efficient method has been developed for the reversed-phase gradient transfer from high-performance liquid chromatography to medium-performance liquid chromatography for the isolation of pure natural products at the level of tens of milligrams from complex crude natural extracts. The proposed method provides a rational way to predict retention behaviour and resolution at the analytical scale prior to medium-performance liquid chromatography, and guarantees similar performances at both analytical and preparative scales. The optimisation of the high-performance liquid chromatography separation and system characterisation allows for the prediction of the gradient at the medium-performance liquid chromatography scale by using identical stationary phase chemistries. The samples were introduced in medium-performance liquid chromatography using a pressure-resistant aluminium dry load cell especially designed for this study to allow high sample loading while maintaining a maximum achievable flow rate for the separation. The method has been validated with a mixture of eight natural product standards. Ultraviolet and evaporative light scattering detections were used in parallel for a comprehensive monitoring. In addition, post-chromatographic mass spectrometry detection was provided by high-throughput ultrahigh-performance liquid chromatography time-of-flight mass spectrometry analyses of all fractions. The processing of all liquid chromatography-mass spectrometry data in the form of an medium-performance liquid chromatography x ultra high-performance liquid chromatography time-of-flight mass spectrometry matrix enabled an efficient localisation of the compounds of interest in the generated fractions. The methodology was successfully applied for the separation of three different plant extracts that contain many diverse secondary metabolites. The advantages and limitations of this approach and the theoretical chromatographic background that rules such as liquid chromatography gradient transfer are presented from a practical viewpoint. Georg Thieme Verlag KG Stuttgart · New York.

  5. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  6. Current Issues and Challenges in Global Analysis of Parton Distributions

    NASA Astrophysics Data System (ADS)

    Tung, Wu-Ki

    2007-01-01

    A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed.

  7. Relation of the fractal structure of organic pigments to their performance

    NASA Astrophysics Data System (ADS)

    Skillas, G.; Agashe, N.; Kohls, D. J.; Ilavsky, J.; Jemian, P.; Clapp, L.; Schwartz, R. J.; Beaucage, G.

    2002-05-01

    Different pigments embedded in polymer matrices were examined by small angle scattering of x- rays over 3 wave number decades. The scattering intensities show differences both in the mass fractal dimension (varying between 1.4 and 2.67) and the size of the particles. The differences are pronounced between dry pigment powders and the same powders in a polymer matrix as well as between the pigments themselves. Further, a correlation of pigment geometrical configuration and pigment performance, as perceived by the human eye, shows how pigments with a maximum color brightness per pigment mass can be created.

  8. The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters

    NASA Astrophysics Data System (ADS)

    Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen

    2017-12-01

    Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.

  9. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  10. Key functional role of the optical properties of coral skeletons in coral ecology and evolution.

    PubMed

    Enríquez, Susana; Méndez, Eugenio R; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto

    2017-04-26

    Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean. © 2017 The Author(s).

  11. Photon-counting CT with silicon detectors: feasibility for pediatric imaging

    NASA Astrophysics Data System (ADS)

    Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats

    2009-02-01

    X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.

  12. A Mass Census of the Nearby Universe with RESOLVE and ECO

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila; Stark, David; Moffett, Amanda J.; Norris, Mark A.; Berlind, Andreas A.; Hall, Kirsten; Baker, Ashley; Snyder, Elaine M.; Bittner, Ashley; Hoversten, Erik A.; Lagos, Claudia; Nasipak, Zachary; RESOVE Team

    2017-01-01

    The low-mass slope of the galaxy stellar mass function is significantly shallower than that of the theoretical dark matter halo mass function, leading to several possible interpretations including: 1) stellar mass does not fully represent galaxy mass, 2) galaxy formation becomes increasingly inefficient in lower mass halos, and 3) environmental effects, such as stripping and merging, may change the mass function. To investigate these possible scenarios, we present the census of stellar, baryonic (stars + cold gas), and dynamical masses of galaxies and galaxy groups for the RESOLVE and ECO surveys. RESOLVE is a highly complete volume-limited survey of ~1500 galaxies, enabling direct measurement of galaxy mass functions without statistical completeness corrections down to baryonic mass Mb ~ 10^9 Msun. ECO provides a larger data set (~10,000 galaxies) complete down to Mb ~ 10^9.4 Msun. We show that the baryonic mass function has a steeper low-mass slope than the stellar mass function due to the large population of low-mass, gas-rich galaxies. The baryonic mass function’s low-mass slope, however, is still significantly shallower than that of the dark matter halo mass function. A more direct probe of total galaxy mass is its characteristic velocity, and we present RESOLVE’s preliminary galaxy velocity function, which combines ionized-gas rotation curves, stellar velocity dispersions, and estimates from scaling relations. The velocity function also diverges from the dark matter halo velocity function at low masses. To study the effect of environment, we break the mass functions into different group halo mass bins, finding complex substructure, including a depressed and flat low-mass slope for groups with halo masses ~10^11.4-12 Msun, which we refer to as the nascent group regime, with typical membership of 2-4 galaxies. This substructure is suggestive of efficient merging or gas stripping in nascent groups, which we find also have large scatter in their cold-baryon fractions, possibly pointing to diversity in hot halo gas content in this regime. This work is supported by NSF grant AST-0955368, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society Dissertation Completion Fellowship.

  13. Quantum scattering problem without partial-wave analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melezhik, V. S., E-mail: melezhik@theor.jinr.ru

    2013-02-15

    We have suggested a method for treating different quantum few-body dynamics without traditional using of the partial-wave analysis. It happened that this approach was very efficient in quantitative analysis of low-dimensional ultracold few-body systems arising in confined geometry of atomic traps. Here we discuss its application to a recently suggested mechanism of resonant molecule formation in confined two-component atomic mixture with transferring the energy release to the center-of-mass excitation of forming molecules. The author considers this result as one of the most significant in his scientific carrier which started from the model of resonant muonic molecule formation [S.I. Vinitsky etmore » al., Sov. Phys. JETP 47, 444 (1978)], one of the most citing works of S.I. Vinitsky.« less

  14. Molecular Cloud Evolution VI. Measuring cloud ages

    NASA Astrophysics Data System (ADS)

    Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel; Galván-Madrid, Roberto; Forbrich, Jan

    2018-06-01

    In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud's evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud's evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from ˜1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ˜ 103-104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ˜300-500 M⊙ Myr-1. By this time, they have contracted to become compact (˜1 pc) massive star-forming clumps, in general embedded within larger GMCs.

  15. Low-speed impacts between rubble piles modeled as collections of polyhedra, 2

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Asphaug, Erik

    2009-11-01

    We present the results of additional calculations involving the collisions of km-scale rubble piles. In new work, we used the Open Dynamics Engine (ODE), an open-source library for the simulation of rigid-body dynamics that incorporates a sophisticated collision-detection and resolution routine. We found that using ODE resulted in a speed-up of approximately a factor of 30 compared with previous code. In this paper we report on the results of almost 1200 separate runs, the bulk of which were carried out with 1000-2000 elements. We carried out calculations with three different combinations of the coefficients of friction η and (normal) restitution ɛ: low (η=0,ɛ=0.8), medium (η=0,ɛ=0.5), and high (η=0.5,ɛ=0.5) dissipation. For target objects of ˜1 km in radius, we found reduced critical disruption energy values QRD∗ in head-on collisions from 2 to 100 J kg -1 depending on dissipation and impactor/target mass ratio. Monodisperse objects disrupted somewhat more easily than power-law objects in general. For oblique collisions of equal-mass objects, mildly off-center collisions (b/b0=0.5) seemed to be as efficient or possibly more efficient at collisional disruption as head-on collisions. More oblique collisions were less efficient and the most oblique collisions we tried (b/b0=0.866) required up to ˜200 J kg -1 for high-dissipation power-law objects. For calculations with smaller numbers of elements (total impactor ni+targetnT=20 or 200 elements) we found that collisions were more efficient for smaller numbers of more massive elements, with QRD∗ values as low as 0.4Jkg for low-dissipation cases. We also analyzed our results in terms of the relations proposed by Stewart and Leinhardt [Stewart, S.T., Leinhardt, Z.M., 2009. Astrophys. J. 691, L133-L137] where m1/(mi+mT)=1-QR/2QRD∗ where QR is the impact kinetic energy per unit total mass mi+mT. Although there is a significant amount of scatter, our results generally bear out the suggested relation.

  16. Impenetrability in Floquet Scattering in One Dimension

    NASA Astrophysics Data System (ADS)

    Volosniev, A. G.; Smith, D. H.

    2018-07-01

    We study the scattering off a time-periodic zero-range potential in one spatial dimension. We focus on the parameter regions that lead to zero-transmission probability (ZTP). For static potentials, ZTP leads to fermionization of distinguishable equal-mass particles. For time-periodic potentials, fermionization is prevented by the formation of evanescent waves.

  17. Consequences of on-line dialysis on polyelectrolyte molar masses determined by size-exclusion chromatography with light scattering detection.

    PubMed

    Radke, Wolfgang

    2016-02-01

    Size-exclusion chromatography with light scattering detection experiments conducted on poly(acrylic acid) neutralized to different degrees or using hydroxides with different counterions suggest that the same counterion and degree of neutralization is observed at the detector, irrespective of salt concentration, degree of neutralization and counterion at the time of injection. This strongly supports that during the chromatographic experiment the counterions of the polyelectrolyte are exchanged with those of the eluent, resulting in an effective dialysis of the polyelectrolyte solution during the size-exclusion chromatography experiment. Consequently, the refractive index increment determined by a refractive index detector equals the refractive index increment obtained after excessive dialysis against the pure eluent. Therefore, the species detected and characterized by light scattering coupled to size-exclusion chromatography are not identical to the species injected into the chromatographic system. Despite this structural change during the chromatographic experiments, the correct molar mass for the injected species is obtained by size-exclusion chromatography with light scattering detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mass-specific scattering coefficient for natural minerogenic particle populations: particle size distribution effect and closure analyses.

    PubMed

    Peng, Feng; Effler, Steve W

    2012-05-01

    The relationship between the particulate scattering coefficient (b(p)) and the concentration of suspended particulate matter (SPM), as represented by the mass-specific scattering coefficient of particulates (b(p)*=b(p)/SPM), depends on particle size distribution (PSD). This dependence is quantified for minerogenic particle populations in this paper through calculations of b(p)* for common minerals as idealized populations (monodispersed spheres); contemporaneous measurements of b(p), SPM, and light-scattering attributes of mineral particles with scanning electron microscopy interfaced with automated image and x-ray analyses (SAX), for a connected stream-reservoir system where minerogenic particles dominate b(p); and estimates of b(p) and its size dependency (through SAX results-driven Mie theory calculations), particle volume concentration, and b(p)*. Modest changes in minerogenic PSDs are shown to result in substantial variations in b(p)*. Good closure of the SAX-based estimates of b(p) and particle volume concentration with bulk measurements is demonstrated. Converging relationships between b(p)* and particle size, developed from three approaches, were well described by power law expressions.

  19. A study on scattering correction for γ-photon 3D imaging test method

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Chen, Hao

    2018-03-01

    A pair of 511KeV γ-photons is generated during a positron annihilation. Their directions differ by 180°. The moving path and energy information can be utilized to form the 3D imaging test method in industrial domain. However, the scattered γ-photons are the major factors influencing the imaging precision of the test method. This study proposes a γ-photon single scattering correction method from the perspective of spatial geometry. The method first determines possible scattering points when the scattered γ-photon pair hits the detector pair. The range of scattering angle can then be calculated according to the energy window. Finally, the number of scattered γ-photons denotes the attenuation of the total scattered γ-photons along its moving path. The corrected γ-photons are obtained by deducting the scattered γ-photons from the original ones. Two experiments are conducted to verify the effectiveness of the proposed scattering correction method. The results concluded that the proposed scattering correction method can efficiently correct scattered γ-photons and improve the test accuracy.

  20. On the Growth of Steam Droplets Formed in a Laval Nozzle Using both Static Pressure and Light Scattering Measurements

    DTIC Science & Technology

    1977-01-01

    circumstances for determining the onset with light scattering is that in which the laser is so powerful and/or the detector so sensitive that the...sec Boltzmann’s constant 1.38 x 10~16 ergs/mole, wave number length of detector window latent heat of vaporisation mass flow rate of steam In...constant, distance from light scattering volume to detector S supersaturation ratio, p /p t time T local temperature of vapor T temperature in

  1. The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lee, B. E.; Le Brun, A. M. C.; Haq, M. E.; Deering, N. J.; King, L. J.; Applegate, D.; McCarthy, I. G.

    2018-05-01

    Weak gravitational lensing depends on the integrated mass along the line of sight. Baryons contribute to the mass distribution of galaxy clusters and the resulting mass estimates from lensing analysis. We use the cosmo-OWLS suite of hydrodynamic simulations to investigate the impact of baryonic processes on the bias and scatter of weak lensing mass estimates of clusters. These estimates are obtained by fitting NFW profiles to mock data using MCMC techniques. In particular, we examine the difference in estimates between dark matter-only runs and those including various prescriptions for baryonic physics. We find no significant difference in the mass bias when baryonic physics is included, though the overall mass estimates are suppressed when feedback from AGN is included. For lowest-mass systems for which a reliable mass can be obtained (M200 ≈ 2 × 1014M⊙), we find a bias of ≈-10 per cent. The magnitude of the bias tends to decrease for higher mass clusters, consistent with no bias for the most massive clusters which have masses comparable to those found in the CLASH and HFF samples. For the lowest mass clusters, the mass bias is particularly sensitive to the fit radii and the limits placed on the concentration prior, rendering reliable mass estimates difficult. The scatter in mass estimates between the dark matter-only and the various baryonic runs is less than between different projections of individual clusters, highlighting the importance of triaxiality.

  2. GGFC Special Bureau for Loading: current status and plans

    NASA Astrophysics Data System (ADS)

    van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.

    The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.

  3. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  4. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  5. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  6. CAMEA—A novel multiplexing analyzer for neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Groitl, Felix; Graf, Dieter; Birk, Jonas Okkels; Markó, Márton; Bartkowiak, Marek; Filges, Uwe; Niedermayer, Christof; Rüegg, Christian; Rønnow, Henrik M.

    2016-03-01

    The analyzer detector system continuous angle multiple energy analysis will be installed on the cold-neutron triple-axis spectrometer RITA-2 at SINQ, PSI. CAMEA is optimized for efficiency in the horizontal scattering plane enabling rapid and detailed mapping of excitations. As a novelty the design employs a series of several sequential upward scattering analyzer arcs. Each arc is set to a different, fixed, final energy and scatters neutrons towards position sensitive detectors. Thus, neutrons with different final energies are recorded simultaneously over a large angular range. In a single data-acquisition many entire constant-energy lines in the horizontal scattering plane are recorded for a quasi-continuous angular coverage of about 60°. With a large combined coverage in energy and momentum, this will result in a very efficient spectrometer, which will be particularly suited for parametric studies under extreme conditions with restrictive sample environments (high field magnets or pressure cells) and for small samples of novel materials. In this paper we outline the concept and the specifications of the instrument currently under construction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groitl, Felix, E-mail: felix.groitl@psi.ch; Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, 5232 Villigen; Graf, Dieter

    The analyzer detector system continuous angle multiple energy analysis will be installed on the cold-neutron triple-axis spectrometer RITA-2 at SINQ, PSI. CAMEA is optimized for efficiency in the horizontal scattering plane enabling rapid and detailed mapping of excitations. As a novelty the design employs a series of several sequential upward scattering analyzer arcs. Each arc is set to a different, fixed, final energy and scatters neutrons towards position sensitive detectors. Thus, neutrons with different final energies are recorded simultaneously over a large angular range. In a single data-acquisition many entire constant-energy lines in the horizontal scattering plane are recorded formore » a quasi-continuous angular coverage of about 60°. With a large combined coverage in energy and momentum, this will result in a very efficient spectrometer, which will be particularly suited for parametric studies under extreme conditions with restrictive sample environments (high field magnets or pressure cells) and for small samples of novel materials. In this paper we outline the concept and the specifications of the instrument currently under construction.« less

  8. Surface and mass fractals in vapor-phase aggregates

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Martin, James E.

    1987-03-01

    Several types of fumed-silica aggregates with differing surface areas were studied over a wide range of spatial resolution by employing both light and neutron scattering. At intermediate length scales, between 100 and 1000 Å, the aggregates are mass fractals with Dm~=1.7-2.0, in basic agreement with simulations of aggregating clusters. At short length scales below 100 Å where the nature of the surfaces of the primary particles dominates the scattering, some of the samples appear to be fractally rough. In particular, a higher surface area seems to be correlated not with smaller primary particles in the aggregates, as previously assumed, but with fractally rough surfaces having Ds as high as 2.5. These may be the first materials discovered to have both mass and surface fractal structure.

  9. A dynamical context for the origin of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Hansen, Bradley M. S.

    2018-04-01

    We show that a model in which Mars grows near Earth and Venus but is then scattered out of the terrestrial region yields a natural pathway to explain the low masses of the Martian moons Phobos and Deimos. In this scenario, the last giant impact experienced by Mars is followed by an extended period (tens to hundreds of Myr) of close passages by other planetary embryos. These close passages perturb and dynamically heat any system of forming satellites left over by the giant impact and can substantially reduce the mass in the satellite system (sometimes to zero). The close passage of massive perturbing bodies also offers the opportunity to capture small objects by three-body scattering. Both mechanisms lead to low-mass moon systems with a substantially collisional history.

  10. Correcting Velocity Dispersion Measurements for Inclination and Implications for the M-Sigma Relation

    NASA Astrophysics Data System (ADS)

    Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Gultekin, Kayhan; Christensen, Charlotte; Governato, Fabio

    2015-01-01

    The relation between central black hole mass and stellar spheroid velocity dispersion (the M-Sigma relation) is one of the best-known correlations linking black holes and their host galaxies. However, there is a large amount of scatter at the low-mass end, indicating that the processes that relate black holes to lower-mass hosts are not straightforward. Some of this scatter can be explained by inclination effects; contamination from disk stars along the line of sight can artificially boost velocity dispersion measurements by 30%. Using state of the art simulations, we have developed a correction factor for inclination effects based on purely observational quantities. We present the results of applying these factors to observed samples of galaxies and discuss the effects on the M-Sigma relation.

  11. Dark matter phenomenology of high-speed galaxy cluster collisions

    DOE PAGES

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-07-29

    Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less

  12. Dark matter phenomenology of high-speed galaxy cluster collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less

  13. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  14. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  15. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  16. Device reflectivity as a simple rule for predicting the suitability of scattering foils for improved OLED light extraction

    NASA Astrophysics Data System (ADS)

    Levell, Jack W.; Harkema, Stephan; Pendyala, Raghu K.; Rensing, Peter A.; Senes, Alessia; Bollen, Dirk; MacKerron, Duncan; Wilson, Joanne S.

    2013-09-01

    A general challenge in Organic Light Emitting Diodes (OLEDs) is to extract the light efficiently from waveguided modes within the device structure. This can be accomplished by applying an additional scattering layer to the substrate which results in outcoupling increases between 0% to <100% in external quantum efficiency. In this work, we aim to address this large variation and show that the reflectivity of the OLED is a simple and useful predictor of the efficiency of substrate scattering techniques without the need for detailed modeling. We show that by optimizing the cathode and anode structure of glass based OLEDs by using silver and an ITO free high conductive Agfa Orgacon™ PEDOT:PSS we are able to increase the external quantum efficiency of OLEDs with the same outcoupling substrates from 2.4% to 5.6%, an increase of 130%. In addition, Holst Centre and partners are developing flexible substrates with integrated light extraction features and roll to roll compatible processing techniques to enable this next step in OLED development both for lighting and display applications. These devices show promise as they are shatterproof substrates and facilitate low cost manufacture.

  17. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.

    PubMed

    van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M

    2016-12-27

    Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm 2 under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

  18. Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions.

    PubMed

    Tang, Janika; Thakore, Vaibhav; Ala-Nissila, Tapio

    2017-07-18

    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57-65% for the incident blackbody radiation from sources at temperatures in the range 400-1600 °C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.

  19. Sugar apple-shaped TiO2 hierarchical spheres for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lei, Bing-Xin; Zeng, Li-Li; Zhang, Ping; Qiao, He-Kang; Sun, Zhen-Fan

    2014-05-01

    The sugar apple-shaped TiO2 hierarchical spheres are prepared by a facile hydrothermal method using polyethylene glycol 600 as stabilized reagent, (NH4)2TiF6 and urea as starting materials at 180 °C. The characterizations show that the TiO2 hierarchical sphere has well-defined pyramid-shaped crystal facets. The as-prepared TiO2 hierarchical spheres are crystalline of the anatase phase, with a diameter of about 2-4 μm and a surface area of 36.846 m2 g-1. The optical investigation evidences that the sugar apple-shaped TiO2 hierarchical sphere film exhibits a prominent light scattering effect at a wavelength range of 600-800 nm due to the unique hierarchical morphology. Furthermore, the sugar apple-shaped TiO2 hierarchical spheres are deposited as the scattering layer to balance the dye adsorption and light scattering effect in DSSCs and a 7.20% solar energy conversion efficiency is demonstrated, indicating an improvement compared with the P25 cell (6.68%). Based on the optical and electrochemical investigations, the high conversion efficiency is mainly due to the effective suppression of the back reaction of the injected electron with the I3- in the electrolyte and excellent light scattering ability.

  20. Size-exclusion chromatography of perfluorosulfonated ionomers.

    PubMed

    Mourey, T H; Slater, L A; Galipo, R C; Koestner, R J

    2011-08-26

    A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO(3) is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion(®). Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark-Houwink-Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity-molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Measuring the Scatter of the Mass–Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campa, Julia; Estrada, Juan; Flaugher, Brenna

    2017-02-03

    The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.

  2. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  3. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.

    2017-06-01

    We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.

  4. Neutron–proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon–nucleus scattering data within an isospin dependent optical model

    DOE PAGES

    Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; ...

    2015-04-01

    The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be m* n-p≡(m* n – m* p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependencemore » of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less

  5. The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams

    NASA Technical Reports Server (NTRS)

    Geddes, J.; Krause, H. F.; Fite, W. L.

    1972-01-01

    Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections.

  6. Analytic treatment of the black-hole bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hod, Shahar; Hod, Oded; School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978

    2010-03-15

    A bosonic field impinging on a rotating black hole can be amplified as it scatters off the hole, a phenomenon known as superradiant scattering. If in addition the field has a nonzero rest mass {mu}, the mass term effectively works as a mirror, reflecting the scattered wave back towards the black hole. In this physical system, known as a black-hole bomb, the wave may bounce back and forth between the black hole and some turning point, amplifying itself each time. Consequently, the field grows exponentially over time and is unstable. In this paper we study analytically for the first timemore » the phenomenon of superradiant instability (the black-hole bomb mechanism) in the regime M{mu}=O(1) of greatest instability. We find a maximal instability growth rate of {tau}{sup -1}=1.7x10{sup -3}M{sup -1}. This instability is 4 orders of magnitude stronger than has been previously estimated.« less

  7. Calculation of the {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} Scattering Lengths in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torok, Aaron

    The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less

  8. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficiency was higher for configurations with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configurations but had limited improvement on scatter-induced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration), resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation). Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configurations in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficial (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter. PMID:23635285

  9. THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to bemore » 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.« less

  10. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  11. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    NASA Astrophysics Data System (ADS)

    Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.

    2015-01-01

    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.

  12. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  13. Computer program for thin-wire structures in a homogeneous conducting medium

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.

  14. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection.

    PubMed

    Leijdekkers, A G M; Sanders, M G; Schols, H A; Gruppen, H

    2011-12-23

    Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Compliant energy and momentum conservation in NEGF simulation of electron-phonon scattering in semiconductor nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Martinez, A.; Aldegunde, M.

    2012-05-01

    The modelling of spatially inhomogeneous silicon nanowire field-effect transistors has benefited from powerful simulation tools built around the Keldysh formulation of non-equilibrium Green function (NEGF) theory. The methodology is highly efficient for situations where the self-energies are diagonal (local) in space coordinates. It has thus been common practice to adopt diagonality (locality) approximations. We demonstrate here that the scattering kernel that controls the self-energies for electron-phonon interactions is generally non-local on the scale of at least a few lattice spacings (and thus within the spatial scale of features in extreme nano-transistors) and for polar optical phonon-electron interactions may be very much longer. It is shown that the diagonality approximation strongly under-estimates the scattering rates for scattering on polar optical phonons. This is an unexpected problem in silicon devices but occurs due to strong polar SO phonon-electron interactions extending into a narrow silicon channel surrounded by high kappa dielectric in wrap-round gate devices. Since dissipative inelastic scattering is already a serious problem for highly confined devices it is concluded that new algorithms need to be forthcoming to provide appropriate and efficient NEGF tools.

  16. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Eva E.; Martin, William R.

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less

  17. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE PAGES

    Davidson, Eva E.; Martin, William R.

    2017-05-26

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less

  18. Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru

    Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less

  19. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timpe, Miles; Barnes, Rory; Kopparapu, Ravikumar

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We thenmore » performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.« less

  20. Long term measurements of optical properties and their hygroscopic enhancement

    NASA Astrophysics Data System (ADS)

    Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.

    2014-11-01

    Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.

  1. Generation of uniform light by use of diode lasers and a truncated paraboloid with a Lambertian scatterer.

    PubMed

    Alahautala, Taito; Hernberg, Rolf

    2004-02-01

    Uniform illumination was generated by use of a large number of diode laser emitters and a single nonimaging paraboloid with a Lambertian scatterer in the truncation plane. Laser light traverses a path toward the Lambertian surface and back by total internal reflection. An overall efficiency of 69% was demonstrated. Improvements that would increase the efficiency to more than 85% are suggested. The illuminated area is circular, with 14-mm diameter. The spatial nonuniformity of the beam profile is less than +/- 2%.

  2. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  3. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  4. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian

    2015-07-15

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, S. R.; Sissakian, A. N.; Tarasov, A. V.

    The Fermi-Watson theorem is generalized to the case of two coupled channels with different masses and applied to final-state interaction inK{sub e4} decays. The impact of the considered effect on the phase of {pi}{pi} scattering is estimated and it is shown that it can be crucial for the scattering length extraction from experimental data on K{sub e4} decays.

  6. Quark-mass dependence of two-nucleon observables

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng

    2012-11-01

    We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.

  7. Ion formation upon electron collisions with valine embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul

    2016-04-01

    We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  8. Hygroscopic Characteristics of Organic Laden Ambient Aerosols in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Malm, W. C.; Day, D. E.; Kreidenweis, S. M.; Collett, J. L.; Carrico, C. M.; Lee, T.; Bench, G.; Carrillo, J.

    2003-12-01

    Water absorption by inorganic compounds can be modeled with some degree of certainty; however, water uptake by ambient organic aerosols remains speculative. To improve the understanding of organic hygroscopicity, an aerosol characterization study was conducted at Yosemite National Park, California, starting in July and ending in the first week of September 2002. High time resolution measurement (15-minute time increments) of PM2.5 ionic species (Cl-, SO42-, NO3-, Na+, NH4+, K+, Mg2+, and Ca2+) were measured using PILS (Particle-Into-Liquid-System)/IC (Ion Chromatography). Commercially available annular denuders and a PM2.5 cyclone (URG) were used upstream of the PILS/IC to remove particles greater than 2.5 μm and acidic and basic gases. A dual wavelength aethalometer and an R&P particulate carbon monitor were used to measure carbon on a semi-continuous basis while a DRUM sampler allowed for semi-continuous estimates of concentrations of elements associated with crustal material. Standard IMPROVE type samplers were used to measure 24-hr integrated samples of these same aerosols. Two nephelometers operated in tandem, one dry and the other with a controlled humidity environment, were used to measure f(RH) = bscat(RH)/bscat,dry, where bscat(RH) is the scattering coefficient measured at some relative humidity and bscat,dry is the scattering coefficient measured at RH <10%. The aerosol composition was highly variable in time, with a strong diurnal cycle. Organic carbon mass was observed to be, on the average, 70% of the fine mass with days where its contribution was well over 95% of the mass. Measurements of carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. Water soluble potassium was highly correlated with carbon mass, suggesting the influence of wood smoke. The ionic fraction of the aerosol consisted primarily of ammonium sulfate and in most cases nitrate was in the form of sodium nitrate. Fine soil mass was less than 1% of PM2.5 mass. The ambient aerosol was observed to deliquesce on days when the inorganic and organic aerosol were approximately equal in concentration; however, on days when the organic component was dominant, only smooth f(RH) curves were observed. Equilibrium models, exercised in combination with Mie scattering theory, were used to predict atmospheric aerosol water content and associated increases in aerosol scattering coefficient. The analyses suggest that in most cases the hygroscopic growth of inorganic salts alone could account for the observed increase in scattering as a function of relative humidity.

  9. Crystallization using reverse micelles and water-in-oil microemulsion systems: the highly selective tool for the purification of organic compounds from complex mixtures.

    PubMed

    Kljajic, Alen; Bester-Rogac, Marija; Klobcar, Andrej; Zupet, Rok; Pejovnik, Stane

    2013-02-01

    The active pharmaceutical ingredient orlistat is usually manufactured using a semi-synthetic procedure, producing crude product and complex mixtures of highly related impurities with minimal side-chain structure variability. It is therefore crucial for the overall success of industrial/pharmaceutical application to develop an effective purification process. In this communication, we present the newly developed water-in-oil reversed micelles and microemulsion system-based crystallization process. Physiochemical properties of the presented crystallization media were varied through surfactants and water composition, and the impact on efficiency was measured through final variation of these two parameters. Using precisely defined properties of the dispersed water phase in crystallization media, a highly efficient separation process in terms of selectivity and yield was developed. Small-angle X-ray scattering, high-performance liquid chromatography, mass spectrometry, and scanning electron microscopy were used to monitor and analyze the separation processes and orlistat products obtained. Typical process characteristics, especially selectivity and yield in regard to reference examples, were compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  10. Collection efficiency of a single optical fiber in turbid media.

    PubMed

    Bargo, Paulo R; Prahl, Scott A; Jacques, Steven L

    2003-06-01

    If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.

  11. Observation of fast sound in disparate-mass gas mixtures by light scattering

    NASA Astrophysics Data System (ADS)

    Wegdam, G. H.; Bot, Arjen; Schram, R. P. C.; Schaink, H. M.

    1989-12-01

    We performed light-scattering experiments on a mixture of hydrogen and argon. By varying the density of the sample, we can probe the range of reduced wave vectors in which Campa and Cohen [Phys. Rev. A 39, 4909 (1989)] predicted, in dilute disparate-mass gas mixtures, the onset of a mode supported by the light particles: the fast sound mode. The presence of the additional sound mode can be established most conveniently by analyzing ω2I(k,ω) rather than I(k,ω). Our results for the shift of fast and slow sound match the theoretical predictions very well.

  12. Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer.

    PubMed

    Brauer, M; Hirtle, R; Lang, B; Ott, W

    2000-01-01

    Personal monitoring studies have indicated that environmental tobacco smoke (ETS) and cooking are major indoor particulate sources in residential and nonindustrial environments. Continuous monitoring of fine particles improves exposure assessment by characterizing the effect of time-varying indoor sources. We evaluated a portable nephelometer as a continuous monitor of indoor particulate levels. Simultaneous sampling with the nephelometer and PM2.5 impactors was undertaken to determine the relationship between particle light scattering extinction coefficient (sigma(sp)) and particle mass concentration in field and environmental chamber settings. Chamber studies evaluated nephelometer measurements of ETS and particles produced from toasting bread and frying foods. Field measurements were conducted in 20 restaurants and bars with different smoking restrictions, and in five residential kitchens. Additional measurements compared the nephelometer to a different mass measurement method, a piezobalance, in a well-characterized residence where various foods were cooked and ETS was produced. Since the piezobalance provides 2-min average mass concentration measurements, these comparisons tested the ability of the nephelometer to measure transient particle concentration peaks and decay rate curves. We found that sigma(sp) and particle mass were highly correlated (R2 values of 0.63-0.98) over a large concentration range (5-1600 microg/m3) and for different particle sources. Piezobalance and gravimetric comparisons with the nephelometer indicated similar sigma(sp) vs. mass slopes (5.6 and 4.7 m2/g for piezobalance and gravimetric comparisons of ETS, respectively). Somewhat different sigma(sp) vs. particle mass slopes (1.9-5.6 m2/g) were observed for the different particle sources, reflecting the influence of particle composition on light scattering. However, in similar indoor environments, the relationship between particle light scattering and mass concentration was consistent enough to use independent nephelometer measurements as estimates of short-term mass concentrations. A method to use nephelometer measurements to determine particulate source strengths is derived and an example application is described.

  13. Less-simplified models of dark matter for direct detection and the LHC

    NASA Astrophysics Data System (ADS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  14. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  15. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less

  16. In situ characterization of nanoparticles using Rayleigh scattering

    DOE PAGES

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-10

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  17. In situ Characterization of Nanoparticles Using Rayleigh Scattering

    PubMed Central

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-01

    We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols. PMID:28071715

  18. In situ characterization of nanoparticles using Rayleigh scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  19. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  20. Quantum transport in mesoscopic 3He films: experimental study of the interference of bulk and boundary scattering.

    PubMed

    Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J

    2011-11-04

    We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.

  1. Fundamental aspects in quantitative ultrasonic determination of fracture toughness: The scattering of a single ellipsoidal inhomogeneity

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    The scattering of a single ellipsoidal inhomogeneity is studied via an eigenstrain approach. The displacement field is given in terms of volume integrals that involve eigenstrains that are related to mismatch in mass density and that in elastic moduli. The governing equations for these unknown eigenstrains are derived. Agreement with other approaches for the scattering problem is shown. The formulation is general and both the inhomogeneity and the host medium can be anisotrophic. The axisymmetric scattering of an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the scattered displacement field, the differential and total cross sections are formally given in series expansions for the case of uniformly distributed eigenstrains.

  2. Scattering Solar Thermal Concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120more » degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.« less

  3. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter mass concentration, is also expected to scale the same way. Experimental data for five cities: Mexico City, Mexico; Las Vegas and Reno, NV, USA; Beijing, China; and Delhi, India (the data for the last two cities were obtained from the literature); are in reasonable accord with the model. The scaling relation provided by the model may be considered a useful metric depending on the assumption that specific city conditions (such as latitude, altitude, local meteorological conditions, degree of industrialization, population density, number of cars per capita, city shape, etc.) vary randomly, independent of city size. While more detailed studies (including data from more cities) are needed, we believe that this relatively weak dependence of the pollution concentration on the city population might help to explain why the worsening of urban air quality does not directly lead to a decrease in the rate of growth in city population.

  4. Contemporaneous Ultraviolet and Optical Observations of Direct and Raman-scattered O VI Lines in Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.; Espey, Brian R.; Schulte-Ladbeck, Regina E.

    2000-12-01

    Symbiotic stars are binary systems consisting of a hot star, typically a white dwarf, and a cool giant companion. The wind from the cool star is ionized by the radiation from the hot star, resulting in the characteristic combination of sharp nebular emission lines and stellar molecular absorption bands in the optical spectrum. Most of the emission lines are readily identifiable with common ions. However, two strong, broad emission lines at 6825 and 7082 Å defied identification with known atoms and ions. In 1989 Schmid made the case that these long unidentified emission lines resulted from the Raman scattering of the O VI resonance photons at 1032, 1038 Å by neutral hydrogen. We present contemporaneous far-UV and optical observations of direct and Raman-scattered O VI lines for nine symbiotic stars obtained with the Hopkins Ultraviolet Telescope (Astro-2) and various ground-based optical telescopes. The O VI emission lines are present in every instance in which the λλ6825, 7082 lines are present, in support of the Schmid Raman-scattering model. We calculate the scattering efficiencies and discuss the results in terms of the Raman-scattering model. Additionally, we measure the flux of the Fe II fluorescence line at 1776 Å, which is excited by the O VI line at 1032 Å, and calculate the first estimates of the conversion efficiencies for this process.

  5. Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence.

    NASA Astrophysics Data System (ADS)

    Aquino-Ortíz, E.; Valenzuela, O.; Sánchez, S. F.; Hernández-Toledo, H.; Ávila-Reese, V.; van de Ven, G.; Rodríguez-Puebla, A.; Zhu, L.; Mancillas, B.; Cano-Díaz, M.; García-Benito, R.

    2018-06-01

    We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) 3rd Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ, and also a combination of Vrot and σ through the SK parameter defined as SK^2 = KV_{rot}^2 + σ ^2 with constant K. Late-type and early-type galaxies reproduce the TF and FJ relations. Some early-type galaxies also follow the TF relation and some late-type galaxies the FJ relation, but always with larger scatter. On the contrary, when we use the SK parameter, all galaxies, regardless of the morphological type, lie on the same scaling relation, showing a tight correlation with the total stellar mass, M⋆. Indeed, we find that the scatter in this relation is smaller or equal to that of the TF and FJ relations. We explore different values of the K parameter without significant differences (slope and scatter) in our final results with respect the case K = 0.5 besides than a small change in the zero point. We calibrate the kinematic SK^2 dynamical mass proxy in order to make it consistent with sophisticated published dynamical models within 0.15 dex. We show that the SK proxy is able to reproduce the relation between the dynamical mass and the stellar mass in the inner regions of galaxies. Our result may be useful in order to produce fast estimations of the central dynamical mass in galaxies and to study correlations in large galaxy surveys.

  6. Painting galaxies into dark matter halos using machine learning

    NASA Astrophysics Data System (ADS)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  7. Study on the heterodyning scattering of retroreflective free-space optical communication with optical heterodyning.

    PubMed

    Jia, Honghui; Yin, Hongwei; Zhang, Hailiang; Wang, Xiaofeng; Chang, Shengli; Yang, Juncai

    2013-11-01

    Retroreflective free-space optical communication is important because of advantages such as small volume, low weight, and low power consumption. Link failure caused by bad weather conditions will occur because of the attenuated retroreflective signal and the increased scattering of the transmitted light. The scattering effect can be reduced because the physical properties (including polarization, wavefront, and phase) of the scattering signal are different from those of the retroreflective signal. The physical properties of the scattering signal are obtained using a polarization-sensitive Monte Carlo model, and the heterodyning scattering signal is obtained using heterodyning theory. Results show that, with optical heterodyning, the scattering effect is efficiently reduced, and advantages such as better adaptability to bad weather conditions, longer communication range, more compact transceiver design, larger covering area of the optical receiver, and easier target acquisition for the retromodulator than before can also be obtained.

  8. Numerical Studies of Scattering Properties of Leaves and Leaf Moisture Influences on the Scattering at Microwave Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong

    2008-01-01

    This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.

  9. Two-photon absorption induced stimulated Rayleigh-Bragg scattering

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Prasad, Paras N.

    2005-01-01

    A frequency-unshifted and backward stimulated scattering can be efficiently generated in one-photon-absorption free but two-photon absorbing materials. Using a number of novel two-photon absorbing dye solutions as the scattering media and nanosecond pulsed laser as the pump beams, a highly directional backward stimulated scattering at the exact pump wavelength can be readily observed once the pump intensity is higher than a certain threshold level. The spectral and spatial structures as well as the temporal behavior and optical phase-conjugation property of this new type of backward stimulated scattering have been experimentally studied. This stimulated scattering phenomenon can be explained by using a model of two-photon-excitation enhanced standing-wave Bragg grating initially formed by the strong forward pump beam and much weaker backward Rayleigh scattering beam; the partial reflection of the pump beam from this grating provides an positive feedback to the initial backward Rayleigh scattering beam without suffering linear attenuation influence. Comparing to other known stimulated (Raman, Brillouin, Rayleigh-wing, and Kerr) scattering effects, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no frequency-shift, low pump threshold, and low spectral linewidth requirement.

  10. Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous-Macroporous TiO2 Photoanode Obtained Using ZnO Template

    NASA Astrophysics Data System (ADS)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2017-06-01

    Improved light harvesting efficiency can be achieved by enhancing the optical properties of the titanium dioxide (TiO2) photoanode in dye-sensitized solar cells (DSSCs), leading to higher power conversion efficiency. By incorporating submicrometer cavities in TiO2 mesoporous film, using zinc oxide (ZnO) particles as a template, a bimodal pore size structure has been created, called a mesoporous-macroporous nanostructure. This photoanode structure consists of 20-nm TiO2 nanoparticles with two kinds of pores with size of 20 nm (mesopores) and 500 nm (macropores). Energy-dispersive x-ray spectroscopy and x-ray diffraction studies showed no trace of ZnO in the TiO2 after removal by TiCl4 treatment. Higher diffuse transmittance of this film compared with the standard transparent photoanode provides evidence of improved light scattering. When employed in a device, the incident-photon-to-current efficiency of ZnO-assisted devices showed enhancement at longer wavelengths, corresponding to the Mie light scattering effect with the macropores as scattering centers. This resulted in overall higher power conversion efficiency of the DSSC. In this work, a nonvolatile gel ionic liquid was used as the electrolyte to also demonstrate the benefit of this structure in combination with a viscous electrolyte and its promising application to prolong the stability of DSSCs.

  11. Isoscalar ππ Scattering and the σ Meson Resonance from QCD.

    PubMed

    Briceño, Raul A; Dudek, Jozef J; Edwards, Robert G; Wilson, David J

    2017-01-13

    We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the KK[over ¯] threshold. Calculations are performed at two values of the u, d quark mass corresponding to m_{π}=236,391  MeV, and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.

  12. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  13. Hadron-Hadron Interactions from Nf=2 +1 +1 lattice QCD: Isospin-1 K K scattering length

    NASA Astrophysics Data System (ADS)

    Helmes, C.; Jost, C.; Knippschild, B.; Kostrzewa, B.; Liu, L.; Urbach, C.; Werner, M.; ETM Collaboration

    2017-08-01

    We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2 +1 +1 flavor gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length a0I =1 is calculated at several values of the bare strange and light quark masses. We find MKa0=-0.385 (16 )stat(+0/-12)ms(+0/-5)ZP(4 )rf as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=-0.154 (6 )stat(-5+0)ms(-2+0)ZP(2 )rf fm .

  14. An inexpensive light-scattering particle monitor: field validation

    PubMed Central

    Edwards, Rufus D.; Johnson, Michael; Shields, Kyra Naumoff; Allen, Tracy; Canuz, Eduardo; Smith, Kirk R.

    2014-01-01

    We have developed a small, light, passive, inexpensive, datalogging particle monitor called the “UCB” (University of California Berkeley particle monitor). Following previously published laboratory assessments, we present here results of tests of its performance in field settings at high particle concentrations. We demonstrate the mass sensitivity of the UCB in relation to gravimetric filter-based PM2.5 mass estimates as well as commercial light-scattering instruments co-located in field chamber tests and in kitchens of wood-burning households. The coefficient of variation of the unadjusted UCB mass response in relation to gravimetric estimates was 15%. Although requiring adjustment for differences in sensitivity, inter-monitor performance was consistently high (r2 > 0.99). Moreover, the UCB can consistently estimate PM2.5 mass concentrations in wood-burning kitchens (Pearson r2 = 0.89; N = 99), with good agreement between duplicate measures (Pearson r2 = 0.94; N = 88). In addition, with appropriate cleaning of the sensing chamber, UCB mass sensitivity does not decrease with time when used intensively in open woodfire kitchens, demonstrating the significant potential of this monitor. PMID:17909644

  15. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Ma, Qianli; Rusher, Cassandra A.; Greaves, Stuart J.; Orr-Ewing, Andrew J.; Dagdigian, Paul J.

    2014-05-01

    Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD3 radicals with H2 and D2 collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm-1. Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD3 rotational level (n, k → n', k') integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD3 scattering from both H2 and D2 peak in the forward hemisphere for n' = 2-4 and shift more to sideways and backward scattering for n' = 5. For n' = 6-8, the DCSs are dominated by backward scattering. DCSs for a particular CD3 n → n' transition have a similar angular dependence with either D2 or H2 as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD3-H2 and CD3-D2 collisions. Further comparisons are drawn between the CD3-D2 scattering and results for CD3-He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs.

  16. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  17. Intervalley scattering induced by Coulomb interaction and disorder in carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2013-09-01

    We develop a theory of intervalley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective mass description of single-particle states, we study the two-electron system by fully including Coulomb interaction, spin-orbit coupling, and short-range disorder. We find that the energy level splittings associated with intervalley scattering are nearly independent of the chiral angle and, while smaller than those due to spin-orbit interaction, large enough to be measurable.

  18. A unified model for age-velocity dispersion relations in Local Group galaxies: disentangling ISM turbulence and latent dynamical heating

    NASA Astrophysics Data System (ADS)

    Leaman, Ryan; Mendel, J. Trevor; Wisnioski, Emily; Brooks, Alyson M.; Beasley, Michael A.; Starkenburg, Else; Martig, Marie; Battaglia, Giuseppina; Christensen, Charlotte; Cole, Andrew A.; de Boer, T. J. L.; Wills, Drew

    2017-12-01

    We analyse age-velocity dispersion relations (AVRs) from kinematics of individual stars in eight Local Group galaxies ranging in mass from Carina (M* ∼ 106 M⊙) to M31 (M* ∼ 1011 M⊙). Observationally the σ versus stellar age trends can be interpreted as dynamical heating of the stars by giant molecular clouds, bars/spiral arms or merging subhaloes; alternatively the stars could have simply been born out of a more turbulent interstellar medium (ISM) at high redshift and retain that larger velocity dispersion till present day - consistent with recent integral field unit kinematic studies. To ascertain the dominant mechanism and better understand the impact of instabilities and feedback, we develop models based on observed star formation histories (SFHs) of these Local Group galaxies in order to create an evolutionary formalism that describes the ISM velocity dispersion due to a galaxy's evolving gas fraction. These empirical models relax the common assumption that the stars are born from gas that has constant velocity dispersion at all redshifts. Using only the observed SFHs as input, the ISM velocity dispersion and a mid-plane scattering model fits the observed AVRs of low-mass galaxies without fine tuning. Higher mass galaxies above Mvir ≳ 1011 M⊙ need a larger contribution from latent dynamical heating processes (for example minor mergers), in excess of the ISM model. Using the SFHs, we also find that supernovae feedback does not appear to be a dominant driver of the gas velocity dispersion compared to gravitational instabilities - at least for dispersions σ ≳ 25 km s-1. Together our results point to stars being born with a velocity dispersion close to that of the gas at the time of their formation, with latent dynamical heating operating with a galaxy mass-dependent efficiency. These semi-empirical relations may help constrain the efficiency of feedback and its impact on the physics of disc settling in galaxy formation simulations.

  19. Role of the strange quark in the rho(770) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Peralta, Raquel; Guo, Dehua; Hu, B.

    2017-03-01

    Recently, the GWU lattice group has evaluated high-precision phase-shift data formore » $$\\pi\\pi$$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $$K\\bar{K}$$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $$\\rho$$ mass, and the analysis with U$$\\chi$$PT shows that the $$K \\bar{K}$$ channel indeed pushes the $$\\pi\\pi$$-scattering phase shift upward, having a surprisingly large effect on the $$\\rho$$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $$N_f = 2 + 1$$ lattice simulations for the $$\\rho(770)$$ are also reported.« less

  20. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuationmore » coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.« less

  1. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  2. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  3. Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses

    NASA Astrophysics Data System (ADS)

    Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.

  4. HIFLUGCS: X-ray luminosity-dynamical mass relation and its implications for mass calibrations with the SPIDERS and 4MOST surveys

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping

    2017-03-01

    We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.

  5. Strange particles from NEXUS 3

    NASA Astrophysics Data System (ADS)

    Werner, K.; Liu, F. M.; Ostapchenko, S.; Pierog, T.

    2004-01-01

    After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for strange particle production in proton-proton scattering at 158 GeV and 200 GeV centre-of-mass (cms) are discussed. This paper was presented at Strange Quark Matter Conference, Atlantic Beach, North Carolina, 12-17 March 2003.

  6. Hard diffraction from quasi-elastic dipole scattering

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.

  7. Lattice thermal transport in L a 3 C u 3 X 4 compounds ( X = P , As , Sb , Bi ) : Interplay of anharmonicity and scattering phase space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Thermal conductivities of La 3Cu 3X 4(X=P,As,Sb,Bi) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that La 3Cu 3P 4 has the lowest κ l, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κ l among like systems. The origin of this unusual behavior lies in the strengthmore » of the individual anharmonic phonon scattering matrix elements, which are much larger in La 3Cu 3P 4 than in the heavier La 3Cu 3Bi 4 system. Lastly, our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.« less

  8. Lattice thermal transport in L a 3 C u 3 X 4 compounds ( X = P , As , Sb , Bi ) : Interplay of anharmonicity and scattering phase space

    DOE PAGES

    None, None

    2017-06-30

    Thermal conductivities of La 3Cu 3X 4(X=P,As,Sb,Bi) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that La 3Cu 3P 4 has the lowest κ l, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κ l among like systems. The origin of this unusual behavior lies in the strengthmore » of the individual anharmonic phonon scattering matrix elements, which are much larger in La 3Cu 3P 4 than in the heavier La 3Cu 3Bi 4 system. Lastly, our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.« less

  9. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi

    We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298–220 K). We interpret this change in terms of the dynamic transition previously discussed using othermore » probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.« less

  10. A Calculation and Measurement of Radiative Moller Scattering at 100 MeV with DarkLight

    NASA Astrophysics Data System (ADS)

    Epstein, Charles; DarkLight Collaboration

    2017-01-01

    A number of current experiments rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Many of these experiments, which have lepton beams on atomic targets, use these QED processes as normalization. In other cases, such as DarkLight (at the Jefferson Lab ERL), with electron beams at relatively low energy (100 MeV) and very high power (1 Megawatt), Moller scattering and radiative Moller scattering have such enormous cross-sections that they produce extensive amounts of noise that must be understood. In this low-energy regime, the electron mass can also not be neglected. As a result, we have developed a new Monte Carlo event generator for the radiative Moller and Bhabha processes, extending existing soft-photon radiative corrections with new, exact single-photon bremsstrahlung calculations, and including the electron mass:. DarkLight provides us a unique opportunity to study this process experimentally and compare it with our work. As a result, we are preparing a dedicated apparatus consisting of two magnetic spectrometers as part of the first phase of DarkLight in order to directly measure this process. An overview of the calculation and the status of the experiment's construction will be presented.

  11. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio

    2016-04-01

    We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.

  12. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering.

    PubMed

    Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio

    2016-04-07

    We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.

  13. Lattice thermal transport in L a3C u3X4 compounds (X =P ,As ,Sb ,Bi ) : Interplay of anharmonicity and scattering phase space

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.

    2017-06-01

    Thermal conductivities of L a3C u3X4 (X =P ,As ,Sb ,Bi ) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that L a3C u3P4 has the lowest κl, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κl among like systems. The origin of this unusual behavior lies in the strength of the individual anharmonic phonon scattering matrix elements, which are much larger in L a3C u3P4 than in the heavier L a3C u3B i4 system. Our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.

  14. Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres

    NASA Astrophysics Data System (ADS)

    Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali

    2018-05-01

    Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.

  15. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  16. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2012-02-16

    The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  17. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  18. A single-scattering correction for the seismo-acoustic parabolic equation.

    PubMed

    Collins, Michael D

    2012-04-01

    An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.

  19. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  20. Tunable plasmonic properties of Ag-Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhatia, Pradeep; Verma, S. S.; Sinha, M. M.

    2018-05-01

    Compatibility problems with electronic processes, limited availability and the high cost of noble metals motivate towards the search of alternative materials to enhance the suitability and efficiency of plasmonic based devices. Alloy or coated bimetallic material configuration is an attractive way to engineer a system possessing tuneable plasmonic properties. Magneto-plasmonic nanoparticles (MPNPs) present the possibility to exhibit their tuneable magnetic and optical properties with extensive applications. We studied the optical properties of Ag-Fe alloy for different compositions. The Localised Surface Plasmon Resonance (LSPR) tunability of Agx-Fe1-x (x = 0.25, 0.50 and 0.75) alloy for nanospheres has been calculated by using Discrete Dipole Approximation (DDA) simulation technique. It is found that absorption and scattering efficiencies of Ag-Fe alloy are found in near ultra violet and visible region of electromagnetic spectrum. Large LSPR shift has been observed in absorption and scattering efficiencies peak for 40 nm and 80 nm size of nanospheres alloys. It is concluded that the LSPR can be tuned by changing nanoparticle size and the alloy composition. Results of the plasmonics properties for Ag-Fe alloy at wavelength 330-545nm (absorption) and 331-507nm (scattering) will open the avenues for new applications in optical imaging, biomedical fields particularly in (calorimetric)-DNA, pentose's, proteins (absorption) and plasmonic-enhanced spectroscopies/spectrometer devices (scattering) for determination of optical densities of cell cultures.

Top