DOE Office of Scientific and Technical Information (OSTI.GOV)
Madar, Inamul Hasan; Ko, Seung-Ik; Kim, Hokeun
Mass spectrometry (MS)-based proteomics, which uses high-resolution hybrid mass spectrometers such as the quadrupole-orbitrap mass spectrometer, can yield tens of thousands of tandem mass (MS/MS) spectra of high resolution during a routine bottom-up experiment. Despite being a fundamental and key step in MS-based proteomics, the accurate determination and assignment of precursor monoisotopic masses to the MS/MS spectra remains difficult. The difficulties stem from imperfect isotopic envelopes of precursor ions, inaccurate charge states for precursor ions, and cofragmentation. We describe a composite method of utilizing MS data to assign accurate monoisotopic masses to MS/MS spectra, including those subject to cofragmentation. Themore » method, “multiplexed post-experiment monoisotopic mass refinement” (mPE-MMR), consists of the following: multiplexing of precursor masses to assign multiple monoisotopic masses of cofragmented peptides to the corresponding multiplexed MS/MS spectra, multiplexing of charge states to assign correct charges to the precursor ions of MS/ MS spectra with no charge information, and mass correction for inaccurate monoisotopic peak picking. When combined with MS-GF+, a database search algorithm based on fragment mass difference, mPE-MMR effectively increases both sensitivity and accuracy in peptide identification from complex high-throughput proteomics data compared to conventional methods.« less
2015-01-01
Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576
Unassigned MS/MS Spectra: Who Am I?
Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh
2017-01-01
Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.
Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong
2014-10-01
A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues in complicated matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode
NASA Astrophysics Data System (ADS)
Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus
2013-12-01
Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.
NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES
Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...
Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E
2017-11-01
Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.
Levander, Fredrik; James, Peter
2005-01-01
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Allen, Felicity; Pon, Allison; Greiner, Russ; Wishart, David
2016-08-02
We describe a tool, competitive fragmentation modeling for electron ionization (CFM-EI) that, given a chemical structure (e.g., in SMILES or InChI format), computationally predicts an electron ionization mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly generated by gas chromatography mass spectrometry). The predicted spectra produced by this tool can be used for putative compound identification, complementing measured spectra in reference databases by expanding the range of compounds able to be considered when availability of measured spectra is limited. The tool extends CFM-ESI, a recently developed method for computational prediction of electrospray tandem mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full enumeration "bar-code" spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS measurements of chemical standards are still a more accurate point of comparison, CFM-EI's predictions provide a much-needed alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/cfm-id/ for download and http://cfmid.wishartlab.com as a web service.
De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.
Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A
2014-07-03
There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.
Liu, Yan-Chun; Xiao, Sa; Yang, Kun; Ling, Li; Sun, Zhi-Liang; Liu, Zhao-Ying
2017-06-01
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data-dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC-QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans, but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Expert system for computer-assisted annotation of MS/MS spectra.
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-11-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.
Expert System for Computer-assisted Annotation of MS/MS Spectra*
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-01-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions. PMID:22888147
MIDAS: a database-searching algorithm for metabolite identification in metabolomics.
Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle
2014-10-07
A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.
Milman, Boris L
2005-01-01
A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John Wiley & Sons, Ltd.
Li, Tingting; Cao, Jingjing; Li, Zhen; Wang, Xian; He, Pingli
2016-02-01
Broad screening and identification of β-agonists in feed, serum, urine, muscle and liver samples was achieved in a quick and highly sensitive manner using ultra high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with a spectra library search. Solid-phase extraction technology was employed for sample purification and enrichment. After extraction and purification, the samples were analyzed using a Q-Orbitrap high-resolution mass spectrometer under full-scan and data-dependent MS/MS mode. The acquired mass spectra were compared with an in-house library (compound library and MS/MS mass spectral library) built with TraceFinder Software which contained the M/Z of the precursor ion, chemical formula, retention time, character fragment ions and the entire MS/MS spectra of 32 β-agonist standards. Screening was achieved by comparing 5 key mass spectral results and positive matches were marked. Using the developed method, the identification results from 10 spiked samples and 238 actual samples indicated that only 2% of acquired mass spectra produced false identities. The method validation results showed that the limit of detection ranged from 0.021-3.854 μg kg(-1)and 0.015-1.198 ng mL(-1) for solid and liquid samples, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.
2009-12-16
Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less
Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra".
Griss, Johannes; Perez-Riverol, Yasset; The, Matthew; Käll, Lukas; Vizcaíno, Juan Antonio
2018-05-04
In the recent benchmarking article entitled "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra", Rieder et al. compared several different approaches to cluster MS/MS spectra. While we certainly recognize the value of the manuscript, here, we report some shortcomings detected in the original analyses. For most analyses, the authors clustered only single MS/MS runs. In one of the reported analyses, three MS/MS runs were processed together, which already led to computational performance issues in many of the tested approaches. This fact highlights the difficulties of using many of the tested algorithms on the nowadays produced average proteomics data sets. Second, the authors only processed identified spectra when merging MS runs. Thereby, all unidentified spectra that are of lower quality were already removed from the data set and could not influence the clustering results. Next, we found that the authors did not analyze the effect of chimeric spectra on the clustering results. In our analysis, we found that 3% of the spectra in the used data sets were chimeric, and this had marked effects on the behavior of the different clustering algorithms tested. Finally, the authors' choice to evaluate the MS-Cluster and spectra-cluster algorithms using a precursor tolerance of 5 Da for high-resolution Orbitrap data only was, in our opinion, not adequate to assess the performance of MS/MS clustering approaches.
Bruderer, Tobias; Varesio, Emmanuel; Hidasi, Anita O; Duchoslav, Eva; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard
2018-03-01
High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H] + and 483 in negative mode [M-H] - . MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.
Characterizing Vaccinium berry Standard Reference Materials by GC-MS using NIST spectral libraries.
Lowenthal, Mark S; Andriamaharavo, Nirina R; Stein, Stephen E; Phinney, Karen W
2013-05-01
A gas chromatography-mass spectrometry (GC-MS)-based method was developed for qualitative characterization of metabolites found in Vaccinium fruit (berry) dietary supplement Standard Reference Materials (SRMs). Definitive identifications are provided for 98 unique metabolites determined among six Vaccinium-related SRMs. Metabolites were enriched using an organic liquid/liquid extraction, and derivatized prior to GC-MS analysis. Electron ionization (EI) fragmentation spectra were searched against EI spectra of authentic standards compiled in the National Institute of Standards and Technology's mass spectral libraries, as well as spectra selected from the literature. Metabolite identifications were further validated using a retention index match along with prior probabilities and were compared with results obtained in a previous effort using collision-induced dissociation (CID) MS/MS datasets from liquid chromatography coupled to mass spectrometry experiments. This manuscript describes a nontargeted metabolite profile of Vaccinium materials, compares results among related materials and from orthogonal experimental platforms, and discusses the feasibility and development of using mass spectral library matching for nontargeted metabolite identification.
Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.
Riewe, David; Wiebach, Janine; Altmann, Thomas
2017-10-01
Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew
Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z valuesmore » at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.« less
Speeding up the screening of steroids in urine: development of a user-friendly library.
Galesio, M; López-Fdez, H; Reboiro-Jato, M; Gómez-Meire, Silvana; Glez-Peña, D; Fdez-Riverola, F; Lodeiro, Carlos; Diniz, M E; Capelo, J L
2013-12-11
This work presents a novel database search engine - MLibrary - designed to assist the user in the detection and identification of androgenic anabolic steroids (AAS) and its metabolites by matrix assisted laser desorption/ionization (MALDI) and mass spectrometry-based strategies. The detection of the AAS in the samples was accomplished by searching (i) the mass spectrometric (MS) spectra against the library developed to identify possible positives and (ii) by comparison of the tandem mass spectrometric (MS/MS) spectra produced after fragmentation of the possible positives with a complete set of spectra that have previously been assigned to the software. The urinary screening for anabolic agents plays a major role in anti-doping laboratories as they represent the most abused drug class in sports. With the help of the MLibrary software application, the use of MALDI techniques for doping control is simplified and the time for evaluation and interpretation of the results is reduced. To do so, the search engine takes as input several MALDI-TOF-MS and MALDI-TOF-MS/MS spectra. It aids the researcher in an automatic mode by identifying possible positives in a single MS analysis and then confirming their presence in tandem MS analysis by comparing the experimental tandem mass spectrometric data with the database. Furthermore, the search engine can, potentially, be further expanded to other compounds in addition to AASs. The applicability of the MLibrary tool is shown through the analysis of spiked urine samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Data reduction of isotope-resolved LC-MS spectra.
Du, Peicheng; Sudha, Rajagopalan; Prystowsky, Michael B; Angeletti, Ruth Hogue
2007-06-01
Data reduction of liquid chromatography-mass spectrometry (LC-MS) spectra can be a challenge due to the inherent complexity of biological samples, noise and non-flat baseline. We present a new algorithm, LCMS-2D, for reliable data reduction of LC-MS proteomics data. LCMS-2D can reliably reduce LC-MS spectra with multiple scans to a list of elution peaks, and subsequently to a list of peptide masses. It is capable of noise removal, and deconvoluting peaks that overlap in m/z, in retention time, or both, by using a novel iterative peak-picking step, a 'rescue' step, and a modified variable selection method. LCMS-2D performs well with three sets of annotated LC-MS spectra, yielding results that are better than those from PepList, msInspect and the vendor software BioAnalyst. The software LCMS-2D is available under the GNU general public license from http://www.bioc.aecom.yu.edu/labs/angellab/as a standalone C program running on LINUX.
NASA Astrophysics Data System (ADS)
Gallimore, Peter J.; Giorio, Chiara; Mahon, Brendan M.; Kalberer, Markus
2017-12-01
The oxidation of biogenic volatile organic compounds (VOCs) represents a substantial source of secondary organic aerosol (SOA) in the atmosphere. In this study, we present online measurements of the molecular constituents formed in the gas and aerosol phases during α-pinene oxidation in the Cambridge Atmospheric Simulation Chamber (CASC). We focus on characterising the performance of extractive electrospray ionisation (EESI) mass spectrometry (MS) for particle analysis. A number of new aspects of EESI-MS performance are considered here. We show that relative quantification of organic analytes can be achieved in mixed organic-inorganic particles. A comprehensive assignment of mass spectra for α-pinene derived SOA in both positive and negative ion modes is obtained using an ultra-high-resolution mass spectrometer. We compare these online spectra to conventional offline ESI-MS spectra and find good agreement in terms of the compounds identified, without the need for complex sample work-up procedures. Under our experimental conditions, EESI-MS signals arise only from particle-phase analytes. High-time-resolution (7 min) EESI-MS spectra are compared with simulations from the near-explicit Master Chemical Mechanism (MCM) for a range of reaction conditions. We show that MS peak abundances scale with modelled concentrations for condensable products (pinonic acid, pinic acid, OH-pinonic acid). Relative quantification is achieved throughout SOA formation as the composition, size and mass (5-2400 µg m-3) of particles is evolving. This work provides a robust demonstration of the advantages of EESI-MS for chamber studies over offline ESI-MS (time resolution, relative quantification) and over hard
online techniques (molecular information).
Oberacher, Herbert; Pavlic, Marion; Libiseller, Kathrin; Schubert, Birthe; Sulyok, Michael; Schuhmacher, Rainer; Csaszar, Edina; Köfeler, Harald C
2009-04-01
A sophisticated matching algorithm developed for highly efficient identity search within tandem mass spectral libraries is presented. For the optimization of the search procedure a collection of 410 tandem mass spectra corresponding to 22 compounds was used. The spectra were acquired in three different laboratories on four different instruments. The following types of tandem mass spectrometric instruments were used: quadrupole-quadrupole-time-of-flight (QqTOF), quadrupole-quadrupole-linear ion trap (QqLIT), quadrupole-quadrupole-quadrupole (QqQ), and linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LIT-FTICR). The obtained spectra were matched to an established MS/MS-spectral library that contained 3759 MS/MS-spectra corresponding to 402 different reference compounds. All 22 test compounds were part of the library. A dynamic intensity cut-off, the search for neutral losses, and optimization of the formula used to calculate the match probability were shown to significantly enhance the performance of the presented library search approach. With the aid of these features the average number of correct assignments was increased to 98%. For statistical evaluation of the match reliability the set of fragment ion spectra was extended with 300 spectra corresponding to 100 compounds not included in the reference library. Performance was checked with the aid of receiver operating characteristic (ROC) curves. Using the magnitude of the match probability as well as the precursor ion mass as benchmarks to rate the obtained top hit, overall correct classification of a compound being included or not included in the mass spectrometric library, was obtained in more than 95% of cases clearly indicating a high predictive accuracy of the established matching procedure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Liu, Nai-Yu; Lee, Hsiao-Hui; Chang, Zee-Fen; Tsay, Yeou-Guang
2015-09-10
It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Yan; Bhamber, Ranjeet; Riba-Garcia, Isabel; Liao, Hanqing; Unwin, Richard D; Dowsey, Andrew W
2015-01-01
As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/. PMID:25663356
[Progress in the spectral library based protein identification strategy].
Yu, Derui; Ma, Jie; Xie, Zengyan; Bai, Mingze; Zhu, Yunping; Shu, Kunxian
2018-04-25
Exponential growth of the mass spectrometry (MS) data is exhibited when the mass spectrometry-based proteomics has been developing rapidly. It is a great challenge to develop some quick, accurate and repeatable methods to identify peptides and proteins. Nowadays, the spectral library searching has become a mature strategy for tandem mass spectra based proteins identification in proteomics, which searches the experiment spectra against a collection of confidently identified MS/MS spectra that have been observed previously, and fully utilizes the abundance in the spectrum, peaks from non-canonical fragment ions, and other features. This review provides an overview of the implement of spectral library search strategy, and two key steps, spectral library construction and spectral library searching comprehensively, and discusses the progress and challenge of the library search strategy.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
Pai, Pei-Jing; Hu, Yingwei; Lam, Henry
2016-08-31
Intact glycopeptide MS analysis to reveal site-specific protein glycosylation is an important frontier of proteomics. However, computational tools for analyzing MS/MS spectra of intact glycopeptides are still limited and not well-integrated into existing workflows. In this work, a new computational tool which combines the spectral library building/searching tool, SpectraST (Lam et al. Nat. Methods2008, 5, 873-875), and the glycopeptide fragmentation prediction tool, MassAnalyzer (Zhang et al. Anal. Chem.2010, 82, 10194-10202) for intact glycopeptide analysis has been developed. Specifically, this tool enables the determination of the glycan structure directly from low-energy collision-induced dissociation (CID) spectra of intact glycopeptides. Given a list of possible glycopeptide sequences as input, a sample-specific spectral library of MassAnalyzer-predicted spectra is built using SpectraST. Glycan identification from CID spectra is achieved by spectral library searching against this library, in which both m/z and intensity information of the possible fragmentation ions are taken into consideration for improved accuracy. We validated our method using a standard glycoprotein, human transferrin, and evaluated its potential to be used in site-specific glycosylation profiling of glycoprotein datasets from LC-MS/MS. In addition, we further applied our method to reveal, for the first time, the site-specific N-glycosylation profile of recombinant human acetylcholinesterase expressed in HEK293 cells. For maximum usability, SpectraST is developed as part of the Trans-Proteomic Pipeline (TPP), a freely available and open-source software suite for MS data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.
Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B
2009-09-01
Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.
Bartosch, Theresa; Heydel, Tilo; Uhrlaß, Silke; Nenoff, Pietro; Müller, Hendrik; Baums, Christoph Georg; Schrödl, Wieland
2018-07-01
The zoophilic dermatophyte Trichophyton verrucosum is the most important causative agent of bovine dermatophytosis. Additionally, it causes profound and poorly healing skin infections in humans indicating the high zoonotic potential. The objective of this study was to establish differentiation of T. verrucosum from other dermatophytes by mass spectrometry and to identify distinct features of the mass spectra. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successful for identification of this pathogen only after extension of the database of the manufacturer with spectra from T. verrucosum strains, which were identified as such by sequencing of the internal transcribed spacer (ITS) region. MALDI-TOF MS analysis was conducted with 46 field isolates from cattle, two live vaccine strains, and 10 isolates from humans identified as T. verrucosum by sequence analysis of the ITS region. The results suggest a very good agreement of both methods. Comparison with the mass spectra of 68 strains of other keratinophilic fungi revealed that most T. verrucosum wild-type isolates showed a characteristic peak at 7950-7954 m/z, which was missing in the spectra of other keratinophilic fungi and the live vaccine strains. The spectra of T. verrucosum were most similar to the spectra of T. benhamiae, an emerging zoophilic dermatophyte. In summary, MALDI-TOF MS is a powerful and reliable tool to identify T. verrucosum.
Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data
NASA Astrophysics Data System (ADS)
Ting, Ying S.; Shaffer, Scott A.; Jones, Jace W.; Ng, Wailap V.; Ernst, Robert K.; Goodlett, David R.
2011-05-01
Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS n ) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS n spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS n spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS n data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS n spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS n spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.
Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M
2009-05-02
Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.
Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno
2014-01-01
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012
ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging
Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.
2011-01-01
In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941
COMPARATIVE EVALUATION OF GC/MS (GAS CHROMATOGRAPHY/MASS SPECTROMETRY) DATA ANALYSIS PROCESSING
Mass spectra obtained by fused silica capillary gas chromatography/mass spectrometry/data system (GC/MS/DS) analysis of mixtures of organic chemicals adsorbed on Tenax GC cartridges was subjected to manual and automated interpretative techniques. Synthetic mixtures (85 chemicals ...
Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry
NASA Technical Reports Server (NTRS)
Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.
1991-01-01
Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.
Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*
Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.
2011-01-01
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
Ahmadi, Shiva; Winter, Dominic
2018-06-05
Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.
Mass Spectral Library with Search Program, Data Version: NIST v17
National Institute of Standards and Technology Data Gateway
SRD 1A NIST/EPA/NIH Mass Spectral Library with Search Program, Data Version: NIST v17 (PC database for purchase) Available with full-featured NIST MS Search Program for Windows integrated tools, the NIST '98 is a fully evaluated collection of electron-ionization mass spectra. (147,198 Compounds with Spectra; 147,194 Chemical Structures; 174,948 Spectra )
Chamrad, Daniel C; Körting, Gerhard; Schäfer, Heike; Stephan, Christian; Thiele, Herbert; Apweiler, Rolf; Meyer, Helmut E; Marcus, Katrin; Blüggel, Martin
2006-09-01
A novel software tool named PTM-Explorer has been applied to LC-MS/MS datasets acquired within the Human Proteome Organisation (HUPO) Brain Proteome Project (BPP). PTM-Explorer enables automatic identification of peptide MS/MS spectra that were not explained in typical sequence database searches. The main focus was detection of PTMs, but PTM-Explorer detects also unspecific peptide cleavage, mass measurement errors, experimental modifications, amino acid substitutions, transpeptidation products and unknown mass shifts. To avoid a combinatorial problem the search is restricted to a set of selected protein sequences, which stem from previous protein identifications using a common sequence database search. Prior to application to the HUPO BPP data, PTM-Explorer was evaluated on excellently manually characterized and evaluated LC-MS/MS data sets from Alpha-A-Crystallin gel spots obtained from mouse eye lens. Besides various PTMs including phosphorylation, a wealth of experimental modifications and unspecific cleavage products were successfully detected, completing the primary structure information of the measured proteins. Our results indicate that a large amount of MS/MS spectra that currently remain unidentified in standard database searches contain valuable information that can only be elucidated using suitable software tools.
A new scoring function for top-down spectral deconvolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Qiang; Wu, Si; Liu, Xiaowen
2014-12-18
Background: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showedmore » that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization.« less
Tandem mass spectrometry data quality assessment by self-convolution.
Choo, Keng Wah; Tham, Wai Mun
2007-09-20
Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well and could potentially be used as a pre-processing for all mass spectrometry based protein identification tools.
NASA Astrophysics Data System (ADS)
West, Raymond E.; Findsen, Eric W.; Isailovic, Dragan
2013-10-01
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system ( Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L.; Dianes, José A.; del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W.; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-01-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra. PMID:27493588
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L; Dianes, José A; Del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-08-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.
Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi
2017-01-01
Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.
Advances in structure elucidation of small molecules using mass spectrometry
Fiehn, Oliver
2010-01-01
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855
Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.
2014-01-01
Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859
MixGF: spectral probabilities for mixture spectra from more than one peptide.
Wang, Jian; Bourne, Philip E; Bandeira, Nuno
2014-12-01
In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30-390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide*
Wang, Jian; Bourne, Philip E.; Bandeira, Nuno
2014-01-01
In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. PMID:25225354
USDA-ARS?s Scientific Manuscript database
Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
2016-02-11
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Clemens, Stephan; Scheel, Dierk
2009-04-01
Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI-QTOF-MS and direct infusion ESI-FTICR-MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision-induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl- and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed-phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI-MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright (c) 2009 John Wiley & Sons, Ltd.
Zhai, Hongyan; Zhang, Xiangru
2009-05-01
With the presence of bromide in source waters, numerous brominated disinfection byproducts (DBPs) are formed during chlorination. Many of them are polar/highly polar DBPs and thus hard to be detected by gas chromatography mass spectrometry. Electrospray ionization triple quadrupole mass spectrometry (ESI-MS/MS) is reported to be an effective method in finding polar brominated DBPs by setting precursor ion scans of m/z 79 and 81. But as a soft ionization technique, ESI could form adducts of common DBPs, which may complicate ESI-MS/MS spectra and hinder the efforts in finding new brominated DBPs. In this paper, a new method was developed for differentiating adducts of common DBPs from higher molecular weight DBPs. This method was based on the ESI-MS/MS precursor ion scans of the fragments that correspond to the molecular ions of common DBPs. Adducts of common DBPs were selectively detected in the ESI-MS/MS spectra of a simulated drinking water sample. Moreover, the structures of several new brominated DBPs in the sample were tentatively proposed.
Broecker, Sebastian; Herre, Sieglinde; Wüst, Bernhard; Zweigenbaum, Jerry; Pragst, Fritz
2011-04-01
A library of collision-induced dissociation (CID) accurate mass spectra has been developed for efficient use of liquid chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) as a tool in systematic toxicological analysis. The mass spectra (Δm < 3 ppm) of more than 2,500 illegal and therapeutic drugs, pesticides, alkaloids, other toxic chemicals and metabolites were measured, by use of an Agilent 6530 instrument, by flow-injection of 1 ng of the pure substances in aqueous ammonium formate-formic acid-methanol, with positive and negative electrospray-ionization (ESI), selection of the protonated or deprotonated molecules [M+H](+) or [M-H](-) by the quadrupole, and collision induced dissociation (CID) with nitrogen as collision gas at CID energies of 10, 20, and 40 eV. The fragment mass spectra were controlled for structural plausibility, corrected by recalculation to the theoretical fragment masses and added to a database of accurate mass data and molecular formulas of more than 7,500 toxicologically relevant substances to form the "database and library of toxic compounds". For practical evaluation, blood and urine samples were spiked with a mixture of 33 drugs at seven concentrations between 0.5 and 500 ng mL(-1), prepared by dichloromethane extraction or protein precipitation, and analyzed by LC-QTOF-MS in data-dependent acquisition mode. Unambiguous identification by library search was possible for typical basic drugs down to 0.5-2 ng mL(-1) and for benzodiazepines down to 2-20 ng mL(-1). The efficiency of the method was also demonstrated by re-analysis of venous blood samples from 50 death cases and comparison with previous results. In conclusion, LC-QTOF-MS in data-dependent acquisition mode combined with an accurate mass database and CID spectra library seemed to be one of the most efficient tools for systematic toxicological analysis.
NASA Astrophysics Data System (ADS)
Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.
2000-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.
Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael
2005-01-01
Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.
Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas
2015-01-01
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045
Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...
2016-07-11
The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas
The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less
Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie
2013-03-01
This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.
Reproducing impact ionization mass spectra of E and F ring ice grains at different impact speeds
NASA Astrophysics Data System (ADS)
Klenner, F.; Reviol, R.; Postberg, F.
2017-09-01
As impact speeds of E and F ring ice grains impinging onto the target of impact ionization mass spectrometers in space can vary greatly, the resulting cationic or anionic mass spectra can have very different appearances. The mass spectra can be accurately reproduced with an analog experimental setup IR-FL-MALDI-ToF-MS (Infrared Free Liquid Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry). We compare mass spectra of E and F ring ice grains taken by the Cosmic Dust Analyzer (CDA) onboard Cassini recorded at different impact speeds with our analog spectra and prove the capability of the analog experiment.
Oberacher, Herbert; Whitley, Graeme; Berger, Bernd
2013-04-01
Tandem mass spectral libraries are versatile tools for small molecular identification finding application in forensic science, doping control, drug monitoring, food and environmental analysis, as well as metabolomics. Two important libraries are the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS) and the collection of MS/MS spectra part of the 2011 edition of the 'NIST/NIH/EPA Mass Spectral Library' (NIST 11 MSMS). Herein, the sensitivity and robustness of the Wiley Registry MSMS were evaluated using spectra extracted from the NIST 11 MSMS library. The sample set was found to be heterogeneous in terms of mass spectral resolution, type of CID, as well as applied collision energies. Nevertheless, sensitive compound identification with a true positive identification rate ≥95% was possible using either the MSforID Search program or the NIST MS Search program 2.0g for matching. To rate the performance of the Wiley Registry MSMS, cross-validation experiments were repeated using subcollections of NIST 11 MSMS as reference library and spectra extracted from the Wiley Registry MSMS as positive controls. Unexpectedly, with both search algorithms tested, correct results were obtained in less than 88% of cases. We examined possible causes for the results of the cross validation study. The large number of precursor ions represented by a single tandem mass spectrum only was identified as the basic cause for the comparably lower sensitivity of the NIST library. Copyright © 2013 John Wiley & Sons, Ltd.
Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav
2013-01-01
Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http://edwardslab.bmcb.georgetown.edu/GPS. PMID:23829323
NASA Astrophysics Data System (ADS)
Rimetz-Planchon, J.; Dhooghe, F.; Schoon, N.; Vanhaecke, F.; Amelynck, C.
2011-04-01
A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z162, m/z 137 and m/z 131 for α-cedrene, δ-neoclovene, isolongifolene and α-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT+ seems to open a way for selective quantification of SQTs in mixtures.
pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.
Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei
2017-12-05
In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.
A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...
Kanawati, Basem; Bader, Theresa M; Wanczek, Karl-Peter; Li, Yan; Schmitt-Kopplin, Philippe
2017-10-15
Peak picking algorithms in mass spectrometry face the challenge of picking the correct signals from a mass spectrum. In some cases signal wiggles (side lobes) are also chosen in the produced mass list as if they were real signals. Constraints which are defined in such algorithms do not always guarantee wiggle-free accurate mass list generation out of raw mass spectra. This problem intensifies with acquisitions, which are accompanied by longer transients. Thus, the problem represents a contemporary issue, which propagates with modern high-memory digitizers and exists in both MS and MS/MS spectra. A solariX FTMS mass spectrometer with an Infinity ICR cell (Bruker Daltonics, Bremen, Germany) coupled to a 12 Tesla magnet (Magnex, UK) was used for the experimental study. Time-domain transients of several different data point lengths 512k, 1M, 2M, 4M, 8M were obtained and were Fourier-transformed to obtain frequency spectra which show the effect of the transient truncation on sinc wiggle developments in FT-ICR-MS. MATLAB simulations were also performed to investigate the origin of the Fourier transform (FT)-artifacts. A new filter has been developed to identify and remove FT-artifacts (sinc side lobes) from both frequency and mass spectra. The newly developed filter is based on distinguishing between the FWHM of the correct frequency/mass signals and the FWHM of their corresponding wiggles. The filter draws a reliable confidence limit of resolution range, within which a correct frequency/mass signal is identified. The filter is applicable over a wide mass range of metabolic interest (100-1200 amu). The origin of FT-artifacts due to time-domain transient truncations was thoroughly investigated both experimentally and by simulations in this study. A new solution for this problem with automatic recognition and elimination of these FT-artifacts (side lobes/wiggles) is provided, which is independent of any intensity thresholds, magnetic field strengths and time-domain transient lengths. Copyright © 2017 John Wiley & Sons, Ltd.
Pavlic, Marion; Libiseller, Kathrin; Oberacher, Herbert
2006-09-01
The potential of the combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for the identification of therapeutic and illicit drugs has been evaluated. Reserpine was used for standardizing experimental conditions and for characterization of the performance of the applied mass spectrometric system. Experiments revealed that because of the mass accuracy, the stability of calibration, and the reproducibility of fragmentation, the QqTOF mass spectrometer is an appropriate platform for establishment of a tandem-mass-spectral library. Three-hundred and nineteen substances were used as reference samples to build the spectral library. For each reference compound, product-ion spectra were acquired at ten different collision-energy values between 5 eV and 50 eV. For identification of unknown compounds, a library search algorithm was developed. The closeness of matching between a measured product-ion spectrum and a spectrum stored in the library was characterized by a value called "match probability", which took into account the number of matched fragment ions, the number of fragment ions observed in the two spectra, and the sum of the intensity differences calculated for matching fragments. A large value for the match probability indicated a close match between the measured and the reference spectrum. A unique feature of the library search algorithm-an implemented spectral purification option-enables characterization of multi-contributor fragment-ion spectra. With the aid of this software feature, substances comprising only 1.0% of the total amount of binary mixtures were unequivocally assigned, in addition to the isobaric main contributors. The spectral library was successfully applied to the characterization of 39 forensic casework samples.
Prokai, Laszlo; Stevens, Stanley M.
2016-01-01
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186
Prokai, Laszlo; Stevens, Stanley M
2016-01-16
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.
Shu, Lin-Jie; Yang, Yu-Liang
2017-11-14
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry
2017-01-01
A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples. PMID:28632988
Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.
Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke
2017-07-18
A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.
Storage and retrieval of mass spectral information
NASA Technical Reports Server (NTRS)
Hohn, M. E.; Humberston, M. J.; Eglinton, G.
1977-01-01
Computer handling of mass spectra serves two main purposes: the interpretation of the occasional, problematic mass spectrum, and the identification of the large number of spectra generated in the gas-chromatographic-mass spectrometric (GC-MS) analysis of complex natural and synthetic mixtures. Methods available fall into the three categories of library search, artificial intelligence, and learning machine. Optional procedures for coding, abbreviating and filtering a library of spectra minimize time and storage requirements. Newer techniques make increasing use of probability and information theory in accessing files of mass spectral information.
Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs.
Yan, Yan; Zhang, Kaizhong
2016-12-23
De novo peptide sequencing via tandem mass spectrometry (MS/MS) has been developed rapidly in recent years. With the use of spectra pairs from the same peptide under different fragmentation modes, performance of de novo sequencing is greatly improved. Currently, with large amount of spectra sequenced everyday, spectra libraries containing tens of thousands of annotated experimental MS/MS spectra become available. These libraries provide information of the spectra properties, thus have the potential to be used with de novo sequencing to improve its performance. In this study, an improved de novo sequencing method assisted with spectra library is proposed. It uses spectra libraries as training datasets and introduces significant scores of the features used in our previous de novo sequencing method for HCD and ETD spectra pairs. Two pairs of HCD and ETD spectral datasets were used to test the performance of the proposed method and our previous method. The results show that this proposed method achieves better sequencing accuracy with higher ranked correct sequences and less computational time. This paper proposed an advanced de novo sequencing method for HCD and ETD spectra pair and used information from spectra libraries and significant improved previous similar methods.
Jayaprakasha, Guddadarangavvanahally K; Dandekar, Deepak V; Tichy, Shane E; Patil, Bhimanagouda S
2011-01-01
Limonoids are considered as potential cancer chemopreventive agents and are widely distributed in the Citrus genus as aglycones and glucosides. In the present study, reversed-phase HPLC coupled with CID mass spectra was developed for the simultaneous separation and identification of aglycones and glucosides of limonoids from citrus. Five aglycones such as limonin, deacetyl nomilin, ichangin, isolimonoic acid and nomilin were identified by positive ion CID MS/MS, whereas five glucosides, viz. limonin glucoside, isoobacunoic acid glucoside, obacunone glucoside, deacetyl nomilinic acid glucoside and nomilinic acid glucoside were analyzed by negative ion CID mass spectra. The developed method was successfully applied to complex citrus samples for the separation and identification of aglycones and glucosides. Citrus seeds were extracted with methanol and partially purified and analyzed by LC-CID mass spectra. The separation was achieved by C-18 column; eight limonoids were identified by comparing the retention times and mass spectral fragmentation. To the best of our knowledge, this is the first report on the identification of citrus limonoids using CID technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandeira, Nuno; Clauser, Karl R; Pevzner, Pavel A
2007-07-01
Despite significant advances in the identification of known proteins, the analysis of unknown proteins by MS/MS still remains a challenging open problem. Although Klaus Biemann recognized the potential of MS/MS for sequencing of unknown proteins in the 1980s, low throughput Edman degradation followed by cloning still remains the main method to sequence unknown proteins. The automated interpretation of MS/MS spectra has been limited by a focus on individual spectra and has not capitalized on the information contained in spectra of overlapping peptides. Indeed the powerful shotgun DNA sequencing strategies have not been extended to automated protein sequencing. We demonstrate, for the first time, the feasibility of automated shotgun protein sequencing of protein mixtures by utilizing MS/MS spectra of overlapping and possibly modified peptides generated via multiple proteases of different specificities. We validate this approach by generating highly accurate de novo reconstructions of multiple regions of various proteins in western diamondback rattlesnake venom. We further argue that shotgun protein sequencing has the potential to overcome the limitations of current protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics methodologies in studies of unknown proteins.
Chen, Wei-Yu; Chen, Yu-Chie
2007-11-01
The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous solutions containing high concentrations of salts using microwave-assisted extraction. The C18-presenting magnetite beads, capable of absorbing microwave irradiation, are used as affinity probes for oligonucleotides with the addition of triethylammonium acetate as the counterions. This new microwave-assisted extraction approach using magnetite beads as the trapping agents and as microwave-absorbers has been demonstrated to be very effective in the selective binding of oligonucleotides from aqueous solutions. The extraction of oligonucleotides from solutions onto the C18-presenting magnetite beads takes only 30 s to enrich oligonucleotides in sufficient quantities for MALDI MS analysis. After using this desalting approach, alkali cation adductions of oligonucleotides are dramatically reduced in the MALDI mass spectra. The presence of saturated NaCl (approximately 6 M) in the oligonucleotide sample is tolerated without degrading the mass spectra. The detection limit for d(A)6 is approximately 2.8 fmol.
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao
2017-06-01
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.
Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne
2013-10-31
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
Protein Identification Using Top-Down Spectra*
Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon; Tsai, Yihsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.
2012-01-01
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set. PMID:22027200
Ochiai, Nobuo; Mitsui, Kazuhisa; Sasamoto, Kikuo; Yoshimura, Yuta; David, Frank; Sandra, Pat
2014-09-05
A method is developed for identification of sulfur compounds in tobacco smoke extract. The method is based on large volume injection (LVI) of 10μL of tobacco smoke extract followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography (GC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electron ionization (EI) and positive chemical ionization (PCI), with parallel sulfur chemiluminescence detection (SCD). In order to identify each individual sulfur compound, sequential heart-cuts of 28 sulfur fractions from (1)D GC to (2)D GC were performed with the three MS detection modes (SCD/EI-TOF-MS, SCD/PCI-TOF-MS, and SCD/PCI-Q-TOF-MS). Thirty sulfur compounds were positively identified by MS library search, linear retention indices (LRI), molecular mass determination using PCI accurate mass spectra, formula calculation using EI and PCI accurate mass spectra, and structure elucidation using collision activated dissociation (CAD) of the protonated molecule. Additionally, 11 molecular formulas were obtained for unknown sulfur compounds. The determined values of the identified and unknown sulfur compounds were in the range of 10-740ngmg total particulate matter (TPM) (RSD: 1.2-12%, n=3). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Computational mass spectrometry for small molecules
2013-01-01
The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222
Nakamura, S; Takino, M; Daishima, S
2001-04-06
Gas chromatography-mass spectrometry (GC-MS) with a temperature-programmable pyrolyzer was used for the analysis of waterborne paints. Evolved gas analysis (EGA) profiles of the waterborne paints were obtained by this temperature-programmed pyrolysis directly coupled with MS via a deactivated metal capillary tube. The EGA profile suggested the optimal thermal desorption conditions for solvents and additives and the subsequent optimal pyrolysis temperature for the remaining polymeric material. Polymers were identified from pyrograms with the assistance of a new polymer library. The solvents were identified from the electron ionization mass spectra with the corresponding chemical ionization mass spectra. The additive was identified as zinc pyrithione by comparison with authentic standard. Zinc pyrithione cannot be analyzed by GC-MS as it is. However, the thermal decomposition products of zinc pyrithione could be detected. The information on the decomposition temperature and products was useful for the identification of the original compound.
Jaeger, Carsten; Méret, Michaël; Schmitt, Clemens A; Lisec, Jan
2017-08-15
A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra. We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS 1 spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated. Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] + ions. A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available in the latest version of R package InterpretMSSpectrum. Copyright © 2017 John Wiley & Sons, Ltd.
Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G
2016-02-15
For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.
De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need in efficient algorithms for processing this kind of MS/MS data. Here we describe a method that allows to retrieve from a set of top-down MS/MS spectra long and accurate sequence fragments of the proteins contained in a sample.more » To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down datasets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab.« less
Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping
2016-05-01
A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products.
Chen, Jianzhong; Shiyanov, Pavel; Schlager, John J; Green, Kari B
2012-02-01
It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS(3) approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including c(i-1) ions (the i(th) residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS(3) spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS(3) approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs. © American Society for Mass Spectrometry, 2011
A novel algorithm for validating peptide identification from a shotgun proteomics search engine.
Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J
2013-03-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.
Oberacher, Herbert
2013-01-01
The “Critical Assessment of Small Molecule Identification” (CASMI) contest was aimed in testing strategies for small molecule identification that are currently available in the experimental and computational mass spectrometry community. We have applied tandem mass spectral library search to solve Category 2 of the CASMI Challenge 2012 (best identification for high resolution LC/MS data). More than 230,000 tandem mass spectra part of four well established libraries (MassBank, the collection of tandem mass spectra of the “NIST/NIH/EPA Mass Spectral Library 2012”, METLIN, and the ‘Wiley Registry of Tandem Mass Spectral Data, MSforID’) were searched. The sample spectra acquired in positive ion mode were processed. Seven out of 12 challenges did not produce putative positive matches, simply because reference spectra were not available for the compounds searched. This suggests that to some extent the limited coverage of chemical space with high-quality reference spectra is still a problem encountered in tandem mass spectral library search. Solutions were submitted for five challenges. Three compounds were correctly identified (kanamycin A, benzyldiphenylphosphine oxide, and 1-isopropyl-5-methyl-1H-indole-2,3-dione). In the absence of any reference spectrum, a false positive identification was obtained for 1-aminoanthraquinone by matching the corresponding sample spectrum to the structurally related compounds N-phenylphthalimide and 2-aminoanthraquinone. Another false positive result was submitted for 1H-benz[g]indole; for the 1H-benz[g]indole-specific sample spectra provided, carbazole was listed as the best matching compound. In this case, the quality of the available 1H-benz[g]indole-specific reference spectra was found to hamper unequivocal identification. PMID:24957994
Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu
2013-01-04
Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .
Analysis of sesterterpenoids from Aspergillus terreus using ESI-QTOF and ESI-IT.
Wu, Zhi-Jun; Fang, Dong-Mei; Han, Dan; Li, Guo-You; Chen, Xiao-Zhen; Qi, Hua-Yi; Zhang, Guo-Lin
2010-01-01
Biosynthesis of terretonin was studied due to the interesting skeleton of this series of sesterterpenoids. Very recently, López-Gresa reported two new sesterterpenoids (terretonins E and F) which are inhibitors of the mammalian mitochondrial respiratory chain. Mass spectrometry (MS), especially tandem mass spectrometry, has been one of the most important physicochemical methods for the identification of trace natural products due to it rapidity, sensitivity and low levels of sample consumption. The potential application prospect and unique skeleton prompted us to study structural characterisation using MS. To obtain sufficient information for rapid structural elucidation of this class of compounds using MS. The elemental composition of the product ions was confirmed by low-energy ESI-CID-QTOF-MS/MS analyses. The fragmentation pathways were postulated on the basis of ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) spectra. Common features and major differences between ESI-QTOF-MS/MS and IT-MS(n) spectra were compared. For ESI-QTOF-MS/MS/MS experiments, capillary exit voltage was raised to induce in-source dissociation. Ammonium acetate or acetic acid were added into solutions to improve the intensity of [M + H]+. The collision energy was optimised to achieve sufficient fragmentation. Some fragmentation pathways were unambiguously proposed by the variety of abundance of fragment ions at different collision energies even without MS(n) spectra. Fragmentation pathways of five representative sesterterpenoids were elucidated using ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) in both positive- and negative-ion mode. The key group of characterising fragmentation profiles was ring B, and these fragmentation patterns are helpful to identify different types of sestertepenoids. Complementary information obtained from fragmentation experiments of [M + H]+ (or [M + NH4]+ and [M-H](-) precursor ions is especially valuable for rapid identification of this kind of sesterterpenoid.
Neta, Pedatsur; Farahani, Mahnaz; Simón-Manso, Yamil; Liang, Yuxue; Yang, Xiaoyu; Stein, Stephen E
2014-12-15
Certain product ions in electrospray ionization tandem mass spectrometry are found to react with residual water in the collision cell. This reaction often leads to the formation of ions that cannot be formed directly from the precursor ions, and this complicates the mass spectra and may distort MRM (multiple reaction monitoring) results. Various drugs, pesticides, metabolites, and other compounds were dissolved in acetonitrile/water/formic acid and studied by electrospray ionization mass spectrometry to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, IT, and Orbitrap HCD). Certain product ions were found to react with residual water in collision cells. The reaction was confirmed by MS(n) studies and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Examples of product ions reacting with water include phenyl and certain substituted phenyl cations, benzoyl-type cations formed from protonated folic acid and similar compounds by loss of the glutamate moiety, product ions formed from protonated cyclic siloxanes by loss of methane, product ions formed from organic phosphates, and certain negative ions. The reactions of product ions with residual water varied greatly in their rate constant and in the extent of reaction (due to isomerization). Various types of product ions react with residual water in mass spectrometer collision cells. As a result, tandem mass spectra may contain unexplained peaks and MRM results may be distorted by the occurrence of such reactions. These often unavoidable reactions must be taken into account when annotating peaks in tandem mass spectra and when interpreting MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Herrera-Lopez, S; Hernando, M D; García-Calvo, E; Fernández-Alba, A R; Ulaszewska, M M
2014-09-01
Simultaneous high-resolution full-scan and tandem mass spectrometry (MS/MS) analysis using time of flight mass spectrometry brings an answer for increasing demand of retrospective and non-targeted data analysis. Such analysis combined with spectral library searching is a promising tool for targeted and untargeted screening of small molecules. Despite considerable extension of the panel of compounds of tandem mass spectral libraries, the heterogeneity of spectral data poses a major challenge against the effective usage of spectral libraries. Performance evaluation of available LC-MS/MS libraries will significantly increase credibility in the search results. The present work was aimed to evaluate fluctuation of MS/MS pattern, in the peak intensities distribution together with mass accuracy measurements, and in consequence, performance compliant with ion ratio and mass error criteria as principles in identification processes for targeted and untargeted contaminants at trace levels. Matrix effect and ultra-trace levels of concentration (from 50 ng l(-1) to 1000 ng l(-1) were evaluated as potential source of inaccuracy in the performance of spectral matching. Matrix-matched samples and real samples were screened for proof of applicability. By manual review of data and application of ion ratio and ppm error criteria, false negatives were obtained; this number diminished when in-house library was used, while with on-line MS/MS databases 100% of positive samples were found. In our experience, intensity of peaks across spectra was highly correlated to the concentration effect and matrix complexity. In turn, analysis of spectra acquired at trace concentrations and in different matrices results in better performance in providing correct and reliable identification. Copyright © 2014 John Wiley & Sons, Ltd.
Krokhin, Oleg; Ens, Werner; Standing, Kenneth G; Wilkins, John; Perreault, Hélène
2004-01-01
The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable glycosylation site. Peptide-related product ions could be used in database search procedures and allowed the identification of the glycoproteins. Copyright 2004 John Wiley & Sons, Ltd.
Goodacre, R; Hiom, S J; Cheeseman, S L; Murdoch, D; Weightman, A J; Wade, W G
1996-02-01
Curie-point pyrolysis mass spectra were obtained from 29 oral asaccharolytic Eubacterium strains and 6 abscess isolates previously identified as Peptostreptococcus heliotrinreducens. Pyrolysis mass spectrometry (PyMS) with cluster analysis was able to clarify the taxonomic position of this group of organisms. Artificial neural networks (ANNS) were then trained by supervised learning (with the back-propagation algorithm) to recognize the strains from their pyrolysis mass spectra; all Eubacterium strains were correctly identified, and the abscess isolates were identified as un-named Eubacterium taxon C2 and were distinct from the type strain of P. heliotrinreducens. These results demonstrate that the combination of PyMS and ANNs provides a rapid and accurate identification technique.
Bingol, Kerem; Brüschweiler, Rafael
2015-06-05
A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases.
A simple method to identify ether lipids in spermatozoa samples by MALDI-TOF mass spectrometry.
Nimptsch, Ariane; Fuchs, Beate; Süß, Rosmarie; Zschörnig, Kristin; Jakop, Ulrike; Göritz, Frank; Schiller, Jürgen; Müller, Karin
2013-08-01
Plasmalogens (alkenylacyl glycerophospholipids) are important lipid constituents of many tissues and cells (e.g., selected spermatozoa). Since the molecular weights of plasmalogens overlap with that of diacyl- or alkyl acyl lipids, sophisticated mass spectrometry (MS; including MS/MS) analysis is normally used for the unequivocal identification of plasmalogens. We will show here that a simple matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (without MS/MS capability) in combination with acidic hydrolysis and subsequent derivatization with 2,4-dinitrophenylhydrazine (DNPH) and/or digestion with phospholipase A2 (PLA2) is sufficient to determine the contributions of ether lipids in spermatozoa extracts. As neither diacyl nor alkylacyl lipids are sensitive to acids and do not react with DNPH, the comparison of the mass spectra before and after treatment with acids and/or DNPH addition readily provides unequivocal information about the plasmalogen content. Additionally, the released aldehydes are readily converted into the 2,4-dinitrophenylhydrazones and can be easily identified in the corresponding negative ion mass spectra. Finally, PLA2 digestion is very useful in confirming the presence of plasmalogens. The suggested method was validated by analyzing roe deer, bovine, boar, and domestic cat spermatozoa extracts and comparing the results with isolated phospholipids.
Direct analysis of herbal powders by pipette-tip electrospray ionization mass spectrometry.
Wang, Haixing; So, Pui-Kin; Yao, Zhong-Ping
2014-01-27
Conventional electrospray ionization mass spectrometry (ESI-MS) is widely used for analysis of solution samples. The development of solid-substrate ESI-MS allows direct ionization analysis of bulky solid samples. In this study, we developed pipette-tip ESI-MS, a technique that combines pipette tips with syringe and syringe pump, for direct analysis of herbal powders, another common form of samples. We demonstrated that various herbal powder samples, including herbal medicines and food samples, could be readily online extracted and analyzed using this technique. Various powder samples, such as Rhizoma coptidis, lotus plumule, great burdock achene, black pepper, Panax ginseng, roasted coffee beans, Fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae, were analyzed using pipette-tip ESI-MS and quality mass spectra with stable and durable signals could be obtained. Both positive and negative ion modes were attempted and various compounds including amino acids, oligosaccharides, glycosides, alkaloids, organic acids, ginosensides, flavonoids and lignans could be detected. Principal component analysis (PCA) based on the acquired mass spectra allowed rapid differentiation of closely related herbal species. Copyright © 2013 Elsevier B.V. All rights reserved.
Mondello, Luigi; Casillia, Alessandro; Tranchida, Peter Quinto; Dugo, Giovanni; Dugo, Paola
2005-03-04
Single column gas chromatography (GC) in combination with a flame ionization detector (FID) and/or a mass spectrometer is routinely employed in the determination of perfume profiles. The latter are to be considered medium to highly complex matrices and, as such, can only be partially separated even on long capillaries. Inevitably, several monodimensional peaks are the result of two or more overlapping components, often hindering reliable identification and quantitation. The present investigation is based on the use of a comprehensive GC (GC x GC) method, in vacuum outlet conditions, for the near to complete resolution of a complex perfume sample. A rapid scanning quadrupole mass spectrometry (qMS) system, employed for the assignment of GC x GC peaks, supplied high quality mass spectra. The validity of the three-dimensional (3D) GC x GC-qMS application was measured and compared to that of GC-qMS analysis on the same matrix. Peak identification, in all applications, was achieved through MS spectra library matching and the interactive use of linear retention indices (LRI).
Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana
2018-05-01
Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.
Kessler, Nikolas; Walter, Frederik; Persicke, Marcus; Albaum, Stefan P; Kalinowski, Jörn; Goesmann, Alexander; Niehaus, Karsten; Nattkemper, Tim W
2014-01-01
Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-)glutamyl dipeptides in the same strains. ALLocator is available online at: https://allocator.cebitec.uni-bielefeld.de. A login is required, but freely available.
Analysis of writing inks on paper using direct analysis in real time mass spectrometry.
Jones, Roger W; McClelland, John F
2013-09-10
Ink analysis is central to questioned document examination. We applied direct analysis in real time mass spectrometry (DART MS) to ballpoint, gel, and fluid writing ink analysis. DART MS acquires the mass spectrum of an ink while it is still on a document without altering the appearance of the document. Spectra were acquired from ink on a variety of papers, and the spectrum of the blank paper could be subtracted out to produce a cleanly isolated ink spectrum in most cases. Only certain heavy or heavily processed papers interfered. The time since an ink is written on paper has a large effect on its spectrum. DART spectra change radically during the first few months after an ink is written as the more volatile components evaporate, but the spectra stabilize after that. A library-search study involving 166 well-aged inks assessed the ability to identify inks from their DART spectra. The aggregate success rate was 92%. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang
2009-01-01
We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.
Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.
Kind, Tobias; Fiehn, Oliver
2017-09-01
Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.
De novo peptide sequencing using CID and HCD spectra pairs.
Yan, Yan; Kusalik, Anthony J; Wu, Fang-Xiang
2016-10-01
In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision-induced dissociation (CID) higher energy collisional dissociation (HCD), electron-capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full-length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Results of the First Mars Organic Molecule Analyzer (MOMA) GC-MS Coupling
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Danell, Ryan; Grand, Noel; Van Amerom, Friso; Glavin, Daniel; Freissinet, Caroline; Humeau, Olivier; Coll, Patrice; Arevalo, Ricardo; Stalport, Fabien; Brinckerhoff, William; Steininger, Harald; Goesmann, Fred; Mahaffy, Paul; Raulin, Francois
2014-11-01
The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the char-acterization of the organic content. The core of the MOMA instrument is a gas chromatograph coupled with a mass spectrometer (GC-MS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples will be crushed and deposited into sample cups seated in a rotating carousel. Soil samples will be analyzed either by UV laser desorption / ionization (LDI) or pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS).The French GC brassboard was coupled to the US ion trap mass spectrometer brassboard in a flight-like con-figuration for several coupling campains. The MOMA GC setup is based on the SAM heritage design with a He reservoir and 4 separate analytical modules including traps, columns and Thermal Conductivity Detectors. Solid samples are sealed and heated in this setup using a manual tapping station, designed and built at MPS in Germany, for GC-MS analysis. The gaseous species eluting from the GC are then ionized by an electron impact ionization source in the MS chamber and analyzed by the linear ion trap mass spectrometer. Volatile and non-volatile compounds were injected in the MOMA instrumental suite. Both of these compounds classes were detected by the TCD and by the MS. MS signal (total ion current) and single mass spectra by comparison with the NIST library, gave us an unambiguous confirmation of these identifications. The mass spectra arise from an average of 10 mass spectra averaged around a given time point in the total ion chromatogram.Based on commercial instrument, the MOMA requirement for sensitivity in the GC-MS mode for organic molecules is 1 pmol. In this test, sensitivity was determined for the GC TCD and MS response to a dilution series containing isopropanol, hexane and benzene deposited onto silica beads in the MOMA oven. Generally, the MS was found to be 5 to10 times more sensitive than the GC TCD for hexane and benzene respectively.
Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret
2007-11-01
LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.
Characterization of paliperidone photodegradation products by LC-Q-TOF multistage mass spectrometry.
Skibiński, Robert; Komsta, Łukasz; Inglot, Tadeusz
2016-06-01
The photodegradation of paliperidone in aqueous and methanol media under UVA and UVC irradiation was investigated. The identification and structural elucidation of its photodegradation products were performed by the use of the reversed-phase liquid chromatography coupled with accurate mass hybrid Q-TOF mass spectrometry and an atmospheric pressure chemical ionization source. Five degradation products were found and their masses were obtained with high accuracy (1.10-5.26 ppm) based on the TOF (MS) spectra. For the structural elucidation of unknown degradation products MS/MS spectra were also registered. However, for the identification of the main photodegradation product (3-{2-[4-(6-fluoro-1,3-benzoxazol-2-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one) in-source fragmentation connected with collision-induced dissociation was used and MS(3) spectra were finally performed. The photodegradation of paliperidone yields the first-order kinetics in all tested conditions. The aqueous medium was in this case much less stable than the methanol solvent regardless of the irradiation source. Additionally, the toxicity of the analyzed photodegradation products was predicted by the use of ECOSAR software and comparable values of LC50 for the main degradants and the parent compound were obtained. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2014-08-01
Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to understand better the chemical nature of atypical factors from high-resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of the extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2014-02-01
Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
da Cunha, Keith C; Riat, Arnaud; Normand, Anne-Cecile; Bosshard, Philipp P; de Almeida, Margarete T G; Piarroux, Renaud; Schrenzel, Jacques; Fontao, Lionel
2018-05-15
Dermatophytes cause human infections limited to keratinized tissues. We showed that the direct transfer method allows reliable identification of non-dermatophytes mould and yeast by MALDI-TOF/MS. We aimed at assessing whether the direct transfer method can be used for dermatophytes and whether an own mass spectra library would be superior to the Bruker library. We used the Bruker Biotyper to build a dermatophyte mass spectra library and assessed its performance by 1/ testing a panel of mass spectrum produced with strains genotypically identified and, 2/ comparing MALDI-TOF/MS identification to morphology-based methods. Identification of dermatophytes using the Bruker library is poor. Our library provided 97% concordance between ITS sequencing and MALDI-TOF/MS analysis with a panel of 1104 spectra corresponding to 276 strains. Direct transfer method using unpolished target plates allowed proper identification of 85% of dermatophytes clinical isolates most of which were common dermatophytes. A homemade dermatophyte MSP library is a prerequisite for accurate identification of species absent in the Bruker library but it also improves identification of species already listed in the database. The direct deposit method can be used to identify the most commonly found dermatophytes such as T. rubrum and T. interdigitale/mentagrophytes by MALDI-TOF/MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine
2006-12-15
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
Shotgun Protein Sequencing with Meta-contig Assembly*
Guthals, Adrian; Clauser, Karl R.; Bandeira, Nuno
2012-01-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings. PMID:22798278
Shotgun protein sequencing with meta-contig assembly.
Guthals, Adrian; Clauser, Karl R; Bandeira, Nuno
2012-10-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings.
Mantini, Dante; Petrucci, Francesca; Pieragostino, Damiana; Del Boccio, Piero; Sacchetta, Paolo; Candiano, Giovanni; Ghiggeri, Gian Marco; Lugaresi, Alessandra; Federici, Giorgio; Di Ilio, Carmine; Urbani, Andrea
2010-01-03
Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf. (c) 2009 Elsevier B.V. All rights reserved.
Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.
Bonatto, Cínthia C; Silva, Luciano P
2015-06-01
Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.
Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V
2013-01-01
Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.
Harvey, David J.; Crispin, Max; Bonomelli, Camille; Scrivens, Jim H.
2016-01-01
Graphical abstract Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This paper describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-Glycans were released enzymatically from within SDS-PAGE gels, from the representative glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer. Clean profiles of singly, doubly and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up showing that the extra dimension provided by ion mobility was invaluable for studies of this type. PMID:26204966
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry
Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999
Todua, Nino G; Mikaia, Anzor I
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.
Todua, Nino G.; Mikaia, Anzor I.
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187
Karger, Axel; Stock, Rüdiger; Ziller, Mario; Elschner, Mandy C; Bettin, Barbara; Melzer, Falk; Maier, Thomas; Kostrzewa, Markus; Scholz, Holger C; Neubauer, Heinrich; Tomaso, Herbert
2012-10-10
Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.
2012-01-01
Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed. PMID:23046611
Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro
2014-01-01
Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.
Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes
NASA Astrophysics Data System (ADS)
Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna
2010-02-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.
Naumoska, Katerina; Vovk, Irena
2015-02-13
Three TLC methods were used for an initial screening of some common plant triterpenoids and phytosterols in cuticular wax extracts of different vegetables (zucchini, eggplant, tomato, red pepper, mangold, spinach, lettuce, white-colored radicchio di Castelfranco, raddichio Leonardo, white cabbage, red cabbage and savoy cabbage). The preliminary experiments showed that the studied vegetables are potential sources of triterpenoids and phytosterols. To identify the compounds present in the extracts with high certainty, the first TLC-MS(2) method was developed for the analysis of eight triterpenoids (lupeol, α-amyrin, β-amyrin, cycloartenol, cycloartenol acetate, lupeol acetate, lupenone and friedelin) and two phytosterols (β-sitosterol and stigmasterol). This method takes the advantages of: (1) a satisfactory separation of the target compounds; (2) their differentiation according to the band colors; and (3) the potential of their discrimination by the acquired first-order mass (MS) and product ion (MS(2)) spectra. Since the closely eluting compounds have complex and similar MS(2) spectra, distinguishing between them was possible by the proposed characteristic ions. Using a custom-built mass spectral library, the head to tail MS(2) spectra comparison of sample test solution zones and standard aided the compound identification. In addition to the molecular mass information, the developed atmospheric pressure chemical ionization method (APCI) in positive ion mode provided structural information, regarding the presence of functional group in the molecule. This approach resulted in many positively assigned compounds in the investigated vegetable waxes, from which more than a half are reported for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Edmands, William M B; Petrick, Lauren; Barupal, Dinesh K; Scalbert, Augustin; Wilson, Mark J; Wickliffe, Jeffrey K; Rappaport, Stephen M
2017-04-04
A long-standing challenge of untargeted metabolomic profiling by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) is efficient transition from unknown mass spectral features to confident metabolite annotations. The compMS 2 Miner (Comprehensive MS 2 Miner) package was developed in the R language to facilitate rapid, comprehensive feature annotation using a peak-picker-output and MS 2 data files as inputs. The number of MS 2 spectra that can be collected during a metabolomic profiling experiment far outweigh the amount of time required for pain-staking manual interpretation; therefore, a degree of software workflow autonomy is required for broad-scale metabolite annotation. CompMS 2 Miner integrates many useful tools in a single workflow for metabolite annotation and also provides a means to overview the MS 2 data with a Web application GUI compMS 2 Explorer (Comprehensive MS 2 Explorer) that also facilitates data-sharing and transparency. The automatable compMS 2 Miner workflow consists of the following steps: (i) matching unknown MS 1 features to precursor MS 2 scans, (ii) filtration of spectral noise (dynamic noise filter), (iii) generation of composite mass spectra by multiple similar spectrum signal summation and redundant/contaminant spectra removal, (iv) interpretation of possible fragment ion substructure using an internal database, (v) annotation of unknowns with chemical and spectral databases with prediction of mammalian biotransformation metabolites, wrapper functions for in silico fragmentation software, nearest neighbor chemical similarity scoring, random forest based retention time prediction, text-mining based false positive removal/true positive ranking, chemical taxonomic prediction and differential evolution based global annotation score optimization, and (vi) network graph visualizations, data curation, and sharing are made possible via the compMS 2 Explorer application. Metabolite identities and comments can also be recorded using an interactive table within compMS 2 Explorer. The utility of the package is illustrated with a data set of blood serum samples from 7 diet induced obese (DIO) and 7 nonobese (NO) C57BL/6J mice, which were also treated with an antibiotic (streptomycin) to knockdown the gut microbiota. The results of fully autonomous and objective usage of compMS 2 Miner are presented here. All automatically annotated spectra output by the workflow are provided in the Supporting Information and can alternatively be explored as publically available compMS 2 Explorer applications for both positive and negative modes ( https://wmbedmands.shinyapps.io/compMS2_mouseSera_POS and https://wmbedmands.shinyapps.io/compMS2_mouseSera_NEG ). The workflow provided rapid annotation of a diversity of endogenous and gut microbially derived metabolites affected by both diet and antibiotic treatment, which conformed to previously published reports. Composite spectra (n = 173) were autonomously matched to entries of the Massbank of North America (MoNA) spectral repository. These experimental and virtual (lipidBlast) spectra corresponded to 29 common endogenous compound classes (e.g., 51 lysophosphatidylcholines spectra) and were then used to calculate the ranking capability of 7 individual scoring metrics. It was found that an average of the 7 individual scoring metrics provided the most effective weighted average ranking ability of 3 for the MoNA matched spectra in spite of potential risk of false positive annotations emerging from automation. Minor structural differences such as relative carbon-carbon double bond positions were found in several cases to affect the correct rank of the MoNA annotated metabolite. The latest release and an example workflow is available in the package vignette ( https://github.com/WMBEdmands/compMS2Miner ) and a version of the published application is available on the shinyapps.io site ( https://wmbedmands.shinyapps.io/compMS2Example ).
NASA Astrophysics Data System (ADS)
Larson, Evan A.; Hutchinson, Carolyn P.; Lee, Young Jin
2018-06-01
Dopant-assisted atmospheric pressure chemical ionization (dAPCI) is a soft ionization method rarely used for gas chromatography-mass spectrometry (GC-MS). The current study combines GC-dAPCI with tandem mass spectrometry (MS/MS) for analysis of a complex mixture such as lignin pyrolysis analysis. To identify the structures of volatile lignin pyrolysis products, collision-induced dissociation (CID) MS/MS using a quadrupole time-of-flight mass spectrometer (QTOFMS) and pseudo MS/MS through in-source collision-induced dissociation (ISCID) using a single stage TOFMS are utilized. To overcome the lack of MS/MS database, Compound Structure Identification (CSI):FingerID is used to interpret CID spectra and predict best matched structures from PubChem library. With this approach, a total of 59 compounds were positively identified in comparison to only 22 in NIST database search of GC-EI-MS dataset. This study demonstrates the effectiveness of GC-dAPCI-MS/MS to overcome the limitations of traditional GC-EI-MS analysis when EI-MS database is not sufficient. [Figure not available: see fulltext.
Nakabayashi, Ryo; Sawada, Yuji; Yamada, Yutaka; Suzuki, Makoto; Hirai, Masami Yokota; Sakurai, Tetsuya; Saito, Kazuki
2013-02-05
Phytochemicals containing heteroatoms (N, O, S, and halogens) often have biological activities that are beneficial to humans. Although targeted profiling methods for such phytochemicals are expected to contribute to rapid chemical assignments, thus making phytochemical genomics and crop breeding much more efficient, there are few profiling methods for the metabolites. Here, as an ultrahigh performance approach, we propose a practical profiling method for S-containing metabolites (S-omics) using onions (Allium cepa) as a representative species and (12)C- and (13)C-based mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses by liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FTICR-MS). Use of the ultrahigh quality data from FTICR-MS enabled simplifying the previous methods to determine specific elemental compositions. MS analysis with a resolution of >250,000 full width at half-maximum and a mass accuracy of <1 ppm can distinguish S-containing monoisotopic ions from other ions on the basis of the natural abundance of (32)S and (34)S and the mass differences among the S isotopes. Comprehensive peak picking using the theoretical mass difference (1.99579 Da) between (32)S-containing monoisotopic ions and their (34)S-substituted counterparts led to the assignment of 67 S-containing monoisotopic ions from the (12)C-based MS spectra, which contained 4693 chromatographic ions. The unambiguous elemental composition of 22 ions was identified through comparative analysis of the (12)C- and (13)C-based MS spectra. Finally, of these, six ions were found to be derived from S-alk(en)ylcysteine sulfoxides and glutathione derivatives. This S-atom-driven approach afforded an efficient chemical assignment of S-containing metabolites, suggesting its potential application for screening not only S but also other heteroatom-containing metabolites in MS-based metabolomics.
Kelstrup, Christian D.; Frese, Christian; Heck, Albert J. R.; Olsen, Jesper V.; Nielsen, Michael L.
2014-01-01
Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids. PMID:24895383
Early Prediction of Lupus Nephritis Using Advanced Proteomics
2010-06-01
SELDI-TOF-MS. Additional proteomic profiling studies using NMR- and MS-based metabonomics have been completed, and LC/MS based protein profiling using...Flight mass spectrometry (SELDI-TOF-MS). Changes in proteomic profiles will be confirmed and enhanced using NMR- and MS-based metabonomics , by Dr...performed using NMR- and MS-based metabonomics at Miami University, in the laboratory of Dr. Michael Kennedy. Initial spectra and profiles obtained show
UniNovo: a universal tool for de novo peptide sequencing.
Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A
2013-08-15
Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.
Pedras, M Soledade C; Adio, Adewale M; Suchy, Mojmir; Okinyo, Denis P O; Zheng, Qing-An; Jha, Mukund; Sarwar, Mohammed G
2006-11-10
We have analyzed 23 crucifer phytoalexins (e.g. brassinin, dioxibrassinin, cyclobrassinin, brassicanals A and C) by HPLC with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) using both negative and positive ion modes. Positive ion mode ESI-MS appeared more sensitive than negative ion mode ESI-MS in detecting this group of compounds. A new HPLC separation method, new LC-MS and LC-MS(2) data and proposed fragmentation pathways, LC retention times, and UV spectra for selected compounds are reported.
Xia, Bing; Zhou, Yan; Liu, Xin; Xiao, Juan; Liu, Qing; Gu, Yucheng; Ding, Lisheng
2012-06-15
Carbohydrates are good source of drugs and play important roles in metabolism processes and cellular interactions in organisms. Distinguishing monosaccharide isomers in saccharide derivates is an important and elementary work in investigating saccharides. It is important to develop a fast, simple and direct method for this purpose, which is described in this study. Stock solutions of monosaccharide with a concentration of 400 μM and sodium chloride at a concentration of 10 μM were made in water/methanol (50:50, v/v). The samples were subjected to electrospray ionization ion-trap tandem mass spectrometry (ESI-MS) and the detected [2M + Na - H(2)O](+) ions were further investigated by tandem mass spectrometry (MS/MS), followed by applying principal component analysis (PCA) on the obtained MS/MS data sets. The MS/MS spectra of the [2M + Na - H(2)O](+) ions at m/z 365 for hexoses and m/z 305 for pentoses yielded unambiguous fragment patterns, while rhamnose can be directly identified by its ESI-MS [M + Na](+) ion at m/z 187. PCA showed clustering of MS/MS data of identical monosaccharide samples obtained from different experiments. By using this method, the monosaccharide in daucosterol hydrolysate was successfully identified. A new strategy was developed for differentiation of the monosaccharides using ESI-MS/MS and PCA. In MS/MS spectra, the [2M + Na - H(2)O](+) ions yielded unambiguous distinction. PCA of the archived MS/MS data sets was applied to demonstrate the spatial resolution of the studied samples. This method presented a simple and reliable way for distinguishing monosaccharides by ESI-MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.
Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers.
Berthias, Francis; Maatoug, Belkis; Glish, Gary L; Moussa, Fathi; Maitre, Philippe
2018-04-01
Due to their central role in biochemical processes, fast separation and identification of amino acids (AA) is of importance in many areas of the biomedical field including the diagnosis and monitoring of inborn errors of metabolism and biomarker discovery. Due to the large number of AA together with their isomers and isobars, common methods of AA analysis are tedious and time-consuming because they include a chromatographic separation step requiring pre- or post-column derivatization. Here, we propose a rapid method of separation and identification of sarcosine, a biomarker candidate of prostate cancer, from isomers using differential ion mobility spectrometry (DIMS) interfaced with a tandem mass spectrometer (MS/MS) instrument. Baseline separation of protonated sarcosine from α- and β-alanine isomers can be easily achieved. Identification of DIMS peak is performed using an isomer-specific activation mode where DIMS- and mass-selected ions are irradiated at selected wavenumbers allowing for the specific fragmentation via an infrared multiple photon dissociation (IRMPD) process. Two orthogonal methods to MS/MS are thus added, where the MS/MS(IRMPD) is nothing but an isomer-specific multiple reaction monitoring (MRM) method. The identification relies on the comparison of DIMS-MS/MS(IRMPD) chromatograms recorded at different wavenumbers. Based on the comparison of IR spectra of the three isomers, it is shown that specific depletion of the two protonated α- and β-alanine can be achieved, thus allowing for clear identification of the sarcosine peak. It is also demonstrated that DIMS-MS/MS(IRMPD) spectra in the carboxylic C=O stretching region allow for the resolution of overlapping DIMS peaks. Graphical Abstract ᅟ.
Würtinger, Philipp; Oberacher, Herbert
2012-01-01
MSforID represents a database of tandem mass spectral data obtained from (quasi-)molecular ions produced by atmospheric pressure ionization methods. At the current stage of development the library contains 12 122 spectra of 1208 small (bio-)organic molecules. The present work was aimed to evaluate the performance of the MSforID library in terms of accuracy and transferability with a collection of fragment ion mass spectra from various compounds acquired on multiple instruments. A literature survey was conducted to collect the set of sample spectra. A total number of 554 spectra covering 291 compounds were extracted from 109 publications. The majority of spectra originated from publications on applications of LC/MS/MS in drug monitoring, pharmacokinetics, environmental analysis, forensic analysis as well as food analysis. Almost all types of tandem mass spectrometric instruments distributed by the five most important instrument vendors were included in the study. The overall sensitivity of library search was found to be 96.4%, which clearly proves that the MSforID library can successfully handle data from a huge variety of mass spectrometric instruments to allow accurate compound identification. Only for spectra containing three or more fragment ions, however, the rate of classified matches (= matches with a relative average match probability (ramp) score > 40.0) was 95%. Ambiguous or unclassified results were mainly obtained for searches with single precursor-to-fragment ion transitions due to the insufficient specificity of such a low amount of structural information to unequivocally define a single compound. Copyright © 2011 John Wiley & Sons, Ltd.
The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization.
Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P; Mirokhin, Yuri A; Tchekhovskoi, Dmitrii V; Bukhari, Tallat H; Stein, Stephen E
2018-04-01
We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins.
The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization
Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P.; Mirokhin, Yuri A.; Tchekhovskoi, Dmitrii V.; Bukhari, Tallat H.; Stein, Stephen E.
2018-01-01
ABSTRACT We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins. PMID:29425077
Halohydrination of epoxy resins using sodium halides as cationizing agents in MALDI-MS and DIOS-MS.
Watanabe, Takehiro; Kawasaki, Hideya; Kimoto, Takashi; Arakawa, Ryuichi
2008-12-01
Halohydrination of epoxy resins using sodium halides as cationizing agents in matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon mass spectrometry (DIOS-MS) were investigated. Different mass spectra were observed when NaClO(4) and NaI were used as the cationizing agents at the highest concentration of 10.0 mM, which is much higher than that normally used in MALDI-MS. MALDI mass spectra of epoxy resins using NaI revealed iodohydrination to occur as epoxy functions of the polymers. The halohydrination also occurred using NaBr, but not NaCl, due to the differences in their nucleophilicities. On the basis of the results of experiments using deuterated CD(3)OD as the solvent, the hydrogen atom source was probably ambient water or residual solvent, rather than being derived from matrices. Halohydrination also occurred with DIOS-MS in which no organic matrix was used; in addition, reduction of epoxy functions was observed with DIOS. NaI is a useful cationizing agent for changing the chemical form of epoxy resins due to iodohydrination and, thus, for identifying the presence of epoxy functions. Copyright (c) 2008 John Wiley & Sons, Ltd.
Gapped Spectral Dictionaries and Their Applications for Database Searches of Tandem Mass Spectra*
Jeong, Kyowon; Kim, Sangtae; Bandeira, Nuno; Pevzner, Pavel A.
2011-01-01
Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification. However, the sizes of the Spectral Dictionaries quickly grow with the peptide length making their generation impractical for long peptides. We introduce Gapped Spectral Dictionaries (all plausible de novo interpretations with gaps) that can be easily generated for any peptide length thus addressing the limitation of the Spectral Dictionary approach. We show that Gapped Spectral Dictionaries are small thus opening a possibility of using them to speed-up MS/MS searches. Our MS-GappedDictionary algorithm (based on Gapped Spectral Dictionaries) enables proteogenomics applications (such as searches in the six-frame translation of the human genome) that are prohibitively time consuming with existing approaches. MS-GappedDictionary generates gapped peptides that occupy a niche between accurate but short peptide sequence tags and long but inaccurate full length peptide reconstructions. We show that, contrary to conventional wisdom, some high-quality spectra do not have good peptide sequence tags and introduce gapped tags that have advantages over the conventional peptide sequence tags in MS/MS database searches. PMID:21444829
Madsen, James A.; Xu, Hua; Robinson, Michelle R.; Horton, Andrew P.; Shaw, Jared B.; Giles, David K.; Kaoud, Tamer S.; Dalby, Kevin N.; Trent, M. Stephen; Brodbelt, Jennifer S.
2013-01-01
The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS1 and MS2 data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches. PMID:23695934
A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littrell, BobbiJo R
The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm.more » Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that Tyrosine 364 is phosphorylated by a PKC-dependent mechanism.« less
Tempest: GPU-CPU computing for high-throughput database spectral matching.
Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A
2012-07-06
Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.
Zhao, Yimeng; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2016-10-07
We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.
Ruiz Orduna, Alberto; Husby, Erik; Yang, Charles T; Ghosh, Dipankar; Beaudry, Francis
2015-01-01
In recent years a significant increase of food fraud has been observed, ranging from false label claims to the use of additives and fillers to increase profitability. Recently in 2013 horse and pig DNAs were detected in beef products sold from several retailers. Mass spectrometry (MS) has become the workhorse in protein research, and the detection of marker proteins could serve for both animal species and tissue authentication. Meat species authenticity is performed in this paper using a well-defined proteogenomic annotation, carefully chosen surrogate tryptic peptides and analysis using a hybrid quadrupole-Orbitrap MS. Selected mammalian meat samples were homogenised and proteins were extracted and digested with trypsin. The samples were analysed using a high-resolution MS. Chromatography was achieved using a 30-min linear gradient along with a BioBasic C8 100 × 1 mm column at a flow rate of 75 µl min(-1). The MS was operated in full-scan high resolution and accurate mass. MS/MS spectra were collected for selected proteotypic peptides. Muscular proteins were methodically analysed in silico in order to generate tryptic peptide mass lists and theoretical MS/MS spectra. Following a comprehensive bottom-up proteomic analysis, we detected and identified a proteotypic myoglobin tryptic peptide (120-134) for each species with observed m/z below 1.3 ppm compared with theoretical values. Moreover, proteotypic peptides from myosin-1, myosin-2 and β-haemoglobin were also identified. This targeted method allowed comprehensive meat speciation down to 1% (w/w) of undesired product.
Anderson, Lissa C; DeHart, Caroline J; Kaiser, Nathan K; Fellers, Ryan T; Smith, Donald F; Greer, Joseph B; LeDuc, Richard D; Blakney, Greg T; Thomas, Paul M; Kelleher, Neil L; Hendrickson, Christopher L
2017-02-03
Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.
Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.
2009-01-01
A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654
Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries.
Horlacher, Oliver; Lisacek, Frederique; Müller, Markus
2016-03-04
Experimental improvements in post-translational modification (PTM) detection by tandem mass spectrometry (MS/MS) has allowed the identification of vast numbers of PTMs. Open modification searches (OMSs) of MS/MS data, which do not require prior knowledge of the modifications present in the sample, further increased the diversity of detected PTMs. Despite much effort, there is still a lack of functional annotation of PTMs. One possibility to narrow the annotation gap is to mine MS/MS data deposited in public repositories and to correlate the PTM presence with biological meta-information attached to the data. Since the data volume can be quite substantial and contain tens of millions of MS/MS spectra, the data mining tools must be able to cope with big data. Here, we present two tools, Liberator and MzMod, which are built using the MzJava class library and the Apache Spark large scale computing framework. Liberator builds large MS/MS spectrum libraries, and MzMod searches them in an OMS mode. We applied these tools to a recently published set of 25 million spectra from 30 human tissues and present tissue specific PTMs. We also compared the results to the ones obtained with the OMS tool MODa and the search engine X!Tandem.
Tsednee, Munkhtsetseg; Huang, Yu-Chen; Chen, Yet-Ran; Yeh, Kuo-Chen
2016-01-01
Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal–ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal–deoxymugineic acid (–DMA) and metal–nicotianamine (–NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal–ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal–DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments. PMID:27240899
NASA Astrophysics Data System (ADS)
Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona
2016-12-01
Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.
Pharmaceutical identifier confirmation via DART-TOF.
Easter, Jacob L; Steiner, Robert R
2014-07-01
Pharmaceutical analysis comprises a large amount of the casework in forensic controlled substances laboratories. In order to reduce the time of analysis for pharmaceuticals, a Direct Analysis in Real Time ion source coupled with an accurate mass time-of-flight (DART-TOF) mass spectrometer was used to confirm identity. DART-TOF spectral data for pharmaceutical samples were analyzed and evaluated by comparison to standard spectra. Identical mass pharmaceuticals were differentiated using collision induced dissociation fragmentation, present/absent ions, and abundance comparison box plots; principal component analysis (PCA) and linear discriminant analysis (LDA) were used for differentiation of identical mass mixed drug spectra. Mass assignment reproducibility and robustness tests were performed on the DART-TOF spectra. Impacts on the forensic science community include a decrease in analysis time over the traditional gas chromatograph/mass spectrometry (GC/MS) confirmations, better laboratory efficiency, and simpler sample preparation. Using physical identifiers and the DART-TOF to confirm pharmaceutical identity will eliminate the use of GC/MS and effectively reduce analysis time while still complying with accepted analysis protocols. This will prove helpful in laboratories with large backlogs and will simplify the confirmation process. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes
Herbinet, Olivier; Bax, Sarah; Glaude, Pierre-Alexandre; Carré, Vincent; Battin-Leclerc, Frédérique
2013-01-01
Cyclic ethers are important intermediate species formed during the low-temperature oxidation of hydrocarbons. Along with ketones and aldehydes, they could consequently represent a significant part of the heavy oxygenated pollutants observed in the exhaust gas of engines. Apart a few of them such as ethylene oxide and tetrahydrofuran, cyclic ethers have not been much studied and very few of them are available for calibration and identification. Electron impact mass spectra are available for very few of them, making their detection in the exhaust emissions of combustion processes very difficult. The main goal of this study was to complete the existing set of mass spectra for this class of molecules. Thus cyclic ethers have been analyzed in the exhaust gases of a jet-stirred reactor in which the low-temperature oxidation of a series of n-alkanes was taking place. Analyzes were performed by gas chromatography coupled to mass spectrometry and to MS/MS. The second goal of this study was to derive some rules for the fragmentation of cyclic ethers in electron impact mass spectrometry and allow the identification of these species when no mass spectrum is available. PMID:24092947
NASA Astrophysics Data System (ADS)
Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen
2015-05-01
Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Medeiros, P. M.; Moran, M. A.; Song, C.; Whitman, W. B.; Washington, B.; Yu, M.; Lee, J.
2017-12-01
Despite the advent of methods enabling high resolution characterization of metabolic activity and of organic matter, linking microbial metabolism to organic matter transformations remains a challenge. By sequencing metatranscriptomes and using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) to characterize organic matter (OM) at the beginning and at the end of incubations of estuarine water across tide and season, we sought to link observed a changes in OM composition to microbial metabolism. We used linear models and K means clustering to identify clusters of genes that responded coherently across season, which accounted for most of the variability in gene expression, over tidal regime, which explained the majority of the remaining variation, and over time during the 24 hour incubations. We used an approach from the field of signal processing, that to our knowledge has not been used to analyze FTICR-MS data, to identify formulae of compounds that changed in concentration during the incubations. This approach, based on the discrete wavelet transform (DWT), allowed us to overcome some of the challenges associated with analyzing FTICR-MS data: variable ionization of organic compounds, signal suppression by high concentration compounds, and uncertainty about how to normalize changes across spectra. We were able to link clusters of metabolic and transporter genes to changes in OM composition, and uniquely identify genes based on their cross correlation with changes in FTICR mass spectra. Our approach for analyzing FTICR- MS data enables more robust inference about OM transformations, and linking high resolution changes in gene expression and in OM data during incubations represents an important step toward formulating models of microbial metabolism relevant for predicting biogeochemically relevant C fluxes.
High Resolution PTR-TOFMS: A New Instrument for Organic Compound Measurements
NASA Astrophysics Data System (ADS)
Hansel, A.; Graus, M.; Mueller, M.; Wisthaler, A.
2007-12-01
Over the last decade proton transfer reaction mass spectrometry (PTR-MS) has become very popular in many scientific fields. PTR-MS allows for the quantitative detection of volatile organic compounds (VOCs) at pptv-level virtually in real time. Monitoring of VOCs with a time resolution of typically a second per compound has, for instance, enabled the tracking of pollution plumes by air-borne measurements, thus revealing the photo- chemical fate of pollutants. It has also been employed in direct eddy covariant flux measurements. This rapidity, however, has been achieved at the cost of the number of compounds to be analyzed and compound selectivity. Conventional PTR-MS can, for example, not distinguish between hydrocarbons and their oxygenated isobaric species, e.g. between naphthalene and octanal or between isoprene and furan. In a mass range up to 200 Dalton, such a task would require a mass resolving power of 5500. The use of a time of flight (TOF) instead of a quadrupole mass analyzer in PTR-MS provides a sufficient high mass resolution to identify the atomic composition of product ions by their exact mass and their characteristic isotope patterns. In addition PTR-TOF-MS can record full mass spectra within a fraction of a second which is a dramatically increase in duty cycle. At the University of Innsbruck a high resolution PTR-TOFMS has recently been developed, coupling a PTR-ion source and a high resolution TOFMS. We achieved a mass resolving power of 6000 (FWHM), and a detection limit of tens to a few hundreds of pptv if integrating mass spectra for one minute. First results and future directions will be discussed in this paper.
Zhang, Liangxiao; Tan, Binbin; Zeng, Maomao; Lu, Hongmei; Liang, Yizeng
2012-01-15
Gas chromatography mass spectrometry (GC-MS) is routinely employed to analyze small molecules in various samples. The more challenge of GC-MS data processing is to identify the unknown compounds in samples. Mass spectra and retention indices library searching are commonly used method. However, the current libraries are often built through collecting data from different groups. To unknown compounds with similar mass spectra and retention indices (e.g. geometric (cis/trans) isomers), the inaccurate results sometime are supplied. In this case, the costly standard compounds have to be used in every analysis. In this report, taking identification of fatty acids as an example, we proposed a strategy of establishment of special database constructed by equivalent chain length (ECL) values in uniform conditions and mass spectra of fatty acid methyl esters (FAMEs). The mass spectral characteristics were firstly used to identify all expected straight saturated fatty acids, and subsequently calculate the ECL for fatty acids in the sample. Finally, the ECL values of fatty acids in the sample were compared with those of fatty acids in the customized database to identify their structures. The results showed that the method developed in this report could effectively identify similar unknown compounds (FAMEs in the human plasma) after validated by the authentic standards. Copyright © 2011 Elsevier B.V. All rights reserved.
LC-MSsim – a simulation software for liquid chromatography mass spectrometry data
Schulz-Trieglaff, Ole; Pfeifer, Nico; Gröpl, Clemens; Kohlbacher, Oliver; Reinert, Knut
2008-01-01
Background Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used to analyze the protein content of biological samples in large scale studies. The data resulting from an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new developments in Bioinformatics, especially in the fields of algorithm development, statistics and software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are the detection of peptide features in the mass spectra and the alignment of samples by correcting for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no data that represents a ground truth for the evaluation of feature detection, alignment and filtering algorithms. Results We present LC-MSsim, a simulation software for LC-ESI-MS experiments. It simulates ESI spectra on the MS level. It reads a list of proteins from a FASTA file and digests the protein mixture using a user-defined enzyme. The software creates an LC-MS data set using a predictor for the retention time of the peptides and a model for peak shapes and elution profiles of the mass spectral peaks. Our software also offers the possibility to add contaminants, to change the background noise level and includes a model for the detectability of peptides in mass spectra. After the simulation, LC-MSsim writes the simulated data to mzData, a public XML format. The software also stores the positions (monoisotopic m/z and retention time) and ion counts of the simulated ions in separate files. Conclusion LC-MSsim generates simulated LC-MS data sets and incorporates models for peak shapes and contaminations. Algorithm developers can match the results of feature detection and alignment algorithms against the simulated ion lists and meaningful error rates can be computed. We anticipate that LC-MSsim will be useful to the wider community to perform benchmark studies and comparisons between computational tools. PMID:18842122
Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry.
Gucek, Marjan; Makuc, Simon; Mlakar, Anita; Bericnik-Vrbovsek, Julija; Marsel, Joze
2002-01-01
For the determination of glutathione (GSH) and its oxidized form (GSSG) in spruce needles their electrospray mass and MS/MS spectra were recorded with an ion trap mass spectrometer (ITMS, LCQ, Finnigan) and a triple stage quadrupole mass spectrometer (TSQ, Quattro II, Micromass). A study of the stability of GSH in aqueous solutions shows the presence of dimeric and trimeric forms of GSH, as well as GSSG, GSH-sulfonate and GSH-sulfinic acid. The same components were also found in extracts of spruce needles. We developed an assay which is suitable for monitoring low concentrations of GSH and similar compounds in plant tissues, employing the sensitivity and specificity of LC/MS/MS. Preliminary results on the mass spectrometric determination of GSH in spruce needles are given. Copyright 2002 John Wiley & Sons, Ltd.
[Identification of related substances in nicergoline by HPLC-MS].
Zeng, Xue-fang; Liu, Jie; Song, Min; Hang, Tai-jun
2015-08-01
To study the related substances in nicergoline, electrospray positive ionization high resolution TOF/MS was used for the determination of the accurate mass and elemental composition of the related substances. Triple quadrupoles tandem MS/MS was employed for the determination of the fragmentations of the parent ions. 16 related substances were detected and identified to be eight synthetic by-products and eight degradation products, by using impurity references matching, product mass spectra fragmentations elucidation, and verified further according to synthetic processes and stress testing results. The results obtained are valuable for nicergoline manufacturing process control and quality assurance.
Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi
2008-08-01
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers
NASA Astrophysics Data System (ADS)
Berthias, Francis; Maatoug, Belkis; Glish, Gary L.; Moussa, Fathi; Maitre, Philippe
2018-02-01
Due to their central role in biochemical processes, fast separation and identification of amino acids (AA) is of importance in many areas of the biomedical field including the diagnosis and monitoring of inborn errors of metabolism and biomarker discovery. Due to the large number of AA together with their isomers and isobars, common methods of AA analysis are tedious and time-consuming because they include a chromatographic separation step requiring pre- or post-column derivatization. Here, we propose a rapid method of separation and identification of sarcosine, a biomarker candidate of prostate cancer, from isomers using differential ion mobility spectrometry (DIMS) interfaced with a tandem mass spectrometer (MS/MS) instrument. Baseline separation of protonated sarcosine from α- and β-alanine isomers can be easily achieved. Identification of DIMS peak is performed using an isomer-specific activation mode where DIMS- and mass-selected ions are irradiated at selected wavenumbers allowing for the specific fragmentation via an infrared multiple photon dissociation (IRMPD) process. Two orthogonal methods to MS/MS are thus added, where the MS/MS(IRMPD) is nothing but an isomer-specific multiple reaction monitoring (MRM) method. The identification relies on the comparison of DIMS-MS/MS(IRMPD) chromatograms recorded at different wavenumbers. Based on the comparison of IR spectra of the three isomers, it is shown that specific depletion of the two protonated α- and β-alanine can be achieved, thus allowing for clear identification of the sarcosine peak. It is also demonstrated that DIMS-MS/MS(IRMPD) spectra in the carboxylic C=O stretching region allow for the resolution of overlapping DIMS peaks. [Figure not available: see fulltext.
Robotham, Scott A.; Horton, Andrew P.; Cannon, Joe R.; Cotham, Victoria C.; Marcotte, Edward M.; Brodbelt, Jennifer S.
2016-01-01
De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide’s amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS3) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the ‘antisymmetric path problem’ and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yields peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an E. coli lysate at high confidence. PMID:26938041
NASA Astrophysics Data System (ADS)
Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.
Nielen, M W; Buijtenhuijs, F A
1999-05-01
Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS: size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.
Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang
2016-05-01
Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tong, Chaoying; Peng, Mijun; Tong, Runna; Ma, Ruyi; Guo, Keke; Shi, Shuyun
2018-01-19
Chemical profiling of natural products by high performance liquid chromatography (HPLC) was critical for understanding of their clinical bioactivities, and sample pretreatment steps have been considered as a bottleneck for analysis. Currently, concerted efforts have been made to develop sample pretreatment methods with high efficiency, low solvent and time consumptions. Here, a simple and efficient online extraction (OLE) strategy coupled with HPLC-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) was developed for rapid chemical profiling. For OLE strategy, guard column inserted with ground sample (2 mg) instead of sample loop was connected with manual injection valve, in which components were directly extracted and transferred to HPLC-DAD-QTOF-MS/MS system only by mobile phase without any extra time, solvent, instrument and operation. By comparison with offline heat-reflux extraction of Citrus paradisi cv. Changshanhuyu (Changshanhuyu) peel, OLE strategy presented higher extraction efficiency perhaps because of the high pressure and gradient elution mode. A total of twenty-two secondary metabolites were detected according to their retention times, UV spectra, exact mass, and fragmentation ions in MS/MS spectra, and nine of them were discovered in Changshanhuyu peel for the first time to our knowledge. It is concluded that the developed OLE-HPLC-DAD-QTOF-MS/MS system offers new perspectives for rapid chemical profiling of natural products. Copyright © 2017 Elsevier B.V. All rights reserved.
Tong, Runna; Peng, Mijun; Tong, Chaoying; Guo, Keke; Shi, Shuyun
2018-03-01
Chemical profiling of natural products by high performance liquid chromatography (HPLC) was critical for understanding of their clinical bioactivities, and sample pretreatment steps have been considered as a bottleneck for analysis. Currently, concerted efforts have been made to develop sample pretreatment methods with high efficiency, low solvent and time consumptions. Here, a simple and efficient online extraction (OLE) strategy coupled with HPLC-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) was developed for rapid chemical profiling. For OLE strategy, guard column inserted with ground sample (2 mg) instead of sample loop was connected with manual injection valve, in which components were directly extracted and transferred to HPLC-DAD-QTOF-MS/MS system only by mobile phase without any extra time, solvent, instrument and operation. By comparison with offline heat-reflux extraction for Fructus aurantii immaturus (Zhishi), OLE strategy presented higher extraction efficiency perhaps because of the high pressure and gradient elution mode. A total of eighteen flavonoids were detected according to their retention times, UV spectra, exact mass, and fragmentation ions in MS/MS spectra, and compound 9, natsudaidain-3-O-glucoside, was discovered in Zhishi for the first time. It is concluded that the developed OLE-HPLC-DAD-QTOF-MS/MS system offers new perspectives for rapid chemical profiling of natural products. Copyright © 2018. Published by Elsevier B.V.
Kolářová, L.; Nobilis, M.
2008-01-01
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well. PMID:18345532
Saeidian, Hamdollah; Babri, Mehran; Abdoli, Morteza; Sarabadani, Mansour; Ashrafi, Davood; Naseri, Mohammad Taghi
2012-12-15
The availability of mass spectra and interpretation skills are essential for unambiguous identification of the Chemical Weapons Convention (CWC)-related chemicals. The O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates are included in the list of scheduled CWC-related compounds, but there are very few spectra from these compounds in the literature. This paper examines these spectra and their mass spectral fragmentation routes. The title chemicals were prepared through microsynthetic protocols and were analyzed using electron ionization mass spectrometry with gas chromatography as a MS-inlet system. Structures of fragments were confirmed using analysis of fragment ions of deuterated analogs, tandem mass spectrometry and density functional theory (DFT) calculations. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as alkene and amine elimination and McLafferty-type rearrangements. The most important fragmentation route of the chemicals is the thiono-thiolo rearrangement. DFT calculations are used to support MS results and to reveal relative preference formation of fragment ions. The retention indices (RIs) of all the studied compounds are also reported. Mass spectra of the synthesized compounds were investigated with the aim to enrich the Organization for the Prohibition of Chemical Weapons (OPCW) Central Analytical Database (OCAD) which may be used for detection and identification of CWC-related chemicals during on-site inspection and/or off-site analysis such as OPCW proficiency tests. Copyright © 2012 John Wiley & Sons, Ltd.
Wu, Xinhua; Zhu, Ruizhi; Ren, Zhuoying; Wang, Kai; Mou, Dingrong; Wei, Wanzhi; Miao, Mingming
2009-11-01
A qualitative method for the identification of 5 main glycosidic flavor precursors in tobacco was developed by using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS) and gas chromatography-mass spectrometry (GC-MS). The glycosidic flavor precursors in tobacco were extracted with methanol, cleaned up with an XAD-2 column. The aglycones were later released by enzyme-mediated hydrolysis under the condition of pH 5. The 5 volatile aglycone moieties were identified by GC-MS standard spectra library. The precursor ions of glycosides were determined by using electrospray ionization mass spectrometry in negative ion mode, then the 5 glycosidic flavor precursors were identified by using product ion scan (MS2) finally, using UPLC-ESI MS/MS, separation and identification of 5 glycosidic flavor precursors were accomplished on an RP-C,8 column in the multiple reaction monitoring (MRM) mode by using methanol and acetic acid-ammonium acetate aqueous solution as eluent. This work lays a foundation for the analysis of glycosidic flavor precursors without the standards by using liquid chromatography-mass spectrometry.
NASA Astrophysics Data System (ADS)
Korte, Andrew R.; Lee, Young Jin
2013-06-01
We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.
Comprehensive Analysis of LC/MS Data Using Pseudocolor Plots
NASA Astrophysics Data System (ADS)
Crutchfield, Christopher A.; Olson, Matthew T.; Gourgari, Evgenia; Nesterova, Maria; Stratakis, Constantine A.; Yergey, Alfred L.
2013-02-01
We have developed new applications of the pseudocolor plot for the analysis of LC/MS data. These applications include spectral averaging, analysis of variance, differential comparison of spectra, and qualitative filtering by compound class. These applications have been motivated by the need to better understand LC/MS data generated from analysis of human biofluids. The examples presented use data generated to profile steroid hormones in urine extracts from a Cushing's disease patient relative to a healthy control, but are general to any discovery-based scanning mass spectrometry technique. In addition to new visualization techniques, we introduce a new metric of variance: the relative maximum difference from the mean. We also introduce the concept of substructure-dependent analysis of steroid hormones using precursor ion scans. These new analytical techniques provide an alternative approach to traditional untargeted metabolomics workflow. We present an approach to discovery using MS that essentially eliminates alignment or preprocessing of spectra. Moreover, we demonstrate the concept that untargeted metabolomics can be achieved using low mass resolution instrumentation.
NASA Astrophysics Data System (ADS)
Hofer, L.; Lasi, D.; Tulej, M.; Wurz, P.; Cabane, M.; Cosica, D.; Gerasimov, M.; Rodinov, D.
2013-09-01
In preparation for the Russian Luna-Glob and Luna-Resurs missions we combined our compact time-offlight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Combined measurements with both instruments were successfully performed with the laboratory prototype of the mass spectrometer and a flight-like gas chromatograph. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 106 within 1s, the TOF-MS system is a valuable extension of the GC analysis. The combined GC-MS complex is able to detect concentrations of volatile species in the sample of about 2·10^-9 by mass.
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
Helsens, Kenny; Colaert, Niklaas; Barsnes, Harald; Muth, Thilo; Flikka, Kristian; Staes, An; Timmerman, Evy; Wortelkamp, Steffi; Sickmann, Albert; Vandekerckhove, Joël; Gevaert, Kris; Martens, Lennart
2010-03-01
MS-based proteomics produces large amounts of mass spectra that require processing, identification and possibly quantification before interpretation can be undertaken. High-throughput studies require automation of these various steps, and management of the data in association with the results obtained. We here present ms_lims (http://genesis.UGent.be/ms_lims), a freely available, open-source system based on a central database to automate data management and processing in MS-driven proteomics analyses.
NASA Astrophysics Data System (ADS)
Oropeza, D.
2016-12-01
A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.
Matysik, Silke; Liebisch, Gerhard
2017-12-01
A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
IDENTIFICATION OF POLLUTANTS IN A MUNICIPAL WELL USING HIGH RESOLUTION MASS SPECTROMETRY
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra were foun...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.
2011-11-07
The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less
Guan, Xiaoyan; Brownstein, Naomi C; Young, Nicolas L; Marshall, Alan G
2017-01-30
Bottom-up tandem mass spectrometry (MS/MS) is regularly used in proteomics to identify proteins from a sequence database. De novo sequencing is also available for sequencing peptides with relatively short sequence lengths. We recently showed that paired Lys-C and Lys-N proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Such parallel experiments provide complementary information, and allow for up to 100% MS/MS sequence coverage. Here, we report digestion by paired Lys-C and Lys-N proteases of a seven-protein mixture: human hemoglobin alpha, bovine carbonic anhydrase 2, horse skeletal muscle myoglobin, hen egg white lysozyme, bovine pancreatic ribonuclease, bovine rhodanese, and bovine serum albumin, followed by reversed-phase nanoflow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of product peptide ions of equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion types, residues, and peptides. Selected pairs of product ion mass spectra for de novo sequenced protein segments from each member of the mixture are presented. Pairs of the transposed product ions as well as complementary information from the parallel experiments allow for both high MS/MS coverage for long peptide sequences and high confidence in the amino acid identification. Moreover, the parallel experiments in the de novo sequencing reduce false-positive matches of product ions from the single-residue transposed peptides from the same segment, and thereby further improve the confidence in protein identification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain
2008-05-01
PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.
Zheng, Yunliang; Luan, Lianjun; Chen, Yong; Ren, Yiping; Wu, Yongjiang
2012-12-01
Physalins are important bioactive compounds from genus Physalis. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior and UV characteristics of seven physalins from genus Physalis were firstly investigated using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and diode array detection (DAD). Combined with ultra-performance liquid chromatography (UPLC) and DAD, the established approach to the structural identification of physalins by ESI-MS/MS was then applied to the analysis of Physalis alkekengi L. According to the UPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by MS/MS spectra, about 19 fingerprint peaks were identified, including 14 physalins and 5 other compounds. Finally, the established fingerprint method was applied to the analysis of 31 P. alkekengi L. samples collected from different locations, which reflected their similar chemical constituent properties. The proposed method provides a scientific and technical platform to the herbal industry for quality control and safety assurance of herbal preparations that contain this class of physalins. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of a dedicated peptide tandem mass spectral library for conservation science.
Fremout, Wim; Dhaenens, Maarten; Saverwyns, Steven; Sanyova, Jana; Vandenabeele, Peter; Deforce, Dieter; Moens, Luc
2012-05-30
In recent years, the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic digests of cultural heritage objects has attracted much attention. It allows for unambiguous identification of peptides and proteins, and even in complex mixtures species-specific identification becomes feasible with minimal sample consumption. Determination of the peptides is commonly based on theoretical cleavage of known protein sequences and on comparison of the expected peptide fragments with those found in the MS/MS spectra. In this approach, complex computer programs, such as Mascot, perform well identifying known proteins, but fail when protein sequences are unknown or incomplete. Often, when trying to distinguish evolutionarily well preserved collagens of different species, Mascot lacks the required specificity. Complementary and often more accurate information on the proteins can be obtained using a reference library of MS/MS spectra of species-specific peptides. Therefore, a library dedicated to various sources of proteins in works of art was set up, with an initial focus on collagen rich materials. This paper discusses the construction and the advantages of this spectral library for conservation science, and its application on a number of samples from historical works of art. Copyright © 2012 Elsevier B.V. All rights reserved.
Hou, Yu-Lan; Wu, Shuang; Wang, Hua; Zhao, Yong; Liao, Peng; Tian, Qing-Qing; Sun, Wen-Jian; Chen, Bo
2013-01-01
A novel rapid method for detection of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines was developed with the desorption corona beam ionization mass spectrometry (DCBI-MS) technique. The DCBI conditions including temperature and sample volume were optimized according to the resulting mass spectra intensity. Matrix effect on 9 beta2-agonists additives was not significant in the proposed rapid determination procedure. All of the 9 target molecules were detected within 1 min. Quantification was achieved based on the typical fragment ion in MS2 spectra of each analyte. The method showed good linear coefficients in the range of 1-100 mg x L(-1) for all analytes. The relative deviation values were between 14.29% and 25.13%. Ten claimed antitussive and antiasthmatic health foods and traditional Chinese patent medicines from local pharmacies were analyzed. All of them were negative with the proposed DCBI-MS method. Without tedious sample pretreatments, the developed DCBI-MS is simple, rapid and sensitive for rapid qualification and semi-quantification of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines.
Pedroso, Marcio P; Ferreira, Ernesto C; Hantao, Leandro W; Bogusz, Stanislau; Augusto, Fabio
2011-07-01
Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Farag, Mohamed A; Huhman, David V; Lei, Zhentian; Sumner, Lloyd W
2007-02-01
An integrated approach utilizing HPLC-UV-ESI-MS and GC-MS was used for the large-scale and systematic identification of polyphenols in Medicago truncatula root and cell culture. Under optimized conditions, we were able to simultaneously quantify and identify 35 polyphenols including 26 isoflavones, 3 flavones, 2 flavanones, 2 aurones and a chalcone. All identifications were based upon UV spectra, mass spectral characteristics of protonated molecules, tandem mass spectral data, mass measurements obtained using a quadrupole time-of-flight mass spectrometer (QtofMS), and confirmed through the co-characterization of authentic compounds. In specific instances where the stereochemistry of sugar conjugates was uncertain, subsequent enzymatic hydrolysis of the conjugate followed by GC-MS was used to assign the sugar stereochemical configuration. Comparative metabolic profiling of Medicago truncatula root and cell cultures was then performed and revealed significant differences in the isoflavonoid composition of these two tissues.
A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting
LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.
2013-01-01
Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644
Non-traditional applications of laser desorption/ionization mass spectrometry
NASA Astrophysics Data System (ADS)
McAlpin, Casey R.
Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)
Chen, Gengbo; Walmsley, Scott; Cheung, Gemmy C M; Chen, Liyan; Cheng, Ching-Yu; Beuerman, Roger W; Wong, Tien Yin; Zhou, Lei; Choi, Hyungwon
2017-05-02
Data independent acquisition-mass spectrometry (DIA-MS) coupled with liquid chromatography is a promising approach for rapid, automatic sampling of MS/MS data in untargeted metabolomics. However, wide isolation windows in DIA-MS generate MS/MS spectra containing a mixed population of fragment ions together with their precursor ions. This precursor-fragment ion map in a comprehensive MS/MS spectral library is crucial for relative quantification of fragment ions uniquely representative of each precursor ion. However, existing reference libraries are not sufficient for this purpose since the fragmentation patterns of small molecules can vary in different instrument setups. Here we developed a bioinformatics workflow called MetaboDIA to build customized MS/MS spectral libraries using a user's own data dependent acquisition (DDA) data and to perform MS/MS-based quantification with DIA data, thus complementing conventional MS1-based quantification. MetaboDIA also allows users to build a spectral library directly from DIA data in studies of a large sample size. Using a marine algae data set, we show that quantification of fragment ions extracted with a customized MS/MS library can provide as reliable quantitative data as the direct quantification of precursor ions based on MS1 data. To test its applicability in complex samples, we applied MetaboDIA to a clinical serum metabolomics data set, where we built a DDA-based spectral library containing consensus spectra for 1829 compounds. We performed fragment ion quantification using DIA data using this library, yielding sensitive differential expression analysis.
Wang, Zhibin; Cao, Yanzhong; Ge, Na; Liu, Xiaomao; Chang, Qiaoying; Fan, Chunlin; Pang, Guo-Fang
2016-11-01
This paper presents an application of ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for simultaneous screening and identification of 427 pesticides in fresh fruit and vegetable samples. Both full MS scan mode for quantification, and an artificial-intelligence-based product ion scan mode information-dependent acquisition (IDA) providing automatic MS to MS/MS switching of product ion spectra for identification, were conducted by one injection. A home-in collision-induced-dissociation all product ions accurate mass spectra library containing more than 1700 spectra was developed prior to actual application. Both qualitative and quantitative validations of the method were carried out. The result showed that 97.4 % of the pesticides had the screening detection limit (SDL) less than 50 μg kg -1 and more than 86.7 % could be confirmed by accurate MS/MS spectra embodied in the home-made library. Meanwhile, calibration curves covering two orders of magnitude were performed, and they were linear over the concentration range studied for the selected matrices (from 5 to 500 μg kg -1 for most of the pesticides). Recoveries between 80 and 110 % in four matrices (apple, orange, tomato, and spinach) at two spiked levels, 10 and 100 μg kg -1 , was 88.7 or 86.8 %. Furthermore, the overall relative standard deviation (RSD, n = 12) for 94.3 % of the pesticides in 10 μg kg -1 and 98.1 % of the pesticides in 100 μg kg -1 spiked levels was less than 20 %. In order to validate the suitability for routine analysis, the method was applied to 448 fruit and vegetable samples purchased in different local markets. The results show 83.3 % of the analyzed samples have positive findings (higher than the limits of identification and quantification), and 412 commodity-pesticide combinations are identified in our scope. The approach proved to be a cost-effective, time-saving and powerful strategy for routine large-scope screening of pesticides.
Zhang, Kai; Wong, Jon W; Yang, Paul; Hayward, Douglas G; Sakuma, Takeo; Zou, Yunyun; Schreiber, André; Borton, Christopher; Nguyen, Tung-Vi; Kaushik, Banerjee; Oulkar, Dasharath
2012-07-03
Modern determination techniques for pesticides must yield identification quickly with high confidence for timely enforcement of tolerances. A protocol for the collection of liquid chromatography (LC) electrospray ionization (ESI)-quadruple linear ion trap (Q-LIT) mass spectrometry (MS) library spectra was developed. Following the protocol, an enhanced product ion (EPI) library of 240 pesticides was developed by use of spectra collected from two laboratories. A LC-Q-LIT-MS workflow using scheduled multiple reaction monitoring (sMRM) survey scan, information-dependent acquisition (IDA) triggered collection of EPI spectra, and library search was developed and tested to identify the 240 target pesticides in one single LC-Q-LIT MS analysis. By use of LC retention time, one sMRM survey scan transition, and a library search, 75-87% of the 240 pesticides were identified in a single LC/MS analysis at fortified concentrations of 10 ng/g in 18 different foods. A conventional approach with LC-MS/MS using two MRM transitions produced the same identifications and comparable quantitative results with the same incurred foods as the LC-Q-LIT using EPI library search, finding 1.2-49 ng/g of either carbaryl, carbendazim, fenbuconazole, propiconazole, or pyridaben in peaches; carbendazim, imazalil, terbutryn, and thiabendazole in oranges; terbutryn in salmon; and azoxystrobin in ginseng. Incurred broccoli, cabbage, and kale were screened with the same EPI library using three LC-Q-LIT and a LC-quadruple time-of-flight (Q-TOF) instruments. The library search identified azoxystrobin, cyprodinil, fludioxinil, imidacloprid, metalaxyl, spinosyn A, D, and J, amd spirotetramat with each instrument. The approach has a broad application in LC-MS/MS type targeted screening in food analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan
Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS)more » ambient field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. As a result, controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.« less
Cahill, John F.; Kertesz, Vilmos; Porta, Tiffany; ...
2018-02-08
Rationale: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described.Methods: Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof.more » Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. Results: Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy.Conclusions: Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. Lastly, these results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.« less
Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; ...
2016-07-25
Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS)more » ambient field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. As a result, controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Porta, Tiffany
Rationale: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described.Methods: Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof.more » Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. Results: Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy.Conclusions: Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. Lastly, these results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.« less
NASA Astrophysics Data System (ADS)
Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.
2016-07-01
Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.
Detection of co-eluted peptides using database search methods
Alves, Gelio; Ogurtsov, Aleksey Y; Kwok, Siwei; Wu, Wells W; Wang, Guanghui; Shen, Rong-Fong; Yu, Yi-Kuo
2008-01-01
Background Current experimental techniques, especially those applying liquid chromatography mass spectrometry, have made high-throughput proteomic studies possible. The increase in throughput however also raises concerns on the accuracy of identification or quantification. Most experimental procedures select in a given MS scan only a few relatively most intense parent ions, each to be fragmented (MS2) separately, and most other minor co-eluted peptides that have similar chromatographic retention times are ignored and their information lost. Results We have computationally investigated the possibility of enhancing the information retrieval during a given LC/MS experiment by selecting the two or three most intense parent ions for simultaneous fragmentation. A set of spectra is created via superimposing a number of MS2 spectra, each can be identified by all search methods tested with high confidence, to mimick the spectra of co-eluted peptides. The generated convoluted spectra were used to evaluate the capability of several database search methods – SEQUEST, Mascot, X!Tandem, OMSSA, and RAId_DbS – in identifying true peptides from superimposed spectra of co-eluted peptides. We show that using these simulated spectra, all the database search methods will gain eventually in the number of true peptides identified by using the compound spectra of co-eluted peptides. Open peer review Reviewed by Vlad Petyuk (nominated by Arcady Mushegian), King Jordan and Shamil Sunyaev. For the full reviews, please go to the Reviewers' comments section. PMID:18597684
Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa
2012-03-01
A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.
Månsson, Viktor; Resman, Fredrik; Kostrzewa, Markus; Nilson, Bo; Riesbeck, Kristian
2015-07-01
Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
He, Huan; Guo, Wei-Wei; Chen, Xiao-Qing; Zhao, Hai-Yu; Wu, Xia
2016-08-01
Piperine, piperlonguminine and pellitorine are three major amide alkaloids from Piper longum, showing a variety of pharmacological activities. In order to investigate the different metabolism pathways of these compounds in five species of liver microsomes in vitro, the data of full mass spectrum, and MS2, MS3 spectra of these three alkaloids were collected and analyzed by using ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap MS); gragment ion information was collected and combined with fragmentation regularities of mass spectra and accurate mass spectrometry data of metabolites, to compare the metabolism difference of three amide alkaloids in liver microsomes of human, rhesus monkey, Beagle dogs, rats and mice. 3 metabolites of piperine, 2 metabolites of piperlonguminine and 1 metabolite of pellitorine were identified quickly. The results showed that the major metabolic pathways of these amide alkaloids in liver microsomes were methylenedioxy group demethylation and oxidation reaction, and metabolic rates were different between species. This study provides basis for further research on in vivo metabolism of piperine analogues from Piper longum. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Jirásko, Robert; Holčapek, Michal; Khalikova, Maria; Vrána, David; Študent, Vladimír; Prouzová, Zuzana; Melichar, Bohuslav
2017-08-01
Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra.
Telu, Kelly H.; Yan, Xinjian; Wallace, William E.; Stein, Stephen E.; Simón-Manso, Yamil
2016-01-01
RATIONALE The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different LC-MS platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. METHODS Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC-MS platforms using reversed phase chromatography and different chromatographic scales (nano, conventional and UHPLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). RESULTS Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (RSD < 2%); however, substantial differences were found in the LC-MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. CONLUSIONS Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. PMID:26842580
Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan
2014-01-01
In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.
Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R
2017-07-25
Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.
The curved-field reflectron: PSD and CID without scanning, stepping or lifting
NASA Astrophysics Data System (ADS)
Cotter, Robert J.; Iltchenko, Serguei; Wang, Dongxia
2005-02-01
The curved-field reflectron (CFR), developed initially to improve focusing of product ions in a dual reflectron tandem time-of-flight (RTOF/RTOF) mass spectrometer, has been used for several years in single analyzer instruments for the focusing of ions produced by post-source decay (PSD) without stepping the reflectron voltage. More recently, the addition of a collision chamber to a commercial instrument that incorporates the CFR enables both PSD and collision-induced dissociation (CID) mass spectra to be obtained in a tandem instrument without decelerating the primary ions or reaccelerating product ions to accommodate the limited energy bandwidth of the reflectron. In the PSD or laser-induced dissociation (LID) mode, i.e., without a collision gas, nearly complete b- and y-series ions are observed, which is illustrated here in the MS/MS spectra of peptides obtained in the determination of the lysine acetylation sites in a histone acetyl transferase (HAT) protein. Addition of the collision gas produces similar mass spectra, though higher collision gas pressure increases the intensities of lower mass and internal fragments, both of which appear to result from multiple collisions. In addition N-terminal sulfonation of the peptides obtained from tryptic digests produces exclusive y-series ions in the product ion mass.
Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.
Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C
2014-04-01
Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.
Visualization of LC-MS/MS proteomics data in MaxQuant.
Tyanova, Stefka; Temu, Tikira; Carlson, Arthur; Sinitcyn, Pavel; Mann, Matthias; Cox, Juergen
2015-04-01
Modern software platforms enable the analysis of shotgun proteomics data in an automated fashion resulting in high quality identification and quantification results. Additional understanding of the underlying data can be gained with the help of advanced visualization tools that allow for easy navigation through large LC-MS/MS datasets potentially consisting of terabytes of raw data. The updated MaxQuant version has a map navigation component that steers the users through mass and retention time-dependent mass spectrometric signals. It can be used to monitor a peptide feature used in label-free quantification over many LC-MS runs and visualize it with advanced 3D graphic models. An expert annotation system aids the interpretation of the MS/MS spectra used for the identification of these peptide features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Winkler, Robert
2010-02-01
Electrospray ionization (ESI) ion trap mass spectrometers with relatively low resolution are frequently used for the analysis of natural products and peptides. Although ESI spectra of multiply charged protein molecules also can be measured on this type of devices, only average spectra are produced for the majority of naturally occurring proteins. Evaluating such ESI protein spectra would provide valuable information about the native state of investigated proteins. However, no suitable and freely available software could be found which allows the charge state determination and molecular weight calculation of single proteins from average ESI-MS data. Therefore, an algorithm based on standard deviation optimization (scatter minimization) was implemented for the analysis of protein ESI-MS data. The resulting software ESIprot was tested with ESI-MS data of six intact reference proteins between 12.4 and 66.7 kDa. In all cases, the correct charge states could be determined. The obtained absolute mass errors were in a range between -0.2 and 1.2 Da, the relative errors below 30 ppm. The possible mass accuracy allows for valid conclusions about the actual condition of proteins. Moreover, the ESIprot algorithm demonstrates an extraordinary robustness and allows spectral interpretation from as little as two peaks, given sufficient quality of the provided m/z data, without the necessity for peak intensity data. ESIprot is independent from the raw data format and the computer platform, making it a versatile tool for mass spectrometrists. The program code was released under the open-source GPLv3 license to support future developments of mass spectrometry software. Copyright 2010 John Wiley & Sons, Ltd.
Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil
2016-03-15
The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra wer...
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2009-03-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analyzed using positive matrix factorization (PMF). The two instruments were given equal weight in the PMF analysis by application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the relative weight. The PMF analysis yielded a 5-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling, and oxidative processing. The unified dataset provides information on particle and VOC sources and atmospheric processing that cannot be obtained from the datasets of the individual instruments, such as apportionment of oxygenated VOCs to direct emission sources vs. secondary reaction products, improved correlation of oxygenated aerosol factors with photochemical age, and increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
A Comparison of DESI-MS and LC-MS for the Lipidomic Profiling of Human Cancer Tissue
NASA Astrophysics Data System (ADS)
Abbassi-Ghadi, Nima; Jones, Emrys A.; Gomez-Romero, Maria; Golf, Ottmar; Kumar, Sacheen; Huang, Juzheng; Kudo, Hiromi; Goldin, Rob D.; Hanna, George B.; Takats, Zoltan
2016-02-01
In this study, we make a direct comparison between desorption electrospray ionization-mass spectrometry (DESI-MS) and ultraperformance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) platforms for the profiling of glycerophospholipid (GPL) species in esophageal cancer tissue. In particular, we studied the similarities and differences in the range of GPLs detected and the congruency of their relative abundances as detected by each analytical platform. The main differences between mass spectra of the two modalities were found to be associated with the variance in adduct formation of common GPLs, rather than the presence of different GPL species. Phosphatidylcholines as formate adducts in UPLC-ESI-MS accounted for the majority of differences in negative ion mode and alkali metal adducts of phosphatidylcholines in DESI-MS for positive ion mode. Comparison of the relative abundance of GPLs, normalized to a common peak, revealed a correlation coefficient of 0.70 ( P < 0.001). The GPL profile detected by DESI-MS is congruent to UPLC-ESI-MS, which reaffirms the role of DESI-MS for lipidomic profiling and a potential premise for quantification.
Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri
2007-01-01
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.
Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).
Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd
2011-01-01
The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.
Wu, Haiqing; Peng, Ying; Wang, Shaojie; Wang, Kai; Zhao, Xunchen; Jiang, Fan
2012-12-12
A high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-QTOF-MS) method was employed in investigation of benzbromarone metabolites in rat plasma, urine, feces and bile samples. Meanwhile, the metabolic pathways of benzbromarone in rats were discussed. The identification was achieved on a reversed-phase C(18) column with mobile phase gradient method. The QTOF-MS was operated under full scan of MS or MS/MS in negative mode. The fragments were acquired by raising collision induced dissociation (CID) energy for speculating the structures of parent ions. According to the information from the chromatograms and mass spectra, 17 metabolites were obtained. Among them, the deoxidized phase I metabolites and an array of phase II metabolites-sulfate conjugates detected in the biological samples made the work more significant. Copyright © 2012 Elsevier B.V. All rights reserved.
Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.
Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi
2014-01-01
A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).
Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry
Yao, Jingwen; Utsunomiya, Shin-ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi
2014-01-01
A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/). PMID:26819872
Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin
2015-08-27
Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less
Dresen, S; Ferreirós, N; Gnann, H; Zimmermann, R; Weinmann, W
2010-04-01
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).
Sekuła, Karolina; Zuba, Dariusz
2013-09-30
In recent years, the phenomenon of uncontrolled distribution of new psychoactive substances that were marketed without prior toxicological studies has been observed. Because many designer drugs are related in chemical structure, the potential for misidentifying them is an important problem. It is therefore essential to develop an analytical procedure for unequivocal elucidation of the structures of these compounds. The issue has been discussed in the context of 25I-NBMD [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2,3-methylenedioxyphenyl)methyl]ethanamine], a psychoactive substance first discovered on the drug market in 2012. The substance was extracted from blotter papers with methanol. Separation was achieved via liquid chromatography. Analysis was conducted by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). Identification of the psychoactive component was supported by electron impact gas chromatography/mass spectrometry (GC/EI-MS). The high accuracy of the LC/ESI-QTOFMS method allowed the molecular mass of the investigated substance (M(exp) = 441.0438 Da; mass error, ∆m = 0.2 ppm) and the formulae of ions formed during fragmentation to be determined. The main ions were recorded at m/z = 135.0440, 290.9876 and 305.9981. Structures of the obtained ions were elucidated in the tandem mass spectrometry (MS/MS) experiments by comparing them to mass spectra of previously detected derivatives of phenethylamine. The performed study indicated the potential for using LC/QTOFMS method to identify new designer drugs. This technique can be used supplementary to standard GC/MS. Prior knowledge of the fragmentation mechanisms of phenethylamines allowed to predict the mass spectra of the novel substance--25I-NBMD. Copyright © 2013 John Wiley & Sons, Ltd.
2014-01-01
Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native 12C- and uniformly 13C (U-13C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-13C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research. PMID:24965664
Zhu, Maolei; Bendiak, Brad; Clowers, Brian; Hill, Herbert H.
2010-01-01
The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by MSn was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS3, the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS-MSn analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in MS/MS experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS-MSn analysis of a set of isomers included within a single HPLC fraction of oligosaccharides released from bovine submaxillary mucin is described. PMID:19562326
Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.
2012-01-01
Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208
Alihosseini, Farzaneh; Ju, Kou-San; Lango, Jozsef; Hammock, Bruce D; Sun, Gang
2008-01-01
A strain of Vibrio sp. isolated from marine sediments produced large quantities of bright red pigments that could be used to dye many fibers including wool, nylon, acrylics, and silk. Characterization of the pigments by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed three prodiginine-like structures with nonpolar characteristics and low molecular mass. UV-visible spectra of the major constituent in methanol solution showed absorbance at lambda max 530 nm wavelength. The accurate mass result showed that the main isolated product has a molecular mass of m/z 323.1997. Further analysis using mass fragmentation (MS/MS), 1H NMR, COSY, HMQC NMR and DEPT confirmed the detailed structure of the pigment with an elementary composition of C20H25N3O. Fabrics dyed with the microbial prodiginines demonstrated antibacterial activity.
Taubitz, Jörg; Lüning, Ulrich; Grotemeyer, Jürgen
2004-11-07
Resonance enhanced multi-photon ionization-reflectron time of flight mass spectrometry is the analytical method of choice to observe hydrogen bonded supramolecules in the gas phase when protonation of basic centers competes with cluster formation.
Neutron-encoded Signatures Enable Product Ion Annotation From Tandem Mass Spectra*
Richards, Alicia L.; Vincent, Catherine E.; Guthals, Adrian; Rose, Christopher M.; Westphall, Michael S.; Bandeira, Nuno; Coon, Joshua J.
2013-01-01
We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification. PMID:24043425
Annotation: a computational solution for streamlining metabolomics analysis
Domingo-Almenara, Xavier; Montenegro-Burke, J. Rafael; Benton, H. Paul; Siuzdak, Gary
2017-01-01
Metabolite identification is still considered an imposing bottleneck in liquid chromatography mass spectrometry (LC/MS) untargeted metabolomics. The identification workflow usually begins with detecting relevant LC/MS peaks via peak-picking algorithms and retrieving putative identities based on accurate mass searching. However, accurate mass search alone provides poor evidence for metabolite identification. For this reason, computational annotation is used to reveal the underlying metabolites monoisotopic masses, improving putative identification in addition to confirmation with tandem mass spectrometry. This review examines LC/MS data from a computational and analytical perspective, focusing on the occurrence of neutral losses and in-source fragments, to understand the challenges in computational annotation methodologies. Herein, we examine the state-of-the-art strategies for computational annotation including: (i) peak grouping or full scan (MS1) pseudo-spectra extraction, i.e., clustering all mass spectral signals stemming from each metabolite; (ii) annotation using ion adduction and mass distance among ion peaks; (iii) incorporation of biological knowledge such as biotransformations or pathways; (iv) tandem MS data; and (v) metabolite retention time calibration, usually achieved by prediction from molecular descriptors. Advantages and pitfalls of each of these strategies are discussed, as well as expected future trends in computational annotation. PMID:29039932
Cajka, Tomas; Fiehn, Oliver
2017-01-01
This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.
MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra
NASA Astrophysics Data System (ADS)
Reid, Deseree J.; Diesing, Jessica M.; Miller, Matthew A.; Perry, Scott M.; Wales, Jessica A.; Montfort, William R.; Marty, Michael T.
2018-04-01
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. [Figure not available: see fulltext.
Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher
2012-09-04
Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.
In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.
Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa
2015-04-01
The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.
Liao, Wenta; Draper, William M
2013-02-21
The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.
Meng, Xianshuang; Bai, Hua; Guo, Teng; Niu, Zengyuan; Ma, Qiang
2017-12-15
Comprehensive identification and quantitation of 100 multi-class regulated ingredients in cosmetics was achieved using ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). A simple, efficient, and inexpensive sample pretreatment protocol was developed using ultrasound-assisted extraction (UAE), followed by dispersive solid-phase extraction (dSPE). The cosmetic samples were analyzed by UHPLC-Q-Orbitrap HRMS under synchronous full-scan MS and data-dependent MS/MS (full-scan MS 1 /dd-MS 2 ) acquisition mode. The mass resolution was set to 70,000 FWHM (full width at half maximum) for full-scan MS 1 and 17,500 FWHM for dd-MS 2 stage with the experimentally measured mass deviations of less than 2ppm (parts per million) for quasi-molecular ions and 5ppm for characteristic fragment ions for each individual analyte. An accurate-mass database and a mass spectral library were built in house for searching the 100 target compounds. Broad screening was conducted by comparing the experimentally measured exact mass of precursor and fragment ions, retention time, isotopic pattern, and ionic ratio with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The developed methodology was evaluated and validated in terms of limits of detection (LODs), limits of quantitation (LOQs), linearity, stability, accuracy, and matrix effect. The UHPLC-Q-Orbitrap HRMS approach was applied for the analysis of 100 target illicit ingredients in 123 genuine cosmetic samples, and exhibited great potential for high-throughput, sensitive, and reliable screening of multi-class illicit compounds in cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets.
Monajjemzadeh, Farnaz; Hassanzadeh, Davoud; Valizadeh, Hadi; Siahi-Shadbad, Mohammad R; Mojarrad, Javid Shahbazi; Robertson, Thomas A; Roberts, Michael S
2009-11-01
This study documents drug-excipient incompatibility studies of acyclovir in physical mixtures with lactose and in different tablet brands. Differential scanning calorimetry (DSC) was initially used to assess compatibility of mixtures. The Fourier-transform infrared (FTIR) spectrum was also compared with the spectra of pure drug and excipient. Although DSC results indicated incompatibility with lactose, FTIR spectra were mostly unmodified due to overlapping peaks. Samples of isothermally stressed physical mixture were stored at 95 degrees C for 24 h. The residual drug was monitored using a validated high-performance liquid chromatography (HPLC) assay and data fitting to solid-state kinetic models was performed. The drug loss kinetics followed a diffusion model. The aqueous mixture of drug and excipient was heated in order to prepare an adduct mixture. HPLC analysis revealed one extra peak that was fractionated and subsequently injected into the liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. The MRM (Multiple Reaction Monitoring) chromatograms characterized the peak with molecular mass corresponding to an acyclovir-lactose Maillard reaction product. The presence of lactose in commercial tablets was checked using a new TLC method. Overall, the incompatibility of acyclovir with lactose was successfully evaluated using a combination of thermal methods and LC-MS/MS.
Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS
Stingu, Catalina S.; Borgmann, Toralf; Rodloff, Arne C.; Vielkind, Paul; Jentsch, Holger; Schellenberger, Wolfgang; Eschrich, Klaus
2015-01-01
Background Actinomyces are a common part of the residential flora of the human intestinal tract, genitourinary system and skin. Isolation and identification of Actinomyces by conventional methods is often difficult and time consuming. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has become a rapid and simple method to identify bacteria. Objective The present study evaluated a new in-house algorithm using MALDI-TOF-MS for rapid identification of different species of oral Actinomyces cultivated from subgingival biofilm. Design Eleven reference strains and 674 clinical strains were used in this study. All the strains were preliminarily identified using biochemical methods and then subjected to MALDI-TOF-MS analysis using both similarity-based analysis and classification methods (support vector machine [SVM]). The genotype of the reference strains and of 232 clinical strains was identified by sequence analysis of the 16S ribosomal RNA (rRNA). Results The sequence analysis of the 16S rRNA gene of all references strains confirmed their previous identification. The MALDI-TOF-MS spectra obtained from the reference strains and the other clinical strains undoubtedly identified as Actinomyces by 16S rRNA sequencing were used to create the mass spectra reference database. Already a visual inspection of the mass spectra of different species reveals both similarities and differences. However, the differences between them are not large enough to allow a reliable differentiation by similarity analysis. Therefore, classification methods were applied as an alternative approach for differentiation and identification of Actinomyces at the species level. A cross-validation of the reference database representing 14 Actinomyces species yielded correct results for all species which were represented by more than two strains in the database. Conclusions Our results suggest that a combination of MALDI-TOF-MS with powerful classification algorithms, such as SVMs, provide a useful tool for the differentiation and identification of oral Actinomyces. PMID:25597306
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier
2017-04-01
Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate
Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki
2009-04-01
We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).
Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry.
Neta, Pedatsur; Simón-Manso, Yamil; Liang, Yuxue; Stein, Stephen E
2014-09-15
Electrospray ionization mass spectrometry (ESI-MS) of many protonated aldehydes shows loss of CO as a major fragmentation pathway. However, we find that certain aldehydes undergo loss of H2 followed by reaction with water in the collision cell. This complicates interpretation of tandem mass (MS/MS) spectra and affects multiple reaction monitoring (MRM) results. 3-Formylchromone and other aldehydes were dissolved in acetonitrile/water/formic acid and studied by ESI-MS to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, ion trap (IT), and Orbitrap HCD). Certain product ions were found to react with water and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Theoretical calculations were performed to help with the interpretation of the fragmentation mechanism. Protonated 3-formylchromones and 3-formylcoumarins undergo loss of H2 as a major fragmentation route to yield a ketene cation, which reacts with water to form a protonated carboxylic acid. In general, protonated aldehydes which contain a vicinal group that forms a hydrogen bridge with the formyl group undergo significant loss of H2. Subsequent losses of CO and C3O are also observed. Theoretical calculations suggest mechanistic details for these losses. Loss of H2 is a major fragmentation channel for protonated 3-formychromones and certain other aldehydes and it is followed by reaction with water to produce a protonated carboxylic acid, which undergoes subsequent fragmentation. This presents a problem for reference libraries and raises concerns about MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun
2018-03-01
Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.
Zhao, Heng-Qiang; Wang, Xiao; Li, Hong-Mei; Yang, Bin; Yang, Hong-Jun; Huang, Luqi
2013-08-15
A method combining hydrophilic interaction chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) was developed for the characterization and determination of natural Cordyceps. Separation was achieved on a Waters Xbridge Amide column with gradient elution. Identification of 15 target nucleosides and nucleobases was based on retention time, UV spectra and mass measurements of the protonated molecules ([M+H]⁺) and main fragment ions (ESI-TOF/MS). Eight non-target compounds were tentatively identified by ESI-TOF/MS. The 15 target compounds were quantified by HILIC-ESI-MS/MS using time-programmed selective ion monitoring or multiple reaction monitoring in positive-ion mode under optimized mass conditions. This technique showed good linearity, repeatability and recovery. This approach was also successfully implemented in the analysis of nucleosides and nucleobases in 12 batches of natural Cordyceps samples that were collected from different regions in China. The developed HILIC-ESI-MS method exhibited clear advantages in identifying and determining highly polar bioactive components in Cordyceps, as well as their quality control.
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-01-01
A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-08-01
A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-09-21
Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.
Mesihää, Samuel; Ketola, Raimo A; Pelander, Anna; Rasanen, Ilpo; Ojanperä, Ilkka
2017-03-01
Gas chromatography coupled to atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (GC-APCI-QTOFMS) was evaluated for the identification of new psychoactive substances (NPS). An in-house high mass resolution GC-APCI-QTOFMS test library was developed for 29 nitrogen-containing drugs belonging mostly to synthetic stimulants. The library was based on 12 intra-day measurements of each compound at three different collision energies, 10, 20 and 40 eV. The in-house library mass spectra were compared to mass spectra from a commercial library constructed by liquid chromatography-electrospray ionization (LC-ESI) QTOFMS. The reversed library search scores between the in-house GC-APCI library and the commercial LC-ESI library were compared once a week during a 5-week period by using data measured by GC-APCI-QTOFMS. The protonated molecule was found for all drugs in the full scan mode, and the drugs were successfully identified by both libraries in the targeted MS/MS mode. The GC-APCI library score averaged over all collision energies was as high as 94.4/100 with a high repeatability, while the LC-ESI library score was also high (89.7/100) with a repeatability only slightly worse. These results highlight the merits of GC-APCI-QTOFMS in the analysis of NPS even in situations where the reference standards are not immediately available, taking advantage of the accurate mass measurement of the protonated molecule and product ions, and comparison to existing soft-ionization mass spectral libraries. Graphical abstract Tandem mass spectra obtained from GC-APCI-QTOFMS are comparable to LC-ESI-QTOFMS library spectra.
Single-protein nanomechanical mass spectrometry in real time
Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.
2012-01-01
Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541
Niitsuma, Katsunao; Saito, Miwako; Koshiba, Shizuko; Kaneko, Michiyo
2014-05-01
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is being played an important role for the inspection of clinical microorganism as a rapid and the price reduction. Mass spectra obtained by measuring become points of identification whether the peak pattern match any species mass spectral pattern. We currently use MALDI-TOF MS for rapid and accurate diagnosis of inactivated reference and clinical isolates of Mycobacterium because of the improved pretreatment techniques compared with former inspection methods that pose a higher risk of infection to the operator. The identification matching rate of score value (SV) peak pattern spectra was compared with that of conventional methods such as strain diffusion/amplification. Also, cultures were examined after a fixed number of days. Compared with the initial inspection technique, the pretreatment stage of current MALDI-TOF MS inspection techniques can improve the analysis of inactivated acid-fast bacteria that are often used as inspection criteria strains of clinical isolates. Next, we compared the concordance rate for identification between MALDI-TOF MS and conventional methods such as diffusion/amplification by comparison of peak pattern spectra and evaluated SV spectra to identify differences in the culture media after the retention period. In examination of 158 strains of clinical isolated Mycobacterium tuberculosis complex (MTC), the identification coincidence rate in the genus level in a matching pattern was 99.4%, when the species level was included 94.9%. About 37 strains of nontuberculous mycobacteria (NTM), the identification coincidence rate in the genus level was 94.6%. M. bovis BCG (Tokyo strain) in the reference strain was judged by the matching pattern to be MTC, and it suggested that they are M. tuberculosis and affinity species with high DNA homology. Nontuberculous mycobacterial M. gordonae strain JATA 33-01 shared peak pattern spectra, excluding the isolates, with each clinically isolated strain. However, the mass spectra of six M. gordonae clinical isolates suggested polymorphisms with similar mass-to-charge ratios compared with those of the reference strains. The peak pattern spectra of the clinical isolates and reference strains, excluding the NTM M. gordonae strain JATA33-01, were consistent with the peak pattern characteristics of each isolate. However, a comparison between the peak patterns of the reference strains and those of the six clinically isolated M. gordonae strains revealed a similar mass-to-charge ratio, which may indicate few polymorphisms. The SV spectrum of the improved inspection technique showed no fidelity, but it was acceptable after days of culture as indicated by the decrease in SV (0.3 degree). Also, the reproducibility of this method was good, but no difference was observed from the SV of the improved inspection technique, which decreased by approximately 0.3 because of the number of days of culture storage. In addition, expansion of the database and dissemination of regional specificity by genotype analysis of clinical isolates was relevant to the accumulated data, as expected. In future studies, the relevance and regional specificity of clinical isolates by genotype analysis can be determined by stacking the solid media and database penetration.
Şahar, Umut; Deveci, Remziye
2017-05-01
Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialyzed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses, to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type. © 2017 Wiley Periodicals, Inc.
Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)
NASA Technical Reports Server (NTRS)
Peery, Benjamin F., Jr.
1986-01-01
A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.
NITPICK: peak identification for mass spectrometry data
Renard, Bernhard Y; Kirchner, Marc; Steen , Hanno; Steen, Judith AJ; Hamprecht , Fred A
2008-01-01
Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from . PMID:18755032
NASA Astrophysics Data System (ADS)
Smith, Donald F.; Aizikov, Konstantin; Duursma, Marc C.; Giskes, Frans; Spaanderman, Dirk-Jan; McDonnell, Liam A.; O'Connor, Peter B.; Heeren, Ron M. A.
2011-01-01
We describe the construction and application of a new MALDI source for FT-ICR mass spectrometry imaging. The source includes a translational X-Y positioning stage with a 10 × 10 cm range of motion for analysis of large sample areas, a quadrupole for mass selection, and an external octopole ion trap with electrodes for the application of an axial potential gradient for controlled ion ejection. An off-line LC MALDI MS/MS run demonstrates the utility of the new source for data- and position-dependent experiments. A FT-ICR MS imaging experiment of a coronal rat brain section yields ˜200 unique peaks from m/z 400-1100 with corresponding mass-selected images. Mass spectra from every pixel are internally calibrated with respect to polymer calibrants collected from an adjacent slide.
Fu, Yanqing; Zhou, Zhihui; Kong, Hongwei; Lu, Xin; Zhao, Xinjie; Chen, Yihui; Chen, Jia; Wu, Zeming; Xu, Zhiliang; Zhao, Chunxia; Xu, Guowang
2016-09-06
Identification of illegal additives in complex matrixes is important in the food safety field. In this study a nontargeted screening strategy was developed to find illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). First, an analytical method for possible illegal additives in complex matrixes was established including fast sample pretreatment, accurate UHPLC separation, and HRMS detection. Second, efficient data processing and differential analysis workflow were suggested and applied to find potential risk compounds. Third, structure elucidation of risk compounds was performed by (1) searching online databases [Metlin and the Human Metabolome Database (HMDB)] and an in-house database which was established at the above-defined conditions of UHPLC-HRMS analysis and contains information on retention time, mass spectra (MS), and tandem mass spectra (MS/MS) of 475 illegal additives, (2) analyzing fragment ions, and (3) referring to fragmentation rules. Fish was taken as an example to show the usefulness of the nontargeted screening strategy, and six additives were found in suspected fish samples. Quantitative analysis was further carried out to determine the contents of these compounds. The satisfactory application of this strategy in fish samples means that it can also be used in the screening of illegal additives in other kinds of food samples.
NASA Astrophysics Data System (ADS)
Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Sacks, David B.; Yu, Yi-Kuo
2018-06-01
Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo
2018-06-05
Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Calvano, Cosima Damiana; Cataldi, Tommaso R. I.; Kögel, Julius F.; Monopoli, Antonio; Palmisano, Francesco; Sundermeyer, Jorge
2017-08-01
The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/ z 341.1, reducing ones exhibited a peak at m/ z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways.
Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella
2008-11-15
The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.
2014-07-01
De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.
Poston, Chloe N; Higgs, Richard E; You, Jinsam; Gelfanova, Valentina; Hale, John E; Knierman, Michael D; Siegel, Robert; Gutierrez, Jesus A
2014-07-01
De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.
Stein, Markus; Tran, Vanessa; Nichol, Kimberly A; Lagacé-Wiens, Philippe; Pieroni, Peter; Adam, Heather J; Turenne, Christine; Walkty, Andrew J; Normand, Anne-Cécile; Hendrickx, Marijke; Piarroux, Renaud; Karlowsky, James A
2018-06-12
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is commonly used by clinical microbiology laboratories to identify bacterial pathogens and yeasts, but not for the identification of moulds. Recent progress in extraction protocols and the composition of comparative libraries support potential application of MALDI-TOF MS for mould identification in clinical microbiology laboratories. We evaluated the performance of the Bruker Microflex ™ MALDI-TOF MS instrument (Billerica, MA, USA) to identify clinical isolates and reference strains of moulds using three libraries, the Bruker mould library, the National Institutes of Health (NIH) library, and the Mass Spectrometry Identification (MSI) online library, and compared those results to conventional (morphological) and molecular (18S/ITS; gold standard) identification methods. All three libraries demonstrated greater accuracy in genus identification (≥94.9%) than conventional methods (86.4%). MALDI-TOF MS identified 73.3% of isolates to species-level compared to only 31.7% by conventional methods. The MSI library demonstrated the highest rate of species-level identification (72.0%) compared to NIH (19.5%) and Bruker (13.6%) libraries. Greater than 20% of moulds remained unidentified to species-level by all three MALDI-TOF MS libraries primarily because of library limitations or imperfect spectra. The overall identification rate of each MALDI-TOF MS library depended on the number of species and the number of spectra representing each species in the library. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.
Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato
2014-06-01
On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.
Roussis, S G
2001-08-01
The automated acquisition of the product ion spectra of all precursor ions in a selected mass range by using a magnetic sector/orthogonal acceleration time-of-flight (oa-TOF) tandem mass spectrometer for the characterization of complex petroleum mixtures is reported. Product ion spectra are obtained by rapid oa-TOF data acquisition and simultaneous scanning of the magnet. An analog signal generator is used for the scanning of the magnet. Slow magnet scanning rates permit the accurate profiling of precursor ion peaks and the acquisition of product ion spectra for all isobaric ion species. The ability of the instrument to perform both high- and low-energy collisional activation experiments provides access to a large number of dissociation pathways useful for the characterization of precursor ions. Examples are given that illustrate the capability of the method for the characterization of representative petroleum mixtures. The structural information obtained by the automated MS/MS experiment is used in combination with high-resolution accurate mass measurement results to characterize unknown components in a polar extract of a refinery product. The exhaustive mapping of all precursor ions in representative naphtha and middle-distillate fractions is presented. Sets of isobaric ion species are separated and their structures are identified by interpretation from first principles or by comparison with standard 70-eV EI libraries of spectra. The utility of the method increases with the complexity of the samples.
PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data.
Saeed, Fahad; Pisitkun, Trairak; Hoffert, Jason D; Rashidian, Sara; Wang, Guanghui; Gucek, Marjan; Knepper, Mark A
2013-11-07
Phosphorylation site assignment of high throughput tandem mass spectrometry (LC-MS/MS) data is one of the most common and critical aspects of phosphoproteomics. Correctly assigning phosphorylated residues helps us understand their biological significance. The design of common search algorithms (such as Sequest, Mascot etc.) do not incorporate site assignment; therefore additional algorithms are essential to assign phosphorylation sites for mass spectrometry data. The main contribution of this study is the design and implementation of a linear time and space dynamic programming strategy for phosphorylation site assignment referred to as PhosSA. The proposed algorithm uses summation of peak intensities associated with theoretical spectra as an objective function. Quality control of the assigned sites is achieved using a post-processing redundancy criteria that indicates the signal-to-noise ratio properties of the fragmented spectra. The quality assessment of the algorithm was determined using experimentally generated data sets using synthetic peptides for which phosphorylation sites were known. We report that PhosSA was able to achieve a high degree of accuracy and sensitivity with all the experimentally generated mass spectrometry data sets. The implemented algorithm is shown to be extremely fast and scalable with increasing number of spectra (we report up to 0.5 million spectra/hour on a moderate workstation). The algorithm is designed to accept results from both Sequest and Mascot search engines. An executable is freely available at http://helixweb.nih.gov/ESBL/PhosSA/ for academic research purposes.
NASA Astrophysics Data System (ADS)
Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.
2018-02-01
Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2010-02-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analysed using positive matrix factorization (PMF). The two instruments were given balanced weight in the PMF analysis by the application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the instrument relative weight within each solution. The PMF analysis yielded a 6-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling and oxidative processing. The unified dataset provides information on emission sources (particle and VOC) and atmospheric processing that cannot be obtained from the datasets of the individual instruments: (1) apportionment of oxygenated VOCs to either direct emission sources or secondary reaction products; (2) improved correlation of oxygenated aerosol factors with photochemical age; and (3) increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
Maasz, G; Takács, P; Boda, P; Varbiro, G; Pirger, Z
2017-12-01
Besides food quality control of fish or cephalopods, the novel mass spectrometry (MS) approaches could be effective and beneficial methods for the investigation of biodiversity in ecological research. Our aims were to verify the applicability of MALDI-TOF MS in the rapid identification of closely related species, and to further develop it for sex determination in phenotypically similar fish focusing on the low mass range. For MALDI-TOF MS spectra analysis, ClinProTools software was applied, but our observed classification was also confirmed by Self Organizing Map. For verifying the wide applicability of the method, brains from invertebrate and vertebrate species were used in order to detect the species related markers from two mayflies and eight fish as well as sex-related markers within bleak. Seven Ephemera larvae and sixty-one fish species related markers were observed and nineteen sex-related markers were identified in bleak. Similar patterns were observed between the individuals within one species. In contrast, there were markedly diverse patterns between the different species and sexes visualized by SOMs. Two different Ephemera species and male or female fish were identified with 100% accuracy. The various fish species were classified into 8 species with a high level of accuracy (96.2%). Based on MS data, dendrogram was generated from different fish species by using ClinProTools software. This MS-based dendrogram shows relatively high correspondence with the phylogenetic relationships of both the studied species and orders. In summary, MALDI-TOF MS provides a cheap, reliable, sensitive and fast identification tool for researchers in the case of closely related species using mass spectra acquired in a low mass range to define specific molecular profiles. Moreover, we presented evidence for the first time for determination of sex within one fish species by using this method. We conclude that it is a powerful tool that can revolutionize ecological and environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.
Zeng, Shanshan; Wang, Lu; Chen, Teng; Wang, Yuefei; Mo, Huanbiao; Qu, Haibin
2012-07-06
The paper presents a novel strategy to identify analytical markers of traditional Chinese medicine preparation (TCMP) rapidly via direct analysis in real time mass spectrometry (DART-MS). A commonly used TCMP, Danshen injection, was employed as a model. The optimal analysis conditions were achieved by measuring the contribution of various experimental parameters to the mass spectra. Salvianolic acids and saccharides were simultaneously determined within a single 1-min DART-MS run. Furthermore, spectra of Danshen injections supplied by five manufacturers were processed with principal component analysis (PCA). Obvious clustering was observed in the PCA score plot, and candidate markers were recognized from the contribution plots of PCA. The suitability of potential markers was then confirmed by contrasting with the results of traditional analysis methods. Using this strategy, fructose, glucose, sucrose, protocatechuic aldehyde and salvianolic acid A were rapidly identified as the markers of Danshen injections. The combination of DART-MS with PCA provides a reliable approach to the identification of analytical markers for quality control of TCMP. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Shu-Ping; Liu, Lei; Wang, Ling-Ling; Jiang, Peng; Zhang, Ji-Quan; Zhang, Wei-Dong; Liu, Run-Hui
2010-06-15
Based on the serum pharmacochemistry technique and high-performance liquid chromatography/diode-array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C(18) column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright (c) 2010 John Wiley & Sons, Ltd.
Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael
2018-04-20
The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.
Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai
2013-12-01
The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.
Srbek, Jan; Klejdus, Bořivoj; Douša, Michal; Břicháč, Jiří; Stasiak, Pawel; Reitmajer, Josef; Nováková, Lucie
2014-12-01
In this study, direct analysis in real time-mass spectrometry (DART-MS) was assessed for the analysis of various pharmaceutical formulations with intention to summarize possible applications for the routine pharmaceutical development. As DART is an ambient ionization technique, it allows direct analysis of pharmaceutical samples in solid or liquid form without complex sample preparation, which is often the most time-consuming part of the analytical method. This makes the technique suitable for many application fields, including pharmaceutical drug development. DART mass spectra of more than twenty selected tablets and other common pharmaceutical formulations, i.e. injection solutions, ointments and suppositories developed in the pharmaceutical industry during several recent years are presented. Moreover, as thin-layer chromatography (TLC) is still very popular for the monitoring of the reactions in the synthetic chemistry, several substances were analyzed directly from the TLC plates to demonstrate the simplicity of the technique. Pure substance solutions were spotted onto a TLC plate and then analyzed with DART without separation. This was the first DART-MS study of pharmaceutical dosage forms using DART-Orbitrap combination. The duration of sample analysis by the DART-MS technique lasted several seconds, allowing enough time to collect sufficient number of data points for compound identification. The experimental setup provided excellent mass accuracy and high resolution of the mass spectra which allowed unambiguous identification of the compounds of interest. Finally, DART mass spectrometry was also used for the monitoring of the selected impurity distribution in the atorvastatin tablets. These measurements demonstrated DART to be robust ionization technique, which provided easy-to-interpret mass spectra for the broad range of compounds. DART has high-throughput potential for various types of pharmaceutical analyses and therefore eliminates the time for sample cleanup and chromatographic separation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine
2012-02-01
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym-1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.
Awan, Muaaz Gul; Saeed, Fahad
2017-08-01
Modern high resolution Mass Spectrometry instruments can generate millions of spectra in a single systems biology experiment. Each spectrum consists of thousands of peaks but only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-processing of MS data to detect noisy and non-useful peaks are an active area of research. Most of the sequential noise reducing algorithms are impractical to use as a pre-processing step due to high time-complexity. In this paper, we present a GPU based dimensionality-reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel data structures which optimize the memory and computational operations inside GPU. These novel data structures include Binary Spectra and Quantized Indexed Spectra (QIS) . The former helps in communicating essential information between CPU and GPU using minimum amount of data while latter enables us to store and process complex 3-D data structure into a 1-D array structure while maintaining the integrity of MS data. Our proposed algorithm also takes into account the limited memory of GPUs and switches between in-core and out-of-core modes based upon the size of input data. G-MSR achieves a peak speed-up of 386x over its sequential counterpart and is shown to process over a million spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source at GitHub at the following link: https://github.com/pcdslab/G-MSR.
Shelley, Jacob T; Hieftje, Gary M
2010-04-01
The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID.
Wang, Mingxun; Carver, Jeremy J; Phelan, Vanessa V; Sanchez, Laura M; Garg, Neha; Peng, Yao; Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P, Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J N; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M C; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno
2016-08-09
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.
NASA Astrophysics Data System (ADS)
Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.
2011-03-01
The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.
Hanneman, Andrew J S; Strand, James; Huang, Chi-Ting
2014-02-01
Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor-Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization-sequential mass spectrometry (NSI-MS(n)). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (-) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(-) NSI-MS(n) investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.
1991-12-01
An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).
Identification of bacteria isolated from veterinary clinical specimens using MALDI-TOF MS.
Pavlovic, Melanie; Wudy, Corinna; Zeller-Peronnet, Veronique; Maggipinto, Marzena; Zimmermann, Pia; Straubinger, Alix; Iwobi, Azuka; Märtlbauer, Erwin; Busch, Ulrich; Huber, Ingrid
2015-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged as a rapid and accurate identification method for bacterial species. Although it has been successfully applied for the identification of human pathogens, it has so far not been well evaluated for routine identification of veterinary bacterial isolates. This study was performed to compare and evaluate the performance of MALDI-TOF MS based identification of veterinary bacterial isolates with commercially available conventional test systems. Discrepancies of both methods were resolved by sequencing 16S rDNA and, if necessary, the infB gene for Actinobacillus isolates. A total of 375 consecutively isolated veterinary samples were collected. Among the 357 isolates (95.2%) correctly identified at the genus level by MALDI-TOF MS, 338 of them (90.1% of the total isolates) were also correctly identified at the species level. Conventional methods offered correct species identification for 319 isolates (85.1%). MALDI-TOF identification therefore offered more accurate identification of veterinary bacterial isolates. An update of the in-house mass spectra database with additional reference spectra clearly improved the identification results. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for classification and identification of veterinary bacterial isolates.
Abad-García, Beatriz; Berrueta, Luis A; Garmón-Lobato, Sergio; Gallo, Blanca; Vicente, Francisca
2009-07-10
In the present study, a methodology based on liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer for the simultaneous identification of phenolic compounds in fruit juices has been developed. 72 available phenolic compound standards from diverse families present in fruits have been studied in order to analyze their fragmentation pattern. As a result, a general strategy for the characterization of unknown phenolic compounds in fruit juices was designed: (i) taking into account its UV-visible spectrum and elution order, assign the unknown polyphenol to a polyphenol class, (ii) identify the quasi-molecular ion using positive and negative MS spectra, being supported by adducts generated with solvent or sodium and molecular complexes, (iii) determinate the pattern of glycosylation in positive mode using ESI(+)-CID MS/MS product ion scan experiments, selecting the quasi-molecular ion as precursor ion, and finally, (iv) study the identity of the aglycone through ESI(+)-CID MS/MS product ion spectra from the protonated aglycone, [Y(0)](+). This strategy was successfully employed for the characterization of known and unknown phenolic compounds in juices from 17 different fruits.
Backe, Will J
2017-06-30
New legislation in the state of Minnesota prohibits the sale of children's personal-care products (PCPs) that contain more than 500 ng/mg formaldehyde. Previous attempts to quantify formaldehyde in PCPs use nonspecific derivatization procedures that employ harsh reagents and/or nonspecific detection. Derivatization of formaldehyde by acetylacetone occurs under mild conditions and is specific for formaldehyde but it has not been investigated using high-performance liquid chromatography/tandem mass-spectrometry (HPLC/MS/MS). To determine formaldehyde, PCPs were dissolved and then interferences were minimized by graphitized-carbon solid-phase extraction. Formaldehyde was derivatized to 3,5-diacetyl-1,4-dihydrolutidine (DDL) using an acetylacetone solution. Post-derivatization, samples were diluted and analyzed by HPLC/MS/MS. Quantification was performed by isotopic dilution. Product-ion spectra were acquired for DDL and D 12 -DDL. The mass shifts between the two product-ion spectra were used to assign fragment structures. To confirm molecular formulas, high-resolution accurate-mass analysis of the DDL product ions was performed by quadrupole time-of-flight MS. Structures were proposed for all product ions of DDL above 10% relative intensity. Method accuracy ranged between 96-104% for all matrices at all concentrations tested. Method precision was less than 4% relative standard deviation. The reporting limit was 10 ng/mg in PCPs and 100 μg/L in water. Twenty children's PCPs were tested to demonstrate the method and formaldehyde was reported in five from 23-1500 ng/mg. Of those five, two samples contained formaldehyde above the Minnesota regulatory limit. The developed method allows for the accurate quantification of formaldehyde in PCPs at levels below those required by a new regulation on children's products in Minnesota. The method includes a derivatization procedure that is newly adapted to HPLC/MS/MS; therefore, structures were proposed for the product ions of the derivative (DDL). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Broeckling, Corey D.; Ganna, Andrea; Layer, Mark; ...
2016-09-08
Liquid chromatography coupled to electrospray ionization-mass spectrometry (LC–ESI-MS) is a versatile and robust platform for metabolomic analysis. However, while ESI is a soft ionization technique, in-source phenomena including multimerization, nonproton cation adduction, and in-source fragmentation complicate interpretation of MS data. Here, we report chromatographic and mass spectrometric behavior of 904 authentic standards collected under conditions identical to a typical nontargeted profiling experiment. The data illustrate that the often high level of complexity in MS spectra is likely to result in misinterpretation during the annotation phase of the experiment and a large overestimation of the number of compounds detected. However, ourmore » analysis of this MS spectral library data indicates that in-source phenomena are not random but depend at least in part on chemical structure. These nonrandom patterns enabled predictions to be made as to which in-source signals are likely to be observed for a given compound. Using the authentic standard spectra as a training set, we modeled the in-source phenomena for all compounds in the Human Metabolome Database to generate a theoretical in-source spectrum and retention time library. A novel spectral similarity matching platform was developed to facilitate efficient spectral searching for nontargeted profiling applications. Taken together, this collection of experimental spectral data, predictive modeling, and informatic tools enables more efficient, reliable, and transparent metabolite annotation.« less
NASA Astrophysics Data System (ADS)
Garnier, Nicolas; Rolando, Christian; Høtje, Jakob Munk; Tokarski, Caroline
2009-07-01
This work presents the precise identification of triacylglycerols (TAGs) extracted from archaeological samples using a methodology based on nanoelectrospray and Fourier transform mass spectrometry. The archaeological TAG identification needs adapted sample preparation protocols to trace samples in advanced degradation state. More precisely, the proposed preparation procedure includes extraction of the lipid components from finely grinded ceramic using dichloromethane/methanol mixture with additional ultrasonication treatment, and TAG purification by solid phase extraction on a diol cartridge. Focusing on the analytical approach, the implementation of "in-house" species-dependent TAG database was investigated using MS and InfraRed Multiphoton Dissociation (IRMPD) MS/MS spectra; several vegetal oils, dairy products and animal fats were studied. The high mass accuracy of the Fourier transform analyzer ([Delta]m below 2.5 ppm) provides easier data interpretation, and allows distinction between products of different origins. In details, the IRMPD spectra of the lithiated TAGs reveal fragmentation reactions including loss of free neutral fatty acid and loss of fatty acid as [alpha],[beta]-unsaturated moieties. Based on the developed preparation procedure and on the constituted database, TAG extracts from 5th century BC to 4th century AD Olbia lamps were analyzed. The structural information obtained succeeds in identifying that bovine/ovine fats were used as fuel used in these archaeological Olbia lamps.
Broeckling, Corey D.; Ganna, Andrea; Layer, Mark; ...
2016-08-25
Liquid chromatography coupled to electrospray ionization-mass spectrometry (LC–ESI-MS) is a versatile and robust platform for metabolomic analysis. However, while ESI is a soft ionization technique, in-source phenomena including multimerization, nonproton cation adduction, and in-source fragmentation complicate interpretation of MS data. Here, we report chromatographic and mass spectrometric behavior of 904 authentic standards collected under conditions identical to a typical nontargeted profiling experiment. The data illustrate that the often high level of complexity in MS spectra is likely to result in misinterpretation during the annotation phase of the experiment and a large overestimation of the number of compounds detected. However, ourmore » analysis of this MS spectral library data indicates that in-source phenomena are not random but depend at least in part on chemical structure. These nonrandom patterns enabled predictions to be made as to which in-source signals are likely to be observed for a given compound. Using the authentic standard spectra as a training set, we modeled the in-source phenomena for all compounds in the Human Metabolome Database to generate a theoretical in-source spectrum and retention time library. A novel spectral similarity matching platform was developed to facilitate efficient spectral searching for nontargeted profiling applications. Taken together, this collection of experimental spectral data, predictive modeling, and informatic tools enables more efficient, reliable, and transparent metabolite annotation.« less
Griss, Johannes; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan Antonio
2012-03-01
We here present the jmzReader library: a collection of Java application programming interfaces (APIs) to parse the most commonly used peak list and XML-based mass spectrometry (MS) data formats: DTA, MS2, MGF, PKL, mzXML, mzData, and mzML (based on the already existing API jmzML). The library is optimized to be used in conjunction with mzIdentML, the recently released standard data format for reporting protein and peptide identifications, developed by the HUPO proteomics standards initiative (PSI). mzIdentML files do not contain spectra data but contain references to different kinds of external MS data files. As a key functionality, all parsers implement a common interface that supports the various methods used by mzIdentML to reference external spectra. Thus, when developing software for mzIdentML, programmers no longer have to support multiple MS data file formats but only this one interface. The library (which includes a viewer) is open source and, together with detailed documentation, can be downloaded from http://code.google.com/p/jmzreader/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Jasmine S.-H.; Whitehead, Shawn N.; Yeung, Ken K.-C.
2018-02-01
The use of MALDI MS as a fast and direct method to detect the Aβ oligomers of different masses is examined in this paper. Experimental results suggest that Aβ oligomers are ionized and detected as singly charged ions, and thus, the resulting mass spectrum directly reports the oligomer size distribution. Validation experiments were performed to verify the MS data against artifacts. Mass spectra collected from modified Aβ peptides with different propensities for aggregation were compared. Generally, the relative intensities of multimers were higher from samples where oligomerization was expected to be more favorable, and vice versa. MALDI MS was also able to detect the differences in oligomeric composition before and after the incubation/oligomerization step. Such differences in sample composition were also independently confirmed with an in vitro Aβ toxicity study on primary rat cortical neurons. An additional validation was accomplished through removal of oligomers from the sample using molecular weight cutoff filters; the resulting MS data correctly reflected the removal at the expected cutoff points. The results collectively validated the ability of MALDI MS to assess the monomeric/multimeric composition of Aβ samples. [Figure not available: see fulltext.
Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang
2017-01-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759
Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives
J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky
1989-01-01
Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...
Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj
2016-10-05
Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. Copyright © 2016 Elsevier B.V. All rights reserved.
Ebhardt, H Alexander; Sabidó, Eduard; Hüttenhain, Ruth; Collins, Ben; Aebersold, Ruedi
2012-04-01
Selected or multiple reaction monitoring is a targeted mass spectrometry method (S/MRM-MS), in which many peptides are simultaneously and consistently analyzed during a single liquid chromatography-mass spectrometry (LC-S/MRM-MS) measurement. These capabilities make S/MRM-MS an attractive method to monitor a consistent set of proteins over various experimental conditions. To increase throughput for S/MRM-MS it is advantageous to use scheduled methods and unfractionated protein extracts. Here, we established the practically measurable dynamic range of proteins reliably detectable and quantifiable in an unfractionated protein extract from a human cell line using LC-S/MRM-MS. Initially, we analyzed S/MRM transition peak groups in terms of interfering signals and compared S/MRM transition peak groups to MS1-triggered MS2 spectra using dot-product analysis. Finally, using unfractionated protein extract from human cell lysate, we quantified the upper boundary of copies per cell to be 35 million copies per cell, while 7500 copies per cell represents a lower boundary using a single 35 min linear gradient LC-S/MRM-MS measurement on a current, standard commercial instrument. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kern, Carola C; Vogel, Rudi F; Behr, Jürgen
2014-06-01
Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identification of peptide features in precursor spectra using Hardklör and Krönik
Hoopmann, Michael R.; MacCoss, Michael J.; Moritz, Robert L.
2013-01-01
Hardklör and Krönik are software tools for feature detection and data reduction of high resolution mass spectra. Hardklör is used to reduce peptide isotope distributions to a single monoisotopic mass and charge state, and can deconvolve overlapping peptide isotope distributions. Krönik filters, validates, and summarizes peptide features identified with Hardklör from data obtained during liquid chromatography mass spectrometry (LC-MS). Both software tools contain a simple user interface and can be run from nearly any desktop computer. These tools are freely available from http://proteome.gs.washington.edu/software/hardklor. PMID:22389013
Villaverde, Juan José; Santos, Sónia A O; Maciel, Elisabete; Simões, Mário M Q; Pascoal Neto, Carlos; Domingues, M Rosário M; Silvestre, Armando J D
2012-02-01
This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.
How to Compute Electron Ionization Mass Spectra from First Principles.
Bauer, Christoph Alexander; Grimme, Stefan
2016-06-02
The prediction of electron ionization (EI) mass spectra (MS) from first principles has been a major challenge for quantum chemistry (QC). The unimolecular reaction space grows rapidly with increasing molecular size. On the one hand, statistical models like Eyring's quasi-equilibrium theory and Rice-Ramsperger-Kassel-Marcus theory have provided valuable insight, and some predictions and quantitative results can be obtained from such calculations. On the other hand, molecular dynamics-based methods are able to explore automatically the energetically available regions of phase space and thus yield reaction paths in an unbiased way. We describe in this feature article the status of both methodologies in relation to mass spectrometry for small to medium sized molecules. We further present results obtained with the QCEIMS program developed in our laboratory. Our method, which incorporates stochastic and dynamic elements, has been a significant step toward the reliable routine calculation of EI mass spectra.
Kauppila, Tiina J; Flink, Anu; Haapala, Markus; Laakkonen, Ulla-Maija; Aalberg, Laura; Ketola, Raimo A; Kostiainen, Risto
2011-07-15
A comprehensive study was made, where desorption atmospheric pressure photoionization (DAPPI) was applied to the direct analysis of confiscated drugs and pharmaceuticals of various forms and matrices. The analyzed samples included herbal products [Catha edulis (khat), Psilocybe mushrooms, opium and Spice], designer drugs in tablet and powder form [e.g. meta-chlorophenylpiperazine (mCPP), 3-fluoromethamphetamine (3-FMA), methylenedioxypyrovalerone (MDPV) and methylone], and anabolic steroids in oil and tablets. The analyses were performed with ion trap mass spectrometer in MS and MS(2) modes and the obtained spectra were compared with GC-MS results. Contamination of the mass spectrometer was avoided by careful adjustment of the distance of the sample from the mass spectrometer inlet. DAPPI proved to be a fast and specific analysis technique, which does not require any sample preparation, and which therefore suits well to this type of forensic analysis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.
Strohalm, Martin; Kavan, Daniel; Novák, Petr; Volný, Michael; Havlícek, Vladimír
2010-06-01
While tools for the automated analysis of MS and LC-MS/MS data are continuously improving, it is still often the case that at the end of an experiment, the mass spectrometrist will spend time carefully examining individual spectra. Current software support is mostly provided only by the instrument vendors, and the available software tools are often instrument-dependent. Here we present a new generation of mMass, a cross-platform environment for the precise analysis of individual mass spectra. The software covers a wide range of processing tasks such as import from various data formats, smoothing, baseline correction, peak picking, deisotoping, charge determination, and recalibration. Functions presented in the earlier versions such as in silico digestion and fragmentation were redesigned and improved. In addition to Mascot, an interface for ProFound has been implemented. A specific tool is available for isotopic pattern modeling to enable precise data validation. The largest available lipid database (from the LIPID MAPS Consortium) has been incorporated and together with the new compound search tool lipids can be rapidly identified. In addition, the user can define custom libraries of compounds and use them analogously. The new version of mMass is based on a stand-alone Python library, which provides the basic functionality for data processing and interpretation. This library can serve as a good starting point for other developers in their projects. Binary distributions of mMass, its source code, a detailed user's guide, and video tutorials are freely available from www.mmass.org .
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.
2016-01-01
We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262
2011-01-01
Background Various solutions have been introduced for the identification of post-translational modification (PTM) from tandem mass spectrometry (MS/MS) in proteomics field but the identification of peptide modifiers, such as Ubiquitin (Ub) and ubiquitin-like proteins (Ubls), is still a challenge. The fragmentation of peptide modifier produce complex shifted ion mass patterns in combination with other PTMs, which makes it difficult to identify and locate the PTMs on a protein sequence. Currently, most PTM identification methods do not consider the complex fragmentation of peptide modifier or deals it separately from the other PTMs. Results We developed an advanced PTM identification method that inspects possible ion patterns of the most known peptide modifiers as well as other known biological and chemical PTMs to make more comprehensive and accurate conclusion. The proposed method searches all detectable mass differences of measured peaks from their theoretical values and the mass differences within mass tolerance range are grouped as mass shift classes. The most possible locations of multiple PTMs including peptide modifiers can be determined by evaluating all possible scenarios generated by the combination of the qualified mass shift classes.The proposed method showed excellent performance in the test with simulated spectra having various PTMs including peptide modifiers and in the comparison with recently developed methods such as QuickMod and SUMmOn. In the analysis of HUPO Brain Proteome Project (BPP) datasets, the proposed method could find the ubiquitin modification sites that were not identified by other conventional methods. Conclusions This work presents a novel method for identifying bothpeptide modifiers that generate complex fragmentation patternsand PTMs that are not fragmented during fragmentation processfrom tandem mass spectra. PMID:22373085
Jarecki, Jessica L.; Frey, Brian L.; Smith, Lloyd M.; Stretton, Antony O.
2011-01-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs), or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1X coverage. PMID:21524146
Domingo-Almenara, Xavier; Brezmes, Jesus; Vinaixa, Maria; Samino, Sara; Ramirez, Noelia; Ramon-Krauel, Marta; Lerin, Carles; Díaz, Marta; Ibáñez, Lourdes; Correig, Xavier; Perera-Lluna, Alexandre; Yanes, Oscar
2016-10-04
Gas chromatography coupled to mass spectrometry (GC/MS) has been a long-standing approach used for identifying small molecules due to the highly reproducible ionization process of electron impact ionization (EI). However, the use of GC-EI MS in untargeted metabolomics produces large and complex data sets characterized by coeluting compounds and extensive fragmentation of molecular ions caused by the hard electron ionization. In order to identify and extract quantitative information on metabolites across multiple biological samples, integrated computational workflows for data processing are needed. Here we introduce eRah, a free computational tool written in the open language R composed of five core functions: (i) noise filtering and baseline removal of GC/MS chromatograms, (ii) an innovative compound deconvolution process using multivariate analysis techniques based on compound match by local covariance (CMLC) and orthogonal signal deconvolution (OSD), (iii) alignment of mass spectra across samples, (iv) missing compound recovery, and (v) identification of metabolites by spectral library matching using publicly available mass spectra. eRah outputs a table with compound names, matching scores and the integrated area of compounds for each sample. The automated capabilities of eRah are demonstrated by the analysis of GC-time-of-flight (TOF) MS data from plasma samples of adolescents with hyperinsulinaemic androgen excess and healthy controls. The quantitative results of eRah are compared to centWave, the peak-picking algorithm implemented in the widely used XCMS package, MetAlign, and ChromaTOF software. Significantly dysregulated metabolites are further validated using pure standards and targeted analysis by GC-triple quadrupole (QqQ) MS, LC-QqQ, and NMR. eRah is freely available at http://CRAN.R-project.org/package=erah .
[The biotransformation of fenetylline].
Rücker, G; Neugebauer, M; Heiden, P G
1988-04-01
After oral administration of 3,7-dihydro-1,3-dimethyl-7-2 [(1-methyl-2-phenylethyl)-amino-ethyl]-1H-purine-2,6-dione (fenetylline, Captagon), 7 new metabolites could be detected in urine besides 4 known substances. The metabolites were identified by gas chromatography (GC) and by comparison of the mass spectra (MS) of metabolites with those of authentic reference compounds using a combined GC/MS method.
Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun
2014-12-05
As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.
Pinhancos, Rebeca; Maass, Sara; Ramanathan, Dil M
2011-11-01
The presence of pharmaceuticals in drinking water is an emerging environmental concern. In most environmental testing laboratories, LC-MS/MS assays based on selected reaction monitoring are used as part of a battery of tests used to assure water quality. Although LC-MS/MS continues to be the best tool for detecting pharmaceuticals in water, the combined use of hybrid high-resolution mass spectrometry (HRMS) and ultrahigh pressure liquid chromatography (UHPLC) is starting to become a practical tool to study emerging environmental contaminants. The hybrid LTQ-orbitrap mass spectrometer is suitable for integrated quantitative and qualitative bioanalysis because of the following reasons: (1) the ability to collect full-scan HRMS spectra with scan speeds suitable for UHPLC separations, (2) routine measurement of mass with less than 5 ppm mass accuracy, (3) high mass resolving power, and (4) ability to perform on-the-fly polarity switching in the linear ion trap (LTQ). In the present work, we provide data demonstrating the application of UHPLC-LTQ-orbitrap for the detection, characterization and quantification of pharmaceuticals and their metabolites in drinking water. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Matney, M. L.; Limero, T. F.; James, J. T.
1994-01-01
Biological particulates collected on air filters during shuttle missions (STS-40 and STS-42) were identified using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). A method was developed for identifying the atmospheric particles and their sources through the analysis of standard materials and the selection of "marker" compounds specific to the particle type. Pyrolysis spectra of biological standards were compared with those of airborne particles collected during two space shuttle missions; marker compounds present in the shuttle particle spectra were matched with those of the standards to identify the source of particles. Particles of 0,5--1-mm diameter and weighing as little as 40 micrograms could be identified using this technique. The Py-GC/MS method identified rat food and soilless plant-growth media as two sources of particles collected from the shuttle atmosphere during flight.
NITPICK: peak identification for mass spectrometry data.
Renard, Bernhard Y; Kirchner, Marc; Steen, Hanno; Steen, Judith A J; Hamprecht, Fred A
2008-08-28
The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averaging, a novel extension to Senko's well-known averaging model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from (http://hci.iwr.uni-heidelberg.de/mip/proteomics/).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, Jennifer E.; Aly, Noor; Zheng, Xueyun
Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with liquid chromatography and mass spectrometry (LC-MS), but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations not always sufficient for distinguishing the features. In this work, we characterized LMs having specific categories using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). The IMS collision cross sections and MS m/z values displayed distinct trends for each LM category studied. LC-IMS-MSmore » analyses on flu infected mouse tissue samples also illustrated the presence of additional LM species not in our databases.« less
Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C
2003-09-01
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.
Krishnan, Shaji; Verheij, Elwin E R; Bas, Richard C; Hendriks, Margriet W B; Hankemeier, Thomas; Thissen, Uwe; Coulier, Leon
2013-05-15
Mass spectra obtained by deconvolution of liquid chromatography/high-resolution mass spectrometry (LC/HRMS) data can be impaired by non-informative mass-over-charge (m/z) channels. This impairment of mass spectra can have significant negative influence on further post-processing, like quantification and identification. A metric derived from the knowledge of errors in isotopic distribution patterns, and quality of the signal within a pre-defined mass chromatogram block, has been developed to pre-select all informative m/z channels. This procedure results in the clean-up of deconvoluted mass spectra by maintaining the intensity counts from m/z channels that originate from a specific compound/molecular ion, for example, molecular ion, adducts, (13) C-isotopes, multiply charged ions and removing all m/z channels that are not related to the specific peak. The methodology has been successfully demonstrated for two sets of high-resolution LC/MS data. The approach described is therefore thought to be a useful tool in the automatic processing of LC/HRMS data. It clearly shows the advantages compared to other approaches like peak picking and de-isotoping in the sense that all information is retained while non-informative data is removed automatically. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.
2009-04-01
This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.
Kidwell, H; Jones, J J; Games, D E
2001-01-01
Five polar herbicides were separated and characterised using high-speed analytical countercurrent chromatography (HSACCC) in conjunction with online electrospray mass spectrometry (ESI-MS). The countercurrent chromatography used a standard isocratic biphasic solvent system of hexane/ethyl acetate/methanol/water in reverse phase to effect the separation of these five environmentally important compounds. The chromatograph was coupled to a triple quadrupole mass spectrometer via a standard electrospray liquid chromatography interface that was able to give mass spectra in negative ion mode of each compound. Limits of detection are reported for this series of compounds along with representative negative ion ESI-MS data and calibrations for the separation. Copyright 2001 John Wiley & Sons, Ltd.
How enhanced molecular ions in Cold EI improve compound identification by the NIST library.
Alon, Tal; Amirav, Aviv
2015-12-15
Library-based compound identification with electron ionization (EI) mass spectrometry (MS) is a well-established identification method which provides the names and structures of sample compounds up to the isomer level. The library (such as NIST) search algorithm compares different EI mass spectra in the library's database with the measured EI mass spectrum, assigning each of them a similarity score called 'Match' and an overall identification probability. Cold EI, electron ionization of vibrationally cold molecules in supersonic molecular beams, provides mass spectra with all the standard EI fragment ions combined with enhanced Molecular Ions and high-mass fragments. As a result, Cold EI mass spectra differ from those provided by standard EI and tend to yield lower matching scores. However, in most cases, library identification actually improves with Cold EI, as library identification probabilities for the correct library mass spectra increase, despite the lower matching factors. This research examined the way that enhanced molecular ion abundances affect library identification probability and the way that Cold EI mass spectra, which include enhanced molecular ions and high-mass fragment ions, typically improve library identification results. It involved several computer simulations, which incrementally modified the relative abundances of the various ions and analyzed the resulting mass spectra. The simulation results support previous measurements, showing that while enhanced molecular ion and high-mass fragment ions lower the matching factor of the correct library compound, the matching factors of the incorrect library candidates are lowered even more, resulting in a rise in the identification probability for the correct compound. This behavior which was previously observed by analyzing Cold EI mass spectra can be explained by the fact that high-mass ions, and especially the molecular ion, characterize a compound more than low-mass ions and therefore carries more weight in library search identification algorithms. These ions are uniquely abundant in Cold EI, which therefore enables enhanced compound characterization along with improved NIST library based identification. Copyright © 2015 John Wiley & Sons, Ltd.
LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies.
Coufalíková, Kateřina; Benešová, Iva; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan
2017-05-22
A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W; Sherer, Edward C; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M 2+ - R 1 + or R 2 + ] + in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H] + was also observed. Only a small amount of the doubly charged M 2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H] + was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular E i elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W.; Sherer, Edward C.; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M2+ - R1 + or R2 +]+ in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H]+ was also observed. Only a small amount of the doubly charged M2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H]+ was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular Ei elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations.
Murugaiyan, J; Ahrholdt, J; Kowbel, V; Roesler, U
2012-05-01
The possibility of using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of pathogenic and non-pathogenic species of the genus Prototheca has been recently demonstrated. A unique reference database of MALDI-TOF MS profiles for type and reference strains of the six generally accepted Prototheca species was established. The database quality was reinforced after the acquisition of 27 spectra for selected Prototheca strains, with three biological and technical replicates for each of 18 type and reference strains of Prototheca and four strains of Chlorella. This provides reproducible and unique spectra covering a wide m/z range (2000-20 000 Da) for each of the strains used in the present study. The reproducibility of the spectra was further confirmed by employing composite correlation index calculation and main spectra library (MSP) dendrogram creation, available with MALDI Biotyper software. The MSP dendrograms obtained were comparable with the 18S rDNA sequence-based dendrograms. These reference spectra were successfully added to the Bruker database, and the efficiency of identification was evaluated by cross-reference-based and unknown Prototheca identification. It is proposed that the addition of further strains would reinforce the reference spectra library for rapid identification of Prototheca strains to the genus and species/genotype level. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Abidi, S.L.; Ha, S.C.; Rosen, R.T.
1990-01-01
Reversed-phase high-performance liquid chromatography—thermospray mass spectrometric (HPLC—MS) characteristics of four sets of lactonic complexes (one 4-butyrolactones and three dilactone complexes) derived from antimycin A were investigated. Three types of 8-hydroxy analogues were also included in the study. Pairs of a–b structures isomeric at the 8-acyloxy ester side-chains were best separated with a high-efficiency octadecylsilica column prior to analysis by HPLC—MS. Mass spectra of the a–b pairs each with identical molecular weights exhibited virtually indistinguishable fragmentation patterns, although their relative intensities were not superimposable. In some cases, HPLC—MS of the title compounds yielded mass chromatograms showing the minor components more easily recognizable than the HPLC—UV counter parts because of the apparent higher ionization efficiency of the minor isomers and increased resolution of subcomponents in the MS system. Under the mobile phase conditions employed, analyte ionization occurred with variable degrees of gas phase ammonolysis depending upon the ammonia concentration of the buffer. Potential applicability of the on-line HPLC—MS technique for the characterization of components in mixtures of antimycin analogues and isomers is demonstrated.
Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.
NASA Astrophysics Data System (ADS)
Hansen, Rebecca L.; Lee, Young Jin
2017-09-01
Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.
Mo, Fan; Hong, Xu; Gao, Feng; Du, Lin; Wang, Jun; Omenn, Gilbert S; Lin, Biaoyang
2008-12-16
Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched. We wrote scripts in perl, Bioperl, mysql and Ensembl API and built a theoretical exon-exon junction protein database to account for all possible combinations of exons for a gene while keeping the frame of translation (i.e., keeping only in-phase exon-exon combinations) from the Ensembl Core Database. Using our liver cancer MS/MS dataset, we identified a total of 488 non-redundant peptides that represent putative exon skipping events. Our exon-exon junction database provides the scientific community with an efficient means to identify novel alternatively spliced (exon skipping) protein isoforms using mass spectrometry data. This database will be useful in annotating genome structures using rapidly accumulating proteomics data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia
2009-09-09
Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.
Seibold, E; Maier, T; Kostrzewa, M; Zeman, E; Splettstoesser, W
2010-04-01
Francisella tularensis, the causative agent of tularemia, is a potential agent of bioterrorism. The phenotypic discrimination of closely related, but differently virulent, Francisella tularensis subspecies with phenotyping methods is difficult and time-consuming, often producing ambiguous results. As a fast and simple alternative, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was applied to 50 different strains of the genus Francisella to assess its ability to identify and discriminate between strains according to their designated species and subspecies. Reference spectra from five representative strains of Francisella philomiragia, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. holarctica, Francisella tularensis subsp. mediasiatica, and Francisella tularensis subsp. novicida were established and evaluated for their capability to correctly identify Francisella species and subspecies by matching a collection of spectra from 45 blind-coded Francisella strains against a database containing the five reference spectra and 3,287 spectra from other microorganisms. As a reference method for identification of strains from the genus Francisella, 23S rRNA gene sequencing was used. All strains were correctly identified, with both methods showing perfect agreement at the species level as well as at the subspecies level. The identification of Francisella strains by MALDI-TOF MS and subsequent database matching was reproducible using biological replicates, different culture media, different cultivation times, different serial in vitro passages of the same strain, different preparation protocols, and different mass spectrometers.
pymzML--Python module for high-throughput bioinformatics on mass spectrometry data.
Bald, Till; Barth, Johannes; Niehues, Anna; Specht, Michael; Hippler, Michael; Fufezan, Christian
2012-04-01
pymzML is an extension to Python that offers (i) an easy access to mass spectrometry (MS) data that allows the rapid development of tools, (ii) a very fast parser for mzML data, the standard data format in MS and (iii) a set of functions to compare or handle spectra. pymzML requires Python2.6.5+ and is fully compatible with Python3. The module is freely available on http://pymzml.github.com or pypi, is published under LGPL license and requires no additional modules to be installed. christian@fufezan.net.
Mlynáriková, Katarína; Šedo, Ondrej; Růžička, Filip; Zdráhal, Zbyněk; Holá, Veronika; Mahelová, Martina
2016-11-01
Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is, currently, used as a rapid and reliable tool in microbial diagnostics. The discriminatory power of the method extends its applicability also beyond species level. This study examined the possibility to use MALDI-TOF MS to differentiate between Candida parapsilosis sensu stricto biofilm-positive (n = 12) and biofilm-negative (n = 9) strains. The results indicated a grouping trend within MALDI-TOF mass spectra belonging to each of the tested groups. However, these trends were eclipsed by mass spectral variations resulting from limited repeatability of the method, making its application for the selected purpose impossible. Improvement in the discriminatory power of the method was not obtained neither by using different matrices (α-cyano-4-hydroxycinnamic acid, ferulic acid, 5-chloro-2-mercaptobenzothionazole) for MALDI-TOF MS analysis nor by testing different culture conditions (cultivation length, culture media).
Rai, Alex J; Stemmer, Paul M; Zhang, Zhen; Adam, Bao-Ling; Morgan, William T; Caffrey, Rebecca E; Podust, Vladimir N; Patel, Manisha; Lim, Lih-Yin; Shipulina, Natalia V; Chan, Daniel W; Semmes, O John; Leung, Hon-Chiu Eastwood
2005-08-01
We report on a multicenter analysis of HUPO reference specimens using SELDI-TOF MS. Eight sites submitted data obtained from serum and plasma reference specimen analysis. Spectra from five sites passed preliminary quality assurance tests and were subjected to further analysis. Intralaboratory CVs varied from 15 to 43%. A correlation coefficient matrix generated using data from these five sites demonstrated high level of correlation, with values >0.7 on 37 of 42 spectra. More than 50 peaks were differentially present among the various sample types, as observed on three chip surfaces. Additionally, peaks at approximately 9200 and approximately 15,950 m/z were present only in select reference specimens. Chromatographic fractionation using anion-exchange, membrane cutoff, and reverse phase chromatography, was employed for protein purification of the approximately 9200 m/z peak. It was identified as the haptoglobin alpha subunit after peptide mass fingerprinting and high-resolution MS/MS analysis. The differential expression of this protein was confirmed by Western blot analysis. These pilot studies demonstrate the potential of the SELDI platform for reproducible and consistent analysis of serum/plasma across multiple sites and also for targeted biomarker discovery and protein identification. This approach could be exploited for population-based studies in all phases of the HUPO PPP.
NASA Astrophysics Data System (ADS)
Jora, Manasses; Burns, Andrew P.; Ross, Robert L.; Lobue, Peter A.; Zhao, Ruoxia; Palumbo, Cody M.; Beal, Peter A.; Addepalli, Balasubrahmanyam; Limbach, Patrick A.
2018-06-01
The analytical identification of positional isomers (e.g., 3-, N 4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2 +) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. [Figure not available: see fulltext.
LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY
Medzihradszky, Katalin F.; Chalkley, Robert J.
2015-01-01
Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are “translated” into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general. PMID:25667941
Li, Fu; Liu, Xin; Tang, Minghai; Chen, Bin; Ding, Lisheng; Chen, Lijuan; Wang, Mingkui
2012-05-15
Electrospray ionization ion-trap tandem mass spectrometry (ESI-MS(n)) was first employed for reinvestigating the structures of hupehensis saponin F and G previously isolated from Anemone hupehensis in our lab. Hupehensis saponin G was determined to contain one more trisaccharide unit (Rha-(1→4)-Glc-(1→6)-Glc-), not a glucose residue, than saponin F based on their molecular weights deduced from their [M+Na](+) ions in ESI-MS spectra. The (2,4)A(4α)-ion at m/z 551.3 formed by retro-Diels-Alder (RDA) rearrangement in positive mode illustrated that the C-28 sugar chains of the two saponins were composed of trisaccharide repeating moieties with (1→4) linkages rather than (1→3) linkages. The interpretation of 2D-NMR spectra of the two compounds also confirmed the results obtained by ESI-MS(n). Moreover, from the water soluble part of A. hupehensis, two novel triterpene saponins were tentatively characterized to contain 4 and 5 (1→4)-linked above trisaccharide repeating moieties at C-28 position according to their ESI-MS(n) behaviors, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren
2015-01-01
Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species.
Musharraf, Syed Ghulam; Ali, Arslan; Khan, Naik Tameem; Yousuf, Maria; Choudhary, Muhammad Iqbal; Atta-ur-Rahman
2013-02-01
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC-ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.
Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.
Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An
2008-01-01
An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.
Chen, Xueguo; Lai, Yongquan; Cai, Zongwei
2012-04-01
A liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-ITMS) method was developed for the simultaneous analysis of strychnine, brucine and their major metabolites. Strychnine and brucine were individually incubated with rat liver S9 fraction. The incubation samples were pooled together and analyzed with LC-ESI-ITMS in positive ion and full-scan detection mode. The calibration curves of strychnine and brucine in rat liver showed good linearity in ranges of 0.020 to 8.0 µg/mL for strychnine and 0.020 to 8.5 µg/mL for brucine. The limits of detections were both 0.008 µg/mL and the recoveries were 88.3 and 83.2% for strychnine and brucine, respectively. Two metabolites were identified as strychnine N-oxide and brucine N-oxide by comparing the molecular mass, retention time, full-scan mass spectra, tandem MS and MS(3) spectra with those of strychnine and brucine. The developed method provided high sensitivity and selectivity for the determination of poisonous alkaloids and their major metabolites and can be applied in the determination of samples in forensic and clinically toxicological cases.
Mantini, Dante; Petrucci, Francesca; Del Boccio, Piero; Pieragostino, Damiana; Di Nicola, Marta; Lugaresi, Alessandra; Federici, Giorgio; Sacchetta, Paolo; Di Ilio, Carmine; Urbani, Andrea
2008-01-01
Independent component analysis (ICA) is a signal processing technique that can be utilized to recover independent signals from a set of their linear mixtures. We propose ICA for the analysis of signals obtained from large proteomics investigations such as clinical multi-subject studies based on MALDI-TOF MS profiling. The method is validated on simulated and experimental data for demonstrating its capability of correctly extracting protein profiles from MALDI-TOF mass spectra. The comparison on peak detection with an open-source and two commercial methods shows its superior reliability in reducing the false discovery rate of protein peak masses. Moreover, the integration of ICA and statistical tests for detecting the differences in peak intensities between experimental groups allows to identify protein peaks that could be indicators of a diseased state. This data-driven approach demonstrates to be a promising tool for biomarker-discovery studies based on MALDI-TOF MS technology. The MATLAB implementation of the method described in the article and both simulated and experimental data are freely available at http://www.unich.it/proteomica/bioinf/.
Ji, Mei; Li, Chen; Li, Qiang
2015-10-02
A rapid and efficient method was established for the simultaneous determination of structures and configurations for 45 phenolics isolated from crude red grape skin extracts without extensive sample preparation. Separation and compound assignments were achieved using high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry (HPLC-DAD-MS(2)). A Poroshell 120 EC-C18 (100mm×3.0mm, 2.7μm) column was employed to separate the phenolics, which were eluted using a gradient of acetonitrile and water acidified with 0.2% formic acid. Phenolics were identified by comparison of their UV-vis spectra, mass spectra and MS(2) data with those in the literature. Using this procedure, five compounds were detected for the first time in Vitis amurensis. Good separation of most phenolics was achieved in 26min. The methods described here can be used for the characterization of phenolics in a variety of grapes and grape products. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.
Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C
2017-02-01
Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.
Identification of the isomers using principal component analysis (PCA) method
NASA Astrophysics Data System (ADS)
Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur
2016-03-01
In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.
Sharing and community curation of mass spectrometry data with GNPS
Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno
2017-01-01
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...
2017-05-22
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
Building high-quality assay libraries for targeted analysis of SWATH MS data.
Schubert, Olga T; Gillet, Ludovic C; Collins, Ben C; Navarro, Pedro; Rosenberger, George; Wolski, Witold E; Lam, Henry; Amodei, Dario; Mallick, Parag; MacLean, Brendan; Aebersold, Ruedi
2015-03-01
Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2-3 d to complete, depending on the extent of the library and the computational resources available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observedmore » ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.« less
Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef
2013-08-09
Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.
Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G
2013-01-30
Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.
Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.
2014-01-01
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597
Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong
2013-08-01
The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.
On-target digestion of collected bacteria for MALDI mass spectrometry.
Dugas, Alton J; Murray, Kermit K
2008-10-03
An on-target protein digestion system was developed for the identification of microorganisms in collected bioaerosols using off-line matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Bacteria analysis techniques based on MALDI-MS were adapted for use with an orthogonal MALDI quadrupole-time-of-flight mass spectrometer. Bioaerosols were generated using a pneumatic nebulizer and infused into a chamber for sampling. An Andersen N6 single-stage impactor was used to collect the bioaerosols on a MALDI target. On-target digestion was carried out inside temporary mini-wells placed over the impacted samples. The wells served as miniature reactors for proteolysis. Collected test aerosol particles containing the protein cytochrome c and E. coli bacteria were proteolyzed in situ using trypsin or cyanogen bromide. A total of 19 unique proteins were identified for E. coli. Using the TOF-MS spectra of the digested samples, peptide mass mapping was performed using the MASCOT search engine and an iterative search technique.
NASA Astrophysics Data System (ADS)
Li, Xiuyuan; Tang, Yanyan; Lu, Xinxin
2018-04-01
Currently, the capability of identification for Acinetobacter species using MALDI-TOF MS still remains unclear in clinical laboratories due to certain elusory phenomena. Thus, we conducted this research to evaluate this technique and reveal the causes of misidentification. Briefly, a total of 788 Acinetobacter strains were collected and confirmed at the species level by 16S rDNA and rpoB sequencing, and subsequently compared to the identification by MALDI-TOF MS using direct smear and bacterial extraction pretreatments. Cluster analysis was performed based on the mass spectra and 16S rDNA to reflect the diversity among different species. Eventually, 19 Acinetobacter species were confirmed, including 6 species unavailable in Biotyper 3.0 database. Another novel species was observed, temporarily named A. corallinus. The accuracy of identification for Acinetobacter species using MALDI-TOF MS was 97.08% (765/788), regardless of which pretreatment was applied. The misidentification only occurred on 3 A. parvus strains and 20 strains of species unavailable in the database. The proportions of strains with identification score ≥ 2.000 using direct smear and bacterial extraction pretreatments were 86.04% (678/788) and 95.43% (752/788), χ 2 = 41.336, P < 0.001. The species similar in 16 rDNA were discriminative from the mass spectra, such as A. baumannii & A. junii, A. pittii & A. calcoaceticus, and A. nosocomialis & A. seifertii. Therefore, using MALDI-TOF MS to identify Acinetobacter strains isolated from clinical samples was deemed reliable. Misidentification occurred occasionally due to the insufficiency of the database rather than sample extraction failure. We suggest gene sequencing should be performed when the identification score is under 2.000 even when using bacterial extraction pretreatment. [Figure not available: see fulltext.
Martinez-Lozano Sinues, Pablo; Landoni, Elena; Miceli, Rosalba; Dibari, Vincenza F; Dugo, Matteo; Agresti, Roberto; Tagliabue, Elda; Cristoni, Simone; Orlandi, Rosaria
2015-09-21
Breath analysis represents a new frontier in medical diagnosis and a powerful tool for cancer biomarker discovery due to the recent development of analytical platforms for the detection and identification of human exhaled volatile compounds. Statistical and bioinformatic tools may represent an effective complement to the technical and instrumental enhancements needed to fully exploit clinical applications of breath analysis. Our exploratory study in a cohort of 14 breast cancer patients and 11 healthy volunteers used secondary electrospray ionization-mass spectrometry (SESI-MS) to detect a cancer-related volatile profile. SESI-MS full-scan spectra were acquired in a range of 40-350 mass-to-charge ratio (m/z), converted to matrix data and analyzed using a procedure integrating data pre-processing for quality control, and a two-step class prediction based on machine-learning techniques, including a robust feature selection, and a classifier development with internal validation. MS spectra from exhaled breath showed an individual-specific breath profile and high reciprocal homogeneity among samples, with strong agreement among technical replicates, suggesting a robust responsiveness of SESI-MS. Supervised analysis of breath data identified a support vector machine (SVM) model including 8 features corresponding to m/z 106, 126, 147, 78, 148, 52, 128, 315 and able to discriminate exhaled breath from breast cancer patients from that of healthy individuals, with sensitivity and specificity above 0.9.Our data highlight the significance of SESI-MS as an analytical technique for clinical studies of breath analysis and provide evidence that our noninvasive strategy detects volatile signatures that may support existing technologies to diagnose breast cancer.
Li, Xiuyuan; Tang, Yanyan; Lu, Xinxin
2018-04-09
Currently, the capability of identification for Acinetobacter species using MALDI-TOF MS still remains unclear in clinical laboratories due to certain elusory phenomena. Thus, we conducted this research to evaluate this technique and reveal the causes of misidentification. Briefly, a total of 788 Acinetobacter strains were collected and confirmed at the species level by 16S rDNA and rpoB sequencing, and subsequently compared to the identification by MALDI-TOF MS using direct smear and bacterial extraction pretreatments. Cluster analysis was performed based on the mass spectra and 16S rDNA to reflect the diversity among different species. Eventually, 19 Acinetobacter species were confirmed, including 6 species unavailable in Biotyper 3.0 database. Another novel species was observed, temporarily named A. corallinus. The accuracy of identification for Acinetobacter species using MALDI-TOF MS was 97.08% (765/788), regardless of which pretreatment was applied. The misidentification only occurred on 3 A. parvus strains and 20 strains of species unavailable in the database. The proportions of strains with identification score ≥ 2.000 using direct smear and bacterial extraction pretreatments were 86.04% (678/788) and 95.43% (752/788), χ 2 = 41.336, P < 0.001. The species similar in 16 rDNA were discriminative from the mass spectra, such as A. baumannii & A. junii, A. pittii & A. calcoaceticus, and A. nosocomialis & A. seifertii. Therefore, using MALDI-TOF MS to identify Acinetobacter strains isolated from clinical samples was deemed reliable. Misidentification occurred occasionally due to the insufficiency of the database rather than sample extraction failure. We suggest gene sequencing should be performed when the identification score is under 2.000 even when using bacterial extraction pretreatment. Graphical Abstract ᅟ.
MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*
Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying
2016-01-01
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644
Dyrlund, Thomas F; Poulsen, Ebbe T; Scavenius, Carsten; Sanggaard, Kristian W; Enghild, Jan J
2012-09-01
Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web-based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot-assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC-MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction
Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.; ...
2018-01-17
Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less
Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.
Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less
Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction
Hoyt, David W.; Nicora, Carrie D.; Kinmonth-Schultz, Hannah A.; Ward, Joy K.
2018-01-01
We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS2), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS2 approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases. PMID:29342073
Infrared Ion Spectroscopy at Felix: Applications in Peptide Dissociation and Analytical Chemistry
NASA Astrophysics Data System (ADS)
Oomens, Jos
2016-06-01
Infrared free electron lasers such as those in Paris, Berlin and Nijmegen have been at the forefront of the development of infrared ion spectroscopy. In this contribution, I will give an overview of new developments in IR spectroscopy of stored ions at the FELIX Laboratory. In particular, I will focus on recent developments made possible by the coupling of a new commercial ion trap mass spectrometer to the FELIX beamline. The possibility to record IR spectra of mass-selected molecular ions and their reaction products has in recent years shed new light on our understanding of collision induced dissociation (CID) reactions of protonated peptides in mass spectrometry (MS). We now show that it is possible to record IR spectra for the products of electron transfer dissociation (ETD) reactions [M + nH]n+ + A- → [M + nH](n-1)+ + A → {dissociation of analyte} These reactions are now widely used in novel MS-based protein sequencing strategies, but involve complex radical chemistry. The spectroscopic results allow stringent verification of computationally predicted product structures and hence reaction mechanisms and H-atom migration. The sensitivity and high dynamic range of a commercial mass spectrometer also allows us to apply infrared ion spectroscopy to analytes in complex "real-life" mixtures. The ability to record IR spectra with the sensitivity of mass-spectrometric detection is unrivalled in analytical sciences and is particularly useful in the identification of small (biological) molecules, such as in metabolomics. We report preliminary results of a pilot study on the spectroscopic identification of small metabolites in urine and plasma samples.
Qiu, Yunping; Moir, Robyn D; Willis, Ian M; Seethapathy, Suresh; Biniakewitz, Robert C; Kurland, Irwin J
2018-01-18
Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA) workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG). IROA uses two different 13 C-enriched carbon sources (randomized 95% 12 C and 95% 13 C) to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n), which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016) with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine). For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great potential in unknown metabolite identification, with applications for characterizing model organism networks.
Alin, Jonas; Hakkarainen, Minna
2011-05-25
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
Fürmeier, Sven; Metzger, Jürgen O
2004-11-10
The coupling of a simple microreactor to an atmospheric pressure ion source, such as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), allows the investigation of reactions in solution by mass spectrometry. The tris(p-bromophenyl)aminium hexachloroantimonate (1(*)(+)SbCl(6)(-))-initiated reactions of phenylvinylsulfide (2) and cyclopentadiene (3) and of trans-anethole (5) and isoprene (6) and the dimerization of 1,3-cyclohexadiene (8) to give the respective Diels-Alder products were studied. These preparatively interesting reactions proceed as radical cation chain reactions via the transient radical cations of the respective dienophiles and of the respective Diels-Alder addition products. These radical cations could be detected directly and characterized unambiguously in the reacting solution by ESI-MS-MS. The identity was confirmed by comparison with MS-MS spectra of the authentic radical cations obtained by APCI-MS and by CID experiments of the corresponding molecular ions generated by EI-MS. In addition, substrates and products could be monitored easily in the reacting solution by APCI-MS.
Wan, Haibao; Umstot, Edward S; Szeto, Hazel H; Schiller, Peter W; Desiderio, Dominic M
2004-04-15
The synthetic opioid peptide analog Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA; [Dmt= 2',6'-dimethyltyrosine) is a highly potent and selective mu opioid-receptor agonist. A very sensitive and robust capillary liquid chromatography/nanospray ion-trap (IT) mass spectrometry method has been developed to quantify [Dmt(1)]DALDA in ovine plasma, using deuterated [Dmt(1)]DALDA as the internal standard. The standard MS/MS spectra of d(0)- and d(5)-[Dmt(1)]DALDA were obtained, and the collision energy was experimentally optimized to 25%. The product ion [ M + 2H-NH(3)](2+) (m/z 312.2) was used to identify and to quantify the synthetic opioid peptide analog in ovine plasma samples. The MS/MS detection sensitivity for [Dmt(1)]DALDA was 625 amol. A calibration curve was constructed, and quantitative analysis was performed on a series of ovine plasma samples.
MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond.
Posteraro, Brunella; De Carolis, Elena; Vella, Antonietta; Sanguinetti, Maurizio
2013-04-01
MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells - by means of simple, rapid and reproducible preanalytical and analytical protocols - MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan
2014-05-31
Dense LC-MS datasets have convoluted extracted ion chromatograms with multiple chromatographic peaks that cloud the differentiation between intact compounds with their overlapping isotopic distributions, peaks due to insource ion fragmentation, and noise. Making this differentiation is critical in glycomics datasets because chromatographic peaks correspond to different intact glycan structural isomers. The GlyQ-IQ software is targeted chromatography centric software designed for chromatogram and mass spectra data processing and subsequent glycan composition annotation. The targeted analysis approach offers several key advantages to LC-MS data processing and annotation over traditional algorithms. A priori information about the individual target’s elemental composition allows for exactmore » isotope profile modeling for improved feature detection and increased sensitivity by focusing chromatogram generation and peak fitting on the isotopic species in the distribution having the highest intensity and data quality. Glycan target annotation is corroborated by glycan family relationships and in source fragmentation detection. The GlyQ-IQ software is developed in this work (Part 1) and was used to profile N-glycan compositions from human serum LC-MS Datasets. The companion manuscript GlyQ-IQ Part 2 discusses developments in human serum N-glycan sample preparation, glycan isomer separation, and glycan electrospray ionization. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad N-glycan profile from a high resolution (100K/60K) nESI-LS-MS/MS dataset including CID and HCD fragmentation acquired on a Velos Pro Mass spectrometer. 101 glycan compositions and 353 isomer peaks were detected from a single sample. 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high resolution mass spectra and mass accuracies less than 7 ppm.« less
Abad-García, B; Garmón-Lobato, S; Berrueta, L A; Gallo, B; Vicente, F
2009-07-01
Fifteen flavonoid O-diglycosides with different interglycosidic linkage isomery and glycosylation position have been studied in order to analyze their fragmentation patterns. Initial separation was carried out using high performance liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer. Some useful differences in their MS spectra have been found and discussed. As it has already been reported, [Y*]+/[Y0]+ ratio for flavanones and [Y1]+/[Y0]+ ratio for other flavonoids is specific for each isomeric interglycosidic linkage. In this work it has also been observed that the abundance of these ions is dependent on the position of glycosylation. On the basis of these differences, systematic guidelines for our experimental conditions have been proposed for the differentiation of not only isomeric interglycosidic linkage but also glycosylation position using collision-induced dissociation MS/MS (CID-MS/MS) spectra in positive mode. These results have been successfully applied for the characterization of three diglycosyl flavonoids found in Citrus fruit juices and these conclusions have also been extrapolated for characterizing two triglycosides in the same fruits. Copyright 2009 John Wiley & Sons, Ltd.
Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.
Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph
2017-01-01
The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kristin H.; Wahl, Karen L.
The concept of rapid microorganism identification using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) dates back to the mid-1990’s. Prior to 1998, researchers relied on visual inspection in an effort to demonstrate feasibility of MALDI-MS for bacterial identification (Holland, Wilkes et al. 1996), (Krishnamurthy and Ross 1996), (Claydon, Davey et al. 1996). In general, researchers in these early studies visually compared the biomarker intensity profiles between different organisms and between replicates of the same organism to show that MALDI signatures are unique and reproducible. Manual tabulation and comparison of potential biomarker mass values observed for different organisms was used by numerousmore » researchers to qualitatively characterize microorganisms using MALDI-MS spectra (e.g. (Lynn, Chung et al. 1999), (Winkler, Uher et al. 1999), (Ryzhov, Hathout et al. 2000), (Nilsson 1999)).« less
Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans
Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim
2016-01-01
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389
Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Kumar, Brijesh
2016-12-01
Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C -ring-cleavage whereas E -ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria . Application of LC-MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.
Steger, Julia; Arnhard, Kathrin; Haslacher, Sandra; Geiger, Klemens; Singer, Klaus; Schlapp, Michael; Pitterl, Florian; Oberacher, Herbert
2016-04-01
Forensic toxicology and environmental water analysis share the common interest and responsibility in ensuring comprehensive and reliable confirmation of drugs and pharmaceutical compounds in samples analyzed. Dealing with similar analytes, detection and identification techniques should be exchangeable between scientific disciplines. Herein, we demonstrate the successful adaption of a forensic toxicological screening workflow employing nontargeted LC/MS/MS under data-dependent acquisition control and subsequent database search to water analysis. The main modification involved processing of an increased sample volume with SPE (500 mL vs. 1-10 mL) to reach LODs in the low ng/L range. Tandem mass spectra acquired with a qTOF instrument were submitted to database search. The targeted data mining strategy was found to be sensitive and specific; automated search produced hardly any false results. To demonstrate the applicability of the adapted workflow to complex samples, 14 wastewater effluent samples collected on seven consecutive days at the local wastewater-treatment plant were analyzed. Of the 88,970 fragment ion mass spectra produced, 8.8% of spectra were successfully assigned to one of the 1040 reference compounds included in the database, and this enabled the identification of 51 compounds representing important illegal drugs, members of various pharmaceutical compound classes, and metabolites thereof. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Knolhoff, Ann M.; Zheng, Jie; McFarland, Melinda A.; Luo, Yan; Callahan, John H.; Brown, Eric W.; Croley, Timothy R.
2015-08-01
The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MSn spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.
Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds
Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2014-01-01
In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044
Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho
2015-01-01
This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.
Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef
2017-03-01
Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.
Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry
2013-07-01
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu
2017-02-01
The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research.
Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.
Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong
2018-03-19
In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MS n ) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdian, D. C.; Lee, Young Jin
2010-11-15
A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser.more » Using this approach, a high spatial resolution of 10 {micro}m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 {micro}m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MSn ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MSn, ion trap, and orbitrap images were all acquired in a single data acquisition.« less
Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu
2017-01-01
The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research. PMID:28211480
Heinke, Ramona; Schöne, Pia; Arnold, Norbert; Wessjohann, Ludger; Schmidt, Jürgen; Schmidt, Jürgen
2014-01-01
The genus Suillus is known for the occurrence of a series of prenylated phenols and boviquinones. The extracts of four different Suillus species [S. bovinus, S. granulatus, S. tridentinus and S.variegatus) were investigated by using rapid ultra-performance Liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS) and direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). While direct infusion ESI-FT-ICR mass spectra give a fast overview concerning the elemental compositions of the compounds and, therefore, hints to the main metabolites, UPLC/ESI-tandem mass spectrometry is shown to be a useful tool for their identification. A principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the UPLC/ESI-MS clearly showed that the metabolite profiles can be used not only for the identification and classification of such fungi but also as a sophisticated and powerful tool for the chemotaxonomy of fungi. Furthermore, a clear discrimination of various types of biological samples (fruiting bodies versus mycelial cultures) is also possible. The orthogonal partial least squares (OPLS) two-class models of both UPLC/ESI-MS and ESI-FT-ICR-MS possess a clear differentiation of two compared Suillus species representing the between class variation and the within class variation. Based on generated S-plots and Loading plots, statistically significant metabolites could be identified as potential biomarker for one species.
Tian, Tze-Feng; Wang, San-Yuan; Kuo, Tien-Chueh; Tan, Cheng-En; Chen, Guan-Yuan; Kuo, Ching-Hua; Chen, Chi-Hsin Sally; Chan, Chang-Chuan; Lin, Olivia A; Tseng, Y Jane
2016-11-01
Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GC 2 MS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies. The core processing workflow of GC 2 MS consists of blob/peak detection, baseline correction, and blob alignment. GC 2 MS treats GC×GC/TOF-MS data as pictures and clusters the pixels as blobs according to the brightness of each pixel to generate a blob table. GC 2 MS then aligns the blobs of two GC×GC/TOF-MS data sets according to their distance and similarity. The blob distance and similarity are the Euclidean distance of the first and second retention times of two blobs and the Pearson's correlation coefficient of the two mass spectra, respectively. GC 2 MS also directly corrects the raw data baseline. The analytical performance of GC 2 MS was evaluated using GC×GC/TOF-MS data sets of Angelica sinensis compounds acquired under different experimental conditions and of human plasma samples. The results show that GC 2 MS is an easy-to-use tool for detecting peaks and correcting baselines, and GC 2 MS is able to align GC×GC/TOF-MS data sets acquired under different experimental conditions. GC 2 MS is freely accessible at http://gc2ms.web.cmdm.tw .
Vella, Antonietta; De Carolis, Elena; Vaccaro, Luisa; Posteraro, Patrizia; Perlin, David S; Kostrzewa, Markus; Posteraro, Brunella; Sanguinetti, Maurizio
2013-09-01
The widespread use of antifungal agents, which is likely to expand with their enhanced availability, has promoted the emergence of drug-resistant strains. Antifungal susceptibility testing (AFST) is now an essential procedure for guiding appropriate antifungal therapy. Recently, we developed a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method that enables the detection of fungal isolates with reduced echinocandin susceptibility, relying on the proteome changes that are detectable after a 15-h exposure of fungal cells to serial drug concentrations. Here, we describe a simplified version of this approach that facilitates discrimination of the susceptible and resistant isolates of Candida albicans after a 3-h incubation in the presence of "breakpoint" level drug concentrations of the echinocandin caspofungin (CSF). Spectra at concentrations of 0 (null), 0.03 (intermediate), and 32 (maximal) μg/ml of CSF were used to create individual composite correlation index (CCI) matrices for 65 C. albicans isolates, including 13 fks1 mutants. Isolates are then classified as susceptible or resistant to CSF if the CCI values of spectra at 0.03 and 32 μg/ml are higher or lower, respectively, than the CCI values of spectra at 0.03 and 0 μg/ml. In this way, the drug resistance of C. albicans isolates to echinocandin antifungals can be quickly assessed. Furthermore, the isolate categorizations determined using MALDI-TOF MS-based AFST (ms-AFST) were consistent with the wild-type and mutant FKS1 genotypes and the AFST reference methodology. The ms-AFST approach may provide a rapid and reliable means of detecting emerging antifungal resistance and accelerating the initiation of appropriate antifungal treatment.
NASA Astrophysics Data System (ADS)
Han, Bin; Lob, Silvia; Sablier, Michel
2018-06-01
In this study, we report the use of pyrolysis-GCxGC/MS profiles for an optimized treatment of data issued from pyrolysis-GC/MS combined with the automatic deconvolution software Automated Mass Spectral Deconvolution and Identification System (AMDIS). The method was illustrated by the characterization of marker compounds of East Asian handmade papers through the examination of pyrolysis-GCxGC/MS data to get information which was used for manually identifying low concentrated and co-eluting compounds in 1D GC/MS data. The results showed that the merits of a higher separation power for co-eluting compounds and a better sensitivity for low concentration compounds offered by a GCxGC system can be used effectively for AMDIS 1D GC/MS data treatment: (i) the compound distribution in pyrolysis-GCxGC/MS profiles can be used as "peak finder" for manual check of low concentration and co-eluting compound identification in 1D GC/MS data, and (ii) pyrolysis-GCxGC/MS profiles can provide better quality mass spectra with observed higher match factors in the AMDIS automatic match process. The combination of 2D profile with AMDIS was shown to contribute efficiently to a better characterization of compound profiles in the chromatograms obtained by 1D analysis in focusing on the mass spectral identification. [Figure not available: see fulltext.
A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks.
Drury, Nicholas; Ramotowski, Robert; Moini, Mehdi
2018-05-23
Ambient ionization mass spectrometry is gaining momentum in forensic science laboratories because of its high speed of analysis, minimal sample preparation, and information-rich results. One such application of ambient ionization methodology includes the analysis of writing inks from questioned documents where colorants of interest may not be soluble in common solvents, rendering thin layer chromatography (TLC) and separation-mass spectrometry methods such as LC/MS (-MS) impractical. Ambient ionization mass spectrometry uses a variety of ionization techniques such as penning ionization in Direct Analysis in Real Time (DART), and atmospheric pressure chemical ionization in Direct Sample Analysis (DSA), and electrospray ionization in Desorption Electrospray Ionization (DESI). In this manuscript, two of the commonly used ambient ionization techniques are compared: Perkin Elmer DSA-MS and IonSense DART in conjunction with a JEOL AccuTOF MS. Both technologies were equally successful in analyzing writing inks and produced similar spectra. DSA-MS produced less background signal likely because of its closed source configuration; however, the open source configuration of DART-MS provided more flexibility for sample positioning for optimum sensitivity and thereby allowing smaller piece of paper containing writing ink to be analyzed. Under these conditions, the minimum sample required for DART-MS was 1mm strokes of ink on paper, whereas DSA-MS required a minimum of 3mm. Moreover, both techniques showed comparable repeatability. Evaluation of the analytical figures of merit, including sensitivity, linear dynamic range, and repeatability, for DSA-MS and DART-MS analysis is provided. To the forensic context of the technique, DART-MS was applied to the analysis of United States Secret Service ink samples directly on a sampling mesh, and the results were compared with DSA-MS of the same inks on paper. Unlike analysis using separation mass spectrometry, which requires sample preparation, both DART-MS and DSA-MS successfully analyzed writing inks with minimal sample preparation. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).
Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin
2017-04-01
Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).
Holzknecht, B J; Dargis, R; Pedersen, M; Pinholt, M; Christensen, J J
2018-03-23
To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). Fifty-five VREfm isolates, previously characterized by whole-genome sequencing (WGS), were included and analysed by MALDI-TOF MS. To take peak reproducibility into account, ethanol/formic acid extraction and other steps of the protocol were conducted in triplicate. Twenty-seven spectra were generated per isolate, and spectra were visually inspected to determine discriminatory peaks. The presence or absence of these was recorded in a peak scheme. Nine discriminatory peaks were identified. A characteristic pattern of these could distinguish between the three major WGS groups: WGS I, WGS II and WGS III. Only one of 38 isolates belonging to WGS I, WGS II or WGS III was misclassified. However, ten of the 17 isolates not belonging to WGS I, II or III displayed peak patterns indistinguishable from those of the outbreak strain. Using visual inspection of spectra, MALDI-TOF MS typing proved to be useful in differentiating three VREfm outbreak clones from each other. However, as non-outbreak isolates could not be reliably differentiated from outbreak clones, the practical value of this typing method for VREfm outbreak management was limited in our setting. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Kumar, K; Siva, Bandi; Sarma, V U M; Mohabe, Satish; Reddy, A Madhusudana; Boustie, Joel; Tiwari, Ashok K; Rao, N Rama; Babu, K Suresh
2018-07-15
Comparative phytochemical analysis of five lichen species [Parmotrema tinctorum (Delise ex Nyl.) Hale, P. andinum (Mull. Arg.) Hale, P. praesorediosum (Nyl.) Hale, P. grayanum (Hue) Hale, P. austrosinense (Zahlbr.) Hale] of Parmotrema genus were performed using two complementary UPLC-MS systems. The first system consists of high resolution UPLC-QToF-MS/MS spectrometer and the second system consisted of UPLC-MS/MS in Multiple Reaction Monitoring (MRM) mode for quantitative analysis of major constituents in the selected lichen species. The individual compounds (47 compounds) were identified using Q-ToF-MS/MS, via comparison of the exact molecular masses from their MS/MS spectra, the comparison of literature data and retention times to those of standard compounds which were isolated from crude extract of abundant lichen, P. tinctorum. The analysis also allowed us to identify unknown peaks/compounds, which were further characterized by their mass fragmentation studies. The quantitative MRM analysis was useful to have a better discrimination of species according to their chemical profile. Moreover, the determination of antioxidant activities (ABTS + inhibition) and Advance Glycation Endproducts (AGEs) inhibition carried out for the crude extracts revealed a potential antiglycaemic activity to be confirmed for P. austrosinense. Copyright © 2018 Elsevier B.V. All rights reserved.
Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H
2014-08-08
For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.
Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.
Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice
2016-01-01
The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia
2010-08-04
Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MSmore » displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.« less
Du, Zhenxia; Sun, Tangqiang; Zhao, Jianan; Wang, Di; Zhang, Zhongxia; Yu, Wenlian
2018-07-01
Ion mobility spectrometry (IMS) which acts as a rapid analysis technique is widely used in the field detection of illicit drugs and explosives. Due to limited separation abilities of the pint-sized IMS challenges and problems still exist regarding high false positive and false negative responses due to the interference of the matrix. In addition, the gas-phase ion chemistry and special phenomena in the IMS spectra, such one substance showing two peaks, were not identified unambiguously. In order to explain or resolve these questions, in this paper, an ion mobility spectrometry was coupled to a mass spectrometry (IMS-MS). A commercial IMS is embedded in a custom-built ion chamber shell was attached to the mass spectrometer. The faraday plate of IMS was fabricated with a hole for the ions to passing through to the mass spectrometer. The ion transmission efficiency of IMS-MS was optimized by optimizing the various parameters, especially the distance between the faraday plate and the cone of mass spectrum. This design keeps the integrity of the two original instruments and the mass spectrometry still works with multimode ionization source (i.e., IMS-MS, ESI-MS, APCI-MS modes). The illicit drugs and explosive samples were analyzed by the IMS-MS with 63 Ni source. The results showed that the IMS-MS is of high sensitivity. The ionization mechanism of the illicit drug and explosive samples with 63 Ni source were systematically studied. In addition, the interferent which interfered the detection of cocaine was identified as dibutyl phthalate (DBP) by this platform. The reason why the acetone solution of amphetamine showed two peaks was explained. Copyright © 2018 Elsevier B.V. All rights reserved.
Doco, Thierry; Williams, Pascale; Meudec, Emmanuelle; Cheynier, Véronique; Sommerer, Nicolas
2015-01-21
The major neutral oligosaccharides of a Carignan red wine have been characterized for the first time. The oligosaccharides were prepared after removal of phenolic compounds by polyamide chromatography and of polysaccharides by alcohol precipitation and then were fractionated by anion exchange and size-exclusion chromatography. In a second step, the glycosyl composition and linkages of wine oligosaccharides were determined. Oligosaccharide fractions were analyzed by mass spectrometry (MS) with an electrospray ionization (ESI) source and an ion trap mass analyzer after separation by hydrophilic interaction liquid chromatography on a Nucleodur HILIC column (zwitterionic sulfoalkyl betaine stationary phase). Glycosyl residue composition analysis showed the predominant presence of arabinose, with galactose, rhamnose, and mannose in lower proportion. Neutral oligosaccharides were present at a concentration of 185 mg/L in this wine. The MS spectra in the negative ion mode of the oligosaccharide fractions showed a series of oligosaccharidic structures corresponding to oligo-arabinans often linked to the basic unit α-l-Rhap-(1 → 4)-α-d-GalpA. The wine oligosaccharides identified correspond to arabino-oligosaccharides, rhamno-arabino-oligosaccharides, and different rhamnogalacturonan-arabino-oligosaccharides with DP ranging from 5 to 49, resulting from the degradation of grape cell wall pectins. Oligosaccharides have an extreme diversity, with more than 100 peaks detected in HPLC-ESI-MS spectra corresponding each to at least one oligosaccharidic structure.
Khatri, Kshitij; Klein, Joshua A; Zaia, Joseph
2017-01-01
In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions. In addition, there is increasing need to characterize glycopeptides from complex biological mixtures. Fortunately, liquid chromatography-mass spectrometry (LC-MS) methods for glycomics and proteomics are now mature and accessible. We demonstrate the value of using an informed search space built from measured glycomes and proteomes to define the search space for interpretation of glycoproteomics data. We show this using α-1-acid glycoprotein (AGP) mixed into a set of increasingly complex matrices. As the mixture complexity increases, the naïve search space balloons and the ability to assign glycopeptides with acceptable confidence diminishes. In addition, it is not possible to identify glycopeptides not foreseen as part of the naïve search space. A search space built from released glycan glycomics and proteomics data is smaller than its naïve counterpart while including the full range of proteins detected in the mixture. This maximizes the ability to assign glycopeptide tandem mass spectra with confidence. As the mixture complexity increases, the number of tandem mass spectra per glycopeptide precursor ion decreases, resulting in lower overall scores and reduced depth of coverage for the target glycoprotein. We suggest use of α-1-acid glycoprotein as a standard to gauge effectiveness of analytical methods and bioinformatics search parameters for glycoproteomics studies. Graphical Abstract Assignment of site specific glycosylation from LC-tandemMS data.
Monaci, Linda; Quintieri, Laura; Caputo, Leonardo; Visconti, Angelo; Baruzzi, Federico
2016-01-15
Several Bacillus strains, typically isolated from different food sources, represent renowned producers of a multitude of low and high molecular weight compounds, including lipopeptides and macrolactones, with an importance for their antimicrobial activity. The high homology shared by many of these compounds also occurring as closely related isoforms poses a challenge in their prompt detection. Identification and structural elucidation is generally achieved by matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography (LC) coupled to mass spectrometry (MS) after a pre-fractionation and/or purification step of the extract. In this paper we report the application of a method based on LC separation and high-resolution Orbitrap™-based MS for the rapid screening of raw filtrate of the strain Bacillus subtilis TR50 endowed with antimicrobial activity, without requiring any sample pre-treatment. Upon direct analysis of the cell-free filtrate of Bacillus subtilis TR50 by high-resolution mass spectrometry (HRMS), different compounds families, that proved to exert a remarked antimicrobial activity against several foodborne pathogens, can be readily displayed along the chromatographic run. Among them, three different classes were identified and characterized belonging to the iturin, fengycin and surfactin groups. The high resolving power and accurate mass accuracy provided by the HRMS system in use ensured an enhanced selectivity compared to other mass spectrometers. In addition, after activation of the HCD cell, the HR-MS/MS spectra can provide insights in the structural elucidation of several compounds. The acquisition of HRMS spectra of raw filtrates of subtilis strains allows untargeted analysis of the major classes of compounds produced to be performed, thus facilitating identification of other unknown bioactive molecules after retrospective analysis. These features make this approach a fast tool applicable to the rapid screening and further identification of antimicrobial compounds released by Bacillus strains in raw filtrates. Copyright © 2015 John Wiley & Sons, Ltd.
Kushnir, Mark M; Nelson, Gordon J; Frank, Elizabeth L; Rockwood, Alan L
2016-01-01
Measurement of methylmalonic acid (MMA) plays an important role in the diagnosis of vitamin B12 deficiency. Vitamin B12 is an essential cofactor for the enzymatic carbon rearrangement of methylmalonyl-CoA (MMA-CoA) to succinyl-CoA (SA-CoA), and the lack of vitamin B12 leads to elevated concentrations of MMA. Presence of succinic acid (SA) complicates the analysis because mass spectra of MMA and SA are indistinguishable, when analyzed in negative ion mode and the peaks are difficult to resolve chromatographically. We developed a method for the selective analysis of MMA that exploits the significant difference in fragmentation patterns of di-butyl derivatives of the isomers MMA and SA in a tandem mass spectrometer when analyzed in positive ion mode. Tandem mass spectra of di-butyl derivatives of MMA and SA are very distinct; this allows selective analysis of MMA in the presence of SA. The instrumental analysis is performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive ion mode, which is, in combination with selective extraction of acidic compounds, is highly selective for organic acids with multiple carboxyl groups (dicarboxylic, tricarboxylic, etc.). In this method organic acids with a single carboxyl group are virtually undetectable in the mass spectrometer; the only organic acid, other than MMA, that is detected by this method is its isomer, SA. Quantitative measurement of MMA in this method is performed using a deconvolution algorithm, which mathematically resolves the signal corresponding to MMA and does not require chromatographic resolution of the MMA and SA peaks. Because of its high selectivity, the method utilizes isocratic chromatographic separation; reconditioning and re-equilibration of the chromatographic column between injections is unnecessary. The above features of the method allow high-throughput analysis of MMA with analysis cycle time of 1 min.
Martin, Scott; Lenz, Eva M; Smith, Robin; Temesi, David G; Orton, Alexandra L; Clench, Malcolm R
2017-01-15
The incubation of CPAQOP (1-[(2R)-2-[[4-[3-chloro-4-(2-pyridyloxy)anilino]quinazolin-5-yl]oxymethyl]-1-piperidyl]-2-hydroxy) with human liver microsomes generated several metabolites that highlighted the hydroxyacetamide side chain was a major site of metabolism for the molecule. The metabolites were derived predominantly from oxidative biotransformations; however, two unexpected products were detected by liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS) and identified as methanol adducts. This observation prompted further LC/MS investigations into their formation. Three separate incubations of CPAQOP were conducted in human liver microsomes; Naïve, fortified with methoxyamine and fortified with glutathione. Separation was achieved via ultra-high-performance liquid chromatography with either methanol or acetonitrile gradients containing formic acid. MS analysis was conducted by electrospray ionisation LTQ Orbitrap mass spectrometry acquiring accurate mass full scan, data-dependent MS 2 and all ion fragmentation. No methanol adducts were detected by MS when acetonitrile was used in the mobile phase instead of methanol, verifying that a metabolite was reacting with methanol on column. Although this reactive metabolite could not be isolated or structurally characterised by LC/MS directly, product ion spectra of the methanol adducts confirmed addition of methanol on the hydroxyacetamide side chain. Additional experiments using methoxyamine showed the disappearance of the two methanol adducts and appearance of a methoxyamine adduct, confirming the presence of an aldhyde. Product ion spectra of the methoxyamine adduct confirmed addition of methoxyamine to the hydroxyacetamide side chain. The proposed bioactivation of CPAQOP occurred via the reactive aldehyde intermediate, which readily reacted with methanol in the mobile phase to form a pair of isomeric hemiacetal methanol adducts. In acidified methanol the equilibrium favoured the methanol adduct and in acidified acetonitrile it favoured the hydrate; therefore, the reactive aldehyde metabolite was not detected and could not be structurally characterised directly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yeung, B; Vouros, P; Reddy, G S
1993-08-13
A mass spectrometric method for the detection of vitamin D3 metabolites is described. This method involves the derivatization of the metabolites by cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione, followed by their characterization by continuous-flow fast atom bombardment (CF-FAB) tandem mass spectrometry (MS-MS) and high-performance liquid chromatography (HPLC). Using HPLC, this derivatization has been shown to increase the UV detectability of 25-hydroxyvitamin D3 by about 5-fold. The FAB spectra of the adducts are dominated by peaks corresponding to a protonated molecule and a fragment ion derived in part from the loss of the side chain. Multiple reaction monitoring (MRM) of this transition by MS-MS may be utilized for trace level analysis of vitamin D metabolites. Sample introduction by flow injection yields detection limits in the low nanogram to high picogram range, whereas the use of on-line capillary LC has been found to decrease the detection limits to the low picogram level.
Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula
2015-01-01
Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD). PMID:26610567
Reddy, G V Ram; Kumar, A Praveen; Reddy, B Venkateswara; Sreeramulu, J
2009-10-01
Anhydro-simvastatin and simvastatin dimer are the two main impurities in the fermentation broth as well as in the final product of simvastatin, which is a hypolipidemic drug. An unknown impurity with m/z 451 for [(M + H)(+)] was detected in the analysis of final simvastatin drug sample. By using reverse phase high performance liquid chromatography (HPLC)-mass spectrometry (MS) and MS/MS spectra, the unknown impurity was detected and identified. Separation was achieved on ACE-5 C18 (150 x 4.6 mm, 3 microm column) at the flow rate of 1.2 ml min(-1) applying gradient elution of mobile phase A consisting of Milli-Q water of pH 3.0 with formic acid and B consisting of acetonitrile. MS/MS spectrum of the unknown impurity was obtained using HPLC-MS equipped with positive electrosoray ionization (ESI). The unknown impurity is named as 7-[7-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1 -yl]-3-hydroxy-5-hydroxymethyl-heptanoic acid.
Trimpin, Sarah; Deinzer, Max L
2007-01-01
A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.
Silva, Eduarda M P; Barros, Cristina M R F; Santos, Clementina M M; Barros, António S; Domingues, M Rosário M; Silva, Artur M S
2016-10-30
Xanthones (XH) are a class of heterocyclic compounds widely distributed in nature that hold numerous noteworthy biological and antioxidant activities. Therefore, it is of utmost importance to achieve relevant detailed structural information to understand and assist prediction of their biological properties. The potential relationship between radical-mediated xanthone chemistry in the gas phase and their promising antioxidant activities has not been previously explored. Protonated xanthones XH1-9 were generated in the gas phase by electrospray ionization (ESI) and the main fragmentation pathways of the protonated XH1-9 formed due to collision-induced dissociation (CID) were investigated. In the CID-MS/MS spectra of [M+H](+) ions of XH1, XH2 and XH4 the product ions formed due to H2 O elimination corresponding to the base peak of the spectra. For the remaining six xanthones (XH3, XH5-9), showing the most promising biological profile, the product ion produced with the highest relative abundance (RA) corresponded to the one formed through concomitant loss of H2 O plus CO. Indicative of an inexistent or lower biological activity is the combined loss of CO plus O unique to the CID-MS/MS spectra of XH1, XH2, XH4, and XH5. The product ion formed by loss of 64 Da (concomitant loss of two molecules of H2 O plus CO) is only observed for xanthones containing a catechol unit (XH3 and XH6-9). This product ion has the highest RA for the most potent scavenger of reactive oxygen and nitrogen species XH9 that contains two of these catechol moieties. A strong relationship between some of the biological activities of the studied 2,3-diarylxanthones and their ESI-MS/MS fragmentation spectra was found. The multivariate statistical analysis results suggest that the selected MS features are related to the important biological features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Propagating annotations of molecular networks using in silico fragmentation
da Silva, Ricardo R.; Wang, Mingxun; Fox, Evan; Balunas, Marcy J.; Klassen, Jonathan L.; Dorrestein, Pieter C.
2018-01-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp. PMID:29668671
Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin
2015-03-01
MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.
Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin
2015-01-01
Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215
Propagating annotations of molecular networks using in silico fragmentation.
da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C
2018-04-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.
Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko
2017-11-01
Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko
2017-07-01
Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.
La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2017-03-01
The aim of metabolic untargeted profiling is to detect and identify unknown compounds in a biological matrix to achieve the most comprehensive metabolic coverage. In phytochemical mixtures, however, the complexity of the sample could present significant difficulties in compound identification. In this case, the optimization of both the chromatographic and the mass-spectrometric conditions is supposed to be crucial for the detection and identification of the largest number of compounds. In this work, a systematic investigation of different chromatographic and mass-spectrometric conditions is presented to achieve a comprehensive untargeted profiling of a strawberry extract (Fragaria × ananassa). To fulfill this aim, an ultra-high-pressure liquid chromatography system coupled via an electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer was used. Spectra were acquired in data-dependent mode, and several parameters were investigated to acquire the largest possible number of both mass spectrometry (MS) features and MS 2 mass spectra for unique metabolites. The main classes of polyphenols studied were flavonoids, phenolic acids, dihydrochalcones, ellagitannins, and proanthocyanidins. Method optimization allowed to us identify and tentatively identify 18 and 113 compounds, respectively, among which 74 have never been reported before in strawberries and, to the best of our knowledge, 22 of them have never been reported before. The results show the importance of an extended investigation of the chromatographic and mass-spectrometric method before a complete untargeted profiling of complex phytochemical mixtures.
Cabral, E C; Sevart, L; Spindola, H M; Coelho, M B; Sousa, I M O; Queiroz, N C A; Foglio, M A; Eberlin, M N; Riveros, J M
2013-02-01
The oil obtained from Pterodon pubescens (Leguminosae) seeds are known to display anti-cancer, anti-dermatogenic and anti-nociceptive activitiy. Phytochemical studies have demonstrated that its main constituents are diterpenoids with voucapan skeletons. Considering the potential biological activities of the oil, rapid and efficient methods for assessing its quality would facilitate certification and quality control. To develop a direct mass spectrometric fingerprinting method for the P. pubescens seed oil that would focus on the major diterpenoids constituents, enabling quality control, origin certification and recognition of marker species in commercially available products. Two techniques were used: (i) direct infusion electrospray ionisation (ESI) mass spectrometry after solvent extraction and dilution and (ii) ambient desorption/ionisation via easy ambient sonic-spray ionisation, EASI(+)-MS, performed directly on the seed surface or at a paper surface imprinted with the oil. From a combination of ESI-MS, HRESI-MS and ESI-MS/MS data, 12 diterpenes were characterised, and typical profiles were obtained for the oil extract or the crude oil via both ESI-MS and EASI-MS. These techniques require no or very simple sample preparation protocols and the whole analytical processes with spectra acquisition take just a few minutes. Both techniques, but particularly EASI-MS, provide simple, fast and efficient MS fingerprinting methodologies to characterise the P. pubescens oil with typical (di)terpene profiles being applicable to quality control and certification of authenticity and origin. Copyright © 2012 John Wiley & Sons, Ltd.
Application of Laser Mass Spectrometry to Art and Archaeology
NASA Technical Reports Server (NTRS)
Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.
2011-01-01
REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.
Chernetsova, Elena S; Morlock, Gertrud E
2011-01-01
Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching
2016-04-01
In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.
Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng
2015-12-01
Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.
Pont, Laura; Sanz-Nebot, Victoria; Vilaseca, Marta; Jaumot, Joaquim; Tauler, Roma; Benavente, Fernando
2018-05-01
In this study, we describe a chemometric data analysis approach to assist in the interpretation of the complex datasets from the analysis of high-molecular mass oligomeric proteins by ion mobility mass spectrometry (IM-MS). The homotetrameric protein transthyretin (TTR) is involved in familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR(Met30)) that can be easily detected analyzing the monomeric forms of the mutant protein. However, the mechanism of protein misfolding and aggregation onset, which could be triggered by structural changes in the native tetrameric protein, remains under investigation. Serum TTR from healthy controls and FAP-I patients was purified under non-denaturing conditions by conventional immunoprecipitation in solution and analyzed by IM-MS. IM-MS allowed separation and characterization of several tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time. After an appropriate data pre-processing, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the complex datasets. A group of seven independent components being characterized by their ion mobility profiles and mass spectra were resolved to explain the observed data variance in control and patient samples. Then, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were considered for exploration and classification. Only four out of the seven resolved components were enough for an accurate differentiation. Furthermore, the specific TTR ions identified in the mass spectra of these components and the resolved ion mobility profiles provided a straightforward insight into the most relevant oligomeric TTR proteoforms for the disease. Copyright © 2018 Elsevier B.V. All rights reserved.
A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*
Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri
2016-01-01
Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A
2016-08-01
We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
van de Waterbeemd, Michiel; Snijder, Joost; Tsvetkova, Irina B.; Dragnea, Bogdan G.; Cornelissen, Jeroen J.; Heck, Albert J. R.
2016-06-01
Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible.
Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen
2017-09-01
Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen
2017-09-01
Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.
Ito, Shihomi; Chikasou, Masato; Inohana, Shuichi; Fujita, Kazuhiro
2016-01-01
Discriminating vegetable oils and animal and milk fats by infrared absorption spectroscopy is difficult due to similarities in their spectral patterns. Therefore, a rapid and simple method for analyzing vegetable oils, animal fats, and milk fats using TOF/MS with an APCI direct probe ion source was developed. This method enabled discrimination of these oils and fats based on mass spectra and detailed analyses of the ions derived from sterols, even in samples consisting of only a few milligrams. Analyses of the mass spectra of processed foods containing oils and milk fats, such as butter, cheese, and chocolate, enabled confirmation of the raw material origin based on specific ions derived from the oils and fats used to produce the final product.
Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan
2015-01-01
Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.
Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.
Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen
2010-11-01
In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.
Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry
Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen
2011-01-01
In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266
Kajiwara, Hideyuki
2016-01-01
The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jialing; Feider, Clara L.; Nagi, Chandandeep; Yu, Wendong; Carter, Stacey A.; Suliburk, James; Cao, Hop S. Tran; Eberlin, Livia S.
2017-06-01
Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. [Figure not available: see fulltext.
Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc
2003-01-01
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Multicomponent Calibration and Quantitation Methods.
1984-11-01
liquid chromatographic peaks (45). Applying rank annihilation to LC /UV data requires that the elution profiles of each individual component in the...measurements, e.g. LC /UV, CC/MS, or GC/FTIR analyses. The response of a single component can be described as M = a x y’ (45) 0 where M contains the...in the second dimension. For example, a GC/MS peak consisting - 3 of 50 mass spectra each composed of 20 distinct m/e ratios would result in a matrix
A LC/MS METHOD FOR THE DETERMINATION OF CYANOBACTERIA TOXINS IN WATER
The cyanobacteria toxins anatoxin-a, microcystin-LR, microcystin-RR, microcystin-YR, and nodularin were separated in less than 30 minutes on several 1 mm x 15 cm reverse phase liquid chromatography (LC) columns, and their electrospray mass spectra were measured with 50 ng or less...
IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT.
Arntzen, Magnus Ø; Koehler, Christian J; Barsnes, Harald; Berven, Frode S; Treumann, Achim; Thiede, Bernd
2011-02-04
Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.
Ga + TOF-SIMS lineshape analysis for resolution enhancement of MALDI MS spectra of a peptide mixture
NASA Astrophysics Data System (ADS)
Malyarenko, D. I.; Chen, H.; Wilkerson, A. L.; Tracy, E. R.; Cooke, W. E.; Manos, D. M.; Sasinowski, M.; Semmes, O. J.
2004-06-01
The use of mass spectrometry to obtain molecular profiles indicative of alteration of concentrations of peptides in body fluids is currently the subject of intense investigation. For surface-based time-of-flight mass spectrometry the reliability and specificity of such profiling methods depend both on the resolution of the measuring instrument and on the preparation of samples. The present work is a part of a program to use Ga + beam TOF-SIMS alone, and as an adjunct to MALDI, in the development of reliable protein and peptide markers for diseases. Here, we describe techniques to prepare samples of relatively high-mass peptides, which serve as calibration standards and proxies for biomarkers. These are: Arg8-vasopressin, human angiotensin II, and somatostatin. Their TOF-SIMS spectra show repeatable characteristic features, with mass resolution exceeding 2000, including parent peaks and chemical adducts. The lineshape analysis for high-resolution parent peaks is shown to be useful for filter construction and deconvolution of inferior resolution SELDI-TOF spectra of calibration peptide mixture.
Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato
2010-04-01
Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.
Hu, Youcai; Qu, Jing; Liu, Yuanyan; Yu, Shishan; Li, Jianbei; Zhang, Jinlan; Du, Dan
2010-01-01
The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y(0)(-) and B(0)(-) ions in the MS(2) spectra is characteristic for 1-->6 linked diglycosyl stilbenes, while the Y(0)(-), Y(1)(-), and Z(1)(-) ions are representative ions of 1-->2 linked diglycosyl stilbenes. These results indicate that ESI-MS(n) in the negative ion mode can be used to differentiate 1-->6 and 1-->2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MS(n). The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.
Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Lo Presti, Maria; Dugo, Paola; Dugo, Giovanni
2007-11-01
The present research is focused on the development of a comprehensive two-dimensional gas chromatography-rapid scanning quadrupole mass spectrometric (GC x GC-qMS) methodology for the analysis of trace-amount pesticides contained in a complex real-world sample. Reliable peak assignment was carried out by using a recently developed, dedicated pesticide MS library (for comprehensive GC analysis), characterized by a twin-filter search procedure, the first based on a minimum degree of spectral similarity and the second on the interactive use of linear retention indices (LRI). The library was constructed by subjecting mixtures of commonly used pesticides to GC x GC-qMS analysis and then deriving their pure mass spectra and LRI values. In order to verify the effectiveness of the approach, a pesticide-contaminated red grapefruit extract was analysed. The certainty of peak assignment was attained by exploiting both the enhanced separation power of dual-oven GC x GC and the highly effective search procedure.
Christner, Martin; Dressler, Dirk; Andrian, Mark; Reule, Claudia; Petrini, Orlando
2017-01-01
The fast and reliable characterization of bacterial and fungal pathogens plays an important role in infectious disease control and tracking of outbreak agents. DNA based methods are the gold standard for epidemiological investigations, but they are still comparatively expensive and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a fast, reliable and cost-effective technique now routinely used to identify clinically relevant human pathogens. It has been used for subspecies differentiation and typing, but its use for epidemiological tasks, e. g. for outbreak investigations, is often hampered by the complexity of data analysis. We have analysed publicly available MALDI-TOF mass spectra from a large outbreak of Shiga-Toxigenic Escherichia coli in northern Germany using a general purpose software tool for the analysis of complex biological data. The software was challenged with depauperate spectra and reduced learning group sizes to mimic poor spectrum quality and scarcity of reference spectra at the onset of an outbreak. With high quality formic acid extraction spectra, the software's built in classifier accurately identified outbreak related strains using as few as 10 reference spectra (99.8% sensitivity, 98.0% specificity). Selective variation of processing parameters showed impaired marker peak detection and reduced classification accuracy in samples with high background noise or artificially reduced peak counts. However, the software consistently identified mass signals suitable for a highly reliable marker peak based classification approach (100% sensitivity, 99.5% specificity) even from low quality direct deposition spectra. The study demonstrates that general purpose data analysis tools can effectively be used for the analysis of bacterial mass spectra.
Jian, Long-Hai; Hu, Chun; Yu, Hong; Wang, Ke; Ji, Shen
2013-07-01
A rapid method of Liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) combined with pyridinium chlorochromate (PCC) oxidation has been developed to determine chemical structures of two novel isomers in bear bile powder. Derivatives of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) were semi-synthesized by PCC oxidation, then were analyzed by LC-Q-TOF-MS. Separation was carried out on a reverse column with the mobile phase of acetonitrile-0.1% formic acid (45:55). The data of Q-TOF-MS was acquired by MS, MS/MS, positive and negative modes. Since UDCA and CDCA were stereochemical isomeric at an alcohol position, two oxidation products were same and have been confirmed by LC-Q-TOF-MS. Other two products were also determined based on the PCC oxidation theory. Samples of bear bile powder were dissolved by methanol and measured by LC-Q-TOF-MS. Two unknown peaks were found and identified by matching their retention times and accurate mass spectra ions with PCC oxidation productS. Finally, the structures of two new bile acids in bear bile powder were confirmed as 3alpha-hydroxy-7-oxo-5beta-cholanic acid, 7alpha-hydroxy-3-oxo-5beta-cholanic acid, respectively.
Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter
2009-12-01
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.
Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae
NASA Astrophysics Data System (ADS)
Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang
2014-12-01
Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.
Goodacre, Royston; Vaidyanathan, Seetharaman; Bianchi, Giorgio; Kell, Douglas B
2002-11-01
There is a continuing need for improved methods for assessing the adulteration of foodstuffs. We report some highly encouraging data, where we have developed direct infusion electrospray ionisation mass spectrometry (ESI-MS) together with chemometrics as a novel, rapid (1 min per sample) and powerful technique to elucidate key metabolite differences in vegetable and nut oils. Principal components analysis of these ESI-MS spectra show that the reproducibility of this approach is high and that olive oil can be discriminated from oils which are commonly used as adulterants. These adulterants include refined hazelnut oil, which is particularly challenging given its chemical similarity to olive oils.
MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry.
Phan, Nhu T N; Munem, Marwa; Ewing, Andrew G; Fletcher, John S
2017-06-01
Lipids are abundant biomolecules performing central roles to maintain proper functioning of cells and biological bodies. Due to their highly complex composition, it is critical to obtain information of lipid structures in order to identify particular lipids which are relevant for a biological process or metabolic pathway under study. Among currently available molecular identification techniques, MS/MS in secondary ion mass spectrometry (SIMS) imaging has been of high interest in the bioanalytical community as it allows visualization of intact molecules in biological samples as well as elucidation of their chemical structures. However, there have been few applications using SIMS and MS/MS owing to instrumental challenges for this capability. We performed MS and MS/MS imaging to study the lipid structures of Drosophila brain using the J105 and 40-keV Ar 4000 + gas cluster ion source, with the novelty being the use of MS/MS SIMS analysis of intact lipids in the fly brain. Glycerophospholipids were identified by MS/MS profiling. MS/MS was also used to characterize diglyceride fragment ions and to identify them as triacylglyceride fragments. Moreover, MS/MS imaging offers a unique possibility for detailed elucidation of biomolecular distribution with high accuracy based on the ion images of its fragments. This is particularly useful in the presence of interferences which disturb the interpretation of biomolecular localization. Graphical abstract MS/MS was performed during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of Drosophila melongaster (fruit fly) to elucidate the structure and origin of different chemical species in the brain including a range of different phospholipid classes (PC, PI, PE) and di- and triacylglycerides (DAG & TAG) species where reference MS/MS spectra provided a potential means of discriminating between the isobaric [M-OH] + ion of DAGs and the [M-RCO] + ion of TAGs.
Raharimalala, F N; Andrianinarivomanana, T M; Rakotondrasoa, A; Collard, J M; Boyer, S
2017-09-01
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control. © 2017 The Royal Entomological Society.
Clark, Chase M.; Costa, Maria S.
2018-01-01
For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies. PMID:29686101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin
Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less
Zhou, Manshui; McDonald, John F; Fernández, Facundo M
2010-01-01
Metabolomic fingerprinting of bodily fluids can reveal the underlying causes of metabolic disorders associated with many diseases, and has thus been recognized as a potential tool for disease diagnosis and prognosis following therapy. Here we report a rapid approach in which direct analysis in real time (DART) coupled with time-of-flight (TOF) mass spectrometry (MS) and hybrid quadrupole TOF (Q-TOF) MS is used as a means for metabolomic fingerprinting of human serum. In this approach, serum samples are first treated to precipitate proteins, and the volatility of the remaining metabolites increased by derivatization, followed by DART MS analysis. Maximum DART MS performance was obtained by optimizing instrumental parameters such as ionizing gas temperature and flow rate for the analysis of identical aliquots of a healthy human serum samples. These variables were observed to have a significant effect on the overall mass range of the metabolites detected as well as the signal-to-noise ratios in DART mass spectra. Each DART run requires only 1.2 min, during which more than 1500 different spectral features are observed in a time-dependent fashion. A repeatability of 4.1% to 4.5% was obtained for the total ion signal using a manual sampling arm. With the appealing features of high-throughput, lack of memory effects, and simplicity, DART MS has shown potential to become an invaluable tool for metabolomic fingerprinting. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery
NASA Astrophysics Data System (ADS)
Si, Qian
Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.
Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong
2018-03-01
In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.
Witt, Matthias; Fuchser, Jens; Koch, Boris P
2009-04-01
The complex natural organic matter standard Suwannee river fulvic acid (SRFA) was analyzed by negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS) using on-resonance collision induced dissociation (CID) of single ultrahigh resolved mass peaks in the ICR cell. Molecular formula assignment of precursor masses resulted in exactly one molecular formula for each of the peaks. Analyses of the corresponding fragment spectra and comparison to different standard substances revealed specific neutral losses and fragmentation patterns which result in structures consisting of a high degree of carboxyl- and fewer hydroxyl groups. The comparison of fragmented mass peaks within different pseudohomologous series (CH(2)-series, and CH(4) vs O exchange) suggested structurally based differences between these series. CID FTICR MS allowed isolating single mass peaks in a very complex natural organic matter spectrum. Subsequently, fragmentation gave structural insights into this material. Our results suggest that the structural diversity in complex humic substances is not as high as expected.
Couderc, Carine; Nappez, Claude; Drancourt, Michel
2012-03-30
It is recommended that harmful Biosafety Level 3 (BSL-3) bacteria be inactivated prior to identification by mass spectrometry, yet optimal effects of inactivation protocol have not been defined. Here, we compare trifluoroacetic acid inactivation (protocol A) with ethanol inactivation (protocol B) of Yersinia organisms prior to identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The total number of peaks detected was 10.5 ± 1.7 for protocol A and 15.7 ± 4.2 for protocol B (ρ <0.001, ANOVA test). The signal-to-noise ratio for the m/z 6049 peak present in all of the tested Yersinia isolates was 9.7 ± 3.1 for protocol A and 18.1 ± 4.6 for protocol B (ρ < 0.001). Compared with spectra in our local database containing 48 Yersinia spp., including 20 strains of Y. pestis, the identification score was 1.79 ± 0.2 for protocol A and 1.97 ± 0.19 for protocol B (ρ = 0.0024). Our observations indicate that for the identification of Yersinia organisms, ethanol inactivation yielded MALDI-TOF-MS spectra of significantly higher quality than spectra derived from trifluoroacetic acid inactivation. Combined with previously published data, our results permit the updating of protocols for inactivating BSL-3 bacteria. Copyright © 2012 John Wiley & Sons, Ltd.
Heckel, Benjamin; Rodríguez-Fernández, Diana; Torrentó, Clara; Meyer, Armin; Palau, Jordi; Domènech, Cristina; Rosell, Mònica; Soler, Albert; Hunkeler, Daniel; Elsner, Martin
2017-03-21
Compound-specific chlorine isotope analysis of tetrachloromethane (CCl 4 ) and trichloromethane (CHCl 3 ) was explored by both, gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and GC-quadrupole MS (GC-qMS), where GC-qMS was validated in an interlaboratory comparison between Munich and Neuchâtel with the same type of commercial GC-qMS instrument. GC-IRMS measurements analyzed CCl isotopologue ions, whereas GC-qMS analyzed the isotopologue ions CCl 3 , CCl 2 , CCl (of CCl 4 ) and CHCl 3 , CHCl 2 , CHCl (of CHCl 3 ), respectively. Lowest amount dependence (good linearity) was obtained (i) in H-containing fragment ions where interference of 35 Cl- to 37 Cl-containing ions was avoided; (ii) with tuning parameters favoring one predominant rather than multiple fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most abundant ions) resulted in standard deviations of 0.2‰ (CHCl 3 ) and 0.4‰ (CCl 4 ), which are only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of both methods and laboratories, samples from CCl 4 and CHCl 3 degradation experiments were analyzed and calibrated against isotopically different reference standards for both CCl 4 and CHCl 3 (two of each). Excellent agreement confirms that true results can be obtained by both methods provided that a consistent set of isotopically characterized reference materials is used.
Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A
2008-10-01
Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.
Masyuko, Rachel N; Lanni, Eric J; Driscoll, Callan M; Shrout, Joshua D; Sweedler, Jonathan V; Bohn, Paul W
2014-11-21
Bacteria growing as surface attached biofilms differ significantly from planktonic cells in several important traits that are reflected in the spatiotemporal organization of the cells and the extracellular polymeric substances they secrete. The structural and chemical features that define these biofilms are explored here using a combination of matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and confocal Raman microspectroscopies (CRM) to characterize and compare the composition and distribution of biomolecules found in biofilms and planktonic cells of the bacterium Pseudomonas aeruginosa. Three-day old P. aeruginosa biofilms show dramatic differences in molecular composition compared to planktonic cultures. CRM reveals that wild-type planktonic cell Raman spectra are characterized by bands linked to cellular constituents and are dominated by contributions from DNA- and RNA-related bands. In contrast, biofilm spectra are dominated by bands characteristic of glycolipids - rhamnolipids - polysaccharides and by secreted proteins. LDI MS was applied in turn to identify the rhamnolipids present in the biofilm. Experiments were also conducted using an acyl homoserine lactone quorum sensing-deficient mutant (ΔlasIΔrhlI), which is incapable of producing rhamnolipids. CRM and LDI MS analyses revealed that while molecular composition of the planktonic quorum sensing-deficient cells is similar to that of the wild-type planktonic cells, several compositional differences are observed in the mutant after biofilm growth, including complete absence of detectable rhamnolipids. CRM vibrational spectra of the mutant cells are very similar for planktonic and biofilm growth conditions, indicating that biofilm formation is greatly hindered in the absence of functioning quorum sensing machinery.
Nebbak, A; El Hamzaoui, B; Berenger, J-M; Bitam, I; Raoult, D; Almeras, L; Parola, P
2017-12-01
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non-vector species. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1-6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI-TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest. © 2017 The Royal Entomological Society.
Räsänen, Riikka-Marjaana; Dwivedi, Prabha; Fernández, Facundo M; Kauppila, Tiina J
2014-11-15
Ambient mass spectrometry (MS) is a tool for screening analytes directly from sample surfaces. However, background impurities may complicate the spectra and therefore fast separation techniques are needed. Here, we demonstrate the use of travelling wave ion mobility spectrometry in a comparative study of two ambient MS techniques. Desorption atmospheric pressure photoionization (DAPPI) and direct analysis in real time (DART) were coupled with travelling wave ion mobility mass spectrometry (TWIM-MS) for highly selective surface analysis. The ionization efficiencies of DAPPI and DART were compared. Test compounds were: bisphenol A, benzo[a]pyrene, ranitidine, cortisol and α-tocopherol. DAPPI-MS and DART-TWIM-MS were also applied to the analysis of chloroquine from dried blood spots, and α-tocopherol from almond surface, and DAPPI-TWIM-MS was applied to analysis of pharmaceuticals and multivitamin tablets. DAPPI was approximately 100 times more sensitive than DART for bisphenol A and 10-20 times more sensitive for the other compounds. The limits of detection were between 30-290 and 330-8200 fmol for DAPPI and DART, respectively. Also, from the authentic samples, DAPPI ionized chloroquine and α-tocopherol more efficiently than DART. The mobility separation enabled the detection of species with low signal intensities, e.g. thiamine and cholecalciferol, in the DAPPI-TWIM-MS analysis of multivitamin tablets. DAPPI ionized the studied compounds of interest more efficiently than DART. For both DAPPI and DART, the mobility separation prior to MS analysis reduced the amount of chemical noise in the mass spectrum and significantly increased the signal-to-noise ratio for the analytes. Copyright © 2014 John Wiley & Sons, Ltd.
Lin, Zhiwei
2014-01-01
The infrared spectra of (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt (CLF-HCl) were studied and compared with free base. Their fragmentation pathways were investigated using tandem mass spectrometric (MS/MS) techniques on Fourier-transform ion cyclotron resonance spectrum, and many characteristic fragment ions were found. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.
2011-10-01
The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural features of the ions. We have studied ions in the mass range from 60 to 160 u, corresponding to particularly interesting species already characterized by other (e.g. tandem MS/MS) methods.
Detection of Biomarkers of Pathogenic Naegleria fowleri Through Mass Spectrometry and Proteomics
Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R.; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R.
2017-01-01
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. PMID:25231600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A
A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Developmentmore » lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.« less
Yang, Xue-Dong; Tang, Xu-Yan; Sang, Lin
2012-11-01
To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. HPLC preparative chromatograph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18-MS-II column (20.0 mm x 20.0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL x min(-1). The sample size was 0.5 mL, and the extraction cycle was 4.5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) after being concentrated by 100 times. Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[beta-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-0-beta-D-apiopyranosylglycyrrhetic/3-O- [P-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-O-beta-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3, 22-hydroxyglycyrrhizin/18alpha-glycyrrhizic saponin G2, 3-O-[beta-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS(n) spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18beta-glycyrrhizic acid, uralglycyrrhizic saponin B and 18alpha-glycyrrhizic acid by liquid chromatography, MS(n) and ultraviolet spectra information and comparison with reference substances. The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate-related products.
Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Roessner, Ute; Halgamuge, Saman K
2015-01-01
Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net.
2015-01-01
Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net. PMID:26680279
Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L
2014-02-01
Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. Published by Elsevier Ireland Ltd.
Rudd, David; Benkendorff, Kirsten; Voelcker, Nicolas H.
2015-01-01
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples. PMID:25786067
Oro, Nicole E; Whittal, Randy M; Lucy, Charles A
2012-09-05
Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu
2012-09-01
An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.
Schinkel, Lena; Lehner, Sandro; Knobloch, Marco; Lienemann, Peter; Bogdal, Christian; McNeill, Kristopher; Heeb, Norbert V
2018-03-01
Chlorinated paraffins (CPs) are high production volume chemicals widely used as additives in metal working fluids. Thereby, CPs are exposed to hot metal surfaces which may induce degradation processes. We hypothesized that the elimination of hydrochloric acid would transform CPs into chlorinated olefins (COs). Mass spectrometry is widely used to detect CPs, mostly in the selected ion monitoring mode (SIM) evaluating 2-3 ions at mass resolutions R < 20'000. This approach is not suited to detected COs, because their mass spectra strongly overlap with CPs. We applied a mathematical deconvolution method based on full-scan MS data to separate interfered CP/CO spectra. Metal drilling indeed induced HCl-losses. CO proportions in exposed mixtures of chlorotridecanes increased. Thermal exposure of chlorotridecanes at 160, 180, 200 and 220 °C also induced dehydrohalogenation reactions and CO proportions also increased. Deconvolution of respective mass spectra is needed to study the CP transformation kinetics without bias from CO interferences. Apparent first-order rate constants (k app ) increased up to 0.17, 0.29 and 0.46 h -1 for penta-, hexa- and heptachloro-tridecanes exposed at 220 °C. Respective half-life times (τ 1/2 ) decreased from 4.0 to 2.4 and 1.5 h. Thus, higher chlorinated paraffins degrade faster than lower chlorinated ones. In conclusion, exposure of CPs during metal drilling and thermal treatment induced HCl losses and CO formation. It is expected that CPs and COs are co-released from such processes. Full-scan mass spectra and subsequent deconvolution of interfered signals is a promising approach to tackle the CP/CO problem, in case of insufficient mass resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul
2017-08-01
Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z < 500). Reproducibility of inter-spot and intra-spot analyses of amino acids was less than 10%. Methanol extraction was adopted for simple and rapid sample preparation of serum before mass spectrometric analysis showing 13.3 to 45% of extraction efficiency. Calibration curves for diagnosis of neonatal metabolic disorders were obtained by analyzing methanol-extracted serum spiked with target amino acids using MALDI-ToF MS. They showed good linearity (R 2 > 0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Rongfu; Wang, Wei; Qian, Yichao; Boyd, Jessica M; Zhao, Yuli; Li, Xing-Fang
2013-05-07
We report here the characterization of twelve halobenzoquinones (HBQs) using electrospray ionization (ESI) high resolution quadrupole time-of-flight mass spectrometry. The high resolution negative ESI spectra of the twelve HBQs formed two parent ions, [M + H(+) + 2e(-)], and the radical M(-•). The intensities of these two parent ions are dependent on their chemical structures and on instrumental parameters such as the source temperature and flow rate. The characteristic ions of the HBQs were used to develop an ultra pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. At the UPLC flow rate (400 μL/min) and under the optimized ESI conditions, eleven HBQs showed the stable and abundant transitions [M + H(+) + 2e(-)] → X(-) (X(-) representing Cl(-), Br(-), or I(-)), while dibromo-dimethyl-benzoquinone (DBDMBQ) showed only the transition of M(-•) → Br(-). The UPLC efficiently separates all HBQs including some HBQ isomers, while the MS/MS offers exquisite limits of detection (LODs) at subng/mL levels for all HBQs except DBDMBQ. Combined with solid phase extraction (SPE), the method LOD is down to ng/L. The results from analysis of authentic samples demonstrated that the SPE-UPLC-MS/MS method is reliable, fast, and sensitive for the identification and quantification of the twelve HBQs in drinking water.
He, Min; Wu, Hai; Nie, Juan; Yan, Pan; Yang, Tian-Biao; Yang, Zhi-Yu; Pei, Rui
2017-11-30
In this study, Liquid Chromatography (LC) separation combined with quadrupole-Time-Of-Flight Mass Spectrometry (qTOF-MS) detection was used to analyze the characteristic ions of the flavonoids from Liang-wai Gan Cao (Radix Glycyrrhizae uralensis). First, accurate mass measurement and isotope curve optimization could provide reliable molecular prediction after noise deduction, baseline calibration and "ghost peak recognition". Thus, some spectral features in the LC-MS data could be clearly explained. Secondly, the chemical structure of flavonoids was deduced by MS/MS fragment ions, and the in-silico spectra by MS-FINDER program provided strong support for overcoming the bottleneck of phytochemical identification. For a predicted formula and experimental MS/MS spectrum, the MS-FINDER program could sort the candidate compounds in the public database based on a comprehensive weighted score, and we took the first 20 reliable compounds to seek the target compound in an in-house database. Certainly, those fragmentation pathways could also be deduced and described as Retro-Diels-Alder (RDA) fragmentation reaction, losses of C 4 H 8 , C 5 H 8 , CH 3 , CO, CO 2 and others. Accordingly, 63 flavonoids were identified, and their in-silico bioactivity were clearly disclosed by some bioinformatics tools. In this experiment, the flavonoids obtained by the four extraction processes were tested by LC-qTOF-MS. We looked for possible Q-markers from these data matrices and then quantified them; their similarities/differences were also described. The results also indicated that the Macroporous Adsorption Resins (MARs) purification is a low cost, environmentally friendly and effective approach. Copyright © 2017 Elsevier B.V. All rights reserved.
St-Jacques, Antony; Anichina, Janna; Schneider, Bradley B; Covey, Thomas R; Bohme, Diethard K
2010-07-15
Differential mobility spectrometry has been applied to reveal the occurrence of isomerization of thymine nucleobase and of thymine dideoxynucleotide d(5'-TT-3') due to bond redisposition induced by UV irradiation at 254 nm of frozen aqueous solutions of these molecules. Collision-induced dissociation (CID) spectra of electrosprayed photoproducts of the thymine solution suggest the presence of two isomers (the so-called cyclobutane and 6,4-photoproducts) in addition to the proton-bound thymine dimer, and these were separated using differential mobility spectrometry/mass spectrometry (DMS/MS) techniques with water as the modifier. Similar experiments with d(5'-TT-3') revealed the formation of a new isomer of deprotonated thymine dideoxynucleotide upon UV irradiation that was easily distinguished using DMS/MS with isopropanol as the modifier. The results reinforce the usefulness of DMS/MS in isomer separation.
Multiple products monitoring as a robust approach for peptide quantification.
Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee
2009-07-01
Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.
Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Dai, Meng-Hong; Tao, Yan-Fei; Wang, Yu-Lian; Yuan, Zong-Hui
2010-02-01
The application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography (LC/MS-IT-TOF) in the rapid characterization of in vitro metabolites of quinocetone was developed. Metabolites formed in rat liver microsomes were separated using a VP-ODS column with gradient elution. Multiple scans of metabolites in MS and MS(2) modes and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. Most measured mass errors were less than 10 ppm for both protonated molecules and fragment ions using external mass calibration. The elemental compositions of all fragment ions of quinocetone and its metabolites could be rapidly assigned based upon the known compositional elements of protonated molecules. The structure of metabolites were elucidated based on the combination of three techniques: agreement between their proposed structure, the accurate masses, and the elemental composition of ions in their mass spectra; comparison of their changes in accurate molecular masses and fragment ions with those of parent drug or metabolite; and the elemental compositions of lost mass numbers in proposed fragmentation pathways. Twenty-seven phase I metabolites were identified as 11 reduction metabolites, three direct hydroxylation metabolites, and 13 metabolites with a combination of reduction and hydroxylation. All metabolites except the N-oxide reduction metabolite M6 are new metabolites of quinocetone, which were not previously reported. The ability to conduct expected biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurement, all in a single experimental run, is one of the most attractive features of this methodology. The results demonstrate the use of LC/MS-IT-TOF approach appears to be rapid, efficient, and reliable in structural characterization of drug metabolites.
MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers.
Niare, Sirama; Almeras, Lionel; Tandina, Fatalmoudou; Yssouf, Amina; Bacar, Affane; Toilibou, Ali; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-01-01
Identification of the source of mosquito blood meals is an important component for disease control and surveillance. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an effective tool for mosquito blood meal identification, using the abdomens of freshly engorged mosquitoes. In the field, mosquito abdomens are crushed on Whatman filter papers to determine the host feeding patterns by identifying the origin of their blood meals. The aim of this study was to test whether crushing engorged mosquito abdomens on Whatman filter papers was compatible with MALDI-TOF MS for mosquito blood meal identification. Both laboratory reared and field collected mosquitoes were tested. Sixty Anopheles gambiae Giles were experimentally engorged on the blood of six distinct vertebrate hosts (human, sheep, rabbit, dog, chicken and rat). The engorged mosquito abdomens were crushed on Whatman filter papers for MALDI-TOF MS analysis. 150 Whatman filter papers, with mosquitoes engorged on cow and goat blood, were preserved. A total of 77 engorged mosquito abdomens collected in the Comoros Islands and crushed on Whatman filter papers were tested with MALDI-TOF MS. The MS profiles generated from mosquito engorged abdomens crushed on Whatman filter papers exhibited high reproducibility according to the original host blood. The blood meal host was correctly identified from mosquito abdomens crushed on Whatman filter papers by MALDI-TOF MS. The MS spectra obtained after storage were stable regardless of the room temperature and whether or not they were frozen. The MS profiles were reproducible for up to three months. For the Comoros samples, 70/77 quality MS spectra were obtained and matched with human blood spectra. This was confirmed by molecular tools. The results demonstrated that MALDI-TOF MS could identify mosquito blood meals from Whatman filter papers collected in the field during entomological surveys. The application of MALDI-TOF MS has proved to be rapid and successful, making it a new and efficient tool for mosquito-borne disease surveillance.
Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke
2012-01-01
An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378
From molecular chaperones to membrane motors: through the lens of a mass spectrometrist.
Robinson, Carol V
2017-02-08
Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions. © 2017 The Author(s).
Cappelli Fontanive, Fernando; Souza-Silva, Érica Aparecida; Macedo da Silva, Juliana; Bastos Caramão, Elina; Alcaraz Zini, Claudia
2016-08-26
Diesel and naphtha samples were analyzed using ionic liquid (IL) columns to evaluate the best column set for the investigation of organic sulfur compounds (OSC) and nitrogen(N)-containing compounds analyses with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry detector (GC×GC/TOFMS). Employing a series of stationary phase sets, namely DB-5MS/DB-17, DB-17/DB-5MS, DB-5MS/IL-59, and IL-59/DB-5MS, the following parameters were systematically evaluated: number of tentatively identified OSC, 2D chromatographic space occupation, number of polyaromatic hydrocarbons (PAH) and OSC co-elutions, and percentage of asymmetric peaks. DB-5MS/IL-59 was chosen for OSC analysis, while IL59/DB-5MS was chosen for nitrogen compounds, as each stationary phase set provided the best chromatographic efficiency for these two classes of compounds, respectively. Most compounds were tentatively identified by Lee and Van den Dool and Kratz retention indexes, and spectra-matching to library. Whenever available, compounds were also positively identified via injection of authentic standards. Copyright © 2016 Elsevier B.V. All rights reserved.
Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.
Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W
2016-03-31
Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Geena 2, improved automated analysis of MALDI/TOF mass spectra.
Romano, Paolo; Profumo, Aldo; Rocco, Mattia; Mangerini, Rosa; Ferri, Fabio; Facchiano, Angelo
2016-03-02
Mass spectrometry (MS) is producing high volumes of data supporting oncological sciences, especially for translational research. Most of related elaborations can be carried out by combining existing tools at different levels, but little is currently available for the automation of the fundamental steps. For the analysis of MALDI/TOF spectra, a number of pre-processing steps are required, including joining of isotopic abundances for a given molecular species, normalization of signals against an internal standard, background noise removal, averaging multiple spectra from the same sample, and aligning spectra from different samples. In this paper, we present Geena 2, a public software tool for the automated execution of these pre-processing steps for MALDI/TOF spectra. Geena 2 has been developed in a Linux-Apache-MySQL-PHP web development environment, with scripts in PHP and Perl. Input and output are managed as simple formats that can be consumed by any database system and spreadsheet software. Input data may also be stored in a MySQL database. Processing methods are based on original heuristic algorithms which are introduced in the paper. Three simple and intuitive web interfaces are available: the Standard Search Interface, which allows a complete control over all parameters, the Bright Search Interface, which leaves to the user the possibility to tune parameters for alignment of spectra, and the Quick Search Interface, which limits the number of parameters to a minimum by using default values for the majority of parameters. Geena 2 has been utilized, in conjunction with a statistical analysis tool, in three published experimental works: a proteomic study on the effects of long-term cryopreservation on the low molecular weight fraction of serum proteome, and two retrospective serum proteomic studies, one on the risk of developing breat cancer in patients affected by gross cystic disease of the breast (GCDB) and the other for the identification of a predictor of breast cancer mortality following breast cancer surgery, whose results were validated by ELISA, a completely alternative method. Geena 2 is a public tool for the automated pre-processing of MS data originated by MALDI/TOF instruments, with a simple and intuitive web interface. It is now under active development for the inclusion of further filtering options and for the adoption of standard formats for MS spectra.
NASA Astrophysics Data System (ADS)
Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto
We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.
Liu, Ruijuan; Wang, Mengmeng; Ding, Li
2014-10-01
Menadione (VK3), an essential fat-soluble naphthoquinone, takes very important physiological and pathological roles, but its detection and quantification is challenging. Herein, a new method was developed for quantification of VK3 in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after derivatization with 3-mercaptopropionic acid via Michael addition reaction. The derivative had been identified by the mass spectra and the derivatization conditions were optimized by considering different parameters. The method was demonstrated with high sensitivity and a low limit of quantification of 0.03 ng mL(-1) for VK3, which is about 33-fold better than that for the direct analysis of the underivatized compound. The method also had good precision and reproducibility. It was applied in the determination of basal VK3 in human plasma and a clinical pharmacokinetic study of menadiol sodium diphosphate. Furthermore, the method for the quantification of VK3 using LC-MS/MS was reported in this paper for the first time, and it will provide an important strategy for the further research on VK3 and menadione analogs. Copyright © 2014 Elsevier B.V. All rights reserved.
Grela, Agatha; Turek, Agata; Piekoszewski, Wojciech
2012-02-11
Alzheimer's disease is becoming an increasing problem in our aging society. According to our knowledge, so far, no effective pharmacotherapy to cure the cause of the disease has been developed. Therefore, early diagnosis is needed, which will result in implementation of a drug therapy aimed at decreasing and/or inhibiting disease development. Mass spectrometry techniques (MS) have a wide range of applications in proteomics and the search for biomarkers of neurodegenerative disorders, opening new possibilities in diagnostics. Identification of proteins in body fluids (like cerebrospinal fluid or blood) is possible due to MS spectra analysis. The detected changes in protein concentrations are connected with pathological states in an organism and, therefore, can be regarded as biomarkers. Developing procedures for proteome analysis might result in fast diagnosis, as well as creating better suited pharmaceuticals. This paper reviews the search of biomarkers in cerebrospinal fluid and blood. Later on, the use of matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in proteomics, focusing on blood-related biomarkers, is discussed. The aim of the work is also to highlight the advantages and disadvantages of MALDI-TOF-based analyses.
Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas
2014-12-02
Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.
Gurevich-Messina, Juan M; Giudicessi, Silvana L; Martínez-Ceron, María C; Acosta, Gerardo; Erra-Balsells, Rosa; Cascone, Osvaldo; Albericio, Fernando; Camperi, Silvia A
2015-01-01
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of 'one-bead-one-peptide' combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4-hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc-Asp[2-phenylisopropyl (OPp)]-OH to Ala-Gly-oxymethylbenzamide-ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N-terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N-Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one-bead-one-cyclic depsipeptide libraries that can be easily open for its sequencing by matrix-assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pashynska, Vlada; Stepanian, Stepan; Gömöry, Ágnes; Vékey, Károly; Adamowicz, Ludwik
2017-10-01
This study is devoted to examining the molecular structure and molecular mechanisms of action of the recently developed cardioprotective agent flokalin (Fl), a fluorine containing analogue of pinacidil, which is known as an activator of ATP sensitive potassium membrane channels. A combined experimental and computational investigation of flokalin and its biologically relevant supramolecular complexes with selected amino acids involved in KATP-channels proteins is performed by electrospray ionization mass spectrometry (ESI MS) and by B3LYP/aug-cc-pVDZ quantum-mechanical calculations. First Fl solution is probed by ESI MS and a characteristic mass spectrum of the agent is obtained. Next the intermolecular interactions of Fl with the potentially targeted aminoacids (AA), Lys and Thr, are experimentally investigated. The spectra of the model Fl:AA systems (in 1:1 M ratio) contain information on the ions characteristic to the individual components of the mixtures; though the most interesting spectral results from the biophysical view point are related to the ions of stable molecular clusters formed by flokalin with AA. The peaks of such ions are quite prominent in the spectrum for the Fl:Lys system and less prominent for Fl:Thr. The equilibrium geometries and the corresponding interaction energies of the noncovalent supramolecular complexes registered in the mass spectra are determined in the quantum chemical calculations. The formation of the stable noncovalent complexes of Fl with Lyz and Thr revealed by the ESI MS probing and by the theoretical modelling testify to a possibility of interaction of flokalin with the KATP-channel domains enriched with the two amino acids in biological systems.
Rodríguez-Medina, I C; Segura-Carretero, A; Fernández-Gutiérrez, A
2009-06-05
We have developed a direct method for the qualitative analysis of polyphenols in commercial organic fruit juices. The juices were diluted with water (50/50), filtered and directly injected. The analysis of phenolic compounds was carried out by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to photodiode array detection (DAD) and electrospray ionisation-Qq-time-of-flight mass spectrometry (ESI-Qq-TOF-MS). A unique gradient program has been optimized for the separation of several phenolic classes and the analysis time was only 5 min. The fruit juice samples were successfully analysed in positive and negative ionisation modes. In positive mode the anthocyanins were identified whereas the vast majority of polyphenols were identified using the negative ionisation mode. The sensitivity, together with mass accuracy and true isotopic pattern of the Qq-TOF-MS, allowed the identification of the phenolic compounds. Moreover, the advantage of the proposed method is the combined search of MS and MS/MS spectra, which improves the identification of compounds considerably, reducing ambiguities and false positive hits. Therefore the total fragmentation of the compound ion leading to the aglycone ion or other fragments was corroborated by MS-MS. The method was successfully employed to characterize diverse phenolic families in commercially available organic juices from four different fruits and consequently could be used in the future for the quantification purposes to compare different content of polyphenols in juices.
Kappelmann, Jannick; Klein, Bianca; Geilenkirchen, Petra; Noack, Stephan
2017-03-01
In recent years the benefit of measuring positionally resolved 13 C-labeling enrichment from tandem mass spectrometry (MS/MS) collisional fragments for improved precision of 13 C-Metabolic Flux Analysis ( 13 C-MFA) has become evident. However, the usage of positional labeling information for 13 C-MFA faces two challenges: (1) The mass spectrometric acquisition of a large number of potentially interfering mass transitions may hamper accuracy and sensitivity. (2) The positional identity of carbon atoms of product ions needs to be known. The present contribution addresses the latter challenge by deducing the maximal positional labeling information contained in LC-ESI-MS/MS spectra of product anions of central metabolism as well as product cations of amino acids. For this purpose, we draw on accurate mass spectrometry, selectively labeled standards, and published fragmentation pathways to structurally annotate all dominant mass peaks of a large collection of metabolites, some of which with a complete fragmentation pathway. Compiling all available information, we arrive at the most detailed map of carbon atom fate of LC-ESI-MS/MS collisional fragments yet, comprising 170 intense and structurally annotated product ions with unique carbon origin from 76 precursor ions of 72 metabolites. Our 13 C-data proof that heuristic fragmentation rules often fail to yield correct fragment structures and we expose common pitfalls in the structural annotation of product ions. We show that the positionally resolved 13 C-label information contained in the product ions that we structurally annotated allows to infer the entire isotopomer distribution of several central metabolism intermediates, which is experimentally demonstrated for malate using quadrupole-time-of-flight MS technology. Finally, the inclusion of the label information from a subset of these fragments improves flux precision in a Corynebacterium glutamicum model of the central carbon metabolism.
Gwak, Seongshin; Arroyo-Mora, Luis E; Almirall, José R
2015-02-01
Designer drugs are analogues or derivatives of illicit drugs with a modification of their chemical structure in order to circumvent current legislation for controlled substances. Designer drugs of abuse have increased dramatically in popularity all over the world for the past couple of years. Currently, the qualitative seized-drug analysis is mainly performed by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) in which most of these emerging designer drug derivatives are extensively fragmented not presenting a molecular ion in their mass spectra. The absence of molecular ion and/or similar fragmentation pattern among these derivatives may cause the equivocal identification of unknown seized-substances. In this study, the qualitative identification of 34 designer drugs, mainly synthetic cannabinoids and synthetic cathinones, were performed by gas chromatography-triple quadrupole-tandem mass spectrometry with two different ionization techniques, including electron ionization (EI) and chemical ionization (CI) only focusing on qualitative seized-drug analysis, not from the toxicological point of view. The implementation of CI source facilitates the determination of molecular mass and the identification of seized designer drugs. Developed multiple reaction monitoring (MRM) mode may increase sensitivity and selectivity in the analysis of seized designer drugs. In addition, CI mass spectra and MRM mass spectra of these designer drug derivatives can be used as a potential supplemental database along with EI mass spectral database. Copyright © 2014 John Wiley & Sons, Ltd.
Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Kumar, Brijesh
2016-01-25
Monoterpene indole alkaloids (MIAs) are medicinally important class of compounds abundant in the roots of Rauwolfia species (Apocynaceae). MIAs such as yohimbine (aphrodisiac agent) and reserpine (antihypertensive, tranquilizer) are the official drugs included in Model List of Essential Drugs of World Health Organization (WHO). Therefore, we have attempt to identify and characterize the MIAs in the crude extracts of six Rauwolfia species using ultrahigh-performance liquid chromatography coupled with Orbitrap Velos Pro hybrid mass spectrometer. The identity of the MIAs were construed using the high resolution tandem mass spectrometry (HRMS/MS) spectra of standard compounds 'yohimbine' and 'reserpine' in higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) modes. The diagnostic fragment ions found in HCD mode was highly affected by variation of normalized collision energy (NCE) and gave few product ions ('C-F') while CID produced intense and more diagnostic product ions ('A-F'). Consequently, CID-MS/MS mode provided significantly more structural information about basic skeleton and therefore the recommended mode for analysis of MIAs. Furthermore, six diagnostic fragmentation pathways were established by multi-stage mass analysis (MS(n) (n=5)) analysis which gave information regarding the substitution. Fragment ions 'A-F' revealed the number and position of substituents on indole and terpene moieties. The proposed diagnostic fragmentation pathways have been successfully applied for identification and characterization of MIAs in crude root extracts of six Rauwolfia species. Ten bioactive reserpine class of MIAs were tentatively identified and characterized on the basis of chromatographic and mass spectrometric features as well as HRMS/MS an MS(n) (n=4) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.
2011-01-01
A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.
Zhao, Panpan; Zhong, Jiayong; Liu, Wanting; Zhao, Jing; Zhang, Gong
2017-12-01
Multiple search engines based on various models have been developed to search MS/MS spectra against a reference database, providing different results for the same data set. How to integrate these results efficiently with minimal compromise on false discoveries is an open question due to the lack of an independent, reliable, and highly sensitive standard. We took the advantage of the translating mRNA sequencing (RNC-seq) result as a standard to evaluate the integration strategies of the protein identifications from various search engines. We used seven mainstream search engines (Andromeda, Mascot, OMSSA, X!Tandem, pFind, InsPecT, and ProVerB) to search the same label-free MS data sets of human cell lines Hep3B, MHCCLM3, and MHCC97H from the Chinese C-HPP Consortium for Chromosomes 1, 8, and 20. As expected, the union of seven engines resulted in a boosted false identification, whereas the intersection of seven engines remarkably decreased the identification power. We found that identifications of at least two out of seven engines resulted in maximizing the protein identification power while minimizing the ratio of suspicious/translation-supported identifications (STR), as monitored by our STR index, based on RNC-Seq. Furthermore, this strategy also significantly improves the peptides coverage of the protein amino acid sequence. In summary, we demonstrated a simple strategy to significantly improve the performance for shotgun mass spectrometry by protein-level integrating multiple search engines, maximizing the utilization of the current MS spectra without additional experimental work.
Current algorithmic solutions for peptide-based proteomics data generation and identification.
Hoopmann, Michael R; Moritz, Robert L
2013-02-01
Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abiedalla, Younis; DeRuiter, Jack; Clark, C Randall
2016-07-30
Precursor materials are available to prepare aminoketone drugs containing regioisomeric propyl and isopropyl side-chain groups related to the drug alpha-pyrrovalerone (Flakka) and MDPV (3,4-methylenedioxypyrrovalerone). These compounds yield equivalent regioisomeric iminium cation base peaks in electron ionization mass spectrometry (EI-MS). The propyl and isopropyl side-chain groups related to alpha-pyrrovalerone and MDPV were prepared and evaluated in EI-MS and tandem mass spectrometry (MS/MS) product ion experiments. Deuterium labeling in both the pyrrolidine and alkyl side-chain groups allowed for the confirmation of the structures for the major product ions formed from the regioisomeric EI-MS iminium cation base peaks. These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the side-chain propyl and isopropyl groups in the structure. The n-propyl side chain containing iminium cation base peak (m/z 126) in the EI-MS spectrum yields a major product ion at m/z 84 while the regioisomeric m/z 126 base peak for the isopropyl side chain yields a characteristic product ion at m/z 70. Deuterium labeling in both the pyrrolidine ring and the alkyl side chain confirmed the process for the formation of these major product ions. Product ion fragmentation provides useful data for differentiation of n-propyl and isopropyl side-chain iminium cations from cathinone derivative drugs of abuse. Regioisomeric n-propyl and isopropyl iminium cations of equal mass yield characteristic product ions identifying the alkyl side-chain regioisomers in the pyrrolidine cathinone derivatives. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sauvage, François-Ludovic; Picard, Nicolas; Saint-Marcoux, Franck; Gaulier, Jean-Michel; Lachâtre, Gérard; Marquet, Pierre
2009-09-01
LC coupled to single (LC-MS) and tandem (LC-MS/MS) mass spectrometry is recognized as the most powerful analytical tools for metabolic studies in drug discovery. In this article, we describe five cases illustrating the utility of screening xenobiotic metabolites in routine analysis of forensic samples using LC-MS/MS. Analyses were performed using a previously published LC-MS/MS general unknown screening (GUS) procedure developed using a hybrid linear IT-tandem mass spectrometer. In each of the cases presented, the presence of metabolites of xenobiotics was suspected after analyzing urine samples. In two cases, the parent drug was also detected and the metabolites were merely useful to confirm drug intake, but in three other cases, metabolite detection was of actual forensic interest. The presented results indicate that: (i) the GUS procedure developed is useful to detect a large variety of drug metabolites, which would have been hardly detected using targeted methods in the context of clinical or forensic toxicology; (ii) metabolite structure can generally be inferred from their "enhanced" product ion scan spectra; and (iii) structure confirmation can be achieved through in vitro metabolic experiments or through the analysis of urine samples from individuals taking the parent drug.
Context-Sensitive Markov Models for Peptide Scoring and Identification from Tandem Mass Spectrometry
Grover, Himanshu; Wallstrom, Garrick; Wu, Christine C.
2013-01-01
Abstract Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data. PMID:23289783
Plage, Bernd; Berg, Anna-Dolores; Luhn, Steven
2008-05-20
The differentiation of 25 automotive clear coats was evaluated using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The samples were selected from eight different groups of samples which slightly differ in their infrared spectra. Most of the samples could be differentiated by visual inspection of the pyrograms. As an objective mean for evaluation a new software based on the comparison of chromatograms was tested for automatic classification considering retention times as well as mass spectra. The database was formed by the triplicate results of the set of the 25 samples. Normally a replicate measurement of a sample yields the best fit by library search. In addition, for most groups classification with moderate fits are obtained for samples belonging to the same group. Some samples are completely rearranged forming a new group of similar samples containing five samples from three different IR groups and four samples of three other groups, respectively. Furthermore detailed visual recognition of individual pyrolysis products allows subgrouping. Therefore, most samples can be differentiated from each other by Py-GC/MS. The exception were three sample groups containing two samples each, which could not be differentiated from each other neither by library search nor by recognition of minor individual pyrolysis products.
NASA Astrophysics Data System (ADS)
Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.
2009-08-01
Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.
NASA Astrophysics Data System (ADS)
Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.
2016-09-01
Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly with the TOM determined by DRI analyzer (R2 = 0.8578), suggesting that the TD-PTR-TOF-MS measurements explained more than 85% of the variance in the time series of TOM. In addition to identification by comparing with the fragmentation pattern obtained from the mass spectra of the authentic substances, most of the major ions were attributed to protonated or acylium ions of specific parent compounds. Amongst the quantified species with full calibration with authentic standard, phthalic acid was found accounting for 7.0% of the mass loading of TOM. In addition, a high-end estimation of 9.4% was suggested for the mass contribution from glutaric acid, which was made by assuming that the ion with m/z of 73.027 was totally produced from fragmentation of glutaric acid as characterization of authentic standard despite of the formation of protonated methyl-glyoxal ion. Moreover, a substantial contribution from ions corresponding to protonated acetic acid and acetone was measured, which could be produced from fragmentation of larger oxygenated molecules. The TD-PTR-TOF-MS measurements suggested that low molecular weight carboxylic acid (LMWCA), products of photochemical oxidation of gaseous hydrocarbons and fatty acids, constituted a major fraction of secondary organic aerosols in Taipei, Taiwan, a typical subtropical urban area.