Science.gov

Sample records for mass spectrometry studies

  1. Tandem mass spectrometry studies of metallofullerenes

    SciTech Connect

    Callahan, J.H.; Nelson, H.; McElvany, S.W.; Ross, M.M.

    1993-12-31

    As interest in the chemistry of fullerenes grows, many laboratories are now directing their efforts toward the synthesis of fullerene derivatives such as metallofullerenes (endohedral complexes). Tandem mass spectrometry has proven useful in the characterization of such derivatives. In tandem mass spectrometry, ions of interest are selected with one mass analyzer, collided or reacted with a gas, and the products of the reaction are subsequently analyzed with an additional stage of mass analysis. The authors have used low- and high-energy collisions with reactive and inert target gas molecules to probe the structures, properties and reactivities of endohedral metallofullerene complexes. These studies have shown that metallofullerenes have properties similar to those of fullerenes, including the ability to take up He during keV collisions, forming complexes such as La{sub 2}He@C{sub 80} These studies indicate that the metal is not on the outside of the cage, although the formation of La{sub 2}He@C{sub 80} suggests that one of the metal atoms may be incorporated as part of the cage. Fragmentation processes in the metallofullerenes are similar to those of the fullerenes (e.g. successive C{sub 2} loss), lending further support for the proposed endohedral structure of the fullerenes. The behavior of the metallofullerenes in reactive collisions with oxygen has also been studied, indicating that their reactivities are similar to those of the fullerenes. Fourier transform spectroscopy studies are currently underway to further probe the reactivities, ionization energies and gas phase proton affinities of the metallofullerenes.

  2. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  3. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  4. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions. PMID:20530821

  5. Mass spectrometry in India.

    PubMed

    Vairamani, M; Prabhakar, S

    2012-01-01

    This review emphasizes the mass spectrometry research being performed at academic and established research institutions in India. It consists of three main parts covering the work done in organic, atomic and biological mass spectrometry. The review reveals that the use of mass spectrometry techniques started in the middle of the 20th century and was applied to research in the fields of organic, nuclear, geographical and atomic chemistry. Later, with the advent of soft and atmospheric ionization techniques it has been applied to pharmaceutical and biological research. In due course, several research centers with advanced mass spectrometry facilities have been established for specific areas of research such as gas-phase ion chemistry, ion-molecule reactions, proscribed chemicals, pesticide residues, pharmacokinetics, protein/peptide chemistry, nuclear chemistry, geochronological studies, archeology, petroleum industry, proteomics, lipidomics and metabolomics. Day-by-day the mass spectrometry centers/facilities in India have attracted young students for their doctoral research and other advanced research applications.

  6. Ultrapure water for liquid chromatography-mass spectrometry studies.

    PubMed

    Regnault, Cecilia; Kano, Ichiro; Darbouret, Daniel; Mabic, Stéphane

    2004-03-19

    Improvements in trace enrichment techniques combined with the sensitivity of mass spectrometry offer enhanced opportunities to analyze ever lower concentrations of drugs, metabolites, pesticides or environmental pollutants. To perform HPLC and liquid chromatography-mass spectrometry (LC-MS) analyses under optimum conditions, the water used for mobile phase preparation needs to be highly purified and delivered on demand. Indeed, both UV photodiode array detection and MS detection methods are sensitive to organic contaminants (total organic carbon, TOC), and the water quality has a direct impact on the achievable detection limits. The benefits of UV photooxidation on TOC reduction for LC-MS studies were highlighted using electrospray ionization MS detection by comparing HPLC-grade bottled water, freshly produced UV185/254-treated water, and freshly produced non-UV-treated water.

  7. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  8. THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS

    EPA Science Inventory

    The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...

  9. Aspartame degradation study using electrospray ionization mass spectrometry.

    PubMed

    Pattanaargson, S; Sanchavanakit, C

    2000-01-01

    Electrospray mass spectrometry was used to simultaneously determine aspartame (APM) and five of its degradation products; aspartic acid, aspartylphenylalanine, 5-benzyl-3,6-dioxo-2-piperazieacetic acid (diketopiperazine), phenylalanine, and phenylalanine methyl ester. Under the ionization conditions used, there was no interfering fragmentation for any of the six compounds, i.e., no fragmentation of the compound being tested into other species also being monitored. A study of APM degradation in solution at various pH's and at various temperatures using this method was performed.

  10. Extractive electrospray ionization mass spectrometry for uranium chemistry studies.

    PubMed

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; Ouyang, Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pretreatment. EESI-MS shows excellent performance for monitoring uranium species in various samples at trace levels since it tolerates extremely complex matrices. Therefore, EESI-MS is an alternative choice for studying uranium chemistry, especially when it combines ion trap mass spectrometry. In this presentation, three examples of EESI-MS for uranium chemistry studies will be given, illustrating the potential applications of EESI-MS in synthesis chemistry, physical chemistry, and analytical chemistry of uranium. More specifically, case studies on EESI-MS for synthesis and characterization of novel uranium species, and for rapid detection of uranium and its isotope ratios in various samples will be presented. Novel methods based on EESI-MS for screening uranium ores and radioactive iodine-129 will be presented. PMID:24349940

  11. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  12. Rapid environmental organic analysis by direct sampling Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry: Summary of pilot studies

    SciTech Connect

    Wise, M.B.; Buchanan, M.V.; Guerin, M.R.

    1990-03-01

    Direct Sampling Mass Spectrometry (DSMS) techniques employing both Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry are being developed to quantitatively determine preselected organics in water, soil, and air samples at part per billion levels in less than five minutes. Direct sampling requires little or no sample preparation and no prior chromatographic separation and is applicable to both volatile and semivolatile organics. 25 figs., 3 tabs.

  13. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  14. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  15. Mass spectrometry study of the sublimation of aliphatic dipeptides

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  16. Hydrogen Exchange Mass Spectrometry.

    PubMed

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  17. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    SciTech Connect

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  18. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  19. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  20. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  1. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  2. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  3. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  4. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera. PMID:25230187

  5. An evaluation of tandem mass spectrometry in drug metabolism studies.

    PubMed

    Naylor, S; Kajbaf, M; Lamb, J H; Jahanshahi, M; Gorrod, J W

    1993-07-01

    The use of precursor ion and constant neutral loss scanning as a means of rapidly detecting drug metabolites is evaluated. Four clinically useful drugs, namely (i) cyclophosphamide, (ii) mifentidine, (iii) cimetropium bromide and (iv) haloperidol, were subjected to microsomal incubations to afford phase I metabolites. Aside from a minor clean-up procedure involving zinc sulfate precipitation of microsomal proteins and solid-phase extraction of metabolites using a Sep-pak C-18 cartridge, the mixtures were analysed directly by fast atom bombardment tandem mass spectrometry. It is demonstrated that such screening strategies are important in detecting novel metabolites. However, there are some problems associated with only using such methods, including (i) the possibility of not detecting metabolites that undergo unusual collision-induced dissociation fragmentation pathways, (ii) the non-detection of metabolites that have undergone metabolic change at unusual sites of reactivity, and (iii) production of artifacts derived from the parent drug by the primary ionization process. Examples are discussed that highlight both the strengths and weaknesses of such an approach.

  6. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.

  7. Environmental Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, Albert T.

    2013-06-01

    Environmental mass spectrometry is an important branch of science because it provides many of the data that underlie policy decisions that can directly influence the health of people and ecosystems. Environmental mass spectrometry is currently undergoing rapid development. Among the most relevant directions are a significant broadening of the lists of formally targeted compounds; a parallel interest in nontarget chemicals; an increase in the reliability of analyses involving accurate mass measurements, tandem mass spectrometry, and isotopically labeled standards; and a shift toward faster high-throughput analysis, with minimal sample preparation, involving various approaches, including ambient ionization techniques and miniature instruments. A real revolution in analytical chemistry could be triggered with the appearance of robust, simple, and sensitive portable mass spectrometers that can utilize ambient ionization techniques. If the cost of such instruments is reduced to a reasonable level, mass spectrometers could become valuable household devices.

  8. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  9. Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Sadiq, Muhammad Waqas; Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran; Hammarlund-Udenaes, Margareta

    2011-02-01

    Morphine has been predicted to show nonlinear blood-brain barrier transport at lower concentrations. In this study, we investigated the possibility of separating active influx of morphine from its efflux by using very low morphine concentrations and compared accelerator mass spectrometry (AMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a method for analyzing microdialysis samples. A 10-min bolus infusion of morphine, followed by a constant-rate infusion, was given to male rats (n = 6) to achieve high (250 ng/ml), medium (50 ng/ml), and low (10 ng/ml) steady-state plasma concentrations. An additional rat received infusions to achieve low (10 ng/ml), very low (2 ng/ml), and ultralow (0.4 ng/ml) concentrations. Unbound morphine concentrations from brain extracellular fluid and blood were sampled by microdialysis and analyzed by LC-MS/MS and AMS. The average partition coefficient for unbound drug (K(p,uu)) values for the low and medium steady-state levels were 0.22 ± 0.08 and 0.21 ± 0.05, respectively, when measured by AMS [not significant (NS); p = 0.5]. For the medium and high steady-state levels, K(p,uu) values were 0.24 ± 0.05 and 0.26 ± 0.05, respectively, when measured by LC-MS/MS (NS; p = 0.2). For the low, very low, and ultralow steady-state levels, K(p,uu) values were 0.16 ± 0.01, 0.16 ± 0.02, and 0.18 ± 0.03, respectively, when measured by AMS. The medium-concentration K(p,uu) values were, on average, 16% lower when measured by AMS than by LC-MS/MS. There were no significant changes in K(p,uu) over a 625-fold concentration range (0.4-250 ng/ml). It was not possible to separate active uptake transport from active efflux using these low concentrations. The two analytical methods provided indistinguishable results for plasma concentrations but differed by up to 38% for microdialysis samples; however, this difference did not affect our conclusions.

  10. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  11. Signal inversion for exospheric mass spectrometry: Mercury case study

    NASA Astrophysics Data System (ADS)

    Miles, Paul F.; Livi, Stefano A.; Teolis, Ben D.

    2015-11-01

    A new era of exosphere study is beginning with observations being conducted by orbiting neutral mass spectrometers. We have developed a new analysis framework to improve our ability to invert the detection signal of these instruments into local and near-surface densities. By leveraging Liouville's theorem we are able to rapidly reach a source solution that best matches exosphere filling processes to an observable signal. Two approaches are developed in this work, the Liouville Algorithm and a traditional Forward Monte Carlo model that acts as validation. The Liouville Algorithm can be applied to the interpretation of photometric observations but is especially powerful for in␣situ study. This type of analysis is motivated by the velocity dependence of mass spectrometers, which demands that the velocity space be fully resolved. Several examples are described to demonstrate the consistency of the two approaches and highlight the strengths of the new algorithm when used in conjunction with or in lieu of Monte Carlo. Our examples focus on Mercury and the BepiColombo instrument SERENA-Strofio, but these methods apply equally to other surface bounded exospheres like those of the Moon or other airless bodies.

  12. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  13. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies.

    PubMed

    Zhang, Z Y; King, B M; Wong, Y N

    2001-11-01

    A sensitive assay using high-performance liquid chromatography tandem mass spectrometry (MS/MS) has been established for the quantitative analysis of cytochrome P450 form-specific activities using warfarin as a probe substrate. Four metabolites, 6-, 7-, 8-, and 10-hydroxywarfarin, were chromatographically resolved within 10 min using gradient mobile phases. The mass spectrometry was operated under negative ionization mode. The MS/MS product ion spectra of warfarin and the metabolites were generated using collision-activated dissociation and interpreted. The abundant product ions of the metabolites were selected for quantification applying multiple reaction monitoring. Quantification was based on a quadratic or power curve of the peak area ratio of the metabolite over the internal standard against the respective concentration of the metabolite. This assay has been validated from 2 to 1000 nM for 10-hydroxywarfarin and from 2 to 5000 nM for 6-, 7-, and 8-hydroxywarfarin and successfully applied to evaluate cytochrome P450-mediated drug-drug interactions in vitro using human hepatocytes and liver microsomal preparations. PMID:11673893

  14. Mass spectrometry study of N-alkylbenzenesulfonamides with potential antagonist activity to potassium channels.

    PubMed

    Martins, Carina C; Bassetto, Carlos A Zanutto; Santos, Jandyson M; Eberlin, Marcos N; Magalhães, Alvicler; Varanda, Wamberto; Gonzalez, Eduardo R Perez

    2016-02-01

    Herein, we report the synthesis and mass spectrometry studies of several N-alkylbenzenesulfonamides structurally related to sulfanilic acid. The compounds were synthesized using a modified Schotten-Baumann reaction coupled with Meisenheimer arylation. Sequential mass spectrometry by negative mode electrospray ionization (ESI(-)-MS/MS) showed the formation of sulfoxylate anion (m/z 65) observed in the mass spectrum of p-chloro-N-alkylbenzenesulfonamides. Investigation of the unexpected loss of two water molecules, as observed by electron ionization mass spectrometry (EI-MS) analysis of p-(N-alkyl)lactam sulfonamides, led to the proposal of corresponding fragmentation pathways. These compounds showed loss of neutral iminosulfane dioxide molecule (M-79) with formation of ions observed at m/z 344 and 377. These ions were formed by rearrangement on ESI(+)-MS/MS analysis. Some of the molecules showed antagonistic activity against Kv3.1 voltage-gated potassium channels.

  15. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  16. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  17. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  18. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  19. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  20. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  1. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    SciTech Connect

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  2. Mass spectrometry imaging of biological tissue: an approach for multicenter studies.

    PubMed

    Römpp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ron M A; Laprévote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDI-Fourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  3. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  4. Accelerator mass spectrometry-enabled studies: current status and future prospects.

    PubMed

    Arjomand, Ali

    2010-03-01

    Accelerator mass spectrometry is a detection platform with exceptional sensitivity compared with other bioanalytical platforms. Accelerator mass spectrometry (AMS) is widely used in archeology for radiocarbon dating applications. Early exploration of the biological and pharmaceutical applications of AMS began in the early 1990s. AMS has since demonstrated unique problem-solving ability in nutrition science, toxicology and pharmacology. AMS has also enabled the development of new applications, such as Phase 0 microdosing. Recent development of AMS-enabled applications has transformed this novelty research instrument to a valuable tool within the pharmaceutical industry. Although there is now greater awareness of AMS technology, recognition and appreciation of the range of AMS-enabled applications is still lacking, including study-design strategies. This review aims to provide further insight into the wide range of AMS-enabled applications. Examples of studies conducted over the past two decades will be presented, as well as prospects for the future of AMS.

  5. Application of simultaneous thermogravimetric modulated beam mass spectrometry to the study of energetic materials

    SciTech Connect

    Behrens, R. Jr.

    1995-03-01

    Simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and time-of-flight velocity (TOF) spectra have been developed to study reactions that occur during the thermal decomposition of liquids and solids. The data obtained with these techniques are the identity of the reaction products and their rates of gas formation as a function of time. Over the past several years, these techniques have been applied to the study of energetic materials that are used in propellants and explosives. In this presentation, the details of the STMBMS and TOF velocity spectra techniques will be reviewed, the advantages of the techniques over more conventional thermal analysis and mass spectrometry measurements will be discussed, and the use of the techniques will be illustrated with results on the thermal decomposition of hexahydro-1,3,5-s-triazine (RDX).

  6. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  7. A Study of Heterogeneous Catalysis by Nanoparticle-Embedded Paper-Spray Ionization Mass Spectrometry.

    PubMed

    Banerjee, Shibdas; Basheer, Chanbasha; Zare, Richard N

    2016-10-01

    We have developed nanoparticle-embedded paper-spray mass spectrometry for studying three types of heterogeneously catalyzed reactions: 1) Palladium-nanoparticle-catalyzed Suzuki cross-coupling reactions, 2) palladium- or silver-nanoparticle-catalyzed 4-nitrophenol reduction, and 3) gold-nanoparticle-catalyzed glucose oxidation. These reactions were almost instantaneous on the nanocatalyst-embedded paper, which subsequently transferred the transient intermediates and products to a mass spectrometer for their detection. This in situ method of capturing transient intermediates and products from heterogeneous catalysis is highly promising for investigating the mechanism of catalysis and rapidly screening catalytic activity under ambient conditions. PMID:27633445

  8. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry

    PubMed Central

    Hilton, Gillian R.; Benesch, Justin L. P.

    2012-01-01

    Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades. PMID:22319100

  9. A Study of Heterogeneous Catalysis by Nanoparticle-Embedded Paper-Spray Ionization Mass Spectrometry.

    PubMed

    Banerjee, Shibdas; Basheer, Chanbasha; Zare, Richard N

    2016-10-01

    We have developed nanoparticle-embedded paper-spray mass spectrometry for studying three types of heterogeneously catalyzed reactions: 1) Palladium-nanoparticle-catalyzed Suzuki cross-coupling reactions, 2) palladium- or silver-nanoparticle-catalyzed 4-nitrophenol reduction, and 3) gold-nanoparticle-catalyzed glucose oxidation. These reactions were almost instantaneous on the nanocatalyst-embedded paper, which subsequently transferred the transient intermediates and products to a mass spectrometer for their detection. This in situ method of capturing transient intermediates and products from heterogeneous catalysis is highly promising for investigating the mechanism of catalysis and rapidly screening catalytic activity under ambient conditions.

  10. Clinical protein mass spectrometry.

    PubMed

    Scherl, Alexander

    2015-06-15

    Quantitative protein analysis is routinely performed in clinical chemistry laboratories for diagnosis, therapeutic monitoring, and prognosis. Today, protein assays are mostly performed either with non-specific detection methods or immunoassays. Mass spectrometry (MS) is a very specific analytical method potentially very well suited for clinical laboratories. Its unique advantage relies in the high specificity of the detection. Any protein sequence variant, the presence of a post-translational modification or degradation will differ in mass and structure, and these differences will appear in the mass spectrum of the protein. On the other hand, protein MS is a relatively young technique, demanding specialized personnel and expensive instrumentation. Many scientists and opinion leaders predict MS to replace immunoassays for routine protein analysis, but there are only few protein MS applications routinely used in clinical chemistry laboratories today. The present review consists of a didactical introduction summarizing the pros and cons of MS assays compared to immunoassays, the different instrumentations, and various MS protein assays that have been proposed and/or are used in clinical laboratories. An important distinction is made between full length protein analysis (top-down method) and peptide analysis after enzymatic digestion of the proteins (bottom-up method) and its implication for the protein assay. The document ends with an outlook on what type of analyses could be used in the future, and for what type of applications MS has a clear advantage compared to immunoassays.

  11. Quality by design study of the direct analysis in real time mass spectrometry response.

    PubMed

    Wang, Lu; Chen, Teng; Zeng, Shanshan; Qu, Haibin

    2014-02-01

    A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control. PMID:24346961

  12. Quality by design study of the direct analysis in real time mass spectrometry response.

    PubMed

    Wang, Lu; Chen, Teng; Zeng, Shanshan; Qu, Haibin

    2014-02-01

    A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control.

  13. Quality by Design Study of the Direct Analysis in Real Time Mass Spectrometry Response

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Chen, Teng; Zeng, Shanshan; Qu, Haibin

    2013-12-01

    A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control.

  14. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  15. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  16. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  17. International Mass Spectrometry Society (IMSS).

    PubMed

    Cooks, R G; Gelpi, E; Nibbering, N M

    2001-02-01

    This paper gives a brief description of the recently formalized International Mass Spectrometry Society (IMSS). It is presented here in order to increase awareness of the opportunities for collaboration in mass spectrometry in an international context. It also describes the recent 15th International Mass Spectrometry Conference, held August/September 2000, in Barcelona. Each of the authors is associated with the IMSS. The 15th Conference, which covers all of mass spectrometry on a triennial basis, was chaired by Professor Emilio Gelpi of the Instituto de Investigaciones Biomedicas, Barcelona. The outgoing and founding President of the IMSS is Professor Graham Cooks, Purdue University, and the incoming President is Professor Nico Nibbering, University of Amsterdam. Similar material has been provided to the Editors of other journals that cover mass spectrometry.

  18. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  19. Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies.

    PubMed

    Kitahara, Yuki; Takahashi, Seiji; Kuramoto, Noriyuki; Sala, Martin; Tsugoshi, Takahisa; Sablier, Michel; Fujii, Toshihiro

    2009-04-15

    A well-established ion attachment mass spectrometer (IAMS) is combined with an in-house single-atom infrared image furnace (IIF) specifically for thermal analysis studies. Besides the detection of many chemical species at atmospheric pressure, including free radical intermediates, the ion attachment mass spectrometer can also be used for the analysis of products emanating from temperature-programmed pyrolysis. The performance and applicability of the IIF-IAMS is illustrated with poly(tetrafluoroethylene) (PTFE) samples. The potential of the system for the analysis of oxidative pyrolysis is also considered. Temperature-programmed decomposition of PTFE gave constant slopes of the plots of temperature versus signal intensity in a defined region and provided an apparent activation energy of 28.8 kcal/mol for the PTFE decomposition product (CF(2))(3). A brief comparison with a conventional pyrolysis gas chromatography/mass spectrometry system is also given.

  20. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    SciTech Connect

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  1. Using electrospray ionization FTICR mass spectrometry to study competitive binding of inhibitors to carbonic anhydrase

    SciTech Connect

    Cheng, X.; Chen, R.; Bruce, J.E.; Schwartz, B.L.; Anderson, G.A.; Hofstadler, S.A.; Gale, D.C.; Smith, R.D.; Gao, J.; Sigal, G.B.; Mammen, M.; Whitesides, G.M.

    1995-08-30

    We report a method based on mass spectrometry for the characterization of noncovalent complexes of proteins with mixtures of ligands; this method is relevant to the study of drug leads and may be useful in screening libraries for tight-binding compounds. This study describes the competitive binding of inhibitors derived from para-substituted benzenesulfonamides to bovine carbonic anhydrase II (BCAII, EC 4.2.1.1) using this technique. Relative binding constants and structural information for a mixture of inhibitors can be obtained in a single experiment using ESI-FTICR-MS. The work demonstrates that ESI-MS has significant potential for measuring relative binding affinities and characterizing the structures of ligands associated noncovalently to proteins. We have detected noncovalent complexes in the gas phase for ligands having values of K{sub b} as low as 1.7 x 10{sup 6} M{sup -1} in solution. The technique also allowed identification of tightbinding ligands from small libraries. The structures of inhibitors having similar masses can be identified by the high-resolution and multistep dissociation mass spectrometry of which FTICR is uniquely capable. This range of capabilities for ESI-FTICR-MS should be widely useful in medicinal chemistry. 22 refs., 2 figs.

  2. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  3. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  4. Cyclic pentapeptide analogs based on endomorphin-2 structure: cyclization studies using liquid chromatography combined with on-line mass spectrometry and tandem mass spectrometry.

    PubMed

    Piekielna, Justyna; Kluczyk, Alicja; Perlikowska, Renata; Janecka, Anna

    2014-05-01

    The cyclization of linear analogs based on endomorphin-2 structure, Tyr/Dmt-d-Lys-Phe-Phe-Asp-NH2 and Tyr/Dmt-d-Cys-Phe-Phe-Cys-NH2 (where Dmt=2',6'-dimethyltyrosine), resulting in obtaining lactam or disulfide derivatives, was studied using liquid chromatography combined with on-line mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). In case of cyclization via an amide bond, the formation of the cyclic monomers, cyclic but not linear dimers and even traces of cyclic trimers was observed. Disulfide bridge containing peptides was obtained by the solid-phase synthesis of the linear sequences, followed by either in-solution or on-resin cyclization. In case of the in-solution cyclization, the expected cyclic monomers were the only products. When oxidation of the cysteine residues was performed when the peptides were still on the resin, cyclic monomer and two cyclodimers, parallel and antiparallel, were found. Digestion of the isolated cyclodimers with α-chymotrypsin allowed for their unambiguous identification. The comparison of the cyclic monomer/dimer ratios for analogs with Tyr versus Dmt in position 1 revealed that the presence of the exocyclic Dmt favored formation of the cyclic monomer, most likely due to the increased steric bulk of this amino acid side-chain as compared with Tyr.

  5. Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study.

    PubMed

    Melles, Daniel; Vielhaber, Torsten; Baumann, Anne; Zazzeroni, Raniero; Karst, Uwe

    2012-04-01

    Historically, skin sensitization tests are typically based on in vivo animal tests. However, for substances used in cosmetic products, these tests have to be replaced according to the European Commission regulation no. 1223/2009. Modification of skin proteins by electrophilic chemicals is a key process associated with the induction of skin sensitization. The present study investigates the capabilities of a purely instrumental setup to determine the potential of commonly used non-electrophilic chemicals to cause skin sensitization by the generation of electrophilic species from the parent compound. In this work, the electrophiles were generated by the electrochemical oxidation of aniline, a basic industrial chemical which may also be released from azo dyes in cosmetics. The compound is a known sensitizer and was oxidized in an electrochemical thin-layer cell which was coupled online to electrospray ionization-mass spectrometry. The electrochemical oxidation was performed on a boron-doped diamond working electrode, which is able to generate hydroxyl radicals in aqueous solutions at high potentials. Without any pretreatment, the oxidation products were identified by electrospray ionization/time-of-flight mass spectrometry (ESI-ToF-MS) using their exact masses. A mass voltammogram was generated by plotting the obtained mass spectra against the applied potential. Oligomerization states with up to six monomeric units in different redox states of aniline were observed using this setup. This approach was extended to generate adducts between the oxidation products of aniline and the tripeptide glutathione. Two adducts were identified with this trapping experiment. Protein modification was carried out subsequently: Aniline was oxidized at a constant potential and was allowed to react with β-lactoglobulin A (β-LGA) or human serum albumin (HSA), respectively. The generated adducts were analyzed by liquid chromatography coupled to ESI-ToF-MS. For both β-LGA and HSA, aniline

  6. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  7. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  8. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests. PMID:26764309

  9. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  10. Study of Simvastatin Self-Association Using Electrospray-Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vetrova, E. V.; Lekar, A. V.; Filonova, O. V.; Borisenko, S. N.; Maksimenko, E. V.; Borisenko, N. I.

    2015-07-01

    Self-association of simvastatin, which is widely used to treat coronary heart disease, was investigated using electrospray-ionization mass spectrometry. Formation of simvastatin self-associates in various solvents was demonstrated using mass spectrometry. Solvation effects were shown to play a special role in the formation of the self-associates. Self-associates containing from two to fi ve simvastatin molecules were detected in mass spectra of an aqueous MeOH (20%) solution of simvastatin. The formation of simvastatin self-associates could compete with the complexation of supramolecular structures during the synthesis of new generation drugs.

  11. Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Liu, Pengyuan; Lanekoff, Ingela T.; Laskin, Julia; Dewald, Howard D.; Chen, Hao

    2012-07-03

    The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization (nano-DESI), a recently developed ambient ionization method. We demonstrate online coupling of nano-DESI-MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nano-DESI for MS analysis. Furthermore, we show first coupling of nano-DESI-MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directly from electrode surfaces. Because of its inherent sensitivity, nano-DESI enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine ortho-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nano-DESI as a novel interface for electrochemical mass spectrometry research.

  12. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    PubMed Central

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA buffer, was shown to be the method of choice based on total protein extraction and on the solubilisation and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than by 10% TCA/acetone, allowing greater than 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone-wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate in the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6-11% more distinct peptides and 14-19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  13. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  14. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    SciTech Connect

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  15. Mass spectrometry in systems biology an introduction.

    PubMed

    Dunn, Warwick B

    2011-01-01

    The qualitative detection, quantification, and structural characterization of analytes in biological systems are important requirements for objectives to be fulfilled in systems biology research. One analytical tool applied to a multitude of systems biology studies is mass spectrometry, particularly for the study of proteins and metabolites. Here, the role of mass spectrometry in systems biology will be assessed, the advantages and disadvantages discussed, and the instrument configurations available described. Finally, general applications will be briefly reviewed.

  16. Contribution of mass spectrometry to the study of the Maillard reaction in food.

    PubMed

    Fay, Laurent B; Brevard, Hugues

    2005-01-01

    The Maillard reaction or non-enzymatic browning corresponds to a set of reactions occurring between amines and carbonyl compounds, especially reducing sugars. The Maillard reaction is known to occur in heated, dried, or stored foods and in vivo in mammalian organisms. In food, the Maillard reaction is responsible for changes in colour, flavor, and nutritive value but also for the formation of stabilizing and mutagenic compounds. Because of the complexity of the Maillard reaction, mass spectrometry, coupled or not to separation techniques, is a key tool in this research area and we will review in this article the contribution of mass spectrometry to the understanding of this reaction. Different steps of Maillard reaction will be described and the importance and the role played by mass spectrometry will be highlighted. In addition, different approaches to investigate the Maillard reaction from the formation of Amadori products (early Maillard reaction product) to the flavor and melanoidin production will also be covered. PMID:15389846

  17. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  18. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R E

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  19. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  20. New simultaneous thermogravimetry and modulated molecular beam mass spectrometry apparatus for quantitative thermal decomposition studies

    SciTech Connect

    Behrens, R. Jr.

    1987-03-01

    A new type of instrument has been designed and constructed to measure quantitatively the gas phase species evolving during thermal decompositions. These measurements can be used for understanding the kinetics of thermal decomposition, determining the heats of formation and vaporization of high-temperature materials, and analyzing sample contaminants. The new design allows measurements to be made on the same time scale as the rates of the reactions being studied, provides a universal detection technique to study a wide range of compounds, gives quantitative measurements of decomposition products, and minimizes interference from the instrument on the measurements. The instrument design is based on a unique combination of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and modulated beam mass spectroscopy (MBMS) which are brought together into a symbiotic relationship through the use of differentially pumped vacuum systems, modulated molecular beam techniques, and computer control and data-acquisition systems. A data analysis technique that calculates partial pressures in the reaction cell from the simultaneous microbalance force measurements and the modulated mass spectrometry measurements has been developed. This eliminates the need to know the ionization cross section, the ion dissociation channels, the quadrupole transmission, and the ion detector sensitivity for each thermal decomposition product prior to quantifying the mass spectral data. The operation of the instrument and the data analysis technique are illustrated with the thermal decomposition of contaminants from a precipitated palladium powder.

  1. Impact of Pharmaceutical Impurities in Ecstasy Tablets: Gas Chromatography-Mass Spectrometry Study.

    PubMed

    Jalali, Amir; Hatamie, Amir; Saferpour, Tahere; Khajeamiri, Alireza; Safa, Tahere; Buazar, Foad

    2016-01-01

    In this study, a simple and reliable method by gas chromatograph-mass spectrometry (GC-MS) was developed for the fast and regular identification of 3, 4-MDMA impurities in ecstasy tablets. In so doing, 8 samples of impurities were extracted by diethyl ether under alkaline condition and then analyzed by GC-MS. The results revealed high MDMA levels ranging from 37.6% to 57.7%. The GC-MS method showed that unambiguous identification can be achieved for MDMA from 3, 4-methylenedioxyamphetamine (MDA), Amphetamine (AM), methamphetamine (MA) and ketamine (Keta) compounds, respectively. The experimental results indicated the acceptable time window without interfering peaks. It is found that GC-MS was provided a suitable and rapid identification approach for MDMA (Ecstacy) tablets, particularly in the Forensic labs. Consequently, the intense MDMA levels would support the police to develop a simple quantification of impurity in Ecstasy tablets. PMID:27610162

  2. Thermodynamic Studies of High Temperature Materials Via Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Brady, Michael P.

    1997-01-01

    The Knudsen Cell technique is a classic technique from high temperature chemistry for studying condensed phase/vapor equilibria. It is based on a small enclosure, usually about 1 cm in diameter by 1 cm high, with an orifice of well-defined geometry. This forms a molecular beam which is analyzed with mass spectrometry. There are many applications to both fundamental and applied problems with high temperature materials. Specific measurements include vapor pressures and vapor compositions above solids, activities of alloy components, and fundamental gas/solid reactions. The basic system is shown. Our system can accommodate a wide range of samples, temperatures, and attachments, such as gas inlets. It is one of only about ten such systems world-wide.

  3. Mass Spectrometry in Pharmacokinetic Studies of a Synthetic Compound for Spinal Cord Injury Treatment

    PubMed Central

    Moreno-Lillo, Sandra

    2015-01-01

    The studies of drugs that could constitute a palliative to spinal cord injury (SCI) are a continuous and increasing demand in biomedicine field from developed societies. Recently we described the chemical synthesis and antiglioma activity of synthetic glycosides. A synthetic sulfated glycolipid (here IG20) has shown chemical stability, solubility in polar solvents, and high inhibitory capacity over glioma growth. We have used mass spectrometry (MS) to monitor IG20 (m/z = 550.3) in cells and tissues of the central nervous system (CNS) that are involved in SCI recovery. IG20 was detected by MS in serum and homogenates from CNS tissue of rats, though in the latter a previous deproteinization step was required. The pharmacokinetic parameters of serum clearance at 24 h and half-life at 4 h were determined for synthetic glycoside in the adult rat using MS. A local administration of the drug near of spinal lesion site is proposed. PMID:26090386

  4. Glycolysis and respiration in yeasts. The Pasteur effect studied by mass spectrometry.

    PubMed

    Lloyd, D; Kristensen, B; Degn, H

    1983-06-15

    Simultaneous and continuous measurements of changes in CO2 and O2 concentrations in glucose-metabolizing yeast suspensions by mass spectrometry enabled a study of the Pasteur effect (aerobic inhibition of glycolysis) in Saccharomyces uvarum and Schizosaccharomyces pombe. A different control mechanism operates in Candida utilis to give a damped oscillation after the anaerobic-aerobic transition. The apparent Km values for respiration of the three yeasts were in the range 1.3-1.8 microM-O2. The apparent Km values for O2 of the Pasteur effect were 5 and 13 microM for catabolite-repressed and derepressed S. uvarum respectively and 7 microM for Sch. pombe. These results are discussed with respect to currently accepted mechanisms for the control of glycolysis.

  5. Impact of Pharmaceutical Impurities in Ecstasy Tablets: Gas Chromatography-Mass Spectrometry Study

    PubMed Central

    Jalali, Amir; Hatamie, Amir; Saferpour, Tahere; Khajeamiri, Alireza; Safa, Tahere; Buazar, Foad

    2016-01-01

    In this study, a simple and reliable method by gas chromatograph–mass spectrometry (GC–MS) was developed for the fast and regular identification of 3, 4-MDMA impurities in ecstasy tablets. In so doing, 8 samples of impurities were extracted by diethyl ether under alkaline condition and then analyzed by GC–MS. The results revealed high MDMA levels ranging from 37.6% to 57.7%. The GC-MS method showed that unambiguous identification can be achieved for MDMA from 3, 4-methylenedioxyamphetamine (MDA), Amphetamine (AM), methamphetamine (MA) and ketamine (Keta) compounds, respectively. The experimental results indicated the acceptable time window without interfering peaks. It is found that GC-MS was provided a suitable and rapid identification approach for MDMA (Ecstacy) tablets, particularly in the Forensic labs. Consequently, the intense MDMA levels would support the police to develop a simple quantification of impurity in Ecstasy tablets. PMID:27610162

  6. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  7. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  8. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  9. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  10. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  11. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  12. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics

    PubMed Central

    Bell, Alexander W.; Deutsch, Eric W.; Au, Catherine E.; Kearney, Robert E.; Beavis, Ron; Sechi, Salvatore; Nilsson, Tommy; Bergeron, John J.M.

    2009-01-01

    We carried out a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in LC-MS-based proteomics. We distributed a test sample consisting of an equimolar mix of 20 highly purified recombinant human proteins, to 27 laboratories for identification. Each protein contained one or more unique tryptic peptides of 1250 Da to also test for ion selection and sampling in the mass spectrometer. Of the 27 labs, initially only 7 labs reported all 20 proteins correctly, and only 1 lab reported all the tryptic peptides of 1250 Da. Nevertheless, a subsequent centralized analysis of the raw data revealed that all 20 proteins and most of the 1250 Da peptides had in fact been detected by all 27 labs. The centralized analysis allowed us to determine sources of problems encountered in the study, which include missed identifications (false negatives), environmental contamination, database matching, and curation of protein identifications. Improved search engines and databases are likely to increase the fidelity of mass spectrometry-based proteomics. PMID:19448641

  13. High-sensitivity mass spectrometry with a tandem accelerator

    SciTech Connect

    Henning, W.

    1983-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems.

  14. Mass Spectrometry of Intact Membrane Protein Complexes

    PubMed Central

    Laganowsky, Arthur; Reading, Eamonn; Hopper, Jonathan T.S.; Robinson, Carol V.

    2014-01-01

    Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries. PMID:23471109

  15. Determination and pharmacokinetic studies of arecoline in dog plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Bing; Zhou, Xu-Zheng; Li, Jian-Yong; Yang, Ya-Jun; Niu, Jian-Rong; Wei, Xiao-Juan; Liu, Xi-Wang; Li, Jin-Shan; Zhang, Ji-Yu

    2014-10-15

    A rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of arecoline concentration in dog plasma. Plasma sample was prepared by protein precipitation using n-hexane (containing 1% isoamyl alcohol) with β-pinene as an internal standard. Chromatographic separation was achieved on an Agilent C18 column (4.6×75mm, 3.5μm) using methanol: 5mM ammonium acetate as the mobile phase with isocratic elution. Mass detection was carried out using positive electrospray ionization in multiple reaction monitoring mode. The calibration curve for arecoline was linear over a concentration range of 2-500ng/mL. The intra-day and inter-day accuracy and precision were within the acceptable limits of ±10% at all concentrations. In summary, the LC-MS/MS method described herein was fully validated and successfully applied to the pharmacokinetic study of arecoline hydrobromide tablets in dogs after oral administration. PMID:25140901

  16. The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics.

    PubMed

    Walzer, Mathias; Qi, Da; Mayer, Gerhard; Uszkoreit, Julian; Eisenacher, Martin; Sachsenberg, Timo; Gonzalez-Galarza, Faviel F; Fan, Jun; Bessant, Conrad; Deutsch, Eric W; Reisinger, Florian; Vizcaíno, Juan Antonio; Medina-Aunon, J Alberto; Albar, Juan Pablo; Kohlbacher, Oliver; Jones, Andrew R

    2013-08-01

    The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)(1) leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.

  17. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  18. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  19. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  20. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  1. Chiral recognition in cinchona alkaloid protonated dimers: mass spectrometry and UV photodissociation studies.

    PubMed

    Scuderi, D; Maitre, P; Rondino, F; Le Barbu-Debus, K; Lepère, V; Zehnacker-Rentien, A

    2010-03-11

    Chiral recognition in protonated cinchona alkaloid dimers has been studied in mass spectrometry experiments. The experimental setups involved a modified 7T FT-ICR (Fourier transform-ion cyclotron resonance) mass spectrometer (MS) and a modified Paul ion trap both equipped with an electrospray ionization source (ESI). The Paul ion trap has been coupled to a frequency-doubled dye laser. The fragmentation of protonated dimers made from cinchonidine (Cd) and the two pseudoenantiomers of quinine, namely, quinine (Qn) and quinidine (Qd), has been assessed by means of collision-induced dissociation (CID) as well as UV photodissociation (UVPD). Whereas CID fragmentation of the dimers only leads to the evaporation of the monomers, UVPD results in the additional loss of a neutral radical fragment corresponding to the quinuclidinyl radical. The effect of the excitation wavelength and of complexation with H(2)SO(4) has been studied to cast light on the reaction mechanism. Complexation with H(2)SO(4) modifies the photoreactivity of the dimers; only evaporation of the monomeric fragments, quinine, and cinchonidine is observed. Comparison between the mass spectra of the cinchona alkaloid (CdQnH(+)) or (CdQdH(+)) dimers resulting from the UVPD of (CdQnH(2)SO(4)H(+)) and that of bare (CdQnH(+)) helps propose a fragmentation mechanism, which is thought to involve fast proton transfer from the quinuclidine part of a molecular subunit to the quinoline ring. CID and UV fragmentation experiments show that the homochiral dimer is more strongly bound than the heterochiral adduct.

  2. Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012*

    PubMed Central

    Leymarie, Nancy; Griffin, Paula J.; Jonscher, Karen; Kolarich, Daniel; Orlando, Ron; McComb, Mark; Zaia, Joseph; Aguilan, Jennifer; Alley, William R.; Altmann, Friederich; Ball, Lauren E.; Basumallick, Lipika; Bazemore-Walker, Carthene R.; Behnken, Henning; Blank, Michael A.; Brown, Kristy J.; Bunz, Svenja-Catharina; Cairo, Christopher W.; Cipollo, John F.; Daneshfar, Rambod; Desaire, Heather; Drake, Richard R.; Go, Eden P.; Goldman, Radoslav; Gruber, Clemens; Halim, Adnan; Hathout, Yetrib; Hensbergen, Paul J.; Horn, David M.; Hurum, Deanna; Jabs, Wolfgang; Larson, Göran; Ly, Mellisa; Mann, Benjamin F.; Marx, Kristina; Mechref, Yehia; Meyer, Bernd; Möginger, Uwe; Neusüβ, Christian; Nilsson, Jonas; Novotny, Milos V.; Nyalwidhe, Julius O.; Packer, Nicolle H.; Pompach, Petr; Reiz, Bela; Resemann, Anja; Rohrer, Jeffrey S.; Ruthenbeck, Alexandra; Sanda, Miloslav; Schulz, Jan Mirco; Schweiger-Hufnagel, Ulrike; Sihlbom, Carina; Song, Ehwang; Staples, Gregory O.; Suckau, Detlev; Tang, Haixu; Thaysen-Andersen, Morten; Viner, Rosa I.; An, Yanming; Valmu, Leena; Wada, Yoshinao; Watson, Megan; Windwarder, Markus; Whittal, Randy; Wuhrer, Manfred; Zhu, Yiying; Zou, Chunxia

    2013-01-01

    One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods. PMID

  3. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012.

    PubMed

    Leymarie, Nancy; Griffin, Paula J; Jonscher, Karen; Kolarich, Daniel; Orlando, Ron; McComb, Mark; Zaia, Joseph; Aguilan, Jennifer; Alley, William R; Altmann, Friederich; Ball, Lauren E; Basumallick, Lipika; Bazemore-Walker, Carthene R; Behnken, Henning; Blank, Michael A; Brown, Kristy J; Bunz, Svenja-Catharina; Cairo, Christopher W; Cipollo, John F; Daneshfar, Rambod; Desaire, Heather; Drake, Richard R; Go, Eden P; Goldman, Radoslav; Gruber, Clemens; Halim, Adnan; Hathout, Yetrib; Hensbergen, Paul J; Horn, David M; Hurum, Deanna; Jabs, Wolfgang; Larson, Göran; Ly, Mellisa; Mann, Benjamin F; Marx, Kristina; Mechref, Yehia; Meyer, Bernd; Möginger, Uwe; Neusüβ, Christian; Nilsson, Jonas; Novotny, Milos V; Nyalwidhe, Julius O; Packer, Nicolle H; Pompach, Petr; Reiz, Bela; Resemann, Anja; Rohrer, Jeffrey S; Ruthenbeck, Alexandra; Sanda, Miloslav; Schulz, Jan Mirco; Schweiger-Hufnagel, Ulrike; Sihlbom, Carina; Song, Ehwang; Staples, Gregory O; Suckau, Detlev; Tang, Haixu; Thaysen-Andersen, Morten; Viner, Rosa I; An, Yanming; Valmu, Leena; Wada, Yoshinao; Watson, Megan; Windwarder, Markus; Whittal, Randy; Wuhrer, Manfred; Zhu, Yiying; Zou, Chunxia

    2013-10-01

    One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.

  4. Vinegar Metabolomics: An Explorative Study of Commercial Balsamic Vinegars Using Gas Chromatography-Mass Spectrometry

    PubMed Central

    Pinu, Farhana R.; de Carvalho-Silva, Samuel; Trovatti Uetanabaro, Ana Paula; Villas-Boas, Silas G.

    2016-01-01

    Balsamic vinegar is a popular food condiment produced from cooked grape must by two successive fermentation (anaerobic and aerobic) processes. Although many studies have been performed to determine the composition of major metabolites, including sugars and aroma compounds, no study has been undertaken yet to characterize the comprehensive metabolite composition of balsamic vinegars. Here, we present the first metabolomics study of commercial balsamic vinegars by gas chromatography coupled to mass spectrometry (GC-MS). The combination of three GC-MS methods allowed us to detect >1500 features in vinegar samples, of which 123 metabolites were accurately identified, including 25 amino acids, 26 carboxylic acids, 13 sugars and sugar alcohols, four fatty acids, one vitamin, one tripeptide and over 47 aroma compounds. Moreover, we identified for the first time in vinegar five volatile metabolites: acetin, 2-methylpyrazine, 2-acetyl-1-pyroline, 4-anisidine and 1,3-diacetoxypropane. Therefore, we demonstrated the capability of metabolomics for detecting and identifying large number of metabolites and some of them could be used to distinguish vinegar samples based on their origin and potentially quality. PMID:27455339

  5. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study.

    PubMed

    Tam, J; Pantazopoulos, P; Scott, P M; Moisey, J; Dabeka, R W; Richard, I D K

    2011-06-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products 'as consumed', pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[(13)C(20)]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply.

  6. Human plasma protein adsorption onto dextranized surfaces: a two-dimensional electrophoresis and mass spectrometry study.

    PubMed

    Tsai, Irene Y; Tomczyk, Nancy; Eckmann, Joshua I; Composto, Russell J; Eckmann, David M

    2011-05-01

    Protein adsorption is fundamental to thrombosis and to the design of biocompatible materials. We report a two-dimensional electrophoresis and mass spectrometry study to characterize multiple human plasma proteins adsorbed onto four different types of model surfaces: silicon oxide, dextranized silicon, polyurethane and dextranized polyurethane. Dextran was grafted onto the surfaces of silicon and polyurethane to mimic the blood-contacting endothelial cell glycocalyx surface. Surface topography and hydrophobicity/hydrophilicity were determined and analyzed using atomic force microscopy and water contact angle measurements, respectively. Using two-dimensional electrophoresis, we show that, relative to the unmodified surfaces, dextranization significantly inhibits the adsorption of several human plasma proteins including IGHG1 protein, fibrinogen, haptoglobin, Apo A-IV, Apo A-I, immunoglobulin, serum retinal-binding protein and truncated serum albumin. We further demonstrate the selectivity of plasma protein adsorbed onto the different functionalized surfaces and the potential to control and manipulate proteins adsorption on the surfaces of medical devices, implants and microfluidic devices. This result shows that adsorption experiments using a single protein or a binary mixture of proteins are consistent with competitive protein adsorption studies. In summary, these studies indicate that coating blood-contacting biomedical applications with dextran is an effective route to reduce thrombo-inflammatory responses and to surface-direct biological activities. PMID:21277175

  7. Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment.

    PubMed

    Hoffmann, Th; Hofmann, D; Klumpp, E; Küppers, S

    2011-02-01

    Electrochemistry (EC) coupled to mass spectrometry (MS) has already been successfully applied to metabolism research for pharmaceutical applications, especially for the oxidation behaviour of drug substances. Xenobiotics (chemicals in the environment) also undergo various conversions; some of which are oxidative reactions. Therefore, EC-MS might be a suitable tool for the investigation of oxidative behaviour of xenobiotics. A further evaluation of this approach to environmental research is presented in the present paper using sulfonamide antibiotics. The results with sulfadiazine showed that EC-MS is a powerful tool for the elucidation of the oxidative degradation mechanism within a short time period. In addition, it was demonstrated that EC-MS can be used as a fast and easy method to model the chemical binding of xenobiotics to soil. The reaction of sulfadiazine with catechol, as a model substance for organic matter in soil, led to the expected chemical structure. Finally, by using EC-MS a first indication was obtained of the persistence of a component under chemical oxidation conditions for the comparison of the oxidative stability of different classes of xenobiotics. Overall, using just a few examples, the study demonstrates that EC-MS can be applied as a versatile tool for mechanistic studies of oxidative degradation pathways of xenobiotics and their possible interaction with soil organic matter as well as their oxidative stability in the environment. Further studies are needed to evaluate the full range of possibilities of the application of EC-MS in environmental research.

  8. Axial Imidazole Binding Strengths in Porphyrinoid Cobalt(III) Complexes as Studied by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mishra, Ekta; Worlinsky, Jill L.; Gilbert, Thomas M.; Brückner, Christian; Ryzhov, Victor

    2012-06-01

    The Co(II) complexes of twelve meso-tetraaryl-porphyrins, -chlorins, and chlorin analogues containing non-pyrrolic heterocycles were synthesized and converted in situ to the corresponding Co(III) complexes coordinated to one or two imidazoles. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) in conjunction with the energy-variable collision-induced dissociation (CID) technique was used to compare the relative gas-phase binding strength of the axially coordinated imidazoles to the octahedral and square planar Co(III) porphyrinoid complex ions. The observed binding energies of these ligands were rationalized in terms of the effects of porphyrinoid core structure and meso-substitution on the electron density on the central Co(III) centers. Some of these trends were supported by DFT-based computational studies. The study highlights to which extend porphyrins vary from chlorins and chlorin analogues in their coordination abilities and to which extraordinary degree meso-thienyl-substituents influence the electronic structure of porphyrins. The study also defines further the scope and limits CID experiments can be used to interrogate the electronic structures of metalloporphyrin complexes.

  9. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  10. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  11. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  12. Mass spectrometry study of increased breakdown of an anticonvulsivant drug substance

    NASA Astrophysics Data System (ADS)

    Buret, D.; Breton, D.; Clair, P.; Lafosse, M.

    2006-06-01

    The French Military Health Service (SSA) developed a new pharmaceutic speciality as a treatment against neurotoxic organophosphate poisoning (NSP), as a substitute for existing therapeutics. The Armed Forces Central Pharmacy (PCA) is in charge of the development of therapeutic formulation and stability studies. This product includes three drug substances: atropine, pralidoxime and avizafone, an amine prodrug of diazepam, soluble in water. The PCA performed a stability study of this formulation according to the International Conference on Harmonization (ICH) recommendations: it was used to display interaction between the molecules and the plastic of the cartridge (the container turned yellow). Since no degradation product of atropine and pralidoxime was observed, a complementary evaluation of avizafone and its main known degradation products (diazepam, carbostyril and methylaminobenzochlorophenone [MACB]) was initiated. The results were used to determine the degradation products obtained under different conditions and the kind of mechanisms, which may occur as the formulation ages: adsorption or absorption by the bulk and/or increasing degradation products. The analytical methods developed here are a direct sample analysis by mass spectrometry (MS) using different ionization modes and liquid chromatography (LC) with UV detection to confirm the results obtain with MS.

  13. A quantitative multiplexed mass spectrometry assay for studying the kinetic of residue-specific histone acetylation.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2014-12-01

    Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.

  14. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®).

    PubMed

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso

    2015-09-01

    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term. PMID:26106018

  15. A mass spectrometry study of n-octane: Electron impact ionization and ion-molecule reactions

    NASA Astrophysics Data System (ADS)

    Jiao, C. Q.; DeJoseph, C. A.; Garscadden, A.

    2001-02-01

    Electron impact ionization of n-octane over an energy range of 10-70 eV and the subsequent ion-molecule reactions with the parent molecule have been studied using Fourier-transform mass spectrometry. Molecular ion and fragment ions C1+-C6+ are produced from the electron impact with a total ionization cross section of 1.4±0.2×10-15 cm2 between 60 and 70 eV. C3H7+ is the most abundant ion at most of the ionizing energies with the exception for E⩽16 eV where C6H13+ and C6H12+ are the most abundant. Among the fragment ions only C4H7+ and smaller ions react readily with the parent molecule, primarily producing C5H11+ and C4H9+, with rate coefficients of 0.32-2.4×10-9 cm3s-1. Essentially all of the ions, including the molecular ion and the large fragment ions, undergo decomposition upon collision with neutral molecules after they are kinetically excited to an energy range of 1-5 eV, forming a variety of small hydrocarbon ions. Many of the decomposition product ions in turn are capable of further reacting with n-octane. Isotope reagents have been utilized in experiments to probe the type of the ion-molecule reactions studied.

  16. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry.

    PubMed

    Xu, Kehua; Zhang, Yun; Tang, Bo; Laskin, Julia; Roach, Patrick J; Chen, Hao

    2010-08-15

    This paper reports a systemic mass spectrometry (MS) investigation of a novel strategy for labeling biological thiols, involving the cleavage of the Se-N bond by thiol to form a new Se-S bond. Our data show that the reaction is highly selective, rapid, reversible, and efficient. Among 20 amino acids, only cysteine is reactive toward Se-N containing reagents and the reaction occurs in seconds. With the addition of dithiothreitol, peptides derivatized by selenium reagents can be recovered. The high reaction selectivity and reversibility provide potential in both selective identification and isolation of thiols from mixtures. Also, with dependence on the selenium reagent used, derivatized peptide ions exhibit tunable dissociation behaviors (either facile cleavage or preservation of the formed Se-S bond upon collision-induced dissociation), a feature that is useful in proteomics studies. Equally importantly, the thiol derivatization yield is striking, as reflected by 100% conversion of protein beta-lactoglobulin A using ebselen within 30 s. In addition, preliminary applications such as rapid screening of thiol peptides from mixtures and identification of the number of protein free and bound thiols have been demonstrated. The unique selenium chemistry uncovered in this study would be valuable in the MS analysis of thiols and disulfide bonds of proteins/peptides.

  17. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®).

    PubMed

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso

    2015-09-01

    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term.

  18. The role of mass spectrometry to study the Oklo-Bangombé natural reactors.

    PubMed

    De Laeter, J R; Hidaka, H

    2007-01-01

    The discovery of the existence of chain reactions at the Oklo natural reactors in Gabon, Central Africa in 1972 was a triumph for the accuracy of mass spectrometric measurements, in that a 0.5% anomaly in the (235)U/(238)U ratio of certain U ore samples indicated a depletion in (235)U. Mass spectrometric techniques thereafter played a dominant role in determining the nuclear parameters of the reactor zones themselves, and in deciphering the geochemical characteristics of various elements in the U-rich ore and in the surrounding rock strata. The variations in the isotopic composition of a large number of elements, caused by a combination of nuclear fission, neutron capture and radioactive decay, provide a powerful tool for investigating this unique geological environment. Mass spectrometry can be used to measure the present-day elemental and isotopic abundances of numerous elements, so as to decipher the past history of the reactors and examine the retentivity/mobility of these elements. Many of the fission products have a radioactive decay history that have been used to date the age and duration of the reactor zones, and to provide insight into their nuclear and geochemical behavior as a function of time. The Oklo fission reactors and their near neighbor at Bangombé, some 30 km to the south-east of Oklo, are unique in that not only did they become critical some 2 x 10(9) years ago, but also the deposits have been preserved over this period of geological time. The long-term geochemical behavior of actinides and fission products have been extensively studied by a variety of mass spectrometric techniques over the past 30 years to provide us with significant information on the mobility/retentivity of this material in a natural geological repository. The Oklo-Bangombé natural reactors are therefore geological analogs that can be evaluated in terms of possible radioactive waste containment sites. As more reactor zones were discovered, it was realized that they could be

  19. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  20. Study on essential oils from four species of Zhishi with gas chromatography–mass spectrometry

    PubMed Central

    2014-01-01

    Background Citrus fruits are widely used as food and or for medicinal purposes, and they contain a host of active substances that contribute to health. The immature fruits of Citrus sinensis Osbeck and its cultivars (CS), C. junos Sieb. ex Tanaka (CJ), C. aurantium L. and its cultivars (CA) and Poncirus trifoliate Raf. (PT) are the most commonly used medicinal herbs in Traditional Chinese Medicine, called Zhishi. And their mature fruits can be used as food. Results In this study, the essential oils of four different Zhishi species were extracted by steam distillation and detected using gas chromatography- mass spectrometry (GC-MS). A total of 39 volatiles from the four species were tentatively identified. The limonene was the most abundant amongst the four species. Principal component analysis (PCA) of essential oils showed a clear separation of volatiles among CS, CJ and PT. However, CA could not be separated from these three species. Additionally, the volatiles accounting for the variations among the widely separated species were characterized through their corresponding loading weight. Conclusion Sesquiterpenes were identified as characteristic markers for PT. The content of some monoterpenes could be as taxonomic markers between CS and CJ. This work is of great importance for the evaluation and authentication of Zhishi samples through essential oils. PMID:24708882

  1. Study of tanshinone IIA tissue distribution in rat by liquid chromatography-tandem mass spectrometry method.

    PubMed

    Bi, Hui-chang; Law, Francis C P; Zhong, Guo-ping; Xu, Chen-shu; Pan, Ying; Ding, Liang; Chen, Xiao; Zhao, Li-zi; Xu, Qiong; Huang, Min

    2007-05-01

    A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for determining tanshinone IIA in rat tissues. After a single step liquid-liquid extraction with diethyl ether, tanshinone IIA and loratadine (internal standard) was subjected to LC/MS/MS analysis using positive electro-spray ionization under selected reaction monitoring mode. Chromatographic separation of tanshinone IIA and loratadine was achieved on a Hypersil BDS C(18) column (i.d. 2.1 x 50 mm, 5 microm) with a mobile phase consisting of methanol-1% formic acid (90:10, v/v) at a flow rate of 300 microL/min. The intra-day and inter-day precision of the method were less than 10.2 and 12.4%, respectively. The intra-day and inter-day accuracies ranged from 99.7 to 109.7%. The lowest limit of quantification for tanshinone IIA was 1 ng/mL. The method was applied to a tanshinone IIA tissue distribution study after an oral dose of 60 mg/kg to rats. Tanshinone IIA tissue concentrations decreased in the order of stomach > small intestine > lung > liver > fat > muscle > kidneys > spleen > heart > plasma > brain > testes. Tanshinone IIA still could be detected in most of the tissues at 20 h post-dosing. These results indicate that the LC/MS/MS method was rapid and sensitive to quantify tanshinone IIA in different rat tissues. PMID:17357178

  2. Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry

    SciTech Connect

    Rodriguez, Oscar R.; Gill, William N.; Plawsky, Joel L.; Tsui Ting, Y.; Grunow, Stephan

    2005-12-15

    Secondary-ion-mass spectrometry measurements were used to study Cu diffusion in porous silica. The total concentration of Cu{sup +} decreases with increasing porosity of the dielectric. This behavior is the combined result of both the chemistry and the morphology of the dielectric. The injection of Cu is triggered by outgassing of hydroxyl and water-related species from the dielectric; furthermore, the reduced available cross-sectional area of solid for diffusion, due to porosity, leads to reduced diffusion through the porous film. This suggests that surface diffusion does not play an important role in this process. The Cu{sup +} concentration at the Cu/dielectric interface is on the order of 10{sup 23} at./m{sup 3}, but decreases with time and exponentially with porosity, which suggests the occurrence of a chemical reaction at the interface. A model of molecular diffusion and ion drift that considers the porosity of the film is developed and the results are consistent with the experimental data.

  3. A new charge-tagged proline-based organocatalyst for mechanistic studies using electrospray mass spectrometry

    PubMed Central

    Willms, J Alexander; Beel, Rita; Schmidt, Martin L; Mundt, Christian

    2014-01-01

    Summary A new 4-hydroxy-L-proline derivative with a charged 1-ethylpyridinium-4-phenoxy substituent has been synthesized with the aim of facilitating mechanistic studies of proline-catalyzed reactions by ESI mass spectrometry. The charged residue ensures a strongly enhanced ESI response compared to neutral unmodified proline. The connection by a rigid linker fixes the position of the charge tag far away from the catalytic center in order to avoid unwanted interactions. The use of a charged catalyst leads to significantly enhanced ESI signal abundances for every catalyst-derived species which are the ones of highest interest present in a reacting solution. The new charged proline catalyst has been tested in the direct asymmetric inverse aldol reaction between aldehydes and diethyl ketomalonate. Two intermediates in accordance with the List–Houk mechanism for enamine catalysis have been detected and characterized by gas-phase fragmentation. In addition, their temporal evolution has been followed using a microreactor continuous-flow technique. PMID:25246962

  4. Metabolism study of boldenone in human urine by gas chromatography-tandem mass spectrometry.

    PubMed

    Wu, Xinchen; Gao, Feng; Zhang, Wenxin; Ni, Jian

    2015-11-10

    Boldenone (BOLD), an anabolic steroid, is likely to be abused in livestock breeding and in sports. Although some of BOLD metabolites in human urine, such as 5β-adrost-1-en-17β-ol-3-one (BM1), have been detected, investigations on their excretion patterns for both genders are insufficient. Moreover, little research on 17α-BOLD glucuronide as a metabolite in human urine has been reported. The aim of this study is to make a contribution to the knowledge of 17β-BOLD metabolism in humans. Three male and three female volunteers were orally administrated with 30mg 17β-BOLD. Urine samples were collected and analyzed with gas chromatography-tandem mass spectrometry. The data proved that 17β-BOLD, BM1, and 17α-BOLD were excreted in urine in both free and glucuronic conjugated forms after administration of 17β-BOLD. For most subjects, the urinary concentrations of BM1 were higher than that of 17β-BOLD. 17α-BOLD was excreted in small amounts. 17α-BOLD, 17β-BOLD, and BM1 were present naturally in urine with low concentrations. Administration of 30mg 17β-BOLD could not influence the excretion profiles of urinary androsterone, etiocholanolone, and testosterone/epitestosterone ratio. There were no differences in BOLD metabolic patterns between man and woman.

  5. Metabolism study of boldenone in human urine by gas chromatography-tandem mass spectrometry.

    PubMed

    Wu, Xinchen; Gao, Feng; Zhang, Wenxin; Ni, Jian

    2015-11-10

    Boldenone (BOLD), an anabolic steroid, is likely to be abused in livestock breeding and in sports. Although some of BOLD metabolites in human urine, such as 5β-adrost-1-en-17β-ol-3-one (BM1), have been detected, investigations on their excretion patterns for both genders are insufficient. Moreover, little research on 17α-BOLD glucuronide as a metabolite in human urine has been reported. The aim of this study is to make a contribution to the knowledge of 17β-BOLD metabolism in humans. Three male and three female volunteers were orally administrated with 30mg 17β-BOLD. Urine samples were collected and analyzed with gas chromatography-tandem mass spectrometry. The data proved that 17β-BOLD, BM1, and 17α-BOLD were excreted in urine in both free and glucuronic conjugated forms after administration of 17β-BOLD. For most subjects, the urinary concentrations of BM1 were higher than that of 17β-BOLD. 17α-BOLD was excreted in small amounts. 17α-BOLD, 17β-BOLD, and BM1 were present naturally in urine with low concentrations. Administration of 30mg 17β-BOLD could not influence the excretion profiles of urinary androsterone, etiocholanolone, and testosterone/epitestosterone ratio. There were no differences in BOLD metabolic patterns between man and woman. PMID:26319750

  6. Metabolomic study of aging in mouse plasma by gas chromatography-mass spectrometry.

    PubMed

    Seo, Chan; Hwang, Yun-Ho; Kim, Youngbae; Joo, Bo Sun; Yee, Sung-Tae; Kim, Cheol Min; Paik, Man-Jeong

    2016-07-01

    Metabolomic analysis of aging was performed in plasma samples of young (8 weeks) and old (72 weeks) mice as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry (GC-MS). As new approaches, study of altered metabolism from aging was attempted by simultaneous profiling analysis of amino acids (AAs), organic acids (OAs) and fatty acids (FAs) by GC-MS in a single run combined with pattern analysis. As a result, 27 amino acids (AAs), 17 organic acids (OAs) and 24 fatty acids (FAs) were positively screened with large variations in plasma samples. Among altered metabolites, levels of six AAs (proline, methionine, 4-hydroxyproline, pipecolic acid, glutamic acid, α-aminoadipic acid) as neurotransmetters and nutrients, five OAs (2-hydroxybutyric acid, 2-hydroxyglutaric acid, cis-aconitic acid citric acid, isocitric acid) including intermediate metabolites in the TCA cycle, and three n-3 polyunsaturated FAs (PUFAs) of α-octadecatrienoic acid, eicosapentaenoic acid and docosahexaenoic acid as potential biomarkers were significantly different between young and old groups. Their levels were normalized to the corresponding mean values of the young group and then plotted into star symbol patterns, which were clearly distinct compared with numerical data and readily distinguishable for young and old groups. Thus, the present metabolomic screening and the star pattern recognition method might be useful for understanding the complexity of biochemical events in aging. PMID:27183212

  7. Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies.

    PubMed

    Taylor, Sandra L; Leiserowitz, Gary S; Kim, Kyoungmi

    2013-12-01

    Mass spectrometry is an important high-throughput technique for profiling small molecular compounds in biological samples and is widely used to identify potential diagnostic and prognostic compounds associated with disease. Commonly, this data generated by mass spectrometry has many missing values resulting when a compound is absent from a sample or is present but at a concentration below the detection limit. Several strategies are available for statistically analyzing data with missing values. The accelerated failure time (AFT) model assumes all missing values result from censoring below a detection limit. Under a mixture model, missing values can result from a combination of censoring and the absence of a compound. We compare power and estimation of a mixture model to an AFT model. Based on simulated data, we found the AFT model to have greater power to detect differences in means and point mass proportions between groups. However, the AFT model yielded biased estimates with the bias increasing as the proportion of observations in the point mass increased while estimates were unbiased with the mixture model except if all missing observations came from censoring. These findings suggest using the AFT model for hypothesis testing and mixture model for estimation. We demonstrated this approach through application to glycomics data of serum samples from women with ovarian cancer and matched controls.

  8. Studies of surface and interface segregation in polymer blends by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schwarz, S. A.; Wilkens, B. J.; Pudensi, M. A. A.; Rafailovich, M. H.; Sokolov, J.; Zhao, X.; Zhao, W.; Zheng, X.; Russell, T. P.; Jones, R. A. L.

    Dynamic secondary ion mass spectrometry (SIMS) has recently been employed to obtain high resolution depth profiles in polymer blend thin films and is now regarded as a key probe of surface and interfacial segregation in these systems. Segregation phenomena strongly impact blend properties such as adhesion, friction and weatherability. The strengths and limitations of the SIMS polymer profiling technique are described and contrasted with the complementary techniques of forward recoil elastic scattering (FRES) and neutron reflectivity (NR). The procedures developed for sample preparation and data acquisition are discussed. Experimental results for the effect of incident O2+ energy and angle on depth resolution and sputtering rate in polystyrene (PS) are presented. Ongoing SIMS studies of model blend systems are described: Segregation from dPS (deuterated)/PS blends to vacuum and Si interfaces is examined as a function of the molecular weight of the blend components and preparation of the Si substrate, revealing the importance of long range interactions. Similar behaviour in an acrylonitrile blend is demonstrated. The surface segregation profiles in the immiscible blend PBrS (polybromostyrene)/PS are discussed for samples annealed in the one and two phase regions. The conformation of carboxy terminated PS and dPS chains grafted to the Si oxide interface in a melt is studied as a function of grafting density, temperature, and matrix molecular weight. Diffusion of homopolymer dPS in a crosslinked PS matrix is examined and the observed diffusion coefficients are in good agreement with calculated values using rubber elasticity theory. Interdiffusion of PS/PS bilayer samples annealed above the glass transition temperature is studied. Trapped oxygen at the original bilayer interface is observed, indicating UV crosslinking of the individual film surfaces.

  9. Extent of coverage of surfaces treated with hydrophobizing microemulsions: A mass spectrometry and contact angle study

    NASA Astrophysics Data System (ADS)

    Nagy, Andras; Kennedy, Joseph P.; Wang, Ping; Wesdemiotis, Chrys; Hanton, Scott D.

    2006-03-01

    Glass surfaces were treated with various hydrophobizing microemulsions (HME) containing mineral seal oil or polyisobutylene as hydrophobes emulsified by dimethyl dicoco ammonium chloride (i.e. mimicking commercial car wash practices) and characterized by mass spectrometry (MS) and contact angle measurements. The cationic emulsifier mediates the anchoring of hydrophobes to the polar glass surface. It is demonstrated that by the use of even very low (0.3-3.0 w%) HME concentrations the surfaces become hydrophobic and repel water even after numerous (˜20) rinsing cycles. According to MS evidence, however, the surfaces are not fully saturated with hydrophobes and the unprotected areas remain vulnerable to environmental damage.

  10. [Use of time-of-flight mass spectrometry with ionization division fragments of californium-252 for studying the mechanisms of action of drugs on DNA and its components].

    PubMed

    Sukhodub, L F; Grebenik, L I; Chivanov, V D

    1994-01-01

    Using soft-ionization mass spectrometry (252-Cf particle desorption mass spectrometry, PDMS) a minor adduct of anticancer drug prospidine and deoxyguanosine-5-phosphate (pdG) has been found. It has been shown experimentally that PDMS is very useful for study of biological mixtures as well as mechanisms of interactions between drugs and biomolecules.

  11. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  12. Mass spectral study of alkali-cationized Boc-carbo-beta3-peptides by electrospray tandem mass spectrometry.

    PubMed

    Srikanth, R; Reddy, P Nagi; Srinivas, R; Sharma, G V M; Reddy, K Ravinder; Krishna, Palakodety Radha

    2004-01-01

    Electrospray tandem mass spectrometry was used to study the dissociation reactions of [M+Cat]+ (Cat = Na+ and Li+) of Boc-carbo-beta3-peptides. The collision-induced dissociation (CID) spectra of [M+Cat-Boc]+ of these peptides are found to be significantly different from those of [M+H-Boc]+ ions. The spectra are more informative and display both C- and N-terminus metallated ions in addition to characteristic fragment ions of the carbohydrate moiety. Based on the fragmentations observed in the CID spectra of the [M+Cat-Boc]+ ions, it is suggested that the dissociation involves complexes in which the metal ion is coordinated in a multidentate arrangement involving the carbonyl oxygen atoms. The CID spectra of [M+Cat-Boc]+ ions of the peptide acids show an abundant N-terminal rearrangement ion [b(n)+17+Cat]+ which is absent for esters. Further, two pairs of positionally isomeric Boc-carbo-beta3-peptide acids, Boc-NH-Caa(S)-beta-hGly-OH (11) and Boc-NH-beta-hGly-Caa(S)-OH (12), and [Boc-NH-Caa(S)-beta-hGly-Caa(S)-beta-hGly-OH] (13) and [Boc-NH-beta-hGly-Caa(S)-beta-hGly-Caa(S)-OH] (14), were differentiated by the CID of [M+Cat-Boc]+ ions. The CID spectra of compounds 11 and 13 are significantly different from those of 12 and 14, respectively. The abundance of [b(n)+17+Cat]+ ions is higher for peptide acids 12 and 14 with a sugar group at the C-terminus when compared to 11 and 13 which contain a sugar moiety at the N-terminus. The observed differences between the CID spectra of these isomeric peptides are attributed to the difference in the preferential site of metal ion binding and also on the structure of the cyclic intermediate involved in the formation of the rearrangement ion.

  13. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  14. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  15. Quantitative mass spectrometry: an overview.

    PubMed

    Urban, Pawel L

    2016-10-28

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644965

  16. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  17. Quantitative mass spectrometry: an overview.

    PubMed

    Urban, Pawel L

    2016-10-28

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements.This article is part of the themed issue 'Quantitative mass spectrometry'.

  18. Uranium passivation by C+ implantation: a photoemission and secondary ion mass spectrometry study

    SciTech Connect

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J; Siekhaus, W; McLean, W

    2005-01-20

    Implantation of 33 keV C{sup +} ions into polycrystalline U{sup 238} with a dose of 4.3 x 10{sup 17} cm{sup -2} produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C{sup +} ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  19. Faradaurate-940: Synthesis, Mass Spectrometry, STEM, PDF, and SAXS Study of Au~940(SR)~160 Nanocrystals

    SciTech Connect

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A; Dass, Amala

    2014-01-01

    Obtaining monodisperse nanocrystals, and determining its composition to the atomic level and its atomic structure is highly desirable, but is generally lacking. Here, we report the discovery and comprehensive characterization of a 3-nm plasmonic nanocrystal with a composition of Au940 20(SCH2CH2Ph)160 4, which is, the largest mass spectrometrically characterized gold thiolate nanoparticle produced to date. The compositional assignment has been made using electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS). The MS results show an unprecedented size monodispersity, where the number of Au atoms vary by only 40 atoms (940 20). The mass spectrometrically-determined size and composition are supported by aberration-corrected scanning transmission electron microscopy (STEM) and synchrotron-based methods such as atomic pair distribution function (PDF) and small angle X-ray scattering (SAXS). Lower resolution STEM images show an ensemble of particles 1000 s per frame visually demonstrating monodispersity. Modelling of SAXS on statistically significant nanoparticle population approximately 1012 individual nanoparticles - shows that the diameter is 3.0 0.2nm, supporting mass spectrometry and electron microscopy results on monodispersity. Atomic PDF based on high energy X-ray diffraction experiments show decent match with either a Marks decahedral or truncated octrahedral structure. Atomic resolution STEM images of single particles and its FFT suggest face-centered cubic (fcc) arrangement. UV-visible spectroscopy data shows that the 940-atom size supports a surface plasmon resonance peak at 505 nm. These monodisperse plasmonic nanoparticles minimize averaging effects and has potential application in solar cells, nano-optical devices, catalysis and drug delivery.

  20. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    SciTech Connect

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey; Baldi, Pierre

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.

  1. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry.

    PubMed

    Fooshee, David R; Aiona, Paige K; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A; Baldi, Pierre F

    2015-11-17

    Squalene is a major component of skin and plant surface lipids and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0 and 1450 Da, which correspond to about 27 000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. The simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces and contribute to their redox capacity. PMID:26492333

  2. A study of inter-species ion suppression in electrospray ionization-mass spectrometry of some phospholipid classes.

    PubMed

    Khoury, Spiro; El Banna, Nadine; Tfaili, Sana; Chaminade, Pierre

    2016-02-01

    Phospholipid quantification in biological samples is crucial and is increasingly studied in lipidomics. Quantitative studies are often performed using commercially available standards of phospholipid classes in order to mimic the composition of biological samples. For this, studies are conducted by liquid chromatography coupled to electrospray ionization-mass spectrometry. In liquid chromatography coupled to mass spectrometry (LC-MS) analysis, the matrix components and the co-elution of several phospholipid species lead to the phenomenon of ion suppression. As a result, a decrease in the response of phospholipid species in mass spectrometry MS is observed. In fact, inter-species ion suppression affects the efficiency of phospholipid (PL) ionization and might also influence the quantitative results. The aim of this work is to study the PL inter-species ion suppression phenomenon in electrospray ionization (ESI)-mass spectrometry on a triple quadrupole TQ and an LTQ-Orbitrap in order to improve quantification in natural and biological samples. Thus, the phospholipid MS response was evaluated to study the effect of acyl chain length, the degree, and the position of unsaturation on acyl chain and the effect of the polar head group structure. A number of saturated and unsaturated phospholipid species and mixtures were analyzed in different ionization modes to a better understanding of inter-species ion suppression phenomenon. PL molecular species responded differently according to the length of fatty acid chains, the number of unsaturation, and the nature of the polar head group. Fatty acid chain length showed to have the most marked effect on MS response.

  3. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  4. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  5. Secondary electrospray ionization-mass spectrometry: breath study on a control group.

    PubMed

    Martínez-Lozano, P; Zingaro, L; Finiguerra, A; Cristoni, S

    2011-03-01

    A series of fatty acids among other compounds have recently been detected in breath in real time by secondary electrospray ionization mass spectrometry (SESI-MS) (Martínez-Lozano P and Fernández de la Mora J 2008 Anal. Chem. 80 8210). Our main aim in this work was to (1) quantify their abundance in breath calibrating the system with standard vapors and (2) extend the study to a control group for several days, both under fasting conditions and after sucrose intake. For the quantitative study, we fed our system with controlled amounts (∼140-1440 ppt) of fatty acid vapors (i.e. propanoic, butanoic, pentanoic and hexanoic acids). As a result, we found sensitivities ranging between 1 and 2.2 cps/ppt. Estimated concentrations of these particular acids in the breath of a fasting subject were in the order of 100 ppt. These values were in reasonable agreement with those expected from reported typical plasma concentrations and Henry constants. A second set of experiments on three fasting individuals before and after ingesting 15 g of sucrose showed that the concentration of propionic and butanoic acids increased rapidly in breath for two subjects. This response was attributed to bacterial activity in mouth and pharynx. In contrast, a third subject showed no response to the administration of sucrose. In addition, we performed a survey among six fasting subjects comparing nasal and mouth exhalations during 11 days, 4 months apart. The signal intensity was comparable for mouth and nose breath. This observation, in conjunction with the quantitative study, suggests that these compounds are mostly systemic when measured under fasting conditions. We finally used the NIST MS search algorithm to evaluate the possibility of recognizing a breathing subject based on his/her breath signature. The global recognition score was 63% (41 out of 65), while the probability by chance alone was 6 × 10(-17). This indicates that (i) there are statistically recognizable differences in

  6. A history of mass spectrometry in Australia.

    PubMed

    Downard, Kevin M; de Laeter, John R

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. Peter Jeffery's establishment of geochronological dating techniques in Western Australia in the early 1950s led to the establishment of geochronology research both at the Australian National University and at what is now the Curtin Institute of Technology in the 1960s. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. An article such as this can never be complete. It instead focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important

  7. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  8. Introduction to mass spectrometry-based proteomics.

    PubMed

    Matthiesen, Rune; Bunkenborg, Jakob

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different aspects of the proteome can be explored by choosing the right combination of sample preparation, MS instrumentation and data processing. This chapter gives an outline for some of these commonly used setups and some of the key concepts, many of which are explored in greater depth in later chapters. PMID:23666720

  9. Introduction to mass spectrometry-based proteomics.

    PubMed

    Matthiesen, Rune; Bunkenborg, Jakob

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different aspects of the proteome can be explored by choosing the right combination of sample preparation, MS instrumentation and data processing. This chapter gives an outline for some of these commonly used setups and some of the key concepts, many of which are explored in greater depth in later chapters.

  10. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  11. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.

    PubMed

    Rubert, Josep; Zachariasova, Milena; Hajslova, Jana

    2015-01-01

    Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics.

  12. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.

    PubMed

    Rubert, Josep; Zachariasova, Milena; Hajslova, Jana

    2015-01-01

    Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics. PMID:26365870

  13. Study of fluorocarbon plasma in 60 and 100 MHz capacitively coupled discharges using mass spectrometry

    SciTech Connect

    Ushakov, Andrey; Volynets, Vladimir; Jeong, Sangmin; Sung, Dougyong; Ihm, Yongho; Woo, Jehun; Han, Moonhyeong

    2008-09-15

    The signals of positive ions and radicals formed in the fluorocarbon plasma of the capacitively coupled plasma reactor were measured using a quadrupole mass spectrometry and optical emission actinometry. The plasma was produced at 60 and 100 MHz frequencies for the same reactor configuration and gas mixtures. Experiments were performed at 25 mTorr with a SiO{sub 2} wafer on the grounded electrode. Mass spectra of ions were measured in C{sub 4}F{sub 8}/O{sub 2}/Ar and C{sub 4}F{sub 6}/O{sub 2}/Ar gas mixtures at 500-1500 W generator powers. For 60 and 100 MHz discharges production of fluorocarbon ions and radicals is discussed. It was found that the production of heavy species increases with frequency. The high mass signals such as C{sub 3}F{sub 3}{sup +}, C{sub 2}F{sub 4}{sup +}, C{sub 2}F{sub 5}{sup +}, C{sub 3}F{sub 5}{sup +}, C{sub 4}F{sub 7}{sup +} decrease when CHF{sub 3} is added to the gas mixture. However, the signals of CF{sub x}{sup +} (x=1,2,3) do not change significantly. These results are compared to the results of polymer film deposition on the wafer. It was suggested to control the polymerization film formation by adding small amount of CHF{sub 3} to the process mixture.

  14. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  15. Quantitative mass spectrometry: an overview

    PubMed Central

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  16. Native Electrospray and Electron-Capture Dissociation FTICR Mass Spectrometry for Top-Down Studies of Protein Assemblies

    SciTech Connect

    Zhang, Hao; Cui, Weidong; Wen, Jianzhong; Blankenship, Robert E.; Gross, Michael L.

    2011-07-15

    The high sensitivity, extended mass range, and fast data acquisition/processing of mass spectrometry and its coupling with native electrospray ionization (ESI) make the combination complementary to other biophysical methods of protein analysis. Protein assemblies with molecular masses up to MDa are now accessible by this approach. Most current approaches have used quadrupole/time-of-flight tandem mass spectrometry, sometimes coupled with ion mobility, to reveal stoichiometry, shape, and dissociation of protein assemblies. The amino-acid sequence of the subunits, however, still relies heavily on independent bottom-up proteomics. We describe here an approach to study protein assemblies that integrates electron-capture dissociation (ECD), native ESI, and FTICR mass spectrometry (12 T). Flexible regions of assembly subunits of yeast alcohol dehydrogenase (147 kDa), concanavalin A (103 kDa), and photosynthetic Fenna–Matthews–Olson antenna protein complex (140 kDa) can be sequenced by ECD or “activated-ion” ECD. Furthermore, noncovalent metal-binding sites can also be determined for the concanavalin A assembly. Most importantly, the regions that undergo fragmentation, either from one of the termini by ECD or from the middle of a protein, as initiated by CID, correlate well with the B-factor from X-ray crystallography of that protein. This factor is a measure of the extent an atom can move from its coordinated position as a function of temperature or crystal imperfections. The approach provides not only top-down proteomics information of the complex subunits but also structural insights complementary to those obtained by ion mobility.

  17. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  18. Mass spectrometry and molecular modeling studies on the inclusion complexes between [alpha], [beta]-cyclodextrins and simvastatin

    NASA Astrophysics Data System (ADS)

    Wen, Xianhong; Liu, Ziyang; Zhu, Tianqiang

    2005-03-01

    Complexation of simvastatin (SV) with α, β-cyclodextrins (CDs) was studied by means of UV spectrometry and ESI-mass spectrometry. The experimental results showed that stable 1:1 inclusion complexes between two CDs and SV were formed. In addition, the 1:2 complex between β-CD and SV was observed. Semi-empirical PM3 calculations were performed to elucidate the different inclusion behaviors between SV and CDs. The calculation results indicated that the formations of some conventional hydrogen bonds and C-H⋯O interactions (weak H bond) were the main factors for the non-covalent CD:SV complex formation and stabilization in gas phase.

  19. Study on ion formation in electrospray droplet impact secondary ion mass spectrometry.

    PubMed

    Asakawa, Daiki; Fujimaki, Susumu; Hashimoto, Yutaka; Mori, Kunihiko; Hiraoka, Kenzo

    2007-01-01

    A new type of cluster secondary ion mass spectrometry (SIMS), named electrospray droplet impact (EDI), has been developed in our laboratory. In general, rather strong negative ions as well as positive ions can be generated by EDI compared with conventional SIMS. In this work, various aspects of ion formation in EDI are investigated. The Brønsted bases (proton acceptor) and acids (proton donor) mixed in the analyte samples enhanced the signal intensities of deprotonated molecules (negative ions) and protonated molecules (positive ions), respectively, for analytes. This suggests the occurrence of heterogeneous proton transfer reactions (i.e. M + M' --> [M+H](+) + [M'-H](-)) in the shockwave-heated selvedge of the colliding interface between the water droplet and the solid sample deposited on the metal substrate. EDI-SIMS shows a remarkable tolerance to the large excess of salts present in samples. The mechanism for desorption/ionization in EDI is much simpler than those for MALDI and SIMS because only very thin sample layers take part in the shockwave-heated selvedge and complicated higher-order reactions are largely suppressed.

  20. Amino acid analysis using chromatography-mass spectrometry: An inter platform comparison study.

    PubMed

    Krumpochova, P; Bruyneel, B; Molenaar, D; Koukou, A; Wuhrer, M; Niessen, W M A; Giera, M

    2015-10-10

    The analysis of amino acids has become a central task in many aspects. While amino acid analysis has traditionally mainly been carried out using either gas chromatography (GC) in combination with flame ionization detection or liquid chromatography (LC) with either post-column derivatization using ninhydrin or pre-column derivatization using o-phthalaldehyde, many of today's analysis platforms are based on chromatography in combination with mass spectrometry (MS). While derivatization is mandatory for the GC-based analysis of amino acids, several LC platforms have emerged, particularly in the dawn of targeted metabolite profiling using hydrophilic interaction liquid chromatography (HILIC) coupled to MS, allowing the analysis of underivatized amino acids. Among the numerous analytical platforms available for amino acid analysis today, we here compare three prominent approaches, being GC-MS and LC-MS after amino acid derivatization using chloroformate and HILIC-MS of underivatized amino acids. We compare and discuss practical issues as well as performance characteristics, e.g., the use of (13)C-labeled internal standards, of the different platforms and present data on their practical implementation in our laboratory. Finally, we compare the real-life applicability of all three platforms for a complex biological sample. While all three platforms are very-well suited for the analysis of complex biological samples they all show advantages and disadvantages for some analytes as discussed in detail in this manuscript. PMID:26115383

  1. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nørgaard, Asger W.; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/ z 139 to ca. 1000 in the positive mode and m/ z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

  2. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies.

    PubMed

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2010-01-01

    The potential of inductively-coupled plasma mass spectrometry (ICP-MS) and its complementarity to soft- ionization MS techniques are discussed in the context of the analysis for biomolecules. ICP-MS offers detection limits in the attomolar range, regardless of the molecular environment of the target element. The sensitivity is hardly affected by the sample matrix, chromatographic mobile phase, or co-eluted compounds. The abundance sensitivity over six decades and the linear dynamic range over nine decades make simultaneous multi-isotopic analysis routinely possible. The manuscript discusses the state-of-the-art of ICP-MS for the detection of proteins in gel electrophoresis and of peptides in 2D high-performance liquid chromatography. The possibilities of quantification to the degree of some post-translational modifications are highlighted. Attention is also paid to the role of ICP-MS in protein quantification via metal-coded labeling and to the use of differentially-labeled antibodies for the multiplexed biomarker analysis. The key role of ICP-MS in the emerging area of metallomics is briefly discussed.

  3. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    NASA Astrophysics Data System (ADS)

    Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.; Qi, Fei; McIlroy, Andrew; Westmoreland, Phillip R.; Law, Matthew E.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2003-10-01

    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C3H4 in low-pressure laminar ethylene-oxygen and benzene-oxygen flames. Similar measurements of the isomeric composition of C2H4O species in a fuel-rich ethylene-oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames.

  4. Detection and quantification of protein oxidation in sarcopenic models: a mass spectrometry study.

    PubMed

    Pasha, Sabah; Tveen Jensen, Karina; Pitt, Andrew R; Spickett, Corinne M

    2014-10-01

    Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies. PMID:26461380

  5. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a

  6. Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.

    ERIC Educational Resources Information Center

    Cooks, R. G.; Busch, K. L.

    1982-01-01

    Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…

  7. Translating metabolic exchange with imaging mass spectrometry

    PubMed Central

    Yang, Yu-Liang; Xu, Yuquan; Straight, Paul; Dorrestein, Pieter C.

    2009-01-01

    Metabolic exchange between an organism and the environment, including interactions with neighboring organisms, is important for processes of organismal development. Here we develop and use thin-layer agar natural product MALDI-TOF imaging mass spectrometry of intact bacterial colonies grown on top of the MALDI target plate to study an interaction between two species of bacteria and provide direct evidence that a Bacillus subtilis silences the defensive arsenal of Streptomyces coelicolor. PMID:19915536

  8. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  9. Surface ionization mass spectrometry of drugs in the thermal and hyperthermal energy range -- a comparative study

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Amirav, Aviv; Fujü, Toshihiro

    1995-12-01

    Thermal and hyperthermal surface ionization (SI) mass spectra of nicotine, caffeine and lidocaine were obtained using a rhenium oxide surface. Thermal surface ionization was studied on an oxidized surface positioned inside an electron impact ion source, while hyperthermal surface ionization (HSI) was obtained upon seeding the compounds into a hydrogen or helium supersonic molecular beam that scattered from the rhenium oxide surface. Both HSI and SI provide rich, informative and complementary mass spectral information. The results indicate that SI follows thermal dissociation processes on the surface prior to the desorption of the ion, while in HSI no thermal equilibrium is established and the ionization process is impulsive, followed by mostly unimolecular ion dissociation. HSI mass spectra are similar to electron impact mass spectra in the fragment ion masses, but the observed relative intensities are different. HSI is a softer ionization method compared to SI, and enables the degree of ion fragmentation to be tuned so that it can be minimized to a low level at low molecular kinetic energy. In SI, limited control over the degree of fragmentation is possible through the surface temperature. The analytical mass spectrometric applications of SI and HSI are briefly mentioned.

  10. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  11. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  12. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  13. Study of Highly Selective and Efficient Thiol Derivatization using Selenium Reagents by Mass Spectrometry

    SciTech Connect

    Xu, Kehua; Zhang, Yun W.; Tang, Bo; Laskin, Julia; Roach, Patrick J.; Chen, Hao

    2010-08-15

    Biological thiols are critical physiological components and their detection often involves derivatization. This paper reports a systemic mass spectrometry (MS) investigation of the cleavage of Se-N bond by thiol to form a new Se-S bond, the new selenium chemistry for thiol labeling. Our data shows that the reaction is highly selective, rapid, reversible and efficient. For instance, among twenty amino acids, only cysteine was found to be reactive with Se-N containing reagents and the reaction takes place in seconds. By adding dithiothreitol (DTT), the newly formed Se-S bond of peptides/proteins can be reduced back to free thiol. The high selectivity and excellent reversibility of the reaction provide potential of using this chemistry for selective identification of thiol compounds or enriching and purifying thiol peptides/proteins. In addition, the derivatized thiol peptides have interesting dissociation behavior, which is tunable using different selenium reagents. For example, by introducing an adjacent nucleophilic group into the selenium reagent in the case of using ebselen, the reaction product of ebselen with glutathione (GSH) is easy to lose the selenium tag upon collision-induced dissociation (CID), which is useful to "fish out" those peptides containing free cysteine residues by precursor ion scan. By contrast, the selenium tag of N-(phenylseleno) phthalimide reagent can be stable and survive in CID process, which would be of value in pinpointing thiol location using a top-down proteomic approach. Also, the high conversion yield of the reaction allows the counting of total number of thiol in proteins. We believe that ebselen or N-(phenylseleno) phthalimide as tagging thiol-protein reagents will have important applications in both qualitative and quantitative analysis of different thiol-proteins derived from living cells by MS method.

  14. Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

    PubMed Central

    Simmonds, Peter G.

    1970-01-01

    Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890

  15. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  16. Differential mobility spectrometry-mass spectrometry for atomic analysis.

    PubMed

    Sinatra, Francy L; Wu, Tianpeng; Manolakos, Spiros; Wang, Jing; Evans-Nguyen, Theresa G

    2015-02-01

    Analysis and separation of atomic ions within a portable setting are studied in forensic applications of radiological debris analysis. Ion mobility spectrometry (IMS) may be used to show separation of atomic ions, while the related method of differential mobility spectrometry (DMS) has focused on fractionation of primarily molecular components. We set out to investigate DMS as a means for separating atomic ions. We initially derived the differential ion mobility parameter, alpha, from classic empirical IMS data of atomic ions, cesium and potassium, each showing its own distinct form of alpha. These alpha functions were applied to DMS simulations and supported by analytical treatment that suggested a means for a rapid disambiguation of atomic ions using DMS. We validated this hypothesis through the prototype cesium-potassium system investigated experimentally by DMS coupled to mass spectrometry (MS). Such a feature would be advantageous in a field portable instrument for rapid atomic analyses especially in the case of isobaric ions that cannot be distinguished by MS. Herein, we first report this novel method for the derivation of alpha from existing field dependent drift tube ion mobility data. Further, we translate experimental DMS data into alpha parameters by expanding upon existing methods. Refining the alpha parameter in this manner helps convey the interpretation of the alpha parameter particularly for those new to the DMS field.

  17. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-07-29

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when

  18. Nonaqueous Capillary Electrophoresis Mass Spectrometry.

    PubMed

    Klampfl, Christian W; Himmelsbach, Markus

    2016-01-01

    The term nonaqueous capillary electrophoresis (NACE) commonly refers to capillary electrophoresis with purely nonaqueous background electrolytes (BGE). Main advantages of NACE are the possibility to analyze substances with very low solubility in aqueous media as well as separation selectivity that can be quite different in organic solvents (compared to water)-a property that can be employed for manipulation of separation selectivities. Mass spectrometry (MS) has become more and more popular as a detector in CE a fact that applies also for NACE. In the present chapter, the development of NACE-MS since 2004 is reviewed. Relevant parameters like composition of BGE and its influence on separation and detection in NACE as well as sheath liquid for NACE-MS are discussed. Finally, an overview of the papers published in the field of NACE-MS between 2004 and 2014 is given. Applications are grouped according to the field (analysis of natural products, biomedical analysis, food analysis, analysis of industrial products, and fundamental investigations). PMID:27645734

  19. Mass Spectrometry Imaging Quick View

    SciTech Connect

    2013-01-24

    MSI QuickView is a software designed to provide a graphical user interface (GUI) for greatly speeding up experimental feedback (visualization and analysis) of mass spectrometry imaging (MSI or IMS) data during data acquisition. Often different software loads the entire data set, i.e., all lines of data into computer memory (RAM). This causes out of memory errors for larger datasets. We solved this in MSI QuickView by reading in the data one line at a time. Only the required information (e.g. the final pixel values for that line of heat map) is maintained in RAM. Interim analysis options include the mean intensity vs. m/z spectrum, intensity vs. time spectrums for up to 6 different m/z values or ranges chosen by the user and heat maps for each line. This assists in validating the usefulness of the particular experiment after scanning the first few lines. In addition, the tool facilitates further processing and analysis of the massive datasets. The user can manually pick different m/z values, time ranges, scroll through the spectra for any line in the data without having to load it in manually, save multiple images, change aspect ratios for the heat maps, and process the heat maps in multiple ways including overlaying images at different m/z values, displaying up to 9 different heat maps, alignment of scans along each line etc. There is no manipulation of the data required by the user to visualize the data.

  20. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry.

    PubMed

    Sutton, Paul A; Wilde, Michael J; Martin, Stephen J; Cvačka, Josef; Vrkoslav, Vladimír; Rowland, Steven J

    2013-07-01

    The organic compounds occurring naturally on the cuticles (surfaces) of insects are important for insect communication, help to act as protective water barriers and are useful in chemical taxonomy. Typically the cuticular lipids are only studied by gas chromatography-mass spectrometry (GC-MS) of hexane or pentane extracts, so the normal limitations of GC-MS makes it perhaps unsurprising that compounds with more than about 35 carbon atoms have only rarely been reported. Here we show by high temperature (HT) GC and HTGC-MS of extracts of eleven species of insects from nine genera, that longer chain compounds are actually common. Wax esters and triacylglycerides are virtually ubiquitous in such extracts, but long chain (>C35) hydrocarbons also sometimes occur. Whilst the latter have occasionally been reported previously from mass spectrometry studies, the use of the HTGC combination with MS allowed even some isobaric isomers to be separated and thus more complete lipid distributions to be monitored. Since the physical properties of cuticular compounds depend on this composition of the mixtures, such differences may influence the water loss rates of the insects, amongst other effects. In addition, the high molecular weight compound profiles may allow species to be more easily differentiated, one from another. It would be interesting to apply these methods to examination of the cuticular lipids of insects on a more routine basis, ideally in combination with MALDI-TOF-MS and imaging methods. PMID:23726079

  1. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  2. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies.

    PubMed

    Lancashire, Lee J; Lemetre, Christophe; Ball, Graham R

    2009-05-01

    Applications of genomic and proteomic technologies have seen a major increase, resulting in an explosion in the amount of highly dimensional and complex data being generated. Subsequently this has increased the effort by the bioinformatics community to develop novel computational approaches that allow for meaningful information to be extracted. This information must be of biological relevance and thus correlate to disease phenotypes of interest. Artificial neural networks are a form of machine learning from the field of artificial intelligence with proven pattern recognition capabilities and have been utilized in many areas of bioinformatics. This is due to their ability to cope with highly dimensional complex datasets such as those developed by protein mass spectrometry and DNA microarray experiments. As such, neural networks have been applied to problems such as disease classification and identification of biomarkers. This review introduces and describes the concepts related to neural networks, the advantages and caveats to their use, examples of their applications in mass spectrometry and microarray research (with a particular focus on cancer studies), and illustrations from recent literature showing where neural networks have performed well in comparison to other machine learning methods. This should form the necessary background knowledge and information enabling researchers with an interest in these methodologies, but not necessarily from a machine learning background, to apply the concepts to their own datasets, thus maximizing the information gain from these complex biological systems.

  3. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  4. Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Kokkinaki, O.; Mihesan, C.; Velegrakis, M.; Anglos, D.

    2013-07-01

    Analysis by laser-induced breakdown spectroscopy (LIBS) is compared, on the basis of a hybrid experimental set-up, with laser ablation time-of-flight mass spectrometry (LA-TOF-MS) for the characterization of materials relevant to cultural heritage. The present study focuses on the analysis of selected paint materials such as lithopone, a white inorganic pigment, and two synthetic organic paint formulations, lemon yellow and phthalocyanine blue. Optical emission spectra, obtained by LIBS, lead to rapid, straightforward identification of the elemental content of the paint samples while mass spectra yield, additionally to elemental analysis, complementary isotopic analysis and, more importantly, enable detection of molecules and molecular fragments, permitting a more complete structural and compositional characterization of composite materials. Mass spectra were recorded either simultaneously with the optical emission ones, or sequentially. The latter was preferred for materials having significantly lower fluence threshold for desorption/ionization relative to plasma formation resulting to optimum mass resolution and minimal surface damage. In all, the results of this study demonstrate the advantages of instrumentally complementing LIBS with TOF-MS in relation to applications in cultural heritage materials analysis, with exciting prospects when laser ablation sampling can be carried out under ambient atmosphere.

  5. Mass Spectrometry Imaging Quick View

    2013-01-24

    MSI QuickView is a software designed to provide a graphical user interface (GUI) for greatly speeding up experimental feedback (visualization and analysis) of mass spectrometry imaging (MSI or IMS) data during data acquisition. Often different software loads the entire data set, i.e., all lines of data into computer memory (RAM). This causes out of memory errors for larger datasets. We solved this in MSI QuickView by reading in the data one line at a time.more » Only the required information (e.g. the final pixel values for that line of heat map) is maintained in RAM. Interim analysis options include the mean intensity vs. m/z spectrum, intensity vs. time spectrums for up to 6 different m/z values or ranges chosen by the user and heat maps for each line. This assists in validating the usefulness of the particular experiment after scanning the first few lines. In addition, the tool facilitates further processing and analysis of the massive datasets. The user can manually pick different m/z values, time ranges, scroll through the spectra for any line in the data without having to load it in manually, save multiple images, change aspect ratios for the heat maps, and process the heat maps in multiple ways including overlaying images at different m/z values, displaying up to 9 different heat maps, alignment of scans along each line etc. There is no manipulation of the data required by the user to visualize the data.« less

  6. The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery

    PubMed Central

    Metz, Thomas O.; Zhang, Qibin; Page, Jason S.; Shen, Yufeng; Callister, Stephen J.; Jacobs, Jon M.; Smith, Richard D.

    2008-01-01

    SUMMARY The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations, sensitive electrospray ionization approaches, and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given. PMID:19177179

  7. Analysis of unsaturated compounds by Ag+ coordination ionspray mass spectrometry: studies of the formation of the Ag+/lipid complex.

    PubMed

    Seal, Jennifer R; Havrilla, Christine M; Porter, Ned A; Hachey, David L

    2003-08-01

    Coordination ionspray mass spectrometry (CIS-MS) is a useful tool in the detection and identification of cholesterol ester and phospholipid hydroperoxides and diacyl peroxides. Extensive studies of a series of cholesterol esters using CIS-MS revealed the following: (1) Cholesterol esters with equal number of double bonds as the internal standard showed a linear relative response in the mass spectrometer while compounds with non-equal numbers of double bonds gave a nonlinear relative response. (2) Complex adducts containing cholesterol ester, silver ion, AgF, AgBF(4), and 2-propanoxide form when silver is in molar excess of cholesterol esters, reducing the [M + Ag](+) signal. (3) In a mixture of cholesterol esters where silver is limiting, Ch22:6 and Ch20:4 bind to silver at the expense of Ch18:2 and have a higher signal in the mass spectrometer. (4) In a mixture of cholesterol esters where silver concentration is twofold greater than total cholesterol ester concentration, Ch22:6 and Ch20:4 form large complex adducts more frequently than Ch18:2 and have a lower signal in the mass spectrometer. PMID:12892911

  8. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V.; Smith, Richard D.

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  9. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  10. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen (1O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. 1O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. 1O2 concentrations in solution were linearly related to the emission intensities of airborne 1O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an 1O2 trapping agent. Products from 1O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of 1O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. 1O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with 1O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  11. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  12. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  13. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  14. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  15. Mass spectrometry studies of fission product behavior: 2, Gas phase species

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1987-01-01

    Revaporization of fission products from reactor system surfaces has become a complicating factor in source term definition. Critical to this phenomena is understanding the nature and behavior of the vapor phase species. This study characterizes the stability of the CsI . CsOH vapor phase complex. Vapor pressures were measured with a mass spectrometer. Thermodynamic data were obtained for CsOH(g), Cs/sub 2/(OH)/sub 2/(g), CsI(g), Cs/sub 2/I/sub 2/(g) and CsI . CsOH(g). Activity coefficients were derived for the CsI-CsOH system. The relative ionization cross section of CsOH is about ten times the cross section of CsI(g). CsI . CsOH fragments to Cs/sub 2/OH/sup +/ and an iodine atom. 17 refs., 4 figs., 6 tabs.

  16. Self-diffusion of lithium in LiAlSi2O6 glasses studied using mass spectrometry.

    PubMed

    Welsch, A-M; Behrens, H; Horn, I; Ross, S; Heitjans, P

    2012-01-12

    In order to improve our understanding of the transport mechanisms of lithium in glasses, we have performed diffusion and ionic conductivity studies on spodumene composition (LiAlSi(2)O(6)) glasses. In diffusion couple experiments pairs of chemically identical glasses with different lithium isotopy (natural Li vs pure (7)Li) were processed at temperatures between 482 and 732 K. Profiles of lithium isotopes were measured after the diffusion runs innovatively applying femtosecond UV laser ablation combined with inductively coupled plasma mass spectrometry (LA ICP-MS). Self-diffusion coefficients of lithium in the glasses were determined by fitting the isotope profiles. During some of the diffusion experiments the electrical conductivity of the samples was intermittently measured by impedance spectrometry. Combining ionic conductivity and self-diffusivity yields a temperature-independent correlation factor of ~0.50, indicating that motions of Li ions are strongly correlated in this type of glasses. Lithium self-diffusivity in LiAlSi(2)O(6) glass was found to be very similar to that in lithium silicate glasses although Raman spectroscopy demonstrates structural differences between these glasses; that is, the aluminosilicate is completely polymerized while the lithium silicate glasses contain large fractions of nonbridging oxygen.

  17. Mass Spectrometry-Based Proteomic Study Makes High-Density Lipoprotein a Biomarker for Atherosclerotic Vascular Disease

    PubMed Central

    Yang, Chao-Yuh; Tsai, Fuu-Jen; Lin, Shih-Yi

    2015-01-01

    High-density lipoprotein (HDL) is a lipid and protein complex that consists of apolipoproteins and lower level HDL-associated enzymes. HDL dysfunction is a factor in atherosclerosis and decreases patient survival. Mass spectrometry- (MS-) based proteomics provides a high throughput approach for analyzing the composition and modifications of complex HDL proteins in diseases. HDL can be separated according to size, surface charge, electronegativity, or apoprotein composition. MS-based proteomics on subfractionated HDL then allows investigation of lipoprotein roles in diseases. Herein, we review recent developments in MS-based quantitative proteomic techniques, HDL proteomics and lipoprotein modifications in diseases, and HDL subfractionation studies. We also discuss future directions and perspectives in MS-based proteomics on HDL. PMID:26090384

  18. Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography-mass spectrometry.

    PubMed

    Niu, Jun; Pi, Zifeng; Yue, Hao; Wang, Yang; Yu, Qing; Liu, Shuying

    2012-10-15

    Ginseng polysaccharide is known to have anti-hyperglycemic and anti-hyperlipidemic effects in vivo and its precise mechanism of action is not clear. A urinary metabolomics method based on rapid-resolution liquid chromatography/mass spectrometry (RRLC/MS) was developed to investigate the effect of water-soluble ginseng polysaccharide (WGP) on type 2 diabetes in rats. Principal component analysis (PCA) was carried out for pattern recognition and a clear separation between type 2 diabetic rats and those treated with WGP was achieved. Eight potential biomarkers were found and identified. Significantly increased inosine, serotonin, phenylpropionylglycine and dodecanedioic acid showed the effect of WGP on purine metabolism, tryptophan metabolism, fatty acid metabolism and energy metabolism. 1-Methyladenine, 4-deoxyerythronic acid, 5-hydroxyhexanoic acid and tetrahydrocortisol were significantly decreased which indicated that WGP can regulate DNA metabolism, organic acids metabolism and steroid hormone metabolism. This work is helpful in the effect mechanism study of ginseng polysaccharide.

  19. Mass Spectrometry in the Home and Garden

    NASA Astrophysics Data System (ADS)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  20. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  1. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Y.; Wang, Y.; Tang, X. F.; Wu, W. H.; Qi, F.

    2013-01-01

    We report a home-made combustion apparatus for study of pressure-dependent laminar premixed flames with tunable vacuum ultraviolet photoionization mass spectrometry. The instrument consists of a flame chamber, a photoionization chamber with a single-stage sampling system, an ion transfer/storage system, and an orthogonal-acceleration reflectron time-of-flight mass spectrometer. Preliminary results of fuel-rich C2H4/O2/Ar flames at pressures of 30, 150, and 760 Torr have been obtained with this instrument. Compared to previous instruments [T. A. Cool, A. McIlroy, F. Qi, P. R. Westmoreland, L. Poisson, D. S. Peterka, and M. Ahmed, Rev. Sci. Instrum. 76, 094102 (2005), 10.1063/1.2010307; F. Qi, R. Yang, B. Yang, C. Q. Huang, L. X. Wei, J. Wang, L. S. Sheng, and Y. W. Zhang, Rev. Sci. Instrum. 77, 084101 (2006)], 10.1063/1.2234855, performances of the new apparatus have higher mass resolution (˜3500 at m/z = 40), better detection limit (<1 ppm), and broader dynamic range (better than 5 order of magnitude).

  2. Determination of rutin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study.

    PubMed

    Chen, Mengchun; Zhang, Xiaoqian; Wang, Hao; Lin, Baoli; Wang, Shuanghu; Hu, Guoxin

    2015-04-01

    A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method for the determination of rutin in rat plasma was developed and validated. After addition of tolbutamide as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. The chromatographic separation was performed on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm particle size), using acetonitrile-0.1% formic acid as the mobile phase with gradient elution, delivered at a flow-rate of 0.4 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 610.91→302.98 and m/z 271.2→155.1 were used to quantify for rutin and tolbutamide, respectively. This assay method has been fully validated in terms of specificity, linearity, recovery and matrix effect, accuracy, precision and stability. Calibration curves were linear in the concentration ranges of 25-2000 ng/mL for rutin. Only 3 min was needed for an analytical run. This developed method was successfully used for determination of rutin in rat plasma for pharmacokinetic study.

  3. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.

    1988-12-01

    The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.

  4. Discharge flow tube with LIF and mass spectrometry detection. A method to study atmospherically important reactions

    NASA Astrophysics Data System (ADS)

    Cabañas, B.; Baeza, M. T.; Martín, P.; Salgado, S.; Villanueva, F.; Monedero, E.; Martínez, E.

    The Atmospheric Chemistry is determined mainly by some degradation processes, such as photolysis or oxidation reactions. In the last case, three speceies play a key role in atmospheric processes: nitrate radical (NO3), hydroxil radical (OH) and ozone (O3). In this way, the most of organic compounds emitted to the Atmosphere are chemically removed by day-time reaction with OH and by reaction with NO3 radical at night-time [1]. The experimental techniques used in order to study atmospheric processes, characterised y their fastness, could be classified in absolute and relative ones [2]. Among absolute techniques flow tube is one of the most used in the study of NO3 reactions. The discharge flow system consists of a tube connected to a pump, through which reactant gases are introduced using a movable injector working in general at pressure near to one torr. The nitrate radial generated by the reaction between flourine atoms and nitric acid is monitoring by laser induced fluorescence (L.I.F.), exciting the (0-0) 2Egets2A'2 transition pumping with λ=662 nm radiation from a dye laser. The products generated in the studied reactions are detected and identified by a mass spectrometer with electronic ionisation. Up to now, in this laboratory the reactions of the nitrate radical with different atmospheric pollutants: alquens, terpens, aldehydes and heterocyclic compounds have been studied in the system described below. However, both laser induced fluorescence spectroscopy and flow tube are techniques have been shown useful in astrophysical studies [3,4,5].

  5. Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry

    SciTech Connect

    Moro, L.; Ruoff, R.S.; Becker, C.H.; Lorents, D.C.; Malhotra, R. )

    1993-07-01

    Laser desorption (LD) and thermal desorption (TD) mass spectra of the metallofullerenes found in arc-produced primary soots have been studied for a large variety of alkaline earth and lanthanide elements. The metallofullerene ratios found in the LD spectra indicate that two distinct groups are observed: Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Ho, Er, and Lu (group A) and Ca, Sr, Sm, Eu, and Yb (group B). The TD spectra of most of these same soots also separate into two groups that contain the same elements as groups A and B. Group A metallofullerenes show strong signals in both LD and TD spectra. Group B metallofullerenes are distinguished by their presence in the LD spectra but absence in the TD spectra. From the general ionic behavior of the elements of these groups, and recent studies of the endohedral oxidation states, we propose that the oxidation states are +3 for group A and +2 for group B. C[sub 70] metallofullerenes are anomalous in that they are absent in TD spectra for all group A and B elements, even at T = 750[degrees]C, but present in LD spectra. 31 refs., 4 figs., 2 tabs.

  6. Pharmacokinetic studies of novel berberine derivatives with ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Wenchao; Shen, Qin; Liang, Hui; Hua, Changlong; Liu, Yuhui; Li, Fengzhi; Li, Qingyong

    2016-09-15

    An ultra-performance liquid chromatography with tandem mass spectrometric detection method was developed for the detection of berberine and its derivatives (A4, B4) in rat plasma and other organs. This validated method was successfully applied to our pharmacokinetic study of BBR derivatives in rats. At the same dose of administration, the Cmax of B4 was about eight times higher than BBR, and its half-life was approximately two times longer than BBR, according to the bigger areas under plasma concentration curves. Inversely, the pharmacokinetic parameter levels of A4 were all inferior to BBR, suggesting a tight structure-activity relationship of these compounds. Small dose of parenteral administration was used for the study of absolute oral bioavailability of A4, B4, and BBR, and the results calculated were 0.12%, 3.4% and 0.7%, respectively. The accumulations of B4 among all organs were intestine>liver>heart>kidney>lung>spleen>plasma, proving a deeply targeting property of B4, which met our experimental assumption. Together, the experimental results proved that compared with BBR and A4, the derivative B4 had higher absolute oral bioavailability and the ability of deeply targeting so that can be likely used in some organ-targeted diseases. PMID:27494281

  7. ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry

    PubMed Central

    Di Tomasso, Geneviève; Miller Jenkins, Lisa M.

    2016-01-01

    As part of their normal life cycle, most RNA molecules associate with several proteins that direct their fate and regulate their function. Here, we describe a novel method for identifying proteins that associate with a target RNA. The procedure is based on the ARiBo method for affinity purification of RNA, which was originally developed to quickly purify RNA with high yields and purity under native conditions. The ARiBo method was further optimized using in vitro transcribed RNA to capture RNA-associating proteins from cellular extracts with high yields and low background protein contamination. For these RNA pull-downs, stem–loops present in the immature forms of let-7 miRNAs (miRNA stem–loops) were used as the target RNAs. Label-free quantitative mass spectrometry analysis allowed for the reliable identification of proteins that are specific to the stem–loops present in the immature forms of two miRNAs, let-7a-1 and let-7g. Several proteins known to bind immature forms of these let-7 miRNAs were identified, but with an improved coverage compared to previous studies. In addition, several novel proteins were identified that better define the protein interactome of the let-7 miRNA stem–loops and further link let-7 biogenesis to important biological processes such as development and tumorigenesis. Thus, combining the ARiBo pull-down method with label-free quantitative mass spectrometry provides an effective proteomic approach for identification of proteins that associate with a target RNA. PMID:27659051

  8. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    NASA Astrophysics Data System (ADS)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  9. Comparative chromatography-mass spectrometry studies on the antiretroviral drug nevirapine-analytical performance characteristics in human plasma determination.

    PubMed

    Sichilongo, Kwenga; Chinyama, Mompati; Massele, Amos; Vento, Sandro

    2014-01-15

    A contrast between the analytical performance characteristics using gas chromatography-mass spectrometry (GC-MS) liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-ultraviolet (LC-UV) detection for the determination of the antiretroviral drug (ARV) nevirapine (NVP) in fortified human plasma after QuEChERS extraction has been made. Analytical performance characteristics, i.e. linearities, instrument detection limits (IDLs), limits of quantitation (LOQs), method detection limits (MDLs), % mean recoveries and the corresponding relative standard deviations (%RSDs) were estimated using techniques above. Using GC-MS, the correlation coefficients (r(2)) were ≥0.990, which were deemed acceptable linearities. The MDLs ranged between 11.1-29.8μg/L and 13.7-36.0μg/L using helium and hydrogen carrier gases respectively. The LOQs ranged between 16.5-66.7μg/L and 28.4-98.7μg/L using helium and hydrogen carrier gases respectively with a % mean recovery of 83% and %RSD of 4.6%. Using LC-MS and LC-UV, the correlation coefficients (r(2)) were ≥0.990. The MDLs were ranged between 3.14 and 47.1μg/L. The LOQs ranged between 2.85 and 90.0μg/L respectively. The MDLs using GC-MS, LC-MS and LC-UV were below the therapeutic range for NVP in human plasma is considered to be between 2300μg/L (Cmin) and 8000μg/L (Cmax). This study also demonstrated that helium can be substituted with hydrogen which is relatively cheaper and easily obtainable even by use of a generator.

  10. Effect of tanshinone IIA on the noncovalent interaction between warfarin and human serum albumin studied by electrospray ionization mass spectrometry.

    PubMed

    Liu, Jie; Wang, Xiaoru; Cai, Zongwei; Lee, Frank S C

    2008-10-01

    Enhanced anticoagulation and/or even bleeding are often observed when patients on long-term warfarin (WAR) therapy consumed Danshen, a well-known medicinal herb in traditional Chinese medicine (TCM). This study demonstrates that altered WAR metabolism, arising from its interaction with the active components in Danshen, played a significant role in this curative effect. Mass spectrometric techniques including ESI-ITMS (electrospray ionization ion-trap mass spectrometry) and ESI-TOF (time-of-flight)-MS have been developed for the study of such drug-herb interactions. The experimental approach involved a detailed analysis and comparison of WAR metabolites in vivo from blood or urine of rats that had been orally administrated with WAR, either singly or together with the representative bioactive component of Danshen-lipid soluble TIIA (Tanshinon IIA), and a study of the interaction of human serum albumin (HSA), WAR, and water-soluble sodium tanshinone IIA sulfonate (STS) in vitro. Results demonstrate that TIIA accelerates the metabolic rate of WAR, whereas STS displaces WAR from the WAR-HSA complex, resulting in an increase of free WAR concentration in blood. It is suggested that the elevated level and enhanced metabolism of WAR is responsible for the over-anticoagulation effect observed. PMID:18657993

  11. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  12. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  13. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties.

  14. Cadmium binding studies to the earthworm Lumbricus rubellus metallothionein by electrospray mass spectrometry and circular dichroism spectroscopy

    SciTech Connect

    Ngu, Thanh T.; Sturzenbaum, Stephen R.; Stillman, Martin J. . E-mail: Martin.Stillman@uwo.ca

    2006-12-08

    The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd{sup 2+} ions. UV absorption and CD spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd{sub 3}Cys{sub 9} and Cd{sub 4}Cys{sub 11} based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.

  15. Direct injection of whole blood for liquid chromatography/tandem mass spectrometry analysis to support single-rodent pharmacokinetic studies.

    PubMed

    Ingelse, Benno A; Vogel, Gerard; Botterblom, Margriet; Nanninga, Dennis; Ooms, Bert

    2008-01-01

    Mass spectrometric developments in the last decade enable (sub)nanomolar detection of drug compounds in biological matrices in a few microliters of blood. However, the sampling and especially the handling of these small blood volumes is not straightforward. We studied the feasibility of a recently developed 'sorbent sampling technique' to handle these small blood volumes and the application to support pharmacokinetic (PK) screening programs. This technique applies 5-10 microL of blood on a fibrous material packed into a cartridge. Blood samples absorbed on these cartridges are eluted directly, on-line onto a solid-phase extraction liquid chromatography/tandem mass spectrometry (SPE-LC/MS/MS) system. It is shown that the sorbent sampling technique can be applied for a range of drug compounds. In spite of issues with recovery and sample clean-up that need further improvement, the sorbent sampling technique provided similar data as compared to conventional analytics. The technique was successfully applied to derive kinetic data from individual mice, thereby decreasing the number of required mice for a PK study from 21 to 3.

  16. Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode.

    PubMed

    Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2014-03-14

    Sweat has recently gained popularity as a potential tool for diagnostics and biomarker monitoring as it is a non-invasive biofluid the composition of which could be modified by certain pathologies, as is the case with cystic fibrosis, which increases chloride levels in sweat. The aim of the present study was to develop an analytical method for analysis of human sweat by liquid chromatography-mass spectrometry (LC-Q-TOF MS/MS) in high resolution mode. Thus, different sample preparation strategies and different chromatographic modes (HILIC and C18 reverse modes) were compared to check their effect on the profile of sweat metabolites. Forty-one compounds were identified by the MS/MS information obtained with a mass tolerance window below 4 ppm. Amino acids, dicarboxylic acids and other interesting metabolites such as inosine, choline, uric acid and tyramine were identified. Among the tested protocols, direct analysis after dilution was a suited option to obtain a representative snapshot of sweat metabolome. In addition, sample clean up by C18 SpinColumn SPE cartridges improved the sensitivity of most identified compounds and reduced the number of interferents. As most of the identified metabolites are involved in key biochemical pathways, this study opens new possibilities to the use of sweat as a source of metabolite biomarkers of specific disorders.

  17. Mass spectrometry: a revolution in clinical microbiology?

    PubMed

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  18. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatograph-mass spectrometry and liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Lei; Zeng, Zhongda; Ye, Guozhu; Zhao, Chunxia; Lu, Xin; Xu, Guowang

    2014-08-01

    Tea is one of the most widely consumed beverages in the world for its benefits to daily life and health. To discover the difference and correlation of chemical compositions in the three typical types of tea, a non-targeted metabolomics method was developed. After the optimization of extraction methods, gas chromatography-time-of-flight mass spectrometry and liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for metabolomics analysis, 1,812 and 2,608 features were obtained, respectively. By comparing with the known compounds in public and/or commercial databases, 173 compounds were tentatively identified, and 109 of them were experimentally confirmed by standards. Totally, 33 tea samples including 12, 12 and 9 samples of green, oolong and black tea, respectively, were analyzed by using the above two methods. Multivatiate analysis, Mann-Whitney U test and hierarchical cluster analysis were used to find and visualize the differential components in the three types of tea. Finally, 90 compounds, which contain catechins, amino acids, organic acids, flavonol glycosides, alkaloids, carbohydrates, lipids, etc, were found with a significant difference among them. This study demonstrates the potentials and power of metabolomics methods to understand the chemical secrets of tea. This should help a lot to optimize the processes of agriculture, storage, preparation and consumption.

  19. Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.

    PubMed

    Makhoul, Salim; Romano, Andrea; Cappellin, Luca; Spano, Giuseppe; Capozzi, Vittorio; Benozzi, Elisabetta; Märk, Tilmann D; Aprea, Eugenio; Gasperi, Flavia; El-Nakat, Hanna; Guzzo, Jean; Biasioli, Franco

    2014-09-01

    The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.

  20. Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies.

    PubMed

    Patel, Katan; Guichard, Sylvie M; Jodrell, Duncan I

    2008-02-15

    A reverse-phase high-performance liquid chromatography method with electrospray ionization and detection by tandem mass spectrometry is described for the simultaneous quantitative determination of decitabine (5-aza-2'-deoxycytidine) and vorinostat (Suberoylanalide hydroxamic acid, SAHA) in human plasma. The method involves a simple acetonitrile precipitation step and centrifugation followed by injection of the supernatant onto a C18 150mmx2.1mm I.D., 3microm HPLC column at 36 degrees C. Separation of decitabine, SAHA and their respective internal standards was achieved with a gradient elution and detection was via the mass spectrometer operated in selected reaction monitoring mode. The method was within the defined validation parameters for linearity, repeatability, reproducibility and stability. The limit of detection was determined as 1.0 and 0.125ngml(-1) and lower limits of quantitation were 10 and 1ngml(-1) for decitabine and SAHA, respectively. Effects of sample preparation on stability were also evaluated in human plasma. For clinical sample handling tetrahydrouridine, an inhibitor of cytidine deaminase was found to help prevent decitabine degradation. The method is currently being used in clinical pharmacokinetic studies for the evaluation of decitabine and SAHA combination therapies.

  1. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  2. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry

    PubMed Central

    Watkinson, Thomas G.; Calabrese, Antonio N.; Giusti, Fabrice; Zoonens, Manuela; Radford, Sheena E.; Ashcroft, Alison E.

    2015-01-01

    Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS–MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations. PMID:26869850

  3. Determination of dexmedetomidine in children's plasma by ultra-performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study.

    PubMed

    Liu, Hua-Cheng; Sun, Wei; Wang, Cheng-Yu; Ying, Wei-Yang; Zheng, Li-Dan; Zeng, Rui-Feng; Wang, Zhe; Ge, Ren-Shan

    2016-06-15

    A rapid, sensitive, and selective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed and validated for the determination and pharmacokinetic investigation of dexmedetomidine in children's plasma. Sample preparation was accomplished through a simple one-step deproteinization procedure with 0.2mL of acetonitrile to a 0.1mL plasma sample. Plasma samples were separated by UPLC on an Acquity UPLC BEH C18 column using a mobile phase consisting of acetonitrile-0.1% formic acid in water with gradient elution. The total run time was 3.1min and the elution of dexmedetomidine was at 1.24min. The detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring mode using the respective transitions m/z 201.3→95.1 for dexmedetomidine and m/z 204.2→98.0 for the internal standard, respectively. The calibration curve was linear over the range of 0.05-10ng/mL with a lower limit of quantitation of 0.05ng/mL. Mean recovery rate of dexmedetomidine in plasma was in the range of 86.7-89.1%. Intra-day and inter-day precision were both <11.6%. This method was successfully applied in pharmacokinetic study after commencement of 1.0μg/kg dexmedetomidine infusion in children. PMID:27179189

  4. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry.

    PubMed

    García-Villalba, Rocio; León, Carlos; Dinelli, Giovanni; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Garcia-Cañas, Virginia; Cifuentes, Alejandro

    2008-06-27

    In this work, capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) is proposed to identify and quantify the main metabolites found in transgenic soybean and its corresponding non-transgenic parental line both grown under identical conditions. The procedure includes optimization of metabolites extraction, separation by CE, on-line electrospray-TOF-MS analysis and data evaluation. A large number of extraction procedures and background electrolytes are tested in order to obtain a highly reproducible and sensitive analytical methodology. Using this approach, a large number of metabolites were tentatively identified based on the high mass accuracy provided by TOF-MS analyzer, together with the isotopic pattern and expected electrophoretic mobility of these compounds. In general, the same metabolites and in similar amounts were found in the conventional and transgenic variety. However, significant differences were also observed in some specific cases when the conventional variety was compared with its corresponding transgenic line. The selection of these metabolites as possible biomarkers of transgenic soybean is discussed, although a larger number of samples need to be analyzed in order to validate this point. It is concluded that metabolomic procedures based on CE-MS can open new perspectives in the study of transgenic foods in order to corroborate (or not) the equivalence with their conventional counterparts.

  5. Mass Spectrometry of Membrane Proteins: A Focus on Aquaporins

    PubMed Central

    Schey, Kevin L.; Grey, Angus C.; Nicklay, Joshua J.

    2015-01-01

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein–protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein–protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins. PMID:23394619

  6. Mass spectrometry study of hemoglobin-oxaliplatin complexes in colorectal cancer patients and potential association with chemotherapeutic responses.

    PubMed

    Mandal, Rupasri; Sawyer, Michael B; Li, Xing-Fang

    2006-01-01

    Oxaliplatin is the most active platinum (Pt)-containing anticancer drug for the treatment of advanced colorectal cancer. We report here the study of potential association of the levels of oxaliplatin-protein complexes in 19 cancer patients with treatment efficacy using size-exclusion high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICPMS) and nanoelectrospray ionization mass spectrometry (nanoESI-MS) techniques. Blood samples from 19 colorectal cancer patients were collected at 1 and 48 h after the first infusion of oxaliplatin. HPLC/ICPMS quantification of the oxaliplatin-protein complexes showed that the levels of Pt-protein complexes in plasma samples at 48 h were reduced by approximately 50% compared to those at 1 h, whereas those in hemolysates did not change significantly. The concentrations of hemoglobin (Hb)-oxaliplatin complexes determined by HPLC/ICPMS ranged from 3.1 to 8.7 microM. NanoESI-MS analysis of the patient hemolysates showed three distinct mass spectral profiles of the Hb-oxaliplatin complexes: (1) 1:1, (2) 1:1 with 1:2, and (3) multiple complexes of 1:1, 1:2, 1:3, and 1:4, corresponding to the Hb-oxaliplatin complex concentrations determined by HPLC/ICPMS. Potential association of variables including Hb-oxaliplatin complex concentrations with time to progress as the treatment efficacy indicator was analyzed using the Cox model. Multivariate analysis of the potential predictors showed that the statistically significant variables were Hb-oxaliplatin complex concentration (p = 0.02), performance status (p = 0.02), baseline neutrophil count (p = 0.05), and the site of the primary cancer (colon vs. rectal, p = 0.01). The hazard ratio for the concentration of the Hb-oxaliplatin complexes was 2.4, suggesting that the risk of cancer progression significantly increased with increasing of Hb-oxaliplatin complexes in patients. These results demonstrate that the level of the Hb-oxaliplatin complexes in

  7. Gas-phase and solution studies of three resorcin[4]arene derivatives using electrospray time-of-flight mass spectrometry.

    PubMed

    Reynolds, James C; Chew, Mei Q; Martin, Helen J; Stubbs, Emma C; Waters, Marguerite A; Crotty, Sarah C; Silvestre-Gonzalez, Vanessa; Chan, Yohan; Thomas, C L Paul; Page, Philip C Bulman; Creaser, Colin S; Heaney, Harry

    2013-01-01

    Electrospray ionisation mass spectrometry (ESI-MS) has been used to study the relative gas-phase proton and alkali metal (Li, Na, K and Cs) binding affinities of three different resorcin[4]arenes using the kinetic method. Collision-induced dissociation (CID) was used to study the fragmentation of resorcin[4]arene heterodimer sandwich complexes, allowing the relative binding affinity order to be established. All the alkali metal cations have the same gas-phase binding affinity order with the resorcin[4]arene host molecules. At collision energies of > or = 13eV, one of the [resorcin[4]arene+Metal]+, (Metal = Li, Na, K) ions fragmented through break-up of the resorcin[4]arene, whilst the other host resorcin[4]arene remained intact, causing an apparent change in binding affinity at high collision energy. This effect was not observed with caesium, since all complex ions dissociated readily under CID by displacement of the caesium cation. The binding affinity for the protonated resorcin[4]arenes was found to be different from the alkali metal cation binding affinity because of the higher proton affinity of the nitrogen-containing resorcin[4]arenes. It is shown that resorcin[4]arenes containing an oxazine ring can be converted into a ring-opened derivative via an Eschweiler-CLarke reaction in the presence of formic acid. A second ring-opening process also occurs, including a hydrolysis reaction that results in apparent Losses of 12 mass units from the intact resorcin[4]arene. Both these reactions occur in solution before mass spectrometric investigation and cannot be achieved by CID. This observation was confirmed by inducing the Eschweiter-CLarke reaction in a model benzoxazine compound.

  8. Linear electric field mass spectrometry

    SciTech Connect

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  9. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  10. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development. PMID:26536781

  11. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  12. Nano-electrospray and microbore liquid chromatography-ion trap mass spectrometry studies of copper complexation with MHC restricted peptides.

    PubMed

    Creaser, C S; Lill, J R; Bonner, P L; Hill, S C; Rees, R C

    2000-04-01

    The formation of copper/peptide complex ions by nano-electrospray and microbore HPLC-electrospray mass spectrometry has been investigated for major histocompatibility complex (MHC) class I and class II restricted peptides. Post-column addition of copper(II) acetate following microbore HPLC-MS separation was carried out using a mixing T-piece or via the sheath flow inlet of the electrospray source. Optimal analytical conditions for copper complex ion formation were determined by variation of copper concentration, pH, nebulization gas supply and spray voltage. Tandem mass spectrometry of copper/peptide complex ions provides peptide sequence information and insight into the peptide chelation sites. Copper associated y fragment ions dominate the product ion spectrum for non-histidine containing peptides, but both b and y copper complex ions were observed for the histidine containing MHC class I associated peptide gp70. PMID:10892016

  13. A novel isotope analysis of oxygen in uranium oxides: comparison of secondary ion mass spectrometry, glow discharge mass spectrometry and thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pajo, L.; Tamborini, G.; Rasmussen, G.; Mayer, K.; Koch, L.

    2001-05-01

    The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n( 18O)/ n( 16O) measurements methods. Traditionally, n( 18O)/ n( 16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO +), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n( 18O)/ n( 16O) ratio in nuclear forensics science, the samples were solid, pure UO 2 or U 3O 8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n( 18O)/ n( 16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n( 18O)/ n( 16O) ratio of UO 2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.

  14. Analysis of Electroblotted Proteins by Mass Spectrometry

    PubMed Central

    Luque-Garcia, Jose L.; Neubert, Thomas A.

    2015-01-01

    Summary Identification of proteins by mass spectrometry is crucial for better understanding of many biological, biochemical, and biomedical processes. Here we describe two methods for the identification of electroblotted proteins by on-membrane digestion prior to analysis by mass spectrometry. These on-membrane methods take approximately half the time of in-gel digestion and provide better digestion efficiency, due to the better accessibility of the protease to the proteins adsorbed onto the nitrocellulose, and better protein sequence coverage, especially for membrane proteins where large and hydrophobic peptides are commonly present. PMID:26139272

  15. Mass spectrometry for pectin structure analysis.

    PubMed

    Ralet, Marie-Christine; Lerouge, Patrice; Quéméner, Bernard

    2009-09-28

    Pectin are extremely complex biopolymers made up of different structural domains. Enzymatic degradation followed by purification and structural analysis of the degradation products proved to be efficient tools for the understanding of pectin fine structure, including covalent interactions between pectic structural domains or with other cell wall polysaccharides. Due to its high sensitivity, high throughput and capacity to analyze mixtures, mass spectrometry has gained more and more importance as a tool for oligosaccharides structural characterization in the past 10 years. This review will focus on the combined use of mass spectrometry and enzymatic digestion for pectins structural characterization. PMID:19058795

  16. Erratum: Erratum to: Axial Imidazole Binding Strengths in Porphyrinoid Cobalt(III) Complexes as Studied by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mishra, Ekta; Worlinsky, Jill L.; Gilbert, Thomas M.; Brückner, Christian; Ryzhov, Victor

    2012-08-01

    The Co(II) complexes of twelve meso-tetraaryl-porphyrins, -chlorins, and chlorin analogues containing non-pyrrolic heterocycles were synthesized and converted in situ to the corresponding Co(III) complexes coordinated to one or two imidazoles. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) in conjunction with the energy-variable collision-induced dissociation (CID) technique was used to compare the relative gas-phase binding strength of the axially coordinated imidazoles to the octahedral and square planar Co(III) porphyrinoid complex ions. The observed binding energies of these ligands were rationalized in terms of the effects of porphyrinoid core structure and meso-substitution on the electron density on the central Co(III) centers. Some of these trends were supported by DFT-based computational studies. The study highlights to which extend porphyrins vary from chlorins and chlorin analogues in their coordination abilities and to which extraordinary degree meso-thienyl-substituents influence the electronic structure of porphyrins. The study also defines further the scope and limits CID experiments can be used to interrogate the electronic structures of metalloporphyrin complexes.

  17. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods.

  18. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods. PMID:22268609

  19. [Application of ultra high performance liquid chromatography-mass spectrometry to metabolomics study of drug-induced hepatotoxicity].

    PubMed

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Xiao, Hongbin

    2015-07-01

    Drug-induced hepatotoxicity is a worldwide health issue. And diagnosing the injury in the early stage is still a challenge in clinic. In this study, pattern recognition analysis of the ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) of hepatocytes HL7702 was performed to develop differential metabolites related to hepatotoxicity induced by hepatotoxicants, including carbon tetrachloride (CCl4), acetaminophen (APAP), emodin, aristolochic acid (AA) and triptolide. Hepatocytes injuries were induced by 48 h of treatment with CCl4 (4 mmol/L), APAP (6.5 mmol/L), emodin (14 μmol/L), AA (35 μmol/L) and triptolide (18 nmol/L), separately. Global metabolomics profiling, multivariate analysis and database searching were performed to discover common differential metabolites for live injury. The positive hepatoprotective drug, bifendate, was used to repair triptolide induced hepatocytes injury, and bifendate-induced changes of hepatotoxicity-related metabolites were investigated. In the results, fatty acid oxidation and cellular oxidative stress-related metabolites, including nicotinamide adenine dinucleotide and glutathione were significantly changed between the control and hepatotoxicant-treated groups, and after treatment with bifendate, those perturbed metabolites all partly returned to normal level. In conclusion, we discovered potential hepatotoxicity-related metabolites that could be used to evaluate hepatotoxicity induced by chemicals, drugs and traditional Chinese medicines. This study also proved that metabolomics is one of the effective tools to investigate drug-induced hepatotoxicity. PMID:26672195

  20. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects.

    PubMed

    Bonaduce, Ilaria; Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla

    2016-02-01

    Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected. PMID:27572989

  1. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    PubMed

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Study on pharmacokinetics of 3,4-divanillyltetrahydrofuran in rats by ultra-fast liquid chromatography/tandem mass spectrometry.

    PubMed

    Shan, Chen-xiao; Cui, Xiao-bing; Yu, Sheng; Chai, Chuan; Wen, Hong-mei; Wang, Xin-zhi; Sun, Xue

    2016-01-01

    3,4-Divanillyltetrahydrofuran is the main active ingredient of nettle root which can increase steroid hormones in the bloodstream for many of bodybuilders. To better understand its pharmacological activities, we need to determine its pharmacokinetic profiles. In this study, a rapid and sensitive ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed for the determination of 3,4-divanillyltetrahydrofuran in the plasma of rats. Chromatographic separation was performed on a C18 column at 40°C, with a gradient elution consisting of methanol and water containing 0.3% (v/v) formic acid at a flow rate of 0.8mL/min. The detection was performed using an electrospray triple-quadrupole MS/MS via positive ion multiple reaction monitoring mode. The lower limits-of-quantification determined were 0.5ng/mL. The intra- and inter-day precision (RSD%) was found to be within 15% and the accuracy (RE%) ranged from -4.0% to 7.0%. This simple yet sensitive method was fully validated and could be successfully applied to the study on pharmacokinetics of 3, 4-divanillyltetrahydrofuran. PMID:26680326

  3. Study of Grape Polyphenols by Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC/QTOF) and Suspect Screening Analysis

    PubMed Central

    Flamini, Riccardo; De Rosso, Mirko; Bavaresco, Luigi

    2015-01-01

    Suspect screening analysis is a targeted metabolomics method in which the identification of compounds relies on specific available information, such as their molecular formula and isotopic pattern. This method, coupled to liquid chromatography-high-resolution mass spectrometry, is effective in the study of grape metabolomics, in particular for characterization of flavonols, stilbene derivatives, and anthocyanins. For identification of compounds expected in the samples, a new database of putative compounds was expressly constructed by using the molecular information on potential metabolites of grape and wine from the literature and other electronic databases. Currently, this database contains around 1,100 compounds. The method allows identification of several hundred grape metabolites with two analyses (positive and negative ionization modes), and performing of data reprocessing using “untargeted” algorithms also provided the identification of some flavonols and resveratrol trimers and tetramers in grape for the first time. This approach can be potentially used in the study of metabolomics of varieties of other plant species. PMID:25734021

  4. Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation.

    PubMed

    Wei, Hui; Ahn, Joomi; Yu, Ying Qing; Tymiak, Adrienne; Engen, John R; Chen, Guodong

    2012-03-01

    PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.

  5. [Application of ultra high performance liquid chromatography-mass spectrometry to metabolomics study of drug-induced hepatotoxicity].

    PubMed

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Xiao, Hongbin

    2015-07-01

    Drug-induced hepatotoxicity is a worldwide health issue. And diagnosing the injury in the early stage is still a challenge in clinic. In this study, pattern recognition analysis of the ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) of hepatocytes HL7702 was performed to develop differential metabolites related to hepatotoxicity induced by hepatotoxicants, including carbon tetrachloride (CCl4), acetaminophen (APAP), emodin, aristolochic acid (AA) and triptolide. Hepatocytes injuries were induced by 48 h of treatment with CCl4 (4 mmol/L), APAP (6.5 mmol/L), emodin (14 μmol/L), AA (35 μmol/L) and triptolide (18 nmol/L), separately. Global metabolomics profiling, multivariate analysis and database searching were performed to discover common differential metabolites for live injury. The positive hepatoprotective drug, bifendate, was used to repair triptolide induced hepatocytes injury, and bifendate-induced changes of hepatotoxicity-related metabolites were investigated. In the results, fatty acid oxidation and cellular oxidative stress-related metabolites, including nicotinamide adenine dinucleotide and glutathione were significantly changed between the control and hepatotoxicant-treated groups, and after treatment with bifendate, those perturbed metabolites all partly returned to normal level. In conclusion, we discovered potential hepatotoxicity-related metabolites that could be used to evaluate hepatotoxicity induced by chemicals, drugs and traditional Chinese medicines. This study also proved that metabolomics is one of the effective tools to investigate drug-induced hepatotoxicity.

  6. Matrix-Free UV-Laser Desorption Ionization Mass Spectrometry as a Versatile Approach for Accelerating Dereplication Studies on Lichens.

    PubMed

    Le Pogam, Pierre; Schinkovitz, Andreas; Legouin, Béatrice; Le Lamer, Anne-Cécile; Boustie, Joël; Richomme, Pascal

    2015-10-20

    The present study examined the suitability of laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) for the rapid chemical fingerprinting of lichen extracts. Lichens are known to produce a wide array of secondary metabolites. Most of these compounds are unique to the symbiotic condition but some can be found in many species. Therefore, dereplication, that is, the rapid identification of known compounds within a complex mixture is crucial in the search for novel natural products. Over the past decade, significant advances were made in analytical techniques and profiling methods specifically adapted to crude lichen extracts, but LDI-MS has never been applied in this context. However, most classes of lichen metabolites have UV chromophores, which are quite similar to commercial matrix molecules used in matrix-assisted laser desorption ionization (MALDI). It is consequently postulated that these molecules could be directly detectable by matrix-free LDI-MS. The present study evaluated the versatility of this technique by investigating the LDI properties of a vast array of single lichen metabolites as well as lichen extracts of known chemical composition. Results from the LDI experiments were compared with those obtained by direct ESI-MS detection as well as LC-ESI-MS. It was shown that LDI ionization leads to strong molecular ion formation with little fragmentation, thus, facilitating straightforward spectra interpretation and representing a valuable alternative to time-consuming LC-MS analysis.

  7. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study on colour stability of ovine meat.

    PubMed

    Subbaraj, Arvind K; Kim, Yuan H Brad; Fraser, Karl; Farouk, Mustafa M

    2016-07-01

    Meat colour is one of the cues available to the consumer to gauge overall meat quality and wholesomeness. Colour stability of meat is determined by several factors both inherent to the animal and post-slaughter conditions, including ageing, storage/packaging and display times. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study was undertaken to identify and compare polar metabolites between ovine meat samples that were exposed to different durations of ageing, storage conditions, and display times. Primary metabolites comprising amino acids, sugars, nucleotides, nucleosides, organic acids and their breakdown products were mainly identified as discriminating factors. For the first time, boron complexes of sugar and malic acid were also tentatively identified. As expected, most compounds identified were related to myoglobin chemistry, and compounds with antioxidant properties were found in higher levels in colour stable samples. Supplementary studies identifying semi-polar, non-polar and volatile compounds will provide a holistic understanding of the chemical basis of colour stability in ovine meat. PMID:26986230

  8. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects.

    PubMed

    Bonaduce, Ilaria; Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla

    2016-02-01

    Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

  9. Mass spectrometry study of PRL-3 phosphatase inactivation by disulfide bond formation and cysteine into glycine conversion.

    PubMed

    Orsatti, Laura; Innocenti, Federica; Lo Surdo, Paola; Talamo, Fabio; Barbato, Gaetano

    2009-09-01

    The Phosphatase of Regenerating Liver-3 (PRL-3) is a cysteine-based phosphatase (CBP) that is highly over-expressed in liver metastasis in colorectal cancer and suspected to be involved in the progression from tumor to metastasis. During substrate-specificity studies based on the screening of PRL-3 phosphatase activity on several phosphorylated synthetic peptides, we observed a decrease in activity depending on sample aging and storage conditions. By liquid chromatography combined with selective alkylation and mass spectrometry, we found two main PRL-3 inactivation pathways: a disulfide bond formation between the catalytic C104 and C49, blocking the enzyme in an inactive oxidized form, or the conversion of the catalytic C104 into glycine. We also found that the disulfide formation and the cysteine into glycine conversion are catalyzed by cations present in the sample after protein purification through a nickel column. By adding a cation chelator such as EDTA and de-oxygenating the sample with argon, PRL-3 phosphatase activity was preserved. These findings suggest that PRL-3, like other CBPs, is sensitive to inactivation by catalytic cysteine oxidation and this has implications for future studies of its activity and specificity. PMID:19639556

  10. Fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry interface (MAGIC-LC/MS)

    SciTech Connect

    Browner, R.F.

    1990-10-01

    Accomplishments on the fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry (LC/MS) interface during the period 1 December 1989 to 30 November 1990 are summarized. In order to determine the influence of temperature on the vaporization and decomposition properties of molecules, test have been carried out on both thermally stable and thermally labile molecules. The test compounds used were a series of polynuclear aromatic (PAH) compounds covering a wide range of molecular weights from two-ring naphthalene to twelve-ring perylene. The less thermally stable species examined were aldicarb, a highly thermally labile pesticide, and cholesterol, which readily loses water when subjected to high temperatures. A new, externally heated probe, which can be raised to temperatures as high as 500{degree}C was also used. Matrix loading effects for a range of surface active and non-surface active compounds in three different matrices: glycerol, 3-nitrobenzyl alcohol, and thioglycerol for fast atom bombardment (FAB) particle beam LC/MS have been studied. The time dependence of FAB spectra generation in the particle beam system has been examined and contrasted with ion generation in normal probe FAB work. Future FAB LC/MS research is outlined. 3 refs. (BM)

  11. Chemical cross-linkers for protein structure studies by mass spectrometry.

    PubMed

    Paramelle, David; Miralles, Guillaume; Subra, Gilles; Martinez, Jean

    2013-02-01

    The cross-linking approach combined with MS for protein structure determination is one of the most striking examples of multidisciplinary success. Indeed, it has become clear that the bottleneck of the method was the detection and the identification of low-abundance cross-linked peptides in complex mixtures. Sample treatment or chromatography separation partially addresses these issues. However, the main problem comes from over-represented unmodified peptides, which do not yield any structural information. A real breakthrough was provided by high mass accuracy measurement, because of the outstanding technical developments in MS. This improvement greatly simplified the identification of cross-linked peptides, reducing the possible combinations matching with an observed m/z value. In addition, the huge amount of data collected has to be processed with dedicated software whose role is to propose distance constraints or ideally a structural model of the protein. In addition to instrumentation and algorithms efficiency, significant efforts have been made to design new cross-linkers matching all the requirements in terms of reactivity and selectivity but also displaying probes or reactive systems facilitating the isolation, the detection of cross-links, or the interpretation of MS data. These chemical features are reviewed and commented on in the light of the more recent strategies. PMID:23255214

  12. Fragmentation studies and electrospray ionization mass spectrometry of lapachol: protonated, deprotonated and cationized species.

    PubMed

    Vessecchi, Ricardo; Emery, Flavio S; Galembeck, Sérgio E; Lopes, Norberto P

    2010-07-30

    Electrospray ionization mass spectrometric analysis of lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone) was accomplished in order to elucidate the gas-phase dissociation reactions of this important biologically active natural product. The occurrence of protonated and cationized species in the positive mode and of deprotonated species in the negative mode was explored by means of collision-induced dissociation (CID) experiments. For the protonated molecule, the H(2)O and C(4)H(8) losses occur by two competitive channels. For the deprotonated molecule, the even-electron rule is not conserved, and the radicalar species are eliminated by formation of distonic anions. The fragmentation mechanism for each ion was suggested on the basis of computational thermochemistry. Atomic charges, relative energies, and frontier orbitals were employed aiming at a better understanding of the gas-phase reactivity of lapachol. Potential energy surfaces for fragmentation reactions were obtained by the B3LYP/6-31+G(d,p) model. PMID:20552691

  13. Mass spectrometry imaging and profiling of single cells

    PubMed Central

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enable new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling. PMID:22498881

  14. Recent trends in inorganic mass spectrometry

    SciTech Connect

    Smith, D.H.; Barshick, C.M.; Duckworth, D.C.; Riciputi, L.R.

    1996-10-01

    The field of inorganic mass spectrometry has seen substantial change in the author`s professional lifetime (over 30 years). Techniques in their infancy 30 years ago have matured; some have almost disappeared. New and previously unthought of techniques have come into being; some of these, such as ICP-MS, are reasonably mature now, while others have some distance to go before they can be so considered. Most of these new areas provide fertile fields for researchers, both in the development of new analytical techniques and by allowing fundamental studies to be undertaken that were previously difficult, impossible, or completely unforeseen. As full coverage of the field is manifestly impossible within the framework of this paper, only those areas with which the author has personal contact will be discussed. Most of the work originated in his own laboratory, but that of other laboratories is covered where it seemed appropriate.

  15. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  16. Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

    SciTech Connect

    Mollah, Sahana

    1999-11-08

    Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need to be examined more intensively to see how they fare against other transition metal complexes. So far, only preliminary work has been done in identifying inorganic species in solutions using both ICP-MS and ES-MS. The solution contained a number of metals but only one major anion, NO{sub 3}{sup {minus}}. Therefore, complex solutions containing a number of anions and metals can be examined to see if identification is still feasible. This identification work can be continued on into investigating real samples.

  17. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  18. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    PubMed

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  19. Serum metabolomics study and eicosanoid analysis of childhood atopic dermatitis based on liquid chromatography-mass spectrometry.

    PubMed

    Huang, Yan; Chen, Guoyou; Liu, Xinyu; Shao, Yaping; Gao, Peng; Xin, Chenchen; Cui, Zhenze; Zhao, Xinjie; Xu, Guowang

    2014-12-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in children. In the study, ultra high performance liquid chromatography-mass spectrometry was used to investigate serum metabolic abnormalities of AD children. Two batch fasting sera were collected from AD children and healthy control; one of them was for nontargeted metabolomics analysis, the other for targeted eicosanoids analysis. AD children were divided into high immunoglobulin E (IgE) group and normal IgE group. On the basis of the two analysis approaches, it was found that the differential metabolites of AD, leukotriene B4, prostaglandins, conjugated bile acids, etc., were associated with inflammatory response and bile acids metabolism. Carnitines, free fatty acids, lactic acid, etc., increased in the AD group with high IgE, which revealed energy metabolism disorder. Amino acid metabolic abnormalities and increased levels of Cytochrome P450 epoxygenase metabolites were found in the AD group with normal IgE. The results provided a new perspective to understand the mechanism and find potential biomarkers of AD and may provide a new reference for personalized treatment. PMID:25316199

  20. Study of the mechanism of chromium cluster formation by laser microprobe mass spectrometry. Correlation with theoretical computations

    NASA Astrophysics Data System (ADS)

    Hachimi, A.; Poitevin, E.; Krier, G.; Muller, J. F.; Ruiz-Lopez, M. F.

    1995-05-01

    Different stoichiometries of micrometric particles of powdered chromium oxides and salts are examined by time-of-flight laser microprobe mass spectrometry (TOF-LMMS). The negative cluster ion distributions show a good correlation with the stoichiometry of the chromium in the oxide. We have noticed a great spectral similarity between chromium(VI) oxide and hydrated chromium(III), salts leading to difficulties in differentiating these two kinds of compounds and determining the valency of chromium. The formation of CrO4- ions could be associated with product hydration, and could modify the fingerprint spectra of the chromium oxides and salts. We demonstrate that the CrO4- ion arises from collision between molecules present in the plasma generated by laser ablation. The mechanism of cluster formation is closely associated with the presence of neutral or ionized species (water, sulfate, nitrate, etc.). In particular, the hydration effect is very marked in the initial chromium salt. To confirm these results, an FT ion cyclotron MS investigation has been carried out, which allowed determination of the laser power dependence and relative stability of CrO-, CrO-2 and CrO3-. Results from a theoretical study of these types of cluster ions are presented and compared with the experimental data.

  1. Determination and pharmacokinetic study of hydrocodone in human plasma by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhang, Rui; Wang, Benjie; Wei, Chunmin; Yuan, Guiyan; Guo, Ruichen

    2009-01-01

    A rapid, highly sensitive and specific high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS-MS) quantitation method was developed and validated for the determination of hydrocodone in human plasma. Sample was extracted from 0.5mL heparinized plasma by a simple liquid-liquid extraction method and analyzed on a C18 column with a mobile phase of acetonitrile-water (78:22,v/v,0.1% acetic acid). Detection was carried out by positive elevtrospray ionization (ESI) in multiple reactions monitoring (MRM) mode of 300.3-->199.2 (m/z) for hydrocodone and 341.2-->107.2 (m/z) for canrenone (I.S.), respectively. A good linearity was obtained from 0.5 to 60 ng x mL(-1) and the lower limit of quantification (LLOQ) was 0.1 ng x mL(-1). Compared to an existing method, the extraction method, internal standard and chromatographic conditions were modified and the cost of a large amount of samples determination was decreased obviously. The method was successfully applied to the pharmacokinetic and bioequivalence studies in healthy Chinese volunteers. PMID:19728188

  2. Rapid determination of apixaban concentration in human plasma by liquid chromatography/tandem mass spectrometry: application to pharmacokinetic study.

    PubMed

    Delavenne, Xavier; Mismetti, Patrick; Basset, Thierry

    2013-05-01

    We described the development and full validation of a rapid, high throughput sensible and accurate LC method using tandem mass spectrometry detection for determining apixaban concentration with [(¹³C, ²H₇]-apixaban as internal standard in human plasma. Plasma pretreatment involved a one-step protein precipitation with methanol. The separation was performed by reverse-phase chromatography on a Luna MercuryMS C18 column (20 mm × 4 mm × 3 μm) column. The multiple reaction monitoring transitions used for quantification were m/z 460.20→443.27 and 460.20→198.99 for apixaban, 468.22→451.30 for [(¹³C, ²H₇]-apixaban in the electrospray positive ionization mode. The method was linear over the concentration range of 5-500 μg/L. The intra- and inter-day precision values were below 14% and accuracy was from 90.0 to 105.8% at all quality control levels. Sample analysis time was less than 10 min including sample preparation. The present method was successfully applied to a pharmacokinetic study following oral administration of apixaban. PMID:23499913

  3. Zwitterionic hydrophilic interaction solid-phase extraction and multi-dimensional mass spectrometry for shotgun lipidomic study of Hypophthalmichthys nobilis.

    PubMed

    Jin, Renyao; Li, Linqiu; Feng, Junli; Dai, Zhiyuan; Huang, Yao-Wen; Shen, Qing

    2017-02-01

    Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material was used as solid-phase extraction sorbent for purification of phospholipids from Hypophthalmichthys nobilis. The conditions were optimized to be pH 6, flow rate 2.0mL·min(-1), loading breakthrough volume ⩽5mL, and eluting solvent 5mL. Afterwards, the extracts were analyzed by multi-dimensional mass spectrometry (MDMS) based shotgun lipidomics; 20 species of phosphatidylcholine (PC), 22 species of phosphatidylethanoamine (PE), 15 species of phosphatidylserine (PS), and 5 species of phosphatidylinositol (PI) were identified, with content 224.1, 124.1, 27.4, and 34.7μg·g(-1), respectively. The MDMS method was validated in terms of linearity (0.9963-0.9988), LOD (3.7ng·mL(-1)), LOQ (9.8ng·mL(-1)), intra-day precision (<3.64%), inter-day precision (<5.31%), and recovery (78.8-85.6%). ZIC-HILIC and MDMS shotgun lipidomics are efficient for studying phospholipids in H. nobilis. PMID:27596430

  4. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry.

    PubMed

    Junza, A; Saurina, J; Barrón, D; Minguillón, C

    2016-08-19

    High resolution accurate mass spectrometry (HRMS) operating in full scan MS mode was used in the search and identification of metabolites in raw milk from cows medicated with enrofloxacin. Data consisting of m/z features were taken throughout the entire chromatogram of milk samples from medicated animals and were compared with blank samples. Twenty six different compounds were identified. Some of them were attributed to structures related to enrofloxacin while others were dipeptides or tripeptides. Additionally, enrofloxacin was administered in a controlled treatment for three days. Milk was collected daily from the first day of treatment and until four days after in the search for the identified compounds. The obtained data were chemometrically treated by Principal Component Analysis. Samples were classified by this method into three different groups corresponding to days 1-2, day 3 and days 4-7 considering the different concentration profile evolution of metabolites during the days studied. Tentative metabolic pathways were designed to rationalize the presence of the newly identified compounds. PMID:27425761

  5. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-01

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker. PMID:17459403

  6. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  7. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  8. Continuous Simultaneous Detection in Mass Spectrometry

    SciTech Connect

    Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2007-10-15

    In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.

  9. Visualizing nanoparticle dissolution by imaging mass spectrometry.

    PubMed

    Szakal, Christopher; Ugelow, Melissa S; Gorham, Justin M; Konicek, Andrew R; Holbrook, R David

    2014-04-01

    We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents. When compared to other measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach offers valuable information that can potentially help in understanding the complex equilibria in NP-containing solutions and suspensions, including NP dissolution kinetics and extent of overall dissolution. PMID:24611464

  10. Characterisation of DEFB107 by mass spectrometry

    NASA Astrophysics Data System (ADS)

    McCullough, Bryan J.; Eastwood, Hayden; Clark, Dave J.; Polfer, Nick C.; Campopiano, Dominic J.; Dorin, Julia A.; Maxwell, Alison; Langley, Ross J.; Govan, John R. W.; Bernstein, Summer L.; Bowers, Michael T.; Barran, Perdita E.

    2006-05-01

    Mammalian defensins are small endogenous cationic proteins which form a class of antimicrobial peptides that is part of the innate immune response of all mammalian species [R. Lehrer, Nat. Rev. Microbiol. 2 (9) (2004) 727; T. Ganz, R.I. Lehrer, Curr. Opin. Immunol. 6 (4) (1994) 584] [1] and [2]. We have developed mass spectrometry based strategies for characterising the structure-activity relationship of defensins [D.J. Campopiano, D.J. Clarke, N.C. Polfer, P.E. Barran, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, J. Biol. Chem. 279 (47) (2004) 48671; P.E. Barran, N.C. Polfer, D.J. Campopiano, D.J. Clarke, P.R.R. Langridge-Smith, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, R.P. Millar, M.T. Bowers, Int. J. Mass Spectrom. 240 (2005) 273] [3] and [4], and here we present data obtained from a five cysteine containing [beta]-defensin, DEFB107. The synthetic product of this human defensin exists with a glutathione capping group, its oxidation state and disulphide connectivity have been determined via accurate mass measurements and peptide mass mapping respectively, and despite possessing three disulphide bridges, it does not fit the [beta]-defensin canonical motif. With the use of molecular modelling, we have generated candidate geometries to discern the influence of disulphide bridging on the overall tertiary structure of DEFB107. These are compared with experimental results from ion mobility measurements. Defensins display activity against a wide variety of pathogens including both gram-negative and gram-positive bacteria. Their mechanism of mode of action is unknown, but is believed to involve defensin aggregation at cell surfaces, followed by cell permeabilisation and hence deathE To probe this mechanism, the localisation of DEFB107 in synthetic vesicles was studied using H/D exchange and mass spectrometry. The results obtained are used to analyse the antimicrobial activity of DEFB107.

  11. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  12. Nanostructure-initiator mass spectrometry biometrics

    DOEpatents

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  13. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  14. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  15. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  16. Plasma desorption mass spectrometry in studies of formation and sputtering of fullerenes by MeV atomic ions

    NASA Astrophysics Data System (ADS)

    Bitensky, I.; Brinkmalm, G.; Demirev, P.; Eriksson, J.; H»Kansson, P.; Papaléo, R.; Sundqvist, B. U. R.; Zubarev, R.

    1994-10-01

    An account is presented on plasma desorption mass spectrometry (PDMS) studies of different carbon-containing organic solids utilizing megaelectronvolt (MeV) atomic ions from the Uppsvala EN-tandem accelerator. Positive ions of even-numbered carbon clusters (C+n, n = 40 to> 200) are ejected as a result of the interaction of the fast MeV ions with the target. The distribution of cluster sizes suggests that stable, closed carbon-cage structures -- fullerenes - are formed. Among the investigated materials that produce carbon clusters are poly(vinylidenefluoride) and fluorinated fullerenes -- C60F2m. For comparison purposes data from C60 targets have been also collected and analyzed. PDMS has been used for the in situ assessment of the damaging of C60 films by MeV heavy ions. Results on delayed electron emission from C-60 sputtered by MeV ions from C60 fullerene targets are also presented. A model of fullerene formation as a result of MeV ion interactions with the organic solid, including the yield dependence on primary ion charge state, is summarized. Both the data and the model suggest that fullerenes are formed as a result of a single primary ion impact and that they are ejected from an axially expanding infratrack plasma region. Results on different types of coalescence reactions in synthetic C60 fullerene targets and in blends of pure (synthetic) C60 with polystyrene leading to ejection of higher mass positive fullerene ions (C+k, k from 60 to more than 200) are also reported. The coalescence reactions are induced by the interaction of a single MeV ion with the solid. We argue that our data contribute to elucidating some general patterns of the fullerene formation mechanism.

  17. Study of sodium tanshinone II A sulfonate tissue distribution in rat by liquid chromatography/tandem mass spectrometry.

    PubMed

    He, Tingting; Zou, Qiaogen; Feng, Zhenbin; Zhang, Zunjian

    2010-01-01

    A rapid and sensitive method based on liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed and fully validated for the quantitative determination of sodium tanshinone IIA sulfonate (STS, sodium (1,6,6-trimethyl-10,11-dioxo-7,8,9-trihydrophenanthro[1,2-b]furan)-yl-2-sulfonate) in rat biosamples including plasma and different tissues using sodium tanshinone I sulfonate (sodium (1,6-dimethyl-10,11-dioxo-phenanthro[1,2-b]furan)-yl-2-sulfonate) as internal standard. Simple protein precipitation by acetonitrile was utilized for extracting STS from the rat biosamples. Chromatographic separation of the sample matrix from the analyte and the internal standard was performed using a commercially available analytical column with a mobile phase consisting of methanol-5 mmoL/L ammonia acetate (70:30, v/v) at a flow rate of 0.2 mL/min. Detection was performed on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source and operated in the negative-ion mode. The intra- and inter-day precisions (RSD%) and deviations of the assay accuracies were within 10.0% for STS. The extraction recovery of STS was more than 86.5%. The limit of detection (LOD) of STS was 1.0 ng/mL. The method was successfully applied to the tissue distribution study of STS intravenously administered to healthy Sprague-Dawley rats. The tissue distribution results showed that liver, kidney, lung, small intestine and duodenum were the major distribution tissues of STS in rats, and that STS had difficulty in crossing the blood-brain barrier. After 24 h, STS could be detected only in the kidney, stomach and small intestine, indicating that there was no long-term accumulation of STS in rat. PMID:21175038

  18. Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2014-02-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh-resolution mass spectrometry. Kendrick mass defect and van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the BVOC mixtures when compared to the one component precursor system. The molecular composition of SOA from both the BVOC mixture and α-pinene represented the overall composition of the ambient sample from the boreal forest site reasonably well, with 72.3 ± 2.5% (n = 3) and 69.1 ± 3.0% (n = 3) common ions, respectively. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  19. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I. P.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2013-11-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  20. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    PubMed

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.

  1. Mass spectrometry for the measurement of intramyocardial gas tensions: methodology and application to the study of myocardial ischemia.

    PubMed

    Khuri, S F; O'Riordan, J; Flaherty, J T; Brawley, R K; Donahoo, J S; Gott, V L

    1975-01-01

    The methodology for use of the mass spectrometer for the measurement of intramyocardial gas tensions in the canine preparation is described. Baseling studies were carried out initially in 36 animals, and control levels for myocardial oxygen tension and myocardial carbon dioxide tension were 19 mm Hg (S.D. 6 mm Hg) and 43 mm Hg (S.D. 10 mm Hg), respectively. Myocardial oxygen tension was not altered significantly by varying the arterial oxygen tension between 65 and 300 mm Hg. However, myocardial carbon dioxide tension increased linearly with increased arterial carbon dioxide tension. In 15 dogs placed on total cardiopulmonary bypass, a perfusion pressure 40-60 mm lower than the control mean arterial pressure resulted in myocardial ischemia with a decrease in myocardial oxygen tension and an increase in myocardial carbon dioxide tension. A subsequent increase in perfusion pressure to control levels resulted in resolution of ischemia and return of myocardial oxygen and carbon dioxide tensions to their control level. In another series of open-chest dogs on cardiopulmonary bypass, a proximal constriction applied to the left coronary circumflex artery resulted in a marked decrease in myocardial oxygen tensions and a marked increase in myocardial carbon dioxide tensions in the region supplied by the constricted vessel. In yet another series of open-chest dogs, it was found that incremental decreases in coronary flow established by constriction of the circumflex artery resulted in an exponential increase in both myocardial carbon dioxide tensions and ST-segment elevation as determined by a 25-gauge multi-contact plunge electrode placed in the posterior left ventricular wall. It appears that mass spectrometry techniques for evaluating myocardial ischemia have several advantages over myocardial biopsy techniques for assay of ATP and lactate, and also over the technique of coronary sinus lactate determination. PMID:1209001

  2. Quantitation of bentysrepinine (Y101) in rat plasma by liquid chromatography tandem mass spectrometry: application to pharmacokinetic study.

    PubMed

    Fan, Huirong; Li, Ruixing; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2012-03-15

    A simple, accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of bentysrepinine (Y101) in rat plasma. After the addition of diphenhydramine (internal standard, IS), plasma samples were pretreated by protein precipitation. Chromatographic separation was carried out on an Atlantis(®) analytical column (4.6 mm × 100 mm, 5 μm, Waters) with methanol: 20 mM ammonium formate consisting of 1.0% formic acid (65:35, v/v) as the mobile phase at an isocratic flow rate of 0.4 mL/min for 7.5 min. The multiple reaction monitoring (MRM) transitions were performed at m/z 490.2→339.5 for Y101 and m/z 256.0→167.0 for IS on a SCIEX API 4000 mass spectrometer in the positive ion mode with electrospray ionization (ESI) source. Good linearity was achieved over the concentration range of 1-2500 ng/mL. The intra- and inter-day precisions were less than 8.3%, and the accuracy ranged from -4.0% to 2.8%. Y101 was stable during the analysis and the storage period. The pharmacokinetic profiles of Y101 at three dose levels were successfully studied for the first time in rats by this method. After single intra-gastric administration of Y101 at the doses of 25, 50 and 100 mg/kg, C(max) and AUC(0-t) were proportional to the doses given. PMID:22366283

  3. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    PubMed

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature. PMID:24845972

  4. Optimization Of A Mass Spectrometry Process

    SciTech Connect

    Lopes, Jose; Alegria, F. Correa; Redondo, Luis; Barradas, N. P.; Alves, E.; Rocha, Jorge

    2011-06-01

    In this paper we present and discuss a system developed in order to optimize the mass spectrometry process of an ion implanter. The system uses a PC to control and display the mass spectrum. The operator interacts with the I/O board, that interfaces with the computer and the ion implanter by a LabVIEW code. Experimental results are shown and the capabilities of the system are discussed.

  5. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics

    PubMed Central

    Timm, Wiebke; Scherbart, Alexandra; Böcker, Sebastian; Kohlbacher, Oliver; Nattkemper, Tim W

    2008-01-01

    Background Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e.g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics. PMID:18937839

  6. Gas chromatography-mass spectrometry study of sterols from Pinus elliotti tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Evans, R.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    A comparative study of the sterol components of slash pine (Pinus elliotti) callus tissue cultures, seeds, and seedlings was carried out using GC-MS techniques. Cholesterol, desmosterol, campesterol, stigmasterol, sitosterol and cycloeucalenol were identified in all tissues while lophenol and 24-methylenelophenol were identified in only the seed and seedlings. 24-Ethylidenelophenol was detected in trace concentrations in only the seedlings. Sitosterol was the predominant sterol component, i.e., 80.8, 38.1 and 47.8% of the tissue culture, seed and seedling sterols, respectively.

  7. Determination of polycyclic aromatic hydrocarbons (PAHs) in seafood using gas chromatography-mass spectrometry: collaborative study.

    PubMed

    Mastovska, Katerina; Sorenson, Wendy R; Hajslova, Jana

    2015-01-01

    A collaborative study was conducted to determine selected polycyclic aromatic hydrocarbons (PAHs) and their relevant alkyl homologs in seafood matrixes using a fast sample preparation method followed by analysis with GC/MS. The sample preparation method involves addition of (13)C-PAH surrogate mixture to homogenized samples and extraction by shaking with a water-ethyl acetate mixture. After phase separation induced by addition of anhydrous magnesium sulfate-sodium chloride (2 + 1, w/w) and centrifugation, an aliquot of the ethyl acetate layer is evaporated, reconstituted in hexane, and cleaned up using silica gel SPE. The analytes are eluted with hexane-dichloromethane (3 + 1, v/v), the clean extract is carefully evaporated, reconstituted in isooctane, and analyzed by GC/MS. To allow for the use of various GC/MS instruments, GC columns, silica SPE cartridges, and evaporation techniques and equipment, performance-based criteria were developed and implemented in the qualification phase of the collaborative study. These criteria helped laboratories optimize their GC/MS, SPE cleanup, and evaporation conditions; check and eliminate potential PAH contamination in their reagent blanks; and become familiar with the method procedure. Ten laboratories from five countries qualified and completed the collaborative study, which was conducted on three seafood matrixes (mussel, oyster, and shrimp) fortified with 19 selected PAH analytes at five different levels of benzo[a]pyrene (BaP) ranging from 2 to 50 μg/kg. Each matrix had a varying mixture of three different BaP levels. The other studied PAHs were at varying levels from 2 to 250 μg/kg to mimic typical PAH patterns. The fortified analytes in three matrixes were analyzed as blind duplicates at each level of BaP and corresponding other PAH levels. In addition, a blank with no added PAHs for each matrix was analyzed singly. Eight to 10 valid results were obtained for the majority of determinations. Mean recoveries of all

  8. A quadrupole/time-of-flight mass spectrometry study of Trp-cage's conformation.

    PubMed

    Lin, Mingxiang; Ahmed, Zeeshan; Taormina, Christopher R; Somayajula, Kasi V

    2007-02-01

    Trp-cage is a synthetic 20-residue miniprotein that uses tertiary contacts to stabilize its native conformation. NMR, circular dichroism (CD), and UV-resonance Raman spectroscopy were used to probe its energy landscape. In this quadrupole/time-of-flight study, electrospray ionization charge state distribution (CSD) and solution-phase H/D exchange are used to probe Trp-cage's tertiary structure. The CSDs of Trp-cage and its mutant provide spectra showing a pH-dependent conformation change. Solution-phase H/D exchange in 30% deuterated trifluoroethanol solution of the wild type shows increased protection of one labile hydrogen in the native state. Together, CSDs and solution-phase H/D exchange are demonstrated to constitute a simple but effective means to follow conformation changes in a small tertiary protein. PMID:17067814

  9. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Kite, Geoffrey C; Porter, Elaine A; Simmonds, Monique S J

    2007-05-01

    The chromatographic behaviour of steroidal saponins found in Anemarrhena asphodeloides, Asparagus officinalis, Convallaria majalis, Digitalis purpurea and Ruscus aculeatus was studied by HPLC-MS using a C-18 reversed-phase column and aqueous acetonitrile or aqueous methanol mobile phase gradients, with or without the addition of 1% acetic acid. The behaviour was compared to that of triterpene saponins found in Aesculus hippocastanum, Centella asiatica, Panax notoginseng and Potentilla tormentilla. Inclusion of methanol in the mobile phase under acidic conditions was found to cause furostanol saponins hydroxylated at C-22 to chromatograph as broad peaks, whereas the peak shapes of the spirostanol saponins and triterpene saponins studied remained acceptable. In aqueous methanol mobile phases without the addition of acid, furostanol saponins chromatographed with good peak shape, but each C-22 hydroxylated furostanol saponin was accompanied by a second chromatographic peak identified as its C-22 methyl ether. Methanolic extracts analysed in non-acidified aqueous acetonitrile mobile phases also resolved pairs of C-22 hydroxy and C-22 methoxy furostanol saponins. The C-22 methyl ether of deglucoruscoside was found to convert to deglucoruscoside during chromatography in acidified aqueous acetonitrile, or by dissolving in water. Poor chromatography of furostanol saponins in acidified aqueous methanol is due to the interconversion of the C-22 hydroxy and C-22 methoxy forms. It is recommended that initial analysis of saponins by HPLC-MS using a C-18 stationary phase is performed using acidified aqueous acetonitrile mobile phase gradients. The existence of naturally-occurring furostanol saponins methoxylated at C-22 can be investigated with aqueous acetonitrile mobile phases and avoiding methanol in the extraction solvent. PMID:17391684

  10. Determination of polycyclic aromatic hydrocarbons (PAHs) in seafood using gas chromatography-mass spectrometry: collaborative study.

    PubMed

    Mastovska, Katerina; Sorenson, Wendy R; Hajslova, Jana

    2015-01-01

    A collaborative study was conducted to determine selected polycyclic aromatic hydrocarbons (PAHs) and their relevant alkyl homologs in seafood matrixes using a fast sample preparation method followed by analysis with GC/MS. The sample preparation method involves addition of (13)C-PAH surrogate mixture to homogenized samples and extraction by shaking with a water-ethyl acetate mixture. After phase separation induced by addition of anhydrous magnesium sulfate-sodium chloride (2 + 1, w/w) and centrifugation, an aliquot of the ethyl acetate layer is evaporated, reconstituted in hexane, and cleaned up using silica gel SPE. The analytes are eluted with hexane-dichloromethane (3 + 1, v/v), the clean extract is carefully evaporated, reconstituted in isooctane, and analyzed by GC/MS. To allow for the use of various GC/MS instruments, GC columns, silica SPE cartridges, and evaporation techniques and equipment, performance-based criteria were developed and implemented in the qualification phase of the collaborative study. These criteria helped laboratories optimize their GC/MS, SPE cleanup, and evaporation conditions; check and eliminate potential PAH contamination in their reagent blanks; and become familiar with the method procedure. Ten laboratories from five countries qualified and completed the collaborative study, which was conducted on three seafood matrixes (mussel, oyster, and shrimp) fortified with 19 selected PAH analytes at five different levels of benzo[a]pyrene (BaP) ranging from 2 to 50 μg/kg. Each matrix had a varying mixture of three different BaP levels. The other studied PAHs were at varying levels from 2 to 250 μg/kg to mimic typical PAH patterns. The fortified analytes in three matrixes were analyzed as blind duplicates at each level of BaP and corresponding other PAH levels. In addition, a blank with no added PAHs for each matrix was analyzed singly. Eight to 10 valid results were obtained for the majority of determinations. Mean recoveries of all

  11. Interaction study between wheat-derived peptides and procyanidin B3 by mass spectrometry.

    PubMed

    Dias, Ricardo; Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2016-03-01

    Tannins have the ability to complex and precipitate proteins, being particularly reactive towards the proline-rich ones. The main structural feature of the wheat peptides responsible for the onset of Celiac Disease (CD) is their high content in proline residues. The aim of this work was to characterize the binding between a common food tannin (procyanidin B3) and different wheat-derived peptidic fractions. For this, seven peptide mixtures were obtained after in vitro digestion of a wheat gliadins crude extract and further characterized by LC-ESI-MS/MS. Several soluble B3-peptide complexes were identified by ESI-MS. The peptides involved in complex formation varied in terms of their size and diversity in CD epitopes. Although binding selectivity of procyanidin B3 towards peptides containing CD epitopes was not found, the major complexes contained or could contain immunoreactive peptides. This study highlights the potential beneficial effects of food polyphenols as a nutritional approach in the modulation of CD. PMID:26471686

  12. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation.

  13. Mass spectrometry and potentiometry studies of Pb(II)-, Cd(II)- and Zn(II)-cystine complexes.

    PubMed

    Furia, Emilia; Aiello, Donatella; Di Donna, Leonardo; Mazzotti, Fabio; Tagarelli, Antonio; Thangavel, Hariprasad; Napoli, Anna; Sindona, Giovanni

    2014-01-21

    Cd(II)-, Pb(II)- and Zn(II)-cystine complexes were investigated by potentiometric and different mass spectrometric (MS) methodologies. Laser desorption mass spectrometry has provided both the composition and structure of metal-cystine complexes according to the speciation models proposed on the basis of the potentiometric data. Detection of neutral complexes was achieved by protonation or electrochemical reduction during mass spectrometric experiments. The redox activity of metal-cystine complexes was confirmed by laser desorption and charge transfer matrix assisted laser assisted MS experiments, which allowed us to observe the formation of complexes with a reduction of cystine. The stoichiometry of Cd(II)-, Pb(II)- and Zn(II)-cystine complexes was defined by observing the isotopic pattern of the investigated compound. The results suggest that interaction occurs through the carboxylate group of the ligand.

  14. Mercapturic acids: recent advances in their determination by liquid chromatography/mass spectrometry and their use in toxicant metabolism studies and in occupational and environmental exposure studies.

    PubMed

    Mathias, Patricia I; B'hymer, Clayton

    2016-01-01

    This review describes recent selected HPLC/MS methods for the determination of urinary mercapturates that are useful as noninvasive biomarkers in characterizing human exposure to electrophilic industrial chemicals in occupational and environmental studies. High-performance liquid chromatography/mass spectrometry is a sensitive and specific method for analysis of small molecules found in biological fluids. In this review, recent selected mercapturate quantification methods are summarized and specific cases are presented. The biological formation of mercapturates is introduced and their use as indicators of metabolic processing of reactive toxicants is discussed, as well as future trends and limitations in this area of research. PMID:26900903

  15. Analytical Aspects of Hydrogen Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Engen, John R.; Wales, Thomas E.

    2015-07-01

    This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.

  16. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  17. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  18. Selected ion flow tube-mass spectrometry for online monitoring of submerged fermentations: a case study of sourdough fermentation.

    PubMed

    Van Kerrebroeck, Simon; Vercammen, Joeri; Wuyts, Roel; De Vuyst, Luc

    2015-01-28

    Selected ion flow tube-mass spectrometry (SIFT-MS) has recently gained interest as an alternative method to traditional GC-MS for the detection of targeted volatile sample compounds, due to its ease of use, its speed and sensitivity, and its potential for real-time quantification. The feasibility of this technique was demonstrated using the case of the production of ethanol during sourdough fermentation. The potential of SIFT-MS as an online monitoring device for food fermentations was further demonstrated by the detection of acetoin in certain sourdough fermentations. This allowed discrimination between sourdough fermentation processes and illustrated the importance of real-time monitoring of food fermentations.

  19. Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based silica nanoparticles.

    PubMed

    Truillet, Charles; Lux, François; Tillement, Olivier; Dugourd, Philippe; Antoine, Rodolphe

    2013-11-01

    Sub-5 nm multimodal nanoparticles have great potential for theranostic applications due to their easy renal elimination combined with complementary imaging properties and therapeutic facilities. Their potential clinical use requires the full characterization of not only the nanoparticle but also all its possible degradation products. We have recently proposed new ultrasmall gadolinium-based nanoparticles for multimodal imaging and radiosensitization. The aim of this article is to describe an analytical tool to characterize degradation products in a highly diluted medium. We demonstrate that HPLC coupled to electrospray ionization mass spectrometry (ESI-MS) can be used in order to determine precisely the composition of nanoparticles and their degradation fragments during aging.

  20. Methods in the Study of PTEN Structure: X-Ray Crystallography and Hydrogen Deuterium Exchange Mass Spectrometry.

    PubMed

    Masson, Glenn R; Burke, John E; Williams, Roger L

    2016-01-01

    Despite its small size and deceptively simple domain organization, PTEN remains a challenging structural target due to its N- and C-terminal intrinsically disordered segments, and the conformational heterogeneity caused by phosphorylation of its C terminus. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS), it is possible to probe the conformational dynamics of the disordered termini, and also to determine how PTEN binds to lipid membranes. Here, we describe how to purify recombinant, homogenously dephosphorylated PTEN from a eukaryotic system for subsequent investigation with HDX-MS or crystallography. PMID:27033079

  1. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    PubMed

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure.

  2. Space Applications of Mass Spectrometry. Chapter 31

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  3. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    PubMed

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  4. Studying the reducing potencies of antioxidants with the electrochemistry inherently present in electrospray ionization-mass spectrometry.

    PubMed

    Plattner, Sabine; Erb, Robert; Chervet, Jean-Pierre; Oberacher, Herbert

    2014-01-01

    In this proof-of-principle study, the applicability of electrospray ionization-mass spectrometry (ESI-MS) to characterize the reducing potencies of natural antioxidants is demonstrated. The ESI source represents a controlled-current electrochemical cell. The interfacial potential at the emitter electrode will be at or near the electrochemical potential of those reactions that sufficiently supply all the required current for the ESI circuit. Indicator molecules prone to oxidation in ESI such as amodiaquine were used to visualize the impact of reducing compounds on the interfacial potential. The extent of inhibition of the oxidation of the indicator molecule was found to be dependent on the kind and amount of antioxidant added. Concentration-inhibition curves were constructed and used to compare reducing potencies and to rank antioxidants. This ranking was found to be dependent on the electrode material-indicator molecule combination applied. For fast and automated characterization of the reducing potencies of electrochemically active molecules, a flow-injection system was combined with ESI-MS. Liquid chromatography was used to process complex biological samples, such as red and white wine. Due to their high content of different polyphenols, red wine fractions were found to exhibit higher reducing potencies than the corresponding white wine fractions. Furthermore, for 14 important natural antioxidants, the results obtained with the controlled-current EC-ESI-MS assay were compared to those obtained with chemical antioxidant assays. Irrespectively of the kind of assay used to test the reducing potency, gallic acid, quercetin, and epicatechin were found to be potent reductants. Other antioxidants performed well in one particular assay only. This observation suggests that different kinds of redox and antioxidant chemistry were assessed with each of the assays applied. Therefore, several assays should be used to comprehensively study antioxidants and their reducing

  5. Linking Mass Spectrometry with Toxicology for Emerging Water Contaminants

    EPA Science Inventory

    This overview presentation will discuss the benefits of combining mass spectrometry with toxicology. These benefits will be described for 3 main areas: (1) Toxicity assays used to test new environmental contaminants previously identified using mass spectrometry, such that furth...

  6. DNA sequence analysis by MALDI mass spectrometry.

    PubMed Central

    Kirpekar, F; Nordhoff, E; Larsen, L K; Kristiansen, K; Roepstorff, P; Hillenkamp, F

    1998-01-01

    Conventional DNA sequencing is based on gel electrophoretic separation of the sequencing products. Gel casting and electrophoresis are the time limiting steps, and the gel separation is occasionally imperfect due to aberrant mobility of certain fragments, leading to erroneous sequence determination. Furthermore, illegitimately terminated products frequently cannot be distinguished from correctly terminated ones, a phenomenon that also obscures data interpretation. In the present work the use of MALDI mass spectrometry for sequencing of DNA amplified from clinical samples is implemented. The unambiguous and fast identification of deletions and substitutions in DNA amplified from heterozygous carriers realistically suggest MALDI mass spectrometry as a future alternative to conventional sequencing procedures for high throughput screening for mutations. Unique features of the method are demonstrated by sequencing a DNA fragment that could not be sequenced conventionally because of gel electrophoretic band compression and the presence of multiple non-specific termination products. Taking advantage of the accurate mass information provided by MALDI mass spectrometry, the sequence was deduced, and the nature of the non-specific termination could be determined. The method described here increases the fidelity in DNA sequencing, is fast, compatible with standard DNA sequencing procedures, and amenable to automation. PMID:9592136

  7. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  8. Seized cannabis seeds cultivated in greenhouse: A chemical study by gas chromatography-mass spectrometry and chemometric analysis.

    PubMed

    Mariotti, Kristiane de Cássia; Marcelo, Marcelo Caetano Alexandre; Ortiz, Rafael S; Borille, Bruna Tassi; Dos Reis, Monique; Fett, Mauro Sander; Ferrão, Marco Flôres; Limberger, Renata Pereira

    2016-01-01

    Cannabis sativa L. is cultivated in most regions of the world. In 2013, the Brazilian Federal Police (BFP) reported 220 tons of marijuana seized and about 800,000 cannabis plants eradicated. Efforts to eradicate cannabis production may have contributed to the development of a new form of international drug trafficking in Brazil: the sending of cannabis seeds in small amounts to urban centers by logistics postal. This new and increasing panorama of cannabis trafficking in Brazil, encouraged the chemical study of cannabis seeds cultivated in greenhouses by gas-chromatography coupled with mass spectrometry (GC-MS) associated with exploratory and discriminant analysis. Fifty cannabis seeds of different varieties and brands, seized by the BFP were cultivated under predefined conditions for a period of 4.5 weeks, 5.5 weeks, 7.5 weeks, 10 weeks and 12 weeks. Aerial parts were analyzed and cannabigerol, cannabinol, cannabidiol, cannabichromene Δ9-tetrahydrocannabinol (THC) and other terpenoids were detected. The chromatographic chemical profiles of the samples were significantly different, probably due to different variety, light exposition and age. THC content increased with the age of the plant, however, for other cannabinoids, this correlation was not observed. The chromatograms were plotted in a matrix with 50 rows (samples) and 3886 columns (abundance in a retention time) and submitted to PCA, HCA and PLS-DA after pretreatment (normalization, first derivative and autoscale). The PCA and HCA showed age separation between samples however it was not possible to verify the separation by varieties and brands. The PLS-DA classification provides a satisfactory prediction of plant age.

  9. Pharmacokinetic study of ACT-132577 in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Zhang, Jin; Geng, Peiwu; Luo, Xinhua; Zhou, Genzhi; Lin, Yingying; Zhang, Lijing; Wang, Shuanghu; Wen, Congcong; Ma, Jianshe; Ding, Ting

    2015-01-01

    It was reported that macitentan was metabolized predominantly by cytochrome P450 3A4, and ACT-132577, its pharmacologically active metabolite, is fivefold less potent at blocking ET receptors than macitentan. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of ACT-132577 in rat plasma was developed and validated. After addition of diazepam as an internal standard (IS), protein precipitation by acetonitrile was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.2% formic acid and methanol as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 546.9→200.6 for ACT-132577, and m/z 285.1→193.1 for IS. Calibration plots were linear throughout the range 10-4000 ng/mL for ACT-132577 in rat plasma. Mean recovery of ACT-132577 in rat plasma ranged from 82.6% to 90.6%, matrix effect of ACT-132577 in rat plasma ranged from 101.4% to 115.2%. RSD of intra-day and inter-day precision were both less than 11%. The accuracy of the method ranged from 96.1% to 103.5%. The method was successfully applied to pharmacokinetic study of ACT-132577 after oral and intravenous administration of macitentan. PMID:26770447

  10. Pharmacokinetic study of ACT-132577 in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Jin; Geng, Peiwu; Luo, Xinhua; Zhou, Genzhi; Lin, Yingying; Zhang, Lijing; Wang, Shuanghu; Wen, Congcong; Ma, Jianshe; Ding, Ting

    2015-01-01

    It was reported that macitentan was metabolized predominantly by cytochrome P450 3A4, and ACT-132577, its pharmacologically active metabolite, is fivefold less potent at blocking ET receptors than macitentan. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of ACT-132577 in rat plasma was developed and validated. After addition of diazepam as an internal standard (IS), protein precipitation by acetonitrile was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.2% formic acid and methanol as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 546.9→200.6 for ACT-132577, and m/z 285.1→193.1 for IS. Calibration plots were linear throughout the range 10-4000 ng/mL for ACT-132577 in rat plasma. Mean recovery of ACT-132577 in rat plasma ranged from 82.6% to 90.6%, matrix effect of ACT-132577 in rat plasma ranged from 101.4% to 115.2%. RSD of intra-day and inter-day precision were both less than 11%. The accuracy of the method ranged from 96.1% to 103.5%. The method was successfully applied to pharmacokinetic study of ACT-132577 after oral and intravenous administration of macitentan.

  11. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  12. Rapid Uptake of Aluminum into Cells of Intact Soybean Root Tips (A Microanalytical Study Using Secondary Ion Mass Spectrometry).

    PubMed Central

    Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.

    1994-01-01

    A wide range of physiological disorders has been reported within the first few hours of exposing intact plant roots to moderate levels of Al3+. Past microanalytic studies, largely limited to electron probe x-ray microanalysis, have been unable to detect intracellular Al in this time frame. This has led to the suggestion that Al exerts its effect solely from extracellular or remote tissue sites. Here, freeze-dried cryosections (10 [mu]m thick) collected from the soybean (Glycine max) primary root tip (0.3-0.8 mm from the apex) were analyzed using secondary ion mass spectrometry (SIMS). The high sensitivity of SIMS for Al permitted the first direct evidence of early entry of Al into root cells. Al was found in cells of the root tip after a 30-min exposure of intact roots to 38 [mu]M Al3+. The accumulation of Al was greatest in the first 30 [mu]m, i.e. two to three cell layers, but elevated Al levels extended at least 150 [mu]m inward from the root edge. Intracellular Al concentrations at the root periphery were estimated to be about 70 nmol g-1 fresh weight. After 18 h of exposure, Al was evident throughout the root cross-section, although the rate of accumulation had slowed considerably from that during the initial 30 min. These results are consistent with the hypothesis that early effects of Al toxicity at the root apex, such as those on cell division, cell extension, or nutrient transport, involve the direct intervention of Al on cell function. PMID:12232392

  13. Seized cannabis seeds cultivated in greenhouse: A chemical study by gas chromatography-mass spectrometry and chemometric analysis.

    PubMed

    Mariotti, Kristiane de Cássia; Marcelo, Marcelo Caetano Alexandre; Ortiz, Rafael S; Borille, Bruna Tassi; Dos Reis, Monique; Fett, Mauro Sander; Ferrão, Marco Flôres; Limberger, Renata Pereira

    2016-01-01

    Cannabis sativa L. is cultivated in most regions of the world. In 2013, the Brazilian Federal Police (BFP) reported 220 tons of marijuana seized and about 800,000 cannabis plants eradicated. Efforts to eradicate cannabis production may have contributed to the development of a new form of international drug trafficking in Brazil: the sending of cannabis seeds in small amounts to urban centers by logistics postal. This new and increasing panorama of cannabis trafficking in Brazil, encouraged the chemical study of cannabis seeds cultivated in greenhouses by gas-chromatography coupled with mass spectrometry (GC-MS) associated with exploratory and discriminant analysis. Fifty cannabis seeds of different varieties and brands, seized by the BFP were cultivated under predefined conditions for a period of 4.5 weeks, 5.5 weeks, 7.5 weeks, 10 weeks and 12 weeks. Aerial parts were analyzed and cannabigerol, cannabinol, cannabidiol, cannabichromene Δ9-tetrahydrocannabinol (THC) and other terpenoids were detected. The chromatographic chemical profiles of the samples were significantly different, probably due to different variety, light exposition and age. THC content increased with the age of the plant, however, for other cannabinoids, this correlation was not observed. The chromatograms were plotted in a matrix with 50 rows (samples) and 3886 columns (abundance in a retention time) and submitted to PCA, HCA and PLS-DA after pretreatment (normalization, first derivative and autoscale). The PCA and HCA showed age separation between samples however it was not possible to verify the separation by varieties and brands. The PLS-DA classification provides a satisfactory prediction of plant age. PMID:26746824

  14. Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies.

    PubMed

    Gray, Nicola; Adesina-Georgiadis, Kyrillos; Chekmeneva, Elena; Plumb, Robert S; Wilson, Ian D; Nicholson, Jeremy K

    2016-06-01

    A rapid gradient microbore ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed to provide a high-throughput analytical platform for the metabolic phenotyping of urine from large sample cohorts. The rapid microbore metabolic profiling (RAMMP) approach was based on scaling a conventional reversed-phase UPLC-MS method for urinary profiling from 2.1 mm × 100 mm columns to 1 mm × 50 mm columns, increasing the linear velocity of the solvent, and decreasing the gradient time to provide an analysis time of 2.5 min/sample. Comparison showed that conventional UPLC-MS and rapid gradient approaches provided peak capacities of 150 and 50, respectively, with the conventional method detecting approximately 19 000 features compared to the ∼6 000 found using the rapid gradient method. Similar levels of repeatability were seen for both methods. Despite the reduced peak capacity and the reduction in ions detected, the RAMMP method was able to achieve similar levels of group discrimination as conventional UPLC-MS when applied to rat urine samples obtained from investigative studies on the effects of acute 2-bromophenol and chronic acetaminophen administration. When compared to a direct infusion MS method of similar analysis time the RAMMP method provided superior selectivity. The RAMMP approach provides a robust and sensitive method that is well suited to high-throughput metabonomic analysis of complex mixtures such as urine combined with a 5-fold reduction in analysis time compared with the conventional UPLC-MS method. PMID:27116471

  15. Ultrahigh-Mass Mass Spectrometry of Single Biomolecules and Bioparticles

    NASA Astrophysics Data System (ADS)

    Chang, Huan-Cheng

    2009-07-01

    Since the advent of soft ionization methods, mass spectrometry (MS) has found widespread application in the life sciences. Mass is now known to be a critical parameter for characterization of biomolecules and their complexes; it is also a useful parameter to characterize bioparticles such as viruses and cells. However, because of the genetic diversity of these entities, it is necessary to measure their masses individually and to obtain the corresponding mean masses and mass distributions. Here, I review recent technological developments that enable mass measurement of ultrahigh-mass biomolecules and bioparticles at the single-ion level. Some representative examples include cryodetection time-of-flight MS of single-megadalton protein ions, Millikan-type mass measurements of single viruses in a cylindrical ion trap, and charge-detection quadrupole ion trap MS of single whole cells. I also discuss the promises and challenges of these new technologies in real-world applications.

  16. Metal-complex formation in continuous-flow ligand-exchange reactors studied by electrospray mass spectrometry.

    PubMed

    Krabbe, J G; de Boer, A R; van der Zwan, G; Lingeman, H; Niessen, W M A; Irth, H

    2007-04-01

    Electrospray ionization mass spectrometry was used to investigate complex formation of different metal complexes in a continuous-flow ligand-exchange reactor. A computer program was developed based on normal equilibrium calculations to predict the formation of various metal-ligand complexes. Corresponding to these calculations, infusion electrospray mass spectrometric experiments were performed to investigate the actual complex formation in solution. The data clearly show good correlation between the theoretically calculated formation of metal-ligand complexes and the experimental mass spectrometric data. Moreover, the approach demonstrates that the influence of the pH can be investigated using a similar approach. Indirectly, these infusion experiments provide information on relative binding constants of different ligands towards a metal-ion. To demonstrate this, a continuous-flow ligand-exchange detection system with mass spectrometric detection was developed. Injection of ligands, with different affinity for the metal-ion, into the reactor shows good correlation between binding constants and the response in the ligand-exchange detection system. Additional information on the introduced ligand, and the complexes formed after introduction of the ligand, can be obtained from interpretation of the mass spectra.

  17. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry.

    PubMed

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-21

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1 (+) cations and TinO2n (-) anions were predominantly observed at high injection energies, in addition to TinO2n (+) for cations and TinO2n+1 (-) for anions. Collision cross sections of TinO2n (+) and TinO2n+1 (-) for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n (+) and TinO2n+1 (-) by collisions were also explained by analysis of spin density distributions.

  18. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-01

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1+ cations and TinO2n- anions were predominantly observed at high injection energies, in addition to TinO2n+ for cations and TinO2n+1- for anions. Collision cross sections of TinO2n+ and TinO2n+1- for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n+ and TinO2n+1- by collisions were also explained by analysis of spin density distributions.

  19. Surface effects on the diagnostic of carbon/nitrogen low-pressure plasmas studied by differentially pumped mass spectrometry.

    PubMed

    Alegre, Daniel; Ferreira, Jose A; Tabarés, Francisco L

    2014-05-01

    In this work, the characterization of the species produced in reactive plasmas by differentially pumped mass spectrometry is addressed. A H2/CH4/N2 mixture (90 : 5 : 5) was fed into a direct current glow discharge and analysed by conventional and cryo-trap assisted mass spectrometry. The gaseous mixture was chosen because of its particular relevance in the inhibition of tritium-rich carbon film deposition in fusion plasmas (scavenger technique) and in the deposition of amorphous hydrogenated carbon films by plasma-assisted chemical vapour deposition. Important changes in the composition of the detected species upon surface modification of the reactor walls (stainless steel or covered by an amorphous hydrogenated carbon layer) or in the way they are sampled (length and spatial configuration of the stainless steel duct) were detected. They are analysed in terms of radical formation and recombination on the reactor walls or into the sampling duct, thus providing some insight into the underlying chemistry. In general, when the reactor walls are covered by an amorphous hydrogenated carbon layer, more hydrocarbons are produced, but the radical production is lower and seem to be less reactive than in stainless steel. Also, two sources of oxygen contamination in the plasma have been identified, from the native oxide layer in stainless steel and from unintended water contamination in the chamber, which modify considerably the detected species. PMID:24809896

  20. Biological Mass Spectrometry and Shotgun Proteomics of Microbial Systems: Methods for studying microbial physiology from isolates to environmental communities

    SciTech Connect

    Dill, Brian; Young, Jacque C; Carey, Patricia A; Verberkmoes, Nathan C

    2010-01-01

    Microbial ecology is currently experiencing a renaissance spurred by the rapid development of molecular techniques and omics technologies in particular. As never before, these tools have allowed researchers in the field to produce a massive amount of information through in situ measurements and analysis of natural microbial communities, both vital approaches to the goal of unraveling the interactions of microbes with their environment and with one another. While genomics can provide information regarding the genetic potential of microbes, proteomics characterizes the primary end-stage product, proteins, thus conveying functional information concerning microbial activity. Advances in mass spectrometry instrumentation and methodologies, along with bioinformatic approaches, have brought this analytic chemistry technique to relevance in the biological realm due to its powerful applications in proteomics. Mass spectrometry-enabled proteomics, including bottom-up and top-down approaches, is capable of supplying a wealth of biologically-relevant information, from simple protein cataloging of the proteome of a microbial community to identifying post-translational modifications of individual proteins.

  1. Determination of rizatriptan in human plasma by liquid chromatographic-eletrospray tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Guo, Ji-fen; Zhang, Ai-jun; Zhao, Ling; Sun, Xiao-hong; Zhao, Yi-min; Gao, Hong-zhi; Liu, Ze-yuan; Qiao, Shan-yi

    2006-01-01

    A sensitive liquid chromatographic-tandem mass spectrometry(LC-MS/MS) method was developed for the determination of rizatriptan in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction, separated on a Zorbax XDB C8 column (150 x 4.6 mm i.d.) and detected by tandem mass spectrometry with an electrospray ionization interface. Zomitriptan was used as the internal standard. The method had a lower limit of quantitation of 50 pg/mL for rizatriptan, which showed more sensitivity and speed of analysis compared with reported methods. The within- and between-day precision was measured to be below 11.71% and accuracy between -5.87 and 0.86% for all quality control samples. This quantitation method was successfully applied to the evaluation of the pharmacokinetic profiles of rizatriptan after single oral administration of 5, 10 and 15 mg rizatriptan tablets to 10 healthy volunteers (five males and five females). PMID:15954161

  2. Laser-Cooling-Assisted Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Schowalter, Steven J.; Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-09-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, cotrapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular-dynamics simulations verify the technique and aid with evaluating its effectiveness. This technique appears to be applicable to other types of mass spectrometers.

  3. Mass spectrometry in Chronic Kidney Disease research

    PubMed Central

    Merchant, Michael L.

    2010-01-01

    Proteomics has evolved into an invaluable tool for biomedical research and for research on renal diseases. A central player in the proteomic revolution is the mass spectrometer and its application to analyze biological samples. Our need to understand both the identity of proteins and their abundance has led to improvements in mass spectrometers and their ability to analyze complex tryptic peptide mixtures with high sensitivity and high mass accuracy in a high throughput fashion (such as the LTQ-Orbitrap). It should not be surprising that this occurred coincident with dramatic improvements in our understanding chronic kidney disease (CKD), the mechanisms through which CKD progresses and the development of candidate CKD biomarkers. This review attempts to present a basic framework for the operational components of mass spectrometers, basic insight into how they are used in renal research and a discussion of CKD research that was driven by mass spectrometry. PMID:21044768

  4. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  5. Impact of automation on mass spectrometry.

    PubMed

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations.

  6. Mass spectrometry imaging for biomedical applications

    PubMed Central

    Liu, Jiangjiang; Ouyang, Zheng

    2013-01-01

    The development of mass spectrometry imaging technologies is of significant current research interest. Mass spectrometry potentially is capable of providing highly specific information about the distribution of chemical compounds on tissues at highly sensitive levels. The required in-situ analysis for the tissue imaging forced MS analysis being performed off the traditional conditions optimized in pharmaceutical applications with intense sample preparation. This critical review seeks to present an overview of the current status of the MS imaging with different sampling ionization methods and to discuss the 3D imaging and quantitative imaging capabilities needed to be further developed, the importance of the multi-modal imaging, and a balance between the pursuit of the high imaging resolution and the practical application of MS imaging in biomedicine. PMID:23539099

  7. Thermal decomposition of energetic materials by STMBMS measurements: Application of Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) to the study of energetic materials

    SciTech Connect

    Behrens, R. Jr.

    1995-08-01

    Simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and time-of-flight velocity (TOF) spectra have been developed to study reactions that occur during the thermal decomposition of liquids and solids. The data obtained with these techniques are the identity of the reaction products and their rates of gas formation as a function of time. Over the past several years, these techniques have been applied to the study of energetic materials that are used in propellants and explosives. In this presentation, the details of the STMBMS and TOF velocity spectra techniques will be reviewed, the advantages of the techniques over more conventional thermal analysis and mass spectrometry measurements will be discussed, and the use of the techniques will be illustrated with results on the thermal decomposition of hexahydro-1,3,5-trinitro-s-triazine (RDX).

  8. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials.

    PubMed

    Rüger, Christopher P; Miersch, Toni; Schwemer, Theo; Sklorz, Martin; Zimmermann, Ralf

    2015-07-01

    In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2). PMID:26024433

  9. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials.

    PubMed

    Rüger, Christopher P; Miersch, Toni; Schwemer, Theo; Sklorz, Martin; Zimmermann, Ralf

    2015-07-01

    In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2).

  10. Dissecting SUMO Dynamics by Mass Spectrometry.

    PubMed

    Drabikowski, Krzysztof; Dadlez, Michał

    2016-01-01

    Protein modification by SUMO proteins is one of the key posttranslational modifications in eukaryotes. Here, we describe a workflow to analyze SUMO dynamics in response to different stimuli, purify SUMO conjugates, and analyze the changes in SUMOylation level in organisms, tissues, or cell culture. We present a protocol for lysis in denaturing conditions that is compatible with downstream IMAC and antibody affinity purification, followed by mass spectrometry and data analysis. PMID:27613044

  11. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  12. Observational infant exploratory [14C]-paracetamol pharmacokinetic microdose/therapeutic dose study with accelerator mass spectrometry bioanalysis

    PubMed Central

    Garner, Colin R; Park, Kevin B; French, Neil S; Earnshaw, Caroline; Schipani, Alessandro; Selby, Andrew M; Byrne, Lindsay; Siner, Sarah; Crawley, Francis P; Vaes, Wouter H J; van Duijn, Esther; deLigt, Rianne; Varendi, Heili; Lass, Jane; Grynkiewicz, Grzegorz; Maruszak, Wioletta; Turner, Mark A

    2015-01-01

    Aims The aims of the study were to compare [14C]-paracetamol ([14C]-PARA) paediatric pharmacokinetics (PK) after administration mixed in a therapeutic dose or an isolated microdose and to develop further and validate accelerator mass spectrometry (AMS) bioanalysis in the 0–2 year old age group. Methods [14C]-PARA concentrations in 10–15 µl plasma samples were measured after enteral or i.v. administration of a single [14C]-PARA microdose or mixed in with therapeutic dose in infants receiving PARA as part of their therapeutic regimen. Results Thirty-four infants were included in the PARA PK analysis for this study: oral microdose (n = 4), i.v. microdose (n = 6), oral therapeutic (n = 6) and i.v. therapeutic (n = 18). The respective mean clearance (CL) values (SDs in parentheses) for these dosed groups were 1.46 (1.00) l h–1, 1.76 (1.07) l h–1, 2.93 (2.08) l h–1 and 2.72 (3.10) l h–1, t1/2 values 2.65 h, 2.55 h, 8.36 h and 7.16 h and dose normalized AUC(0-t) (mg l–1 h) values were 0.90 (0.43), 0.84 (0.57), 0.7 (0.79) and 0.54 (0.26). Conclusions All necessary ethical, scientific, clinical and regulatory procedures were put in place to conduct PK studies using enteral and systemic microdosing in two European centres. The pharmacokinetics of a therapeutic dose (mg kg–1) and a microdose (ng kg–1) in babies between 35 to 127 weeks post-menstrual age. [14C]-PARA pharmacokinetic parameters were within a two-fold range after a therapeutic dose or a microdose. Exploratory studies using doses significantly less than therapeutic doses may offer ethical and safety advantages with increased bionalytical sensitivity in selected exploratory paediatric pharmacokinetic studies. PMID:25619398

  13. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  14. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  15. Trends in mass spectrometry instrumentation for proteomics.

    PubMed

    Smith, Richard D

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics because of its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the need for increased capabilities for proteome measurements is immense and is now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements and promise more than order of magnitude improvements in sensitivity, dynamic range and throughput for proteomic analyses in the near future.

  16. Structural elucidation of degradation products of a benzopyridooxathiazepine under stress conditions using electrospray orbitrap mass spectrometry - study of degradation kinetic.

    PubMed

    Lecoeur, Marie; Vérones, Valérie; Vaccher, Claude; Bonte, Jean-Paul; Lebegue, Nicolas; Goossens, Jean-François

    2012-04-11

    1-(4-Methoxyphenylethyl)-11H-benzo[f]-1,2-dihydro-pyrido[3,2,c][1,2,5]oxathiazepine 5,5 dioxide (BZN) is a cytotoxic derivative with very promising in vitro activity. Regulatory authority for registration of pharmaceuticals for human use requires to evaluate the stability of active compound under various stress conditions. Forced degradation of BZN was investigated under hydrolytic (0.1M NaOH, 0.1M HCl, neutral), oxidative (3.3% H(2)O(2)), photolytic (visible light) and thermal (25 °C, 70 °C) settings. Relevant degradation took place under thermal acidic (0.1M HCl, 70 °C) and oxidative (3.3% H(2)O(2)) conditions. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence of ten degradation products whose structures were characterized by electrospray ionization-orbitrap mass spectrometry. The full scan accurate mass analysis of degradation products was confirmed or refuted using three tools furnished by the MS software: (1) predictive chemical formula and corresponding mass error; (2) double bond equivalent (DBE) calculation; and (3) accurate mass product ion spectra of degradation products. The structural elucidation showed that the tricycle moiety was unstable under thermal acidic and oxidative conditions since four degradation products possess an opened oxathiazepine ring. Then, a simple and fast HPLC-UV method was developed and validated for the determination of the degradation kinetic of BZN under acidic and oxidative conditions. The method was linear in the 5-100 μg mL(-1) concentration range with a good precision (RSD=2.2% and 2.7% for the repeatability and the intermediate precision, respectively) and a bias which never exceeded 1.6%, whatever the quality control level. With regards to the BZN concentration, a first-order degradation process was determined, with t(1/2)=703 h and 1140 h, under oxidative and acidic conditions, respectively.

  17. Mass spectrometry of atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Große-Kreul, S.; Hübner, S.; Schneider, S.; Ellerweg, D.; von Keudell, A.; Matejčík, S.; Benedikt, J.

    2015-08-01

    Atmospheric pressure non-equilibrium plasmas (APPs) are effective source of radicals, metastables and a variety of ions and photons, ranging into the vacuum UV spectral region. A detailed study of these species is important to understand and tune desired effects during the interaction of APPs with solid or liquid materials in industrial or medical applications. In this contribution, the opportunities and challenges of mass spectrometry for detection of neutrals and ions from APPs, fundamental physical phenomena related to the sampling process and their impact on the measured densities of neutrals and fluxes of ions, will be discussed. It is shown that the measurement of stable neutrals and radicals requires a proper experimental design to reduce the beam-to-background ratio, to have little beam distortion during expansion into vacuum and to carefully set the electron energy in the ionizer to avoid radical formation through dissociative ionization. The measured ion composition depends sensitively on the degree of impurities present in the feed gas as well as on the setting of the ion optics used for extraction of ions from the expanding neutral-ion mixture. The determination of the ion energy is presented as a method to show that the analyzed ions are originating from the atmospheric pressure plasma.

  18. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  19. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling.

    PubMed

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA - the combing, imaging by SIMS or CIS method - has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to (13)C-labeling via the detection and quantification of the (13)C (14)N (-) recombinant ion and the use of the (13)C: (12)C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  20. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    PubMed Central

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  1. A fatal case of trichlorofluoromethane (Freon 11) poisoning. Tissue distribution study by gas chromatography-mass spectrometry.

    PubMed

    Groppi, A; Polettini, A; Lunetta, P; Achille, G; Montagna, M

    1994-05-01

    A case of lethal poisoning due to trichlorofluoromethane (FC11) inhalation is described. The fluorocarbon was determined in biological tissues by headspace gas chromatography-mass spectrometry. FC11 was detected in all the examined tissues, with decreasing levels in heart, lung, brain, liver, blood, kidney, and spleen. The highest concentration measured in heart could be related to the mode of toxic action of fluorocarbons postulated by many authors, characterized by the sensitization of the myocardium to the catecholamines producing arrhythmia and cardiac arrest. Nevertheless the aspecific picture of the anatomo-pathological and histological findings does not exclude that the described accidental fatality may have been caused by the combination of direct from toxicity with hypoxemic asphyxiation, due to the saturation of the atmosphere by FC11 in the closed environment in which the intoxication occurred. PMID:8006631

  2. Potato glycoalkaloids in soil-optimising liquid chromatography-time-of-flight mass spectrometry for quantitative studies.

    PubMed

    Jensen, Pia H; Juhler, René K; Nielsen, Nikoline J; Hansen, Thomas H; Strobel, Bjarne W; Jacobsen, Ole S; Nielsen, John; Hansen, Hans Christian B

    2008-02-22

    Potato glycoalkaloids are produced in high amounts in potato fields during the growth season and losses to soil potentially impact shallow groundwater and via tiles to fresh water ecosystems. A quantitative liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) method for determination and quantification of potato glycoalkaloids and their metabolites in aqueous soil extracts was developed. The LC-ESI-TOF-MS method had linearities up to 2000microg/L for alpha-solanine and alpha-chaconine and up to 760microg/L for solanidine. No matrix effect was observed, and the detection limits found were in the range 2.2-4.7microg/L. The method enabled quantification of the potato glycoalkaloids in environmental samples.

  3. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: screening and quantitative studies.

    PubMed

    Gómez-Ramos, M M; Ferrer, C; Malato, O; Agüera, A; Fernández-Alba, A R

    2013-04-26

    This work reviews the current state-of-the-art of liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) techniques applied to the analysis of pesticides in fruit-based and vegetable-based matrices. Nowadays, simultaneous trace analysis of hundreds of pesticides from different classes is required, preferably in just one run. The most commonly used QqQ-MS technology presents certain limitations in its application in a cost and effective way when analyzing a large number of pesticides. Thus, this review includes HRMS technology as a reliable complementary alternative allowing the analysis of a wide range of pesticides in food. Its capabilities and limitations in identifying, confirming and quantifying pesticides are discussed. HRMS instruments can adequately address such issues; however, the main drawbacks are as a result of insufficient prior optimization of the operational parameters during non-target analysis in full-scan mode and due to software shortcomings.

  4. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  5. Triacylglycerol profiling of marine microalgae by mass spectrometry[S

    PubMed Central

    Danielewicz, Megan A.; Anderson, Lisa A.; Franz, Annaliese K.

    2011-01-01

    We present a method for the determination of triacylglycerol (TAG) profiles of oleaginous saltwater microalgae relevant for the production of biofuels, bioactive lipids, and high-value lipid-based chemical precursors. We describe a technique to remove chlorophyll using quick, simple solid phase extraction (SPE) and directly compare the intact TAG composition of four microalgae species (Phaeodactylum tricornutum, Nannochloropsis salina, Nannochloropsis oculata, and Tetraselmis suecica) using MALDI time-of-flight (TOF) mass spectrometry (MS), ESI linear ion trap-orbitrap (LTQ Orbitrap) MS, and 1H NMR spectroscopy. Direct MS analysis is particularly effective to compare the polyunsaturated fatty acid (PUFA) composition for triacylglycerols because oxidation can often degrade samples upon derivatization. Using these methods, we observed that T. suecica contains significant PUFA levels with respect to other microalgae. This method is applicable for high-throughput MS screening of microalgae TAG profiles and may aid in the commercial development of biofuels. PMID:21840867

  6. Mass spectrometry-based detection of protein acetylation

    PubMed Central

    Li, Yu; Silva, Jeffrey C.; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    Summary Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful characterizing changes in the acetylome in response to biological interventions (1). PMID:24014401

  7. Accelerator Mass Spectrometry (AMS) 1977-1987

    NASA Astrophysics Data System (ADS)

    Gove, H. E.; Purser, K. H.; Litherland, A. E.

    2010-04-01

    The eleventh Accelerator Mass Spectrometry (AMS 11) Conference took place in September 2008, the Thirtieth Anniversary of the first Conference. That occurred in 1978 after discoveries with nuclear physics accelerators in 1977. Since the first Conference there have now been ten further conferences on the development and applications of what has become known as AMS. This is the accepted acronym for the use of accelerators, together with nuclear and atomic physics techniques, to enhance the performance of mass spectrometers for the detection and measurement of rare long-lived radioactive elements such as radiocarbon. This paper gives an outline of the events that led to the first conference together with a brief account of the first four conferences before the introduction of the second generation of accelerator mass spectrometers at AMS 5.

  8. Alpha spectrometry applications with mass separated samples.

    PubMed

    Dion, M P; Eiden, Gregory C; Farmer, Orville T; Liezers, Martin; Robinson, John W

    2016-01-01

    (241)Am has been deposited using a novel technique that employs a commercial inductively coupled plasma mass spectrometer. This work presents results of high-resolution alpha spectrometry on the (241)Am samples using a small area passivated implanted planar silicon detector. We have also investigated the mass-based separation capability by developing a (238)Pu sample, present as a minor constituent in a (244)Pu standard, and performed subsequent radiometric counting. With this new sample development method, the (241)Am samples achieved the intrinsic energy resolution of the detector used for these measurements. There was no detectable trace of any other isotopes contained in the (238)Pu implant demonstrating the mass-based separation (or enhancement) attainable with this technique. PMID:26583262

  9. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  10. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry

    SciTech Connect

    Zhang, Taichang; Zhang, Lidong; Hong, Xin; Zhang, Kuiwen; Qi, Fei; Law, Chung K.; Ye, Taohong; Zhao, Pinghui; Chen, Yiliang

    2009-11-15

    An experimental study of toluene pyrolysis (1.24 vol.% toluene in argon) was performed at low pressure (1.33 kPa) in the temperature range of 1200-1800 K. The pyrolysis process was detected with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry (MBMS). Species up to m/z = 202 (C{sub 16}H{sub 10}), containing many radicals (CH{sub 3}, C{sub 3}H{sub 3}, C{sub 5}H{sub 3}, C{sub 5}H{sub 5}, C{sub 7}H{sub 5}, C{sub 7}H{sub 7}, C{sub 9}H{sub 7}, C{sub 11}H{sub 7} and C{sub 13}H{sub 9}) and isomers, such as C{sub 3}H{sub 4} (propyne and allene), C{sub 4}H{sub 4} (vinylacetylene and 1,2,3-butatriene), C{sub 5}H{sub 5} (cyclopentadienyl radical and pent-1-en-4-yn-3-yl radical), C{sub 6}H{sub 4} (3-hexene-1,5-diyne and benzyne), C{sub 6}H{sub 6} (benzene and fulvene), C{sub 7}H{sub 8} (toluene and 5-methylene-1,3-cyclohexadiene) and so on, were identified from near-threshold measurements of photoionization mass spectra, and the mole fraction profiles of the pyrolysis products were evaluated from measurements of temperature scan. Experimental results indicate that the reaction C{sub 7}H{sub 8} {yields} C{sub 7}H{sub 7} and the subsequent reactions are dominant at comparatively low temperature (<1440 K), while the reaction C{sub 7}H{sub 8} {yields} C{sub 6}H{sub 5} and subsequent reactions gradually become competitive and important with increasing temperature. Furthermore the barriers of the decomposition pathways of toluene and benzyl radical determined by quantum mechanical calculation are in good agreement with the initial formation temperatures of the species. Based on the mole fractions and formation temperatures of the detected pyrolysis species, a simple reaction network is deduced. At relatively high temperatures, H-abstraction is prevalent and the mole fraction of C{sub 2}H{sub 2} is so high that many aromatics are formed through the hydrogen-abstraction/C{sub 2}H{sub 2}-addition (HACA) mechanism. Moreover the

  11. Quantitative mass spectrometry methods for pharmaceutical analysis.

    PubMed

    Loos, Glenn; Van Schepdael, Ann; Cabooter, Deirdre

    2016-10-28

    Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage.This article is part of the themed issue 'Quantitative mass spectrometry'.

  12. Simultaneous determination of four active components in rat plasma by ultra-high performance liquid chromatography tandem-mass spectrometry/mass spectrometry and its application to a pharmacokinetic study after oral administration of Callicarpa nudiflora extract

    PubMed Central

    Shao, Jun; Ma, Shuangcheng; Zheng, Dongkun; Chen, Weikang; Luo, Yuehua

    2015-01-01

    Background: Callicarpa nudiflora has been commonly used as a Chinese folk medicine for resolving toxin, dispersing edema and hemostasis; however, its pharmacokinetic (PK) behavior remains unknown. In our present study, a simple and sensitive ultra-high performance liquid chromatography tandem mass spectrometry method was firstly developed on simultaneous determination and PK study of four active components (luteoloside, dracocephaloside, juncein and nudifloside) following the oral administration of C. nudiflora extract to investigate their PK profiles. Materials and Methods: Chromatographic separation was achieved on a Phenomenex® Kinetex C18 column (50 mm × 2.1 mm, 1.7 μm) with gradient elution using a mobile phase consisted of acetonitrile (A) and 0.05‰ formic acid in water (B). The quantitation was carried out by multiple reaction monitoring using electrospray ionization in the negative ion mode. Results: Calibration curves offered satisfactory linearity, with correlation coefficients >0.99 for all compounds within the concentration range. The low limits of quantification were 1.03 ng/mL for luteoloside, 1.16 ng/mL for dracocephaloside, 0.82 ng/mL for juncein and 0.88 ng/mL for nudifloside, respectively. The intra- and inter-day precisions (relative standard deviation) were within 7.4% and the accuracies (relative error) ranged from −7.4% to 7.9%. Conclusion: This method was successfully applied to the PK studies of luteoloside, dracocephaloside, juncein and nudifloside in rat plasma after oral administration of C. nudiflora extract, four analytes exhibited quick absorption with peak concentrations occurring at around 25 min and eliminated rapidly. PMID:26246725

  13. [Application of mass spectrometry in mycology].

    PubMed

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis.

  14. Ion mobility spectrometry-mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene

    NASA Astrophysics Data System (ADS)

    Sabo, Martin; Malásková, Michaela; Matejčík, Štefan

    2014-02-01

    In this study we have investigated the negative reactant ion formation in a negative corona discharge (CD) using the corona discharge ion mobility spectrometry orthogonal acceleration time-of-flight (CD-IMS-oaTOF) technique. The reactant ions were formed in the CD operating in the reverse gas flow mode at an elevated temperature of 363.5 K in synthetic and ambient air. Under these conditions mainly O_{2}^{-} and their clusters were formed. We have also studied the influence of CCl4 admixture to air (dopant gas) on the composition of the reactant ions, which resulted in the formation of Cl- and its clusters with a reduced ion mobility of 3.05 cm2 V-1 s-1 as a major reactant ion peak. Additional IMS peaks with reduced ion mobilities of 2.49, 2.25 and 2.03 cm2 V-1 s-1 were detected, and Cl- · (NO2) and Cl- · (NO)n(n = 2, 3) anions were identified. The negative reactant ions were used to detect 2,4,6 trinitrotoluene (TNT) using the thermal desorption (TD) technique using a CD-IMS instrument. Using TD sampling and a negative CD ion source doped by CCl4 we have achieved a limit of detection of 350 pg for direct surface analysis of TNT.

  15. Characterization of plant materials by pyrolysis-field ionization mass spectrometry: high-resolution mass spectrometry, time-resolved high-resolution mass spectrometry, and Curie-point pyrolysis-gas chromatography/mass spectrometry of spruce needles

    SciTech Connect

    Schulten, H.F.; Simmleit, N.; Mueller, R.

    1989-02-01

    In the course of a forest damage research project spruce needles are analyzed, without pretreatment except drying and milling, by in-source pyrolysis-field ionization mass spectrometry. The mass signals are assigned by using high-resolution mass measurements and thermal degradation products identified by Curie-point pyrolysis-gas chromatography. It is demonstrated that the thermal degradation products characterize the main chemical constituents of spruce needs such as polysaccharides and lignin. Furthermore, thermostable constituents such as lipids, steroids, and flavons are detected. The thermal degradation process is studied by temperature-programmed microfurnace pyrolysis in combination with time-resolved high-resolution mass spectrometry. The integrated interpretation of results achieved by the presented methods can be applied for the universal characterization of complex and in particular nonsoluble, polydisperse biological and geochemical materials.

  16. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns

    PubMed Central

    2013-01-01

    Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein

  17. Fundamental studies with a monodisperse aerosol-based liquid chromatography/mass spectrometry interface (MAGIC-LC/MS). Final progress report, December 1, 1989--December 31, 1992

    SciTech Connect

    Browner, R.F.

    1992-12-01

    One of the most dramatic developments in mass spectrometry in the last fifteen years has been the evolution of versatile and powerful interfacing approaches that allow direct chromatographic coupling of separations techniques to mass spectrometers. The most successful of these approaches have been aerosol-based. This report describes the research carried out under DOE support directed toward fundamental studies with the Particle Beam LC/MS interface (also known as the MAGIC LC/MS interface). The primary goal has been to gain a better understanding of aerosol generation, transport, vaporization, and ionization processes which forms the basis of the technique. Gaining a deeper understanding of the basic physical processes on which particle Beam LC/MS is based provides the most direct way to improve performance benchmarks, such as (1) detection limits (2) quality of mass spectra (3) range of compound types possible, and (4) the ability to interface with all types of separation techniques. This research effort has been devoted to developing a fundamental understanding of the basic physical process which underlie aerosol mass spectrometry interfacing approaches. The paper describes chromatographic peak broadening studies and carrier effects with the particle beam interface.

  18. Metabonomic Study of Biochemical Changes in Human Hair of Heroin Abusers by Liquid Chromatography Coupled with Ion Trap-Time of Flight Mass Spectrometry.

    PubMed

    Xie, Pu; Wang, Tie-jie; Yin, Guo; Yan, Yan; Xiao, Li-he; Li, Qing; Bi, Kai-shun

    2016-01-01

    Hair analysis is with the advantage of non-invasive collection and long surveillance window. The present study employed a sensitive and reliable liquid chromatography coupled with ion trap-time of flight mass spectrometry method to study the metabonomic characters in the hair of 58 heroin abusers and 72 non-heroin abusers. Results indicated that certain endogenous metabolites, such as sorbitol and cortisol, were accelerated, and the level of arachidonic acid, glutathione, linoleic acid, and myristic acid was decreased in hair of heroin abusers. The metabonomic study is helpful for further understanding of heroin addiction and clinical diagnosis. PMID:26445826

  19. Metabonomic Study of Biochemical Changes in Human Hair of Heroin Abusers by Liquid Chromatography Coupled with Ion Trap-Time of Flight Mass Spectrometry.

    PubMed

    Xie, Pu; Wang, Tie-jie; Yin, Guo; Yan, Yan; Xiao, Li-he; Li, Qing; Bi, Kai-shun

    2016-01-01

    Hair analysis is with the advantage of non-invasive collection and long surveillance window. The present study employed a sensitive and reliable liquid chromatography coupled with ion trap-time of flight mass spectrometry method to study the metabonomic characters in the hair of 58 heroin abusers and 72 non-heroin abusers. Results indicated that certain endogenous metabolites, such as sorbitol and cortisol, were accelerated, and the level of arachidonic acid, glutathione, linoleic acid, and myristic acid was decreased in hair of heroin abusers. The metabonomic study is helpful for further understanding of heroin addiction and clinical diagnosis.

  20. Applications of new mass spectrometry techniques in pesticide chemistry

    SciTech Connect

    Rosen, J.

    1987-01-01

    The partial contents are: New Instruments, New Methods and the Search for Selectivity. Chemical Ionization Mass Spectrometry in Pesticide Metabolite Indentification. Negative Ion Electron Capture Chemical Ionization Mass Spectrometry of Fluorinated Pesticide Derivatives. Negative Ion Chemical Ionization Mass Spectrometry of Toxaphene. Methane-enhanced Negative Ion Mass Spectra of Hexachlorocyclopentadiene Derivatives. Isomer Specific Analysis of Dioxins and Dibenzofurnas by HRGC/SIM-MS. Determination of Double-bond Position in Conjugated Dienes by Chemical Ionization Mass Spectrometry with Isobutane. Application of Desorption Chemical Ionization Techniques for Analysis of Biologically Active Compounds Isolated from Insects. FD and FAB Mass Spectrometry of Sulfate Conjugants and of Conjugated Metabolites of Pyroquilon. Application of Fast Atom Bombardment Mass Spectrometry to Polar Pesticides. Thermospray HPLC/MS as a Problem-solving Tool for the Analysis of Thermally Labile Herbicides.

  1. Plant- versus microbial signature in densimetric fractions of mediterranean forest soils: a study by thermochemolysis gas chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    Rovira, Pere; Grasset, Laurent

    2015-04-01

    Plant- versus microbial signature in densimetric fractions of mediterranean forest soils: a study by thermochemolysis gas chromatography mass spectrometry The ageing of a given organic substrate decomposing in soil is strongly dependant of its microbial utilization and transformation (reworking) by the soil microflora. How far a given substrate or soil fraction has gone in this evolution is usually measured by means of molecular signatures, ratios between organic compounds which enlighten us about the origin and/or the degree of microbial reworking of a specific group of compounds: lipids, proteins, lignin, carbohydrates, etc. Owing to the biochemical heterogeneity of decomposing substrates it is unlikely that the degree of microbial reworking can be approached with a single signature. Applying a couple of them is much better, but obtaining a wide collection of molecular signatures can be time consuming. Here, instead of applying specific methods to obtain a collection of specific signatures, we apply TMAH-thermochemolysis to obtain a panoramic view of the biochemical composition of a series of densimetric fractions of soils. From the compounds identified after TMAH-thermochemolysis, a collection of indicators was obtained: (a) ratio between short and long-chained linear alkanoic acids; (b) ratio between branched and long-chained linear alkanoic acids; (c) ratio between C16 and total alpha-omega-alkanedioic acids; (d) ratio microbial to plant-derived 1-methoxyalkanes; (e) ratio syringyl to total lignin-derived phenolic compounds; (f) vanillic acid to vanillin ratio; (g) fucose/glucose ratio; and (h) xylose/glucose ratio. From these indicators a single numerical value is distilled, allowing to order a couple of densimetric fractions of soil organic matter according to its degree of microbial reworking. This approach was applied to the comparison of a couple of densimetric fractions of soil organic matter of three organic H horizons from mediterranean forest soils

  2. Mass spectrometry imaging: applications to food science.

    PubMed

    Taira, Shu; Uematsu, Kohei; Kaneko, Daisaku; Katano, Hajime

    2014-01-01

    Two-dimensional mass spectrometry (MS) analysis of biological samples by means of what is called MS imaging (MSI) is now being used to analyze analyte distribution because it facilitates determination of the existence (what is it?) and localization (where is it?) of biomolecules. Reconstruction of mass image by target signal is given after two-dimensional MS measurements on a sample section. From only one section, we can understand the existence and localization of many molecules without the need of an antibody or fluorescent reagent. In this review, we introduce the analysis of localization of functional constituents and nutrients in herbal medicine products via MSI. The ginsenosides were mainly distributed in the periderm and the tip region of the root of Panax ginseng. The capsaicin was found to be more dominantly localized in the placenta than the pericarp and seed in Capsicum fruits. We expect MSI will be a useful technique for optical quality assurance.

  3. Accelerator mass spectrometry of molecular ions

    NASA Astrophysics Data System (ADS)

    Golser, Robin; Gnaser, Hubert; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof; Wallner, Anton

    2005-10-01

    The use of tandem accelerators for accelerator mass spectrometry (AMS) allows to literally "analyze" molecules. When a molecular ion with mass M and charge Q is injected at the low-energy side, it is efficiently broken up into its atomic constituents during the stripping process in the terminal. At the high-energy side the positively charged atomic ions are again analyzed by their mass-to-charge ratio and by their energy in the detector (and eventually by their nuclear charge, too). We show the usefulness of the AMS method by identifying unambiguously the doubly-charged negative molecule (43Ca19F4)2- for the first time. It considerably eases the task that the total mass M = 119 is odd, so the di-anion is injected at the half-integer mass-to-charge ratio M/Q = 59.5, where no singly charged ions can interfere. The full power of AMS is needed when we try to proof the existence of di-anions with an integer M/Q, e.g. (23Na35Cl3)2-, whose stability is of interest for atomic physics theory.

  4. Accelerator mass spectrometry: Proceedings of the fourth international symposium on accelerator mass spectrometry

    SciTech Connect

    Gove, H.E.; Litherland, A.E.; Elmore, D.

    1987-01-01

    This report is a volume of the journal Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. This particular volume is concerned with accelerator mass spectrometry. The sections of this issue are: Advances in AMS techniques; Archaeology and ecology; Glaciology and climatology; Cosmochemistry and in situ production; Ocean and atmospheric sciences; Hydrology and geology; Astrophysics, nuclear physics and lasers.

  5. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  6. Mass Spectrometry on Future Mars Landers

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  7. [Mass spectrometry in the clinical microbiology laboratory].

    PubMed

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed.

  8. [Application of mass spectrometry in mycobacteria].

    PubMed

    Alcaide, Fernando; Palop-Borrás, Begoña; Domingo, Diego; Tudó, Griselda

    2016-06-01

    To date, more than 170 species of mycobacteria have been described, of which more than one third may be pathogenic to humans, representing a significant workload for microbiology laboratories. These species must be identified in clinical practice, which has long been a major problem due to the shortcomings of conventional (phenotypic) methods and the limitations and complexity of modern methods largely based on molecular biology techniques. The aim of this review was to briefly describe different aspects related to the use of MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) for the identification of mycobacteria. Several difficulties are encountered with the use of this methodology in these microorganisms mainly due to the high pathogenicity of some mycobacteria and the peculiar structure of their cell wall, requiring inactivation and special protein extraction protocols. We also analysed other relevant aspects such as culture media, the reference methods employed (gold standard) in the final identification of the different species, the cut-off used to accept data as valid, and the databases of the different mass spectrometry systems available. MS has revolutionized diagnosis in modern microbiology; however, specific improvements are needed to consolidate the use of this technology in mycobacteriology.

  9. [Application of mass spectrometry in mycobacteria].

    PubMed

    Alcaide, Fernando; Palop-Borrás, Begoña; Domingo, Diego; Tudó, Griselda

    2016-06-01

    To date, more than 170 species of mycobacteria have been described, of which more than one third may be pathogenic to humans, representing a significant workload for microbiology laboratories. These species must be identified in clinical practice, which has long been a major problem due to the shortcomings of conventional (phenotypic) methods and the limitations and complexity of modern methods largely based on molecular biology techniques. The aim of this review was to briefly describe different aspects related to the use of MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) for the identification of mycobacteria. Several difficulties are encountered with the use of this methodology in these microorganisms mainly due to the high pathogenicity of some mycobacteria and the peculiar structure of their cell wall, requiring inactivation and special protein extraction protocols. We also analysed other relevant aspects such as culture media, the reference methods employed (gold standard) in the final identification of the different species, the cut-off used to accept data as valid, and the databases of the different mass spectrometry systems available. MS has revolutionized diagnosis in modern microbiology; however, specific improvements are needed to consolidate the use of this technology in mycobacteriology. PMID:27389290

  10. Towards secondary ion mass spectrometry on the helium ion microscope: An experimental and simulation based feasibility study with He{sup +} and Ne{sup +} bombardment

    SciTech Connect

    Wirtz, T.; Vanhove, N.; Pillatsch, L.; Dowsett, D.; Sijbrandij, S.; Notte, J.

    2012-07-23

    The combination of the high-brightness He{sup +}/Ne{sup +} atomic level ion source with secondary ion mass spectrometry detection capabilities opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope. The analytical performance in terms of sputtering yield, useful yield, and detection limit is studied and subsequently optimized by oxygen and cesium flooding. Detection limits down to 10{sup -6} and 10{sup -5} can be obtained for silicon using Ne{sup +} and He{sup +}, respectively. A simulation based study reveals furthermore that a lateral resolution <10 nm can be obtained.

  11. Quantification of busulfan in plasma by liquid chromatography-ion spray mass spectrometry. Application to pharmacokinetic studies in children.

    PubMed

    Quernin, M H; Duval, M; Litalien, C; Vilmer, E; Aigrain, E J

    2001-11-01

    Optimisation of busulfan dosage in patients undergoing bone marrow transplantation is recommended in order to reduce toxic effects associated with high drug exposure. A new method was developed coupling liquid chromatography with mass spectrometry (LC-MS) and was validated for the determination of busulfan concentrations in plasma. Recovery was 86.7%, the limit of detection was 2.5 ng/ml and linearity ranged from 5 to 2500 ng/ml. The correlation between the busulfan concentrations measured by our previously published HPLC-UV method and the new HPLC-MS method was highly significant (P<0.0001). Sample volume was reduced and the method was rapid, sensitive and less expensive than the methods previously used in our laboratory. This method was used to determine the pharmacokinetic parameters of busulfan after the first administration of 1 mg/kg orally, in 13 children receiving the drug as part of the preparative regimen for bone marrow transplantation. Our results were similar to previously reported data. They showed that the apparent oral clearance of busulfan was 0.299+/-0.08 l/h/kg, and that it was significantly higher (P=0.02) in patients below the age of 5 years than in older children.

  12. Direct detection of Mycobacterium tuberculosis in sputum: A validation study using solid phase extraction-gas chromatography-mass spectrometry.

    PubMed

    Mourão, Marta P B; Kuijper, Sjoukje; Dang, Ngoc A; Walters, Elisabetta; Janssen, Hans-Gerd; Kolk, Arend H J

    2016-02-15

    Tuberculosis (TB) remains a worldwide health problem, especially in developing countries. Correct identification of Mycobacterium tuberculosis (MTB) infection is extremely important for providing appropriate treatment and care to patients. Here we describe a solid phase extraction-gas chromatography-mass spectrometry method (SPE-THM-GC-MS) for the detection of five biomarkers for M. tuberculosis. The method for classification is developed and validated through the analysis of 112 sputum samples from patients suspected of having TB. Twenty of twenty-five MTB culture-positive sputum samples were correctly classified as positive by our improved SPE-THM-GC-MS method. Eighty-five of eighty-seven MTB culture-negative samples were also negative by SPE-THM-GC-MS. The overall sensitivity of the new SPE-THM-GC-MS method is 80% (20/25) and the specificity is 98% (85/87) compared with culture. The method proved to be reliable and, although complex in principle, easy to operate due to the high degree of automation. PMID:26807702

  13. Study of flavonoids of Sechium edule (Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry.

    PubMed

    Siciliano, Tiziana; De Tommasi, Nunziatina; Morelli, Ivano; Braca, Alessandra

    2004-10-20

    A liquid chromatography-mass spectrometry (LC-MS)-based method was developed for the characterization of flavonoids from Sechium edule (Jacq) Swartz (Cucurbitaceae) edible organs, a plant cultivated since pre-Colombian times in Mexico where the fruit is called chayote. Chayote is used for human consumption in many countries; in addition to the fruits, stems, leaves and the tuberous part of the roots are also eaten. Eight flavonoids, including three C-glycosyl and five O-glycosyl flavones, were detected, characterized by nuclear magnetic resonance spectroscopic data, and quantified in roots, leaves, stems, and fruits of the plant by LC-photodiode array-MS. The aglycone moieties are represented by apigenin and luteolin, while the sugar units are glucose, apiose, and rhamnose. The results indicated that the highest total amount of flavonoids was in the leaves (35.0 mg/10 g of dried part), followed by roots (30.5 mg/10 g), and finally by stems (19.3 mg/10 g).

  14. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  15. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    NASA Astrophysics Data System (ADS)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  16. [Modification of recombinant human augmenter of liver regeneration with urea studied by maldi-tof mass spectrometry].

    PubMed

    Pan, Yun; He, Guo-Qing; Li, Ru-Bing; Yi, Xue-Rui; Kong, Xiang-Ping

    2003-04-01

    To investigate the modification of recombinant human augmenter of liver regeneration (rhALR) by the urea in purification processes and the biological activity of rhALR and modified rhALR, the molecular weight of proteins and tryptic peptides were determined by matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF-MS), and the biological activity of rhALR and modified rhALR was also observed by in vivo experiments. A 30 kD homodimer of rhALR was purified under denaturing conditions. The molecular weight of rhALR is 30 780 if urea was used to denature the inclusion bodies; when the denaturant was guanidine hydrochloride, the molecular weight of rhALR was 30 087. The results of MALDI-TOF-MS of digested rhALR that have been modified by urea showed that peptides that contained lysyl were 43 larger than the theoretical value. Proteins purified by different processes were all able to promote the survival rate of CCl(4)-intoxicated mice. It could be concluded that cyanate, the cleavage product of urea, could react with the epsilon-amino group of lysyl in rhALR, and the modified rhALR had the same biological activity as natural rhALR.

  17. Direct detection of Mycobacterium tuberculosis in sputum: A validation study using solid phase extraction-gas chromatography-mass spectrometry.

    PubMed

    Mourão, Marta P B; Kuijper, Sjoukje; Dang, Ngoc A; Walters, Elisabetta; Janssen, Hans-Gerd; Kolk, Arend H J

    2016-02-15

    Tuberculosis (TB) remains a worldwide health problem, especially in developing countries. Correct identification of Mycobacterium tuberculosis (MTB) infection is extremely important for providing appropriate treatment and care to patients. Here we describe a solid phase extraction-gas chromatography-mass spectrometry method (SPE-THM-GC-MS) for the detection of five biomarkers for M. tuberculosis. The method for classification is developed and validated through the analysis of 112 sputum samples from patients suspected of having TB. Twenty of twenty-five MTB culture-positive sputum samples were correctly classified as positive by our improved SPE-THM-GC-MS method. Eighty-five of eighty-seven MTB culture-negative samples were also negative by SPE-THM-GC-MS. The overall sensitivity of the new SPE-THM-GC-MS method is 80% (20/25) and the specificity is 98% (85/87) compared with culture. The method proved to be reliable and, although complex in principle, easy to operate due to the high degree of automation.

  18. Synthesis and mass spectrometry studies of branched oxime ether libraries. Mapping the substitution motif via linker stability and fragmentation pattern.

    PubMed

    Nazarpack-Kandlousy, Noureddin; Nelen, Marina I; Goral, Vasiliy; Eliseev, Alexey V

    2002-01-11

    The oxime ether chemistry has recently been used as a convenient approach to preparing potentially highly diverse combinatorial libraries. The synthetically easiest way to form the libraries is convergent, i.e., via reaction of a branched scaffold containing two or more aminooxy linker groups, with a variety of carbonyl substituents. We show here that such reactions between aldehydes and ketones of different structure with the scaffolds containing different types of aminooxy groups can lead to the formation of virtually all expected components in the model mixtures 1-3 formed from three scaffolds (7-9) and eight substituents (R(1)-R(8)). One important problem with the branched libraries is that the libraries formed from the more complex scaffolds, such as 11, contain multiple regioisomers. The results of extensive analysis of a variety of library components by mass spectrometry presented here show that the differences in the MS-MS fragmentation energies for different linkers yield regiochemical information essential for identification of individual library components. PMID:11777439

  19. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.

    PubMed

    Parastar, Hadi; Bazrafshan, Alisina

    2016-03-18

    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then, the resolved elution profiles are used to make a new data matrix based on peak areas of pure components to cluster by FCM. The FCM clustering parameters (i.e., fuzziness coefficient and number of cluster) are optimized by two different methods of partial least squares (PLS) as a conventional method and minimization of FCM objective function as our new idea. The results showed that minimization of FCM objective function is an easier and better way to optimize FCM clustering parameters. Then, the optimized FCM clustering algorithm is used to cluster samples and variables to figure out the similarities and dissimilarities among samples and to find discriminant secondary metabolites in each cluster (chemotype). Finally, the FCM clustering results are compared with those of principal component analysis (PCA), hierarchical cluster analysis (HCA) and Kohonon maps. The results confirmed the outperformance of FCM over the frequently used clustering algorithms.

  20. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    NASA Astrophysics Data System (ADS)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  1. Trends in biochemical and biomedical applications of mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  2. Emerging technologies in mass spectrometry imaging.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2012-08-30

    Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is highlighted. The benefits of accurate mass analysis, high mass resolving power, additional separation strategies and multimodal three-dimensional data reconstruction algorithms are discussed to provide the reader with an insight in the current technological advances and the potential of MSI for bio-medical research. PMID:22469858

  3. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  4. Crux: rapid open source protein tandem mass spectrometry analysis.

    PubMed

    McIlwain, Sean; Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E; Diament, Benjamin; Frewen, Barbara; Howbert, J Jeffry; Hoopmann, Michael R; Käll, Lukas; Eng, Jimmy K; MacCoss, Michael J; Noble, William Stafford

    2014-10-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit ( http://cruxtoolkit.sourceforge.net ) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  5. Mass Spectrometry for Large Undergraduate Laboratory Sections

    NASA Astrophysics Data System (ADS)

    Illies, A.; Shevlin, P. B.; Childers, G.; Peschke, M.; Tsai, J.

    1995-08-01

    Mass spectrometry is routinely covered in undergraduate organic chemistry courses and a number of valuable laboratory experiments featuring its use have been discussed (1-7). Although such experiments work well at institutions with limited laboratory enrollments, we typically teach laboratories with enrollments of 160 or more in which it is difficult to allow each student to carry out a meaningful "hands on" mass spectrometry experiment. Since we feel that some practical experience with this technique is important, we have designed a simple gas chromatography-mass spectrometry (gc/ms) exercise that allows each student to analyze the products of a simple synthesis that they have performed. The exercise starts with the microscale SN2 synthesis of 1-bromobutane from 1-butanol as described by Williamson (8). The students complete the synthesis and place one drop of the distilled product in a screw capped vial. The vials are then sealed, labeled with the students name and taken to the mass spectrometry laboratory by a teaching assistant. Students are instructed to sign up for a 20-min block of time over the next few days in order to analyze their sample. When the student arrives at the laboratory, he or she adds 1 ml CH2Cl2 to the sample and injects 0.3 microliters of the solution into the gas chromatograph. The samples typically contain the 1-butanol starting material and the 1-bromobutane product along with traces of dibutyl ether. The figure shows a mass chromatogram along with the mass spectra of the starting material and product from an actual student run. For this analysis to be applicable to large numbers of students, the gc separation must be as rapid as possible. We have been able to analyze each sample in 6 minutes on a 30 m DB-5 capillary column with the following temperature program: 70 oC for 1 min, 70-80 oC at 10 oC/min, 86-140 oC at 67.5 oC/min, 140-210 oC at 70 oC/min, and 210 oC for 1 min. A mass range of 20-200 amu is scanned with a solvent delay of 2

  6. Recent developments in Penning-trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Block, M.

    2016-06-01

    Penning-trap mass spectrometry provides atomic masses with the highest precision. At accelerator-based on-line facilities it is applied to investigate exotic radionuclides in the context of tests of fundamental symmetries, nuclear structure studies, and nuclear astrophysics research. Recent progress in slowing down radioactive ion-beams in buffer-gas cells in combination with advanced ion-manipulation techniques has paved the way to reach nuclides ever-more far from stability. In this endeavor many efforts are underway to increase the sensitivity, the efficiency, and the precision of Penning-trap mass spectrometry. In this article some recent experimental developments are addressed with the focus on the phase-imaging ion-cyclotron-resonance technique and the Fourier transform ion-cyclotron-resonance technique.

  7. New Applications of Mass Spectrometry in Lipid Analysis*

    PubMed Central

    Murphy, Robert C.; Gaskell, Simon J.

    2011-01-01

    Mass spectrometry has emerged as a powerful tool for the analysis of all lipids. Lipidomic analysis of biological systems using various approaches is now possible with a quantitative measurement of hundreds of lipid molecular species. Although availability of reference and internal standards lags behind the field, approaches using stable isotope-labeled derivative tagging permit precise determination of specific phospholipids in an experimental series. The use of reactivity of ozone has enabled assessment of double bond positions in fatty acyl groups even when species remain in complex lipid mixtures. Rapid scanning tandem mass spectrometers are capable of quantitative analysis of hundreds of targeted lipids at high sensitivity in a single on-line chromatographic separation. Imaging mass spectrometry of lipids in tissues has opened new insights into the distribution of lipid molecular species with promising application to study pathophysiological events and diseases. PMID:21632539

  8. Difference in fibril core stability between two tau four-repeat domain proteins: a hydrogen-deuterium exchange coupled to mass spectrometry study.

    PubMed

    Ramachandran, Gayathri; Udgaonkar, Jayant B

    2013-12-10

    One of the signatures of Alzheimer's disease and tauopathies is fibrillization of the microtubule-associated protein tau. The purpose of this study was to compare the high-resolution structure of fibrils formed by two different tau four-repeat domain constructs, tau4RD and tauK18, using hydrogen-deuterium exchange coupled to mass spectrometry as a tool. While the two fibrils are found to be constructed on similar structural principles, the tauK18 fibril has a slightly more stable core. This difference in fibril core stability appears to be reflective of the mechanistic differences in the aggregation pathways of the two proteins. PMID:24256615

  9. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research. PMID:25639078

  10. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research.

  11. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    PubMed

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. PMID:25450216

  12. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    PubMed

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies.

  13. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  14. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones.

  15. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  16. Imaging mass spectrometry with nuclear microprobes for biological applications

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Yamada, H.; Honda, Y.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2009-06-01

    A mass spectrometric technique using nuclear microprobes is presented in this paper for biological applications. In recent years, imaging mass spectrometry has become an increasingly important technique for visualizing the spatial distribution of molecular species in biological tissues and cells. However, due to low yields of large molecular ions, the conventional secondary ion mass spectrometry (SIMS), that uses keV primary ion beams, is typically applied for imaging of either elements or low mass compounds. In this study, we performed imaging mass spectrometry using MeV ion beams collimated to about 10 μm, and successfully obtained molecular ion images from plant and animal cell sections. The molecular ion imaging of the pollen section showed high intensities of PO3- ions in the pollen cytoplasm, compared to the pollen wall, and indicated the heterogeneous distribution in the cytoplasm. The 3T3-L1 cell image revealed the high intensity of PO3- ions, in particular from the cell nucleus. The result showed that not only the individual cell, but also the cell nucleus could be identified with the present imaging technique.

  17. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  18. Mass Spectrometry-assisted Study Reveals That Lysine Residues 1967 and 1968 Have Opposite Contribution to Stability of Activated Factor VIII

    PubMed Central

    Bloem, Esther; Meems, Henriet; van den Biggelaar, Maartje; van der Zwaan, Carmen; Mertens, Koen; Meijer, Alexander B.

    2012-01-01

    The A2 domain rapidly dissociates from activated factor VIII (FVIIIa) resulting in a dampening of the activity of the activated factor X-generating complex. The amino acid residues that affect A2 domain dissociation are therefore critical for FVIII cofactor function. We have now employed chemical footprinting in conjunction with mass spectrometry to identify lysine residues that contribute to the stability of activated FVIII. We hypothesized that lysine residues, which are buried in FVIII and surface-exposed in dissociated activated FVIII (dis-FVIIIa), may contribute to interdomain interactions. Mass spectrometry analysis revealed that residues Lys1967 and Lys1968 of region Thr1964-Tyr1971 are buried in FVIII and exposed to the surface in dis-FVIIIa. This result, combined with the observation that the FVIII variant K1967I is associated with hemophilia A, suggests that these residues contribute to the stability of activated FVIII. Kinetic analysis revealed that the FVIII variants K1967A and K1967I exhibit an almost normal cofactor activity. However, these variants also showed an increased loss in cofactor activity over time compared with that of FVIII WT. Remarkably, the cofactor activity of a K1968A variant was enhanced and sustained for a prolonged time relative to that of FVIII WT. Surface plasmon resonance analysis demonstrated that A2 domain dissociation from activated FVIII was reduced for K1968A and enhanced for K1967A. In conclusion, mass spectrometry analysis combined with site-directed mutagenesis studies revealed that the lysine couple Lys1967-Lys1968 within region Thr1964-Tyr1971 has an opposite contribution to the stability of FVIIIa. PMID:22215677

  19. Mass spectrometry-assisted study reveals that lysine residues 1967 and 1968 have opposite contribution to stability of activated factor VIII.

    PubMed

    Bloem, Esther; Meems, Henriet; van den Biggelaar, Maartje; van der Zwaan, Carmen; Mertens, Koen; Meijer, Alexander B

    2012-02-17

    The A2 domain rapidly dissociates from activated factor VIII (FVIIIa) resulting in a dampening of the activity of the activated factor X-generating complex. The amino acid residues that affect A2 domain dissociation are therefore critical for FVIII cofactor function. We have now employed chemical footprinting in conjunction with mass spectrometry to identify lysine residues that contribute to the stability of activated FVIII. We hypothesized that lysine residues, which are buried in FVIII and surface-exposed in dissociated activated FVIII (dis-FVIIIa), may contribute to interdomain interactions. Mass spectrometry analysis revealed that residues Lys(1967) and Lys(1968) of region Thr(1964)-Tyr(1971) are buried in FVIII and exposed to the surface in dis-FVIIIa. This result, combined with the observation that the FVIII variant K1967I is associated with hemophilia A, suggests that these residues contribute to the stability of activated FVIII. Kinetic analysis revealed that the FVIII variants K1967A and K1967I exhibit an almost normal cofactor activity. However, these variants also showed an increased loss in cofactor activity over time compared with that of FVIII WT. Remarkably, the cofactor activity of a K1968A variant was enhanced and sustained for a prolonged time relative to that of FVIII WT. Surface plasmon resonance analysis demonstrated that A2 domain dissociation from activated FVIII was reduced for K1968A and enhanced for K1967A. In conclusion, mass spectrometry analysis combined with site-directed mutagenesis studies revealed that the lysine couple Lys(1967)-Lys(1968) within region Thr(1964)-Tyr(1971) has an opposite contribution to the stability of FVIIIa. PMID:22215677

  20. P450-catalyzed vs. electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Mali'n, Tove Johansson; Weidolf, Lars; Castagnoli, Neal; Jurva, Ulrik

    2010-05-15

    The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N-dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra-performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N-dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N-dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N-dealkylation, may not be formed in the P450-catalyzed reaction.

  1. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  2. A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and tuberosum using gas chromatography-mass spectrometry.

    PubMed

    Dobson, Gary; Shepherd, Tom; Verrall, Susan R; Griffiths, Wynne D; Ramsay, Gavin; McNicol, James W; Davies, Howard V; Stewart, Derek

    2010-01-27

    Phytochemical diversity was examined by gas chromatography-mass spectrometry in tubers of genotypes belonging to groups Andigena, Phureja, Stenotomum, and Tuberosum of the potato, Solanum tuberosum. Polar extracts (mainly amino acids, organic acids, sugars, and sugar alcohols) and nonpolar extracts (mainly fatty acids, fatty alcohols, and sterols) were examined. There was a large range in levels of metabolites, including those such as asparagine, fructose, and glucose, that are important to tuber quality, offering considerable scope for selecting germplasm for breeding programmes. There were significant differences in the levels of many metabolites among the groups. The metabolite profiles of genotypes belonging to Phureja and Stenotomum were similar and different from those of Tuberosum and the majority of Andigena genotypes. There was some agreement with the phylogeny of the groups in that Stenotomum is believed to be the ancestor of Phureja and they are both distinct from Tuberosum. Andigena genotypes could be partially distinguished according to geographical origin, Bolivian genotypes being particularly distinct from those from Ecuador. Biosynthetic links between metabolites were explored by performing pairwise correlations of all metabolites. The significance of some expected and unexpected strong correlations between many amino acids (e.g., between isoleucine, lysine, valine, and other amino acids) and between several nonpolar metabolites (e.g., between many fatty acids) is discussed. For polar metabolites, correlation analysis gave essentially similar results irrespective of whether the whole data set, only Andigena genotypes, or only Phureja genotypes were used. In contrast, for the nonpolar metabolites, Andigena only and Phureja only data sets resulted in weaker and stronger correlations, respectively, compared to the whole data set, and may suggest differences in the biochemistry of the two groups, although the interpretation should be viewed with some

  3. Characterization of Microorganisms by MALDI Mass Spectrometry

    SciTech Connect

    Petersen, Catherine E.; Valentine, Nancy B.; Wahl, Karen L.

    2008-10-02

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for characterization and analysis of microorganisms, specifically bacteria, is described here as a rapid screening tool. The objective of this technique is not comprehensive protein analysis of a microorganism but rather a rapid screening of the organism and the accessible protein pattern for characterization and distinction. This method is based on the ionization of the readily accessible and easily ionizable portion of the protein profile of an organism that is often characteristic of different bacterial species. The utility of this screening approach is yet to reach its full potential but could be applied to food safety, disease outbreak monitoring in hospitals, culture stock integrity and verification, microbial forensics or homeland security applications.

  4. [Future applications of mass spectrometry in microbiology].

    PubMed

    Vila, Jordi; Zboromyrska, Yuliya; Burillo, Almudena; Bouza, Emilio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) has been vigorously introduced in many clinical microbiology laboratories for the rapid and accurate identification of bacteria and fungi. In fact, the implementation of this methodology can be considered a revolution in these laboratories. In addition to microbial identification, MALDI-TOF MS is being used for the detection of some mechanisms of antibiotic resistance and for the molecular typing of bacteria. A number of current and future applications that increase the versatility of this methodology may also be mentioned. Among these are its direct application on clinical samples, the detection of toxins or specific microbial antigens, and its application in the fields of virology and parasitology.

  5. Tandem mass spectrometry of low solubility polyamides.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Afonso, Carlos; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-01-15

    The structural characterization of polyamides (PA) was achieved by tandem mass spectrometry (MS/MS) with a laser induced dissociation (LID) strategy. Because of interferences for precursor ions selection, two chemical modifications of the polymer end groups were proposed as derivatization strategies. The first approach, based on the addition of a trifluoroacetic acid (TFA) molecule, yields principally to complementary bn and yn product ions. This fragmentation types, analogous to those obtained with peptides or other PA, give only poor characterization of polymer end-groups [1]. A second approach, based on the addition of a basic diethylamine (DEA), permits to fix the charge and favorably direct the fragmentation. In this case, bn ions were not observed. The full characterization of ω end group structure was obtained, in addition to the expected yn and consecutive fragment ions. PMID:24370089

  6. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  7. Tandem mass spectrometry of low solubility polyamides.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Afonso, Carlos; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-01-15

    The structural characterization of polyamides (PA) was achieved by tandem mass spectrometry (MS/MS) with a laser induced dissociation (LID) strategy. Because of interferences for precursor ions selection, two chemical modifications of the polymer end groups were proposed as derivatization strategies. The first approach, based on the addition of a trifluoroacetic acid (TFA) molecule, yields principally to complementary bn and yn product ions. This fragmentation types, analogous to those obtained with peptides or other PA, give only poor characterization of polymer end-groups [1]. A second approach, based on the addition of a basic diethylamine (DEA), permits to fix the charge and favorably direct the fragmentation. In this case, bn ions were not observed. The full characterization of ω end group structure was obtained, in addition to the expected yn and consecutive fragment ions.

  8. [Application of mass spectrometry in mycology].

    PubMed

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. PMID:27389289

  9. Electrostatic-spray ionization mass spectrometry.

    PubMed

    Qiao, Liang; Sartor, Romain; Gasilova, Natalia; Lu, Yu; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2012-09-01

    An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis. PMID:22876737

  10. Mass spectrometry and Web 2.0.

    PubMed

    Murray, Kermit K

    2007-10-01

    The term Web 2.0 is a convenient shorthand for a new era in the Internet in which users themselves are both generating and modifying existing web content. Several types of tools can be used. With social bookmarking, users assign a keyword to a web resource and the collection of the keyword 'tags' from multiple users form the classification of these resources. Blogs are a form of diary or news report published on the web in reverse chronological order and are a popular form of information sharing. A wiki is a website that can be edited using a web browser and can be used for collaborative creation of information on the site. This article is a tutorial that describes how these new ways of creating, modifying, and sharing information on the Web are being used for on-line mass spectrometry resources.

  11. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents. PMID:19241065

  12. New Types of Ionization Sources for Mass Spectrometry

    SciTech Connect

    2008-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle (Contractor) and MDS Sciex (Participant) and ESA, Inc. (Participant) is to research, develop and apply new types of ionization sources and sampling/inlet systems for analytical mass spectrometry making use of the Participants state-of-the-art atmospheric sampling mass spectrometry electrochemical cell technology instrumentation and ancillary equipment. The two overriding goals of this research project are: to understand the relationship among the various instrumental components and operational parameters of the various ion sources and inlet systems under study, the chemical nature of the gases, solvents, and analytes in use, and the nature and abundances of the ions ultimately observed in the mass spectrometer; and to develop new and better analytical and fundamental applications of these ion sources and inlet systems or alternative sources and inlets coupled with mass spectrometry on the basis of the fundamental understanding obtained in Goal 1. The end results of this work are expected to be: (1) an expanded utility for the ion sources and inlet systems under study (such as the analysis of new types of analytes) and the control or alteration of the ionic species observed in the gas-phase; (2) enhanced instrument performance as judged by operational figures-of-merit such as dynamic range, detection limits, susceptibility to matrix signal suppression and sensitivity; and (3) novel applications (such as surface sampling with electrospray) in both applied and fundamental studies. The research projects outlined herein build upon work initiated under the previous CRADA between the Contractor and MDS Sciex on ion sources and inlet systems for mass spectrometry. Specific ion source and inlet systems for exploration of the fundamental properties and practical implementation of these principles are given.

  13. Second interlaboratory comparison study for the analysis of 239Pu in synthetic urine at the microBq (-100 aCi) level by mass spectrometry

    SciTech Connect

    McCurdy, D; Lin, Z; Inn, K W; Bell III, R; Wagner, S; Efurd, D W; Steiner, R; Duffy, C; Hamilton, T F; Brown, T A; Marchetti, A A

    2005-01-28

    As a follow up to the initial 1998 intercomparison study, a second study was initiated in 2001 as part of the ongoing evaluation of the capabilities of various ultra-sensitive methods to analyze {sup 239}Pu in urine samples. The initial study was sponsored by the Department of Energy, Office of International Health Programs to evaluate and validate new technologies that may supersede the existing fission tract analysis (FTA) method for the analysis of {sup 239}Pu in urine at the {micro}Bq/l level. The ultra-sensitive techniques evaluated in the second study included accelerator mass spectrometry (AMS) by LLNL, thermal ionization mass spectrometry (TIMS) by LANL and FTA by the University of Utah. Only the results for the mass spectrometric methods will be presented. For the second study, the testing levels were approximately 4, 9, 29 and 56 {micro}Bq of {sup 239}Pu per liter of synthetic urine. Each test sample also contained {sup 240}Pu at a {sup 240}Pu/{sup 239}Pu atom ratio of {approx}0.15 and natural uranium at a concentration of 50 {micro}Bq/ml. From the results of the two studies, it can be inferred that the best performance at the {micro}Bq level is more laboratory specific than method specific. The second study demonstrated that LANL-TIMS and LLNL-AMS had essentially the same quantification level for both isotopes. Study results for bias and precision and acceptable performance compared to ANSI N13.30 and ANSI N42.22 have been compiled.

  14. Electrospray Ionization Mass Spectrometry of hexanitrohexaazaisowurtzitane (CL-20)

    SciTech Connect

    Campbell, James A.; Szecsody, Jim E.; Devary, Brooks J.; Valenzuela, Blandina R.

    2007-09-03

    Hexanitrohexaazaisowurtzitane, (C6H6N12O12, MW 438) {CL-20}, is a high-energy propellent that has been recently developed and successfully tested (Nielsen et al. 1998). CL-20 releases more energy on ignition and is more stable to accidental detonation than currently used energetic materials. It is expected to replace many of the energetic materials currently being used by the Department of Defense (DoD). The EPA method 8330 (EPA 1997) for the analysis of explosives and metabolites in soils calls for the use of UV/Vis detection. High performance liquid chromatography has been used to quantify CL-20 and precursor concentration (Bazaki et al. 1998`) at relatively high concentrations. Fourier transform infrared (FTIR) spectroscopy has been used to identify different crystal forms of CL-20 (4 isomers; Kim et al. 1998). Campbell et al. (1997) utilized particle beam mass spectrometry for the analysis of enzymatic degradation of explosives. Introduction and recent improvements of ionization techniques such as electrospray (ES) have allowed the mass spectrometer to become more widely used in liquid chromatography. Schilling(1996) also examined explosive components and metabolites using electrospray (ES) and atmospheric pressure chemical ionization (APCI) liquid chromatography/mass spectrometry (LC/MS). Schilling’s results showed that compared to thermospray LC/MS, APCI and ES were more sensitive than thermospray by at least an order of magnitude. 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 10 nitroso-RDX metabolites, and other munitions in ground water have been analyzed using solid phase extraction and isotope dilution liquid chromatography-APCI mass spectrometry (Cassada et al. 1999). The method detection limits indicate that nitramine and nitroaromatic compounds can be routinely determined in ground water samples using electrospray LC/MS with concentration techniques utilizing solid-phase extraction. Miller et al. (1996) studied nitrated explosives with mobile phase

  15. Characterization of individual particles in gaseous media by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  16. Multidimensional mass spectrometry-based shotgun lipidomics.

    PubMed

    Wang, Miao; Han, Xianlin

    2014-01-01

    Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) has become a foundational analytical technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered content and/or composition of lipid classes, subclasses, and individual molecular species induced by diseases, genetic manipulations, drug treatments, and aging, among others. Herein, we briefly discuss the principles underlying this technology and present a protocol for routine analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of biological samples. In particular, lipid sample preparation from a variety of biological materials, which is one of the key components of MDMS-SL, is described in detail. The protocol for mass spectrometric analysis can readily be expanded for analysis of other lipid classes not mentioned as long as appropriate sample preparation is conducted, and should aid researchers in the field to better understand and manage the technology for analysis of cellular lipidomes. PMID:25270931

  17. Compressed sensing in imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-12-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section.

  18. Mass spectrometry for rapid characterization of microorganisms.

    PubMed

    Demirev, Plamen A; Fenselau, Catherine

    2008-01-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed. PMID:20636075

  19. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment--A multimedia environmental study.

    PubMed

    Barkley, J; Bunch, J; Bursey, J T; Castillo, N; Cooper, S D; Davis, J M; Erickson, M D; Harris, B S; Kirkpatrick, M; Michael, L C; Parks, S P; Pellizzari, E D; Ray, M; Smith, D; Tomer, K B; Wagner, R; Zweidinger, R A

    1980-04-01

    As part of a study to make a comparative analysis of selected halogenated compounds in man and the environmental media, a quantitative gas chromatography mass spectrometric analysis of the levels of the halogenated compounds found in the breath, blood and urine of an exposed population (Old Love Canal area, Niagara, New York) and their immediate environment (air and water) was undertaken. In addition, levels of halogenated hydrocarbons in air samples taken in the general Buffalo, Niagara Falls area were determined. PMID:7448328

  20. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment--A multimedia environmental study.

    PubMed

    Barkley, J; Bunch, J; Bursey, J T; Castillo, N; Cooper, S D; Davis, J M; Erickson, M D; Harris, B S; Kirkpatrick, M; Michael, L C; Parks, S P; Pellizzari, E D; Ray, M; Smith, D; Tomer, K B; Wagner, R; Zweidinger, R A

    1980-04-01

    As part of a study to make a comparative analysis of selected halogenated compounds in man and the environmental media, a quantitative gas chromatography mass spectrometric analysis of the levels of the halogenated compounds found in the breath, blood and urine of an exposed population (Old Love Canal area, Niagara, New York) and their immediate environment (air and water) was undertaken. In addition, levels of halogenated hydrocarbons in air samples taken in the general Buffalo, Niagara Falls area were determined.

  1. Potential of mass spectrometry metabolomics for chemical food safety.

    PubMed

    Gallart-Ayala, Hector; Chéreau, Sylvain; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2015-01-01

    This review aims to describe the most significant applications of mass spectrometry-based metabolomics in the field of chemical food safety. A particular discussion of all the different analytical steps involved in the metabolomics workflow (sample preparation, mass spectrometry analytical platform and data processing) will be addressed.

  2. Simultaneous quantification of two canthinone alkaloids of Picrasma quassioides in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study.

    PubMed

    Shi, Yuanyuan; Hong, Chunyan; Xu, Jian; Yang, Xiaoling; Xie, Ning; Feng, Feng; Liu, Wenyuan

    2015-04-01

    Picrasma quassioides (D. Don) Benn. is used in traditional Chinese medicine for the treatment of inflammation. Characteristic components of the medicinal extract are canthinone alkaloids. In this study, a sensitive and rapid liquid chromatography with tandem mass spectrometry method has been developed for simultaneous quantification of two major canthinone alkaloids, 5-hydroxy-4-methoxycanthin-6-one and 4,5-dimethoxycanthin-6-one, in rat plasma after oral administration of P. quassioides extract (200 mg/kg). The chromatographic separation was performed on a C18 column using acetonitrile-aqueous 0.1% formic acid (90:10, v/v) as the mobile phase. Plasma samples were prepared for analysis using a simple liquid-liquid extraction with ethyl acetate. Analytes were detected using tandem mass spectrometry in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range 1.25-900 ng/mL for 5-hydroxy-4-methoxycanthin-6-one and 0.5-800 ng/mL for 4,5-dimethoxycanthin-6-one with satisfactory intra- and inter-day precision, accuracy and recovery. Samples were stable under the conditions tested. The pharmacokinetic profiles of the analytes in rats showed that both canthinones were rapidly absorbed and that 4,5-dimethoxycanthin-6-one was eliminated faster than 5-hydroxy-4-methoxycanthin-6-one.

  3. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry

    PubMed Central

    Li, Deyu; Delaney, James C.; Page, Charlotte M.; Chen, Alvin S.; Wong, Cintyu; Drennan, Catherine L.; Essigmann, John M.

    2010-01-01

    DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N 6-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol) of 3,N 4-ethenocytosine are reported for the first time. It is also demonstrated that O 6-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro. PMID:21048928

  4. Mass spectrometry as a quantitative tool in plant metabolomics.

    PubMed

    Jorge, Tiago F; Mata, Ana T; António, Carla

    2016-10-28

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  5. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    PubMed

    Pedro, Liliana; Quinn, Ronald J

    2016-01-01

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns. PMID:27483215

  6. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    PubMed Central

    Sethi, Manveen K.; Fanayan, Susan

    2015-01-01

    Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS)-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers. PMID:26690136

  7. Mass spectrometry as a quantitative tool in plant metabolomics.

    PubMed

    Jorge, Tiago F; Mata, Ana T; António, Carla

    2016-10-28

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644967

  8. Applications of Mass Spectrometry to Lipids and Membranes

    PubMed Central

    Harkewicz, Richard; Dennis, Edward A.

    2012-01-01

    Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the “comprehensive lipidomics analysis by separation simplification” (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues. PMID:21469951

  9. Study of the phase I and phase II metabolism of a mixture containing multiple tanshinones using liquid chromatography/tandem mass spectrometry.

    PubMed

    Liu, Jie; Wu, Jianlin; Wang, Xiaoru; Cai, Zongwei

    2007-01-01

    Metabolism of a mixture containing four dominant components in lipid solubles of Danshen was studied both in vitro and in vivo. The parent compounds and their metabolites were simultaneously detected by using liquid chromatography coupled with ion trap mass spectrometry. The results indicated that oxidation was the major pathway in phase I metabolism. O-Glucuronidation of the hydroxylated tanshinones was identified in the rat urine samples collected after the oral administration of the tanshinone components. The metabolic rates obtained from the in vitro metabolism study of each individual component were significantly different from those obtained from the incubation study of the four components in a cassette. Metabolite identification showed that tanshinone IIA and tanshinone I were the major metabolites of cryptotanshinone and dihydrotanshinone I, respectively. The obtained results demonstrated the metabolic change between the active components in Danshen and suggested the need to study the multiple components or even the extract from the herbal medicines. PMID:17694593

  10. Product gas evolution above planar microstructured model catalysts--A combined scanning mass spectrometry, Monte Carlo, and Computational Fluid Dynamics study

    SciTech Connect

    Roos, M.; Bansmann, J.; Behm, R. J.; Zhang, D.; Deutschmann, O.

    2010-09-07

    The transport and distribution of reaction products above catalytically active Pt microstructures was studied by spatially resolved scanning mass spectrometry (SMS) in combination with Monte Carlo simulation and fluid dynamics calculations, using the oxidation of CO as test reaction. The spatial gas distribution above the Pt fields was measured via a thin quartz capillary connected to a mass spectrometer. Measurements were performed in two different pressure regimes, being characteristic for ballistic mass transfer and diffusion involving multiple collisions for the motion of CO{sub 2} product molecules between the sample and the capillary tip, and using differently sized and shaped Pt microstructures. The tip height dependent lateral resolution of the SMS measurements as well as contributions from shadowing effects, due to the mass transport limitations between capillary tip and sample surface at close separations, were evaluated and analyzed. The data allow to define measurement and reaction conditions where effects induced by the capillary tip can be neglected (''minimal invasive measurements'') and provide a basis for the evaluation of catalyst activities on microstructured model systems, e.g., for catalyst screening or studies of transport effects.

  11. Study of the Interactions Between Transition Metal Ions and Peptides by CALIFORNIUM-252 Plasma Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hu, Zhaohong

    This dissertation focuses on the study of interactions between transition metal ions (Cu(II), Zn(II), Pd(II), Pt(II)) and peptides (bradykinins and angiotensins). Chapter I provides an overview on the fundamental issues related to and techniques used for studying transition metal ion -peptide/protein complexes. It also reviews different mass spectroscopic techniques used for metal ion-peptide studies. Chapter II delineates the principle of ^{252 }Cf-PDMS instrumentation and the sample preparation methods utilized for this dissertation research. In order to study metal ion-peptide complexes with PDMS, it is essential to define the relationship between complex structures identified from PD mass spectra and complexes formed in solution phase. Chapter III includes the studies of the effects of solution conditions on the detection of metal ion-peptide complexes in PDMS. Solution pH is the most important factor for determining the formation of a complex. Reaction time, reactant concentration, and reaction temperature all display distinct influences on PDMS results. It demonstrates that the PDMS results are closely correlated with the complexes pre-formed in aqueous solution. Chapter IV provides ample spectroscopic data on peptides and their metal ion complexes. The metal ion -containing molecular ions observed provide information on numbers of metal ion-binding sites in a peptide and metal ion-affinity of the peptide. By analyzing fragmentation patterns, amino acid residues and functional groups involved in metal ion binding in a peptide can be identified.

  12. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  13. A Metabolomics Profiling Study in Hand-Foot-and-Mouth Disease and Modulated Pathways of Clinical Intervention Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

    PubMed Central

    Lu, Cheng; Liu, Xinru; Ding, Xiaorong; Chen, Xiao; Fan, Haiwei; Liu, Yunqiang; Xie, Ning; Tan, Yong; Ko, Joshua; Zhang, Weidong; Lu, Aiping

    2013-01-01

    Hand-foot-and-mouth disease (HFMD), with poorly understood pathogenesis, has become a major public health threat across Asia Pacific. In order to characterize the metabolic changes of HFMD and to unravel the regulatory role of clinical intervention, we have performed a metabolomics approach in a clinical trial. In this study, metabolites profiling was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform from the HFMD clinical patient samples. The outcome of this study suggested that 31 endogenous metabolites were mainly involved and showed marked perturbation in HFMD patients. In addition, combination therapy intervention showed normalized tendency in HFMD patients in differential pathway. Taken together, these results indicate that metabolomics approach can be used as a complementary tool for the detection and the study of the etiology of HFMD. PMID:23533509

  14. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  15. The use of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry to demonstrate progesterone treatment in bovines.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2016-06-01

    Currently, no analytical method is available to demonstrate progesterone administration in biological samples collected in rearing animals, and therefore, tracking the abuse of this popular growth promoter is arduous. In this study, a method is presented to reveal progesterone (PG) treatment on the basis of carbon isotope measurement of 5β-pregnane-3α, 20α-diol (BAA-PD), a major PG metabolite excreted in bovine urine, by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS). 5-Androstene-3β,17α-diol (AEdiol) is used as endogenous reference compound. Intermediate precisions (n=11) of 0.56‰ and 0.68‰ have been determined for AEdiol and BAA-PD, respectively. The analytical method was used for the very first time to successfully differentiate urine samples collected in treated and untreated animals.

  16. The use of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry to demonstrate progesterone treatment in bovines.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2016-06-01

    Currently, no analytical method is available to demonstrate progesterone administration in biological samples collected in rearing animals, and therefore, tracking the abuse of this popular growth promoter is arduous. In this study, a method is presented to reveal progesterone (PG) treatment on the basis of carbon isotope measurement of 5β-pregnane-3α, 20α-diol (BAA-PD), a major PG metabolite excreted in bovine urine, by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS). 5-Androstene-3β,17α-diol (AEdiol) is used as endogenous reference compound. Intermediate precisions (n=11) of 0.56‰ and 0.68‰ have been determined for AEdiol and BAA-PD, respectively. The analytical method was used for the very first time to successfully differentiate urine samples collected in treated and untreated animals. PMID:27157423

  17. Comparative study of matrices for their use in the rapid screening of anabolic steroids by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Galesio, M; Rial-Otero, R; Capelo-Martínez, J-L

    2009-06-01

    New data on sample preparation and matrix selection for the fast screening of androgenic anabolic steroids (AAS) by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is presented. The rapid screening of 15 steroids included in the World Anti-Doping Agency (WADA) prohibited list using MALDI was evaluated. Nine organic and two inorganic matrices were assessed in order to determine the best matrix for steroid identification in terms of ionisation yield and interference by characteristic matrix ions. The best results were achieved for the organic matrices 2-(4-hydroxyphenylazo)benzoic acid (HABA) and trans-3-indoleacrylic acid (IAA). Good signals for all the steroids studied were obtained for concentrations as low as 0.010 and 0.050 microg/mL on the MALDI sample plate for the HABA and IAA matrices, respectively. For these two matrices, the sensitivity achieved by MALDI is comparable with the sensitivity achieved by gas chromatography/mass spectrometry (GC/MS), which is the conventional technique used for AAS detection. Furthermore, the accuracy and precision obtained with MALDI are very good, since an internal mass calibration is performed with the matrix ions. For the inorganic matrices, laser fluences higher than those used with organic matrices are required to obtain good MALDI signals. When inorganic matrices were used in combination with glycerol as a dispersing agent, an important reduction of the background noise was observed. Urine samples spiked with the study compounds were processed by solid-phase extraction (SPE) and the screening was consistently positive.

  18. The 2012/2013 ABRF Proteomic Research Group Study: Assessing Longitudinal Intralaboratory Variability in Routine Peptide Liquid Chromatography Tandem Mass Spectrometry Analyses.

    PubMed

    Bennett, Keiryn L; Wang, Xia; Bystrom, Cory E; Chambers, Matthew C; Andacht, Tracy M; Dangott, Larry J; Elortza, Félix; Leszyk, John; Molina, Henrik; Moritz, Robert L; Phinney, Brett S; Thompson, J Will; Bunger, Maureen K; Tabb, David L

    2015-12-01

    Questions concerning longitudinal data quality and reproducibility of proteomic laboratories spurred the Protein Research Group of the Association of Biomolecular Resource Facilities (ABRF-PRG) to design a study to systematically assess the reproducibility of proteomic laboratories over an extended period of time. Developed as an open study, initially 64 participants were recruited from the broader mass spectrometry community to analyze provided aliquots of a six bovine protein tryptic digest mixture every month for a period of nine months. Data were uploaded to a central repository, and the operators answered an accompanying survey. Ultimately, 45 laboratories submitted a minimum of eight LC-MSMS raw data files collected in data-dependent acquisition (DDA) mode. No standard operating procedures were enforced; rather the participants were encouraged to analyze the samples according to usual practices in the laboratory. Unlike previous studies, this investigation was not designed to compare laboratories or instrument configuration, but rather to assess the temporal intralaboratory reproducibility. The outcome of the study was reassuring with 80% of the participating laboratories performing analyses at a medium to high level of reproducibility and quality over the 9-month period. For the groups that had one or more outlying experiments, the major contributing factor that correlated to the survey data was the performance of preventative maintenance prior to the LC-MSMS analyses. Thus, the Protein Research Group of the Association of Biomolecular Resource Facilities recommends that laboratories closely scrutinize the quality control data following such events. Additionally, improved quality control recording is imperative. This longitudinal study provides evidence that mass spectrometry-based proteomics is reproducible. When quality control measures are strictly adhered to, such reproducibility is comparable among many disparate groups. Data from the study are

  19. Mass Spectrometry Imaging: facts and perspectives from a non-mass spectrometrist point of view.

    PubMed

    Cameron, L C

    2012-08-01

    Mass Spectrometry Imaging (MSI, also called Imaging Mass Spectrometry) can be used to map molecules according to their chemical abundance and spatial distribution. This technique is not widely used in mass spectrometry circles and is barely known by other scientists. In this review, a brief overview of the mass spectrometer hardware used in MSI and some of the possible applications of this powerful technique are discussed. I intend to call attention to MSI uses from cell biology to histopathology for biological scientists who have little background in mass spectrometry. MSI facts and perspectives are presented from a non-mass spectrometrist point of view. PMID:22713555

  20. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  1. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  2. Determination of epitopes by mass spectrometry.

    PubMed

    Hager-Braun, Christine; Tomer, Kenneth B

    2004-01-01

    As a response to an infection, the immune system produces antibodies. The determination of the antigenic structure recognized by the antibody through epitope mapping provides information about the interaction between antigen and antibody for the diagnosis of a disease on a molecular level, for characterizing the pathogenesis of the infectious material, and for the development of interfering drugs or preventative vaccines. Here we present the determination of the fine structure of the linear epitope located on the gp41 protein of the human immunodeficiency virus recognized by the monoclonal antibody 2F5. In this approach we coupled the antigen SOSgp140 to the antibody 2F5, which was covalently linked to an Fc-specific antibody immobilized on cyanogen bromide (CNBr)-activated Sepharose beads. Digestion of the antigen with endoproteinase LysC resulted in an affinity-bound peptide whose fine structure was characterized by digestion with carboxypeptidase Y and aminopeptidase M. All steps of this method were monitored by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). The epitope recognized by 2F5 was identified to be the 16-mer peptide with the sequence NEQELLELDKWASLWN.

  3. 1912: a Titanic year for mass spectrometry.

    PubMed

    Downard, Kevin M

    2012-08-01

    The 1912 sinking of the Titanic continues to capture the imagination and fascination of the general public. The year coincides with the birth of mass spectrometry that began with the cathode ray experiments performed by Joseph John (J. J.) Thomson in Cambridge. Modifications made to Thomson's cathode ray apparatus by Francis William Aston, resulted in an increase in the brightness of the positive rays that aided their detection. This led to the discovery of heavy isotopes for many of the chemical elements in the ensuing decades. As the discovery of (22) Ne was reported in 1913, another of Thomson's students was taking part in an expedition to help save future ocean liners from the fate of the Titanic. Geoffrey Ingram Taylor took part in the first ice patrol of the North Atlantic in 1913 aboard the SS Scotia to investigate the formation and position of icebergs. This article, 100 years on, describes Taylor's work and its impact on safe ocean passage across the Atlantic.

  4. Detection of Gunshot Residues Using Mass Spectrometry

    PubMed Central

    Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. PMID:24977168

  5. Methylenedioxy designer drugs: mass spectrometric characterization of their glutathione conjugates by means of liquid chromatography-high-resolution mass spectrometry/mass spectrometry and studies on their glutathionyl transferase inhibition potency.

    PubMed

    Meyer, Markus R; Richter, Lilian H J; Maurer, Hans H

    2014-04-25

    Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the β-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no

  6. Pharmacokinetic studies of ginkgolide K in rat plasma and tissues after intravenous administration using ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Fan, Zhi-Ying; Liu, Xin-Guang; Guo, Ru-Zhou; Dong, Xin; Gao, Wen; Li, Ping; Yang, Hua

    2015-04-15

    Ginkgolide K (GK), a derivative compound of ginkgolide B, has been recently isolated from the leaves of Ginkgo biloba. It is a powerful natural platelet activate factor (PAF) antagonist, and also has obvious protect effects for cerebral ischemia. However, no reports have been described for the pharmacokinetic study of GK. In this study, a simple, sensitive and reliable ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the determination of GK in rat plasma and tissues. Biological samples were pretreated by an efficient liquid-liquid extraction with ethyl acetate. The chromatographic separation was achieved on an Agilent ZORBAX SB-Aq column (4.6 mm × 50 mm, 1.8 μm) with a mobile phase of 0.5% aqueous formic acid (A)-menthol (B). Quantitation was carried out on a triple quadruple mass spectrometry using positive electrospray ionization in multiple reaction monitoring mode. Diazepam was used as internal standard (IS). The ion transitions monitored were set at m/z 407.10 → 389.20 and m/z 285.08 → 193.10 for GK and IS, respectively. The developed method was fully validated and successfully applied to the pharmacokinetics and tissue distribution study of GK after intravenous administration. The current results have indicated that pharmacokinetic parameters of GK vary in a dose-dependent manner with rapid elimination in 4h. The major distribution tissues of GK in rats were liver and kidney. This study would provide critical information to promote the future study of GK.

  7. Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS).

    PubMed

    Naik, N H; Gore, G M; Gandhe, B R; Sikder, A K

    2008-11-30

    The thermal decomposition study of CL-20 (hexanitrohexaazaisowurtzitane) using pyrolysis GC/MS was carried out mainly by electron impact (EI) mode. Chemical ionization (CI) mode was used for further confirmation of identified species. Mass spectrum of CL-20 decomposition products predominantly revealed fragments with m/z 81 and 96 corresponding to C(4)H(5)N(2)(+) and C(4)H(4)N(2)O(+) ions, respectively. The total ion chromatogram (TIC) of CL-20 pyrolysis shows peak within first 2 min due to the presence of low molecular weight gases. Peaks corresponding to several other products were also observed including the atmospheric gases. Cyanogen formation (C(2)N(2), m/z 52) observed to be enriched at the scan number 300-500. The low molecular mass range decomposition products formed by cleavage of C-N ring structure were found in majority. Additional structural information was sought by employing chemical ionization mode. The data generated during this study was instrumented in determining decomposition pathways of CL-20.

  8. Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS).

    PubMed

    Naik, N H; Gore, G M; Gandhe, B R; Sikder, A K

    2008-11-30

    The thermal decomposition study of CL-20 (hexanitrohexaazaisowurtzitane) using pyrolysis GC/MS was carried out mainly by electron impact (EI) mode. Chemical ionization (CI) mode was used for further confirmation of identified species. Mass spectrum of CL-20 decomposition products predominantly revealed fragments with m/z 81 and 96 corresponding to C(4)H(5)N(2)(+) and C(4)H(4)N(2)O(+) ions, respectively. The total ion chromatogram (TIC) of CL-20 pyrolysis shows peak within first 2 min due to the presence of low molecular weight gases. Peaks corresponding to several other products were also observed including the atmospheric gases. Cyanogen formation (C(2)N(2), m/z 52) observed to be enriched at the scan number 300-500. The low molecular mass range decomposition products formed by cleavage of C-N ring structure were found in majority. Additional structural information was sought by employing chemical ionization mode. The data generated during this study was instrumented in determining decomposition pathways of CL-20. PMID:18468788

  9. Speciation studies on DTPA using the complementary nature of electrospray ionization mass spectrometry and time-resolved laser-induced fluorescence.

    PubMed

    Moulin, Christophe; Amekraz, Badia; Steiner, Valerie; Plancque, Gabriel; Ansoborlo, Eric

    2003-09-01

    Decorporation of radionuclides is of continuous interest in order to reduce doses in case of occupational or accidental human exposure. In the present study, insights into the non-covalent interactions that hold the well-known chelating agent DTPA (diethylenetriaminepentaacetic acid) with inorganic elements of interest, such as europium and strontium, and their ability to form stable complexes, are investigated with two spectroscopic techniques, i.e., electrospray ionization mass spectrometry (ESI-MS) and time-resolved laser-induced fluorescence (TRLIF). First investigations are on DTPA and europium alone and end with a complete study of the Eu-DTPA system. The pH variation allows one to readily investigate whether different species (protonated, hydrolyzed, etc.) exist in the pH range 2-9 and evaluate the stoichiometry and conditional stability constant for the Eu-DTPA complex. Additional experiments by ESI-MS are reported for Sr(II) in interaction with DTPA and EDTA.

  10. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  11. Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kantiani, Lina; Farré, Marinella; Asperger, Danijela; Rubio, Fernando; González, Susana; López de Alda, Maria J.; Petrović, Mira; Shelver, Weilin L.; Barceló, Damià

    2008-10-01

    SummaryFor the first time, the occurrence of triclosan and its metabolite methyl-triclosan was investigated in a typical Mediterranean area using a two-step methodology based on screening using a magnetic particle immunoassay (IA) and confirmatory analysis by solid phase extraction (SPE) followed by gas chromatography-mass spectrometry (GC-MS). In this study, 95 environmental samples were analyzed. A commercial immunoassay was assessed for use in the different types of water selected for this study. A large monitoring study was performed on the influent and the effluent of eight wastewater treatment plants (WWTPs), water samples from Ebro and Llobregat rivers, and drinking water. All wastewater samples tested in this study (influents and effluents) showed the presence of triclosan, with concentrations for raw influents being high (10 μg/L as average value). The percentages of triclosan removal for the WWTPs were evaluated (30-70%) along the different treatment processes showing that the best removal rates were obtained by the processes equipped with membrane bioreactors (MBRs). However, important concentrations of triclosan were detected even after treatment by MBRs. The presence of this biocide was confirmed in 50% of the river samples analyzed. Twenty two drinking water samples from the Barcelona city area were investigated, and in this case no triclosan was detected. Due to its properties and the widespread usage of triclosan, there is a need for monitoring and controlling the amounts present in wastewater effluents, river water, drinking water catchments areas, and drinking water. To this end, we present a feasible methodology using a magnetic particle-based immunoassay as a screening, followed by confirmatory analysis using solid phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS).

  12. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  13. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity.

    PubMed

    Smith, David; Wang, Tianshu; Pysanenko, Andriy; Spanel, Patrik

    2008-01-01

    A study has been carried out, involving three healthy volunteers, of the ammonia levels in breath exhaled via the mouth and via the nose and in the static oral cavity using on-line, selected ion flow tube mass spectrometry (SIFT-MS), obviating the problems associated with sample collection of ammonia. The unequivocal conclusion drawn is that the ammonia appearing in the mouth-exhaled breath of the three volunteers is largely generated in the oral cavity and that the ammonia originating at the alveolar interface in the lungs is typically at levels less than about 100 parts-per-billion, which is a small fraction of the total breath ammonia. This leads to the recommendation that exhaled breath analyses should focus on nose-exhaled breath if the objective is to use breath analysis to investigate systemic, metabolic disease.

  14. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    NASA Astrophysics Data System (ADS)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  15. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry.

    PubMed

    Jiang, Zhenzuo; Liu, Yanan; Zhu, Yan; Yang, Jing; Sun, Lili; Chai, Xin; Wang, Yuefei

    2016-09-01

    Human milk, infant formula, pure milk and fermented milk as food products or dietary supplements provide a range of nutrients required to both infants and adults. Recently, a growing body of evidence has revealed the beneficial roles of short-chain fatty acids (SCFAs), a subset of fatty acids produced from the fermentation of dietary fibers by gut microbiota. The objective of this study was to establish a chromatographic fingerprint technique to investigate SCFAs in human milk and dairy products by gas chromatography coupled with mass spectrometry. The multivariate method for principal component analysis assessed differences between milk types. Human milk, infant formula, pure milk and fermented milk were grouped independently, mainly because of differences in formic acid, acetic acid, propionic acid and hexanoic acid levels. This method will be important for the assessment of SCFAs in human milk and various dairy products.

  16. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism.

    PubMed

    Chace, Donald H; Kalas, Theodore A; Naylor, Edwin W

    2002-01-01

    This review is intended to serve as a practical guide for geneticists to current applications of tandem mass spectrometry to newborn screening. By making dried-blood spot analysis more sensitive, specific, reliable, and inclusive, tandem mass spectrometry has improved the newborn detection of inborn errors of metabolism. Its innate ability to detect and quantify multiple analytes from one prepared blood specimen in a single analysis permits broad recognition of amino acid, fatty acid, and organic acid disorders. An increasing number of newborn screening programs are either utilizing or conducting pilot studies with tandem mass spectrometry. It is therefore imperative that the genetics community be familiar with tandem mass spectrometric newborn screening.

  17. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies.

    PubMed

    Liu, Zhao-Ying

    2012-12-01

    Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time-of-flight MS coupled with LC (LC-IT-TOF-MS) has successfully integrated ease of operation, compatibility with LC flow rates and data-dependent MS(n) with high mass accuracy and mass resolving power. The MS(n) and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC-IT-TOF-MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT-TOF instrument. Then, a general workflow for metabolite profiling using LC-IT-TOF-MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC-IT-TOF-MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies.

  18. Mass Spectrometry for Characterizing Plant Cell Wall Polysaccharides

    PubMed Central

    Bauer, Stefan

    2012-01-01

    Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns. PMID:22645587

  19. Quantitative Fourier transform ion cyclotron resonance mass spectrometry--the determination of creatinine by isotope dilution mass spectrometry.

    PubMed

    Bristow, Tony; Stokes, Peter; O'Connor, Gavin

    2005-01-01

    Accurate quantitation has been demonstrated on many different types of mass spectrometer. However, quantitative applications of Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) have been limited. In this study, the quantitative potential of FTICRMS has been investigated using an exact matching isotope dilution method for the determination of creatinine in serum. Creatinine is an important clinical biomarker and its measurement is used as an assessment of renal function. The quantitation of creatinine was selected because a high-accuracy high-performance liquid chromatography/mass spectrometry (HPLC/MS) determination using a triple quadrupole mass spectrometer has already been successfully developed in-house. Therefore, a direct comparison of the quantitative capability of FTICRMS could be made against an established method. The accuracy of the quantitation of creatinine was found to be equivalent to that obtained using LC/MS. However, the expanded measurement uncertainty (k = 2) was larger, at 6%, when using FTICRMS compared with 1% when using HPLC/MS with the triple quadrupole mass spectrometer.

  20. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.

    2004-12-01

    A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.

  1. Study of bis(bibenzyls) in bryophytes using electron ionization time-of-flight and electrospray ionization triple-quadrupole mass spectrometry.

    PubMed

    Guo, Huaifang; Xing, Jie; Xie, Chunfeng; Qu, Jianbo; Gao, Yanhui; Lou, Hongxiang

    2007-01-01

    A detailed analysis of mass spectra generated from bis(bibenzyl) compounds in bryophytes under electron ionization time-of-flight (EI-TOF) and electrospray ionization triple-quadrupole (ESI-TQ) mass spectrometry conditions is reported. Proposed structures of the fragment ions were obtained by tracking the functional groups of 15 bis(bibenzyls), the structures of which are similar except for some alkoxyl substituents and linkage sites of biphenyl ether bonds. The elucidation was aided by the use of accurate mass measurements. Attempts have been made to provide rational pathways for the formation of these fragment ions, and a generalized fragmentation mechanism is proposed. The bis(bibenzyls) mentioned in this study include three types according to their structure characteristics, i.e. one biphenyl ether bond (A-type), two biphenyl ether bonds (B-type), one biphenyl ether and one biphenyl bond (C-type). The three types display different EI-MS and ESI-MS/MS product profiles, by which the bis(bibenzyl) type and the number of alkoxyl substituents can be identified. Isomers of bis(bibenzyls) can be differentiated to some extent, while the linkage sites of biphenyl ether bonds are difficult to identify. The structure-fragmentation relationships will facilitate the characterization of other bis(bibenzyls) and this will be of value for the high-throughput screening of novel bis(bibenzyls) in bryophytes.

  2. Nano-liquid chromatography coupled to time-of-flight mass spectrometry for phenolic profiling: a case study in cranberry syrups.

    PubMed

    Contreras, María del Mar; Arráez-Román, David; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2015-01-01

    A new method based on nano-liquid chromatography coupled to time-of-flight mass spectrometry (nano-LC-TOF-MS) using lock-mass calibration was developed to facilitate the accurate and routine characterization and quantification of phenolic compounds. Thus, it was applied to study cranberry syrups, in which, using negative ionization mode, a total of nine phenolic compounds were unequivocally identified using standards and 38 tentatively taking into account their retention time, accurate mass (errors<5 ppm) data and isotope pattern, as well as literature. Among them, 13 compounds, belonging to flavonols and iridoids conjugated with phenolic acids, were reported for first time in cranberry or cranberry based-products. The analytical method was also validated using chlorogenic acid, p-coumaric acid, (+)-catechin, (-)-epicatechin, procyanidin A2, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, quercetin, and myricetin standards. In this way, the analytical method showed adequate linearity, with R(2) above 0.99, and acceptable values of intra- and inter-day repeatability of the retention time and peak area. The detection limits and quantification were between 1.0-15.6 ng mL(-1) and 2.0-62.5 ng mL(-1), respectively. The method can be extended to characterize phenolic compounds in other food and plant matrices, and as well biological samples. PMID:25476399

  3. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  4. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  5. Quantitative mass spectrometry of unconventional human biological matrices.

    PubMed

    Dutkiewicz, Ewelina P; Urban, Pawel L

    2016-10-28

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644966

  6. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  7. Measurement and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry.

    PubMed

    Hsieh, Yen-Ju; Lin, Lei-Chwen; Tsai, Tung-Hu

    2006-11-21

    The aim of the present study is to develop an automated blood sampling (ABS) method coupled to a liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method to evaluate the oral bioavailability of plumbagin in a conscious freely moving rat. Plumbagin, an herbal ingredient, was isolated from Plumbago zeylanica L. The separation was performed using a reversed phase C18 (150mmx4.6mm I.D.; 5microm) column and was eluted with the mobile phase of water-acetonitrile (40:60, v/v) at a flow-rate of 0.8ml/min. Multiple reaction monitoring (MRM) was used to monitor the transition of the deprotonated molecule m/z 187 [MH](-) to the product ion m/z 159 [MHCO](-) for the plumbagin analysis. The calibration curve was linear over the concentration range of 10-2000ng/ml with a coefficient estimation of 0.995. The intra- and inter-day variations (% relative standard deviation; RSD and % bias) of the assay for rat plasma samples were less than 17%. The limit of detection and the limit of quantification were 5 and 10ng/ml, respectively. Recovery of plumbagin from the rat plasma was about 80%. This LC-MS/MS method has been validated to study the pharmacokinetics of plumbagin in rats. The oral bioavailability (AUC(PO)/Dose(PO))/(AUC(IV)/Dose(IV)) of plumbagin was about 38.7+/-5%. PMID:16837255

  8. Top-Down Proteomics with Mass Spectrometry Imaging: A Pilot Study towards Discovery of Biomarkers for Neurodevelopmental Disorders

    PubMed Central

    Ye, Hui; Mandal, Rakesh; Catherman, Adam; Thomas, Paul M.; Kelleher, Neil L.; Ikonomidou, Chrysanthy; Li, Lingjun

    2014-01-01

    In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI). Our goal was to study changes in protein expression in postnatal day 10 (P10) rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801). Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19), cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP) HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers. PMID:24710523

  9. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  10. Electron Transfer Dissociation Mass Spectrometry of Hemoglobin on Clinical Samples

    NASA Astrophysics Data System (ADS)

    Coelho Graça, Didia; Lescuyer, Pierre; Clerici, Lorella; Tsybin, Yury O.; Hartmer, Ralf; Meyer, Markus; Samii, Kaveh; Hochstrasser, Denis F.; Scherl, Alexander

    2012-10-01

    A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.

  11. Peculiarities of data interpretation upon direct tissue analysis by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vtaliy; Kononikhin, Aleksey; Starodubtseva, Nataliia; Kostyukevich, Yury; Popov, Igor; Frankevich, Vladimir; Nikolaev, Eugene

    2016-01-01

    The importance of high-resolution mass spectrometry for the correct data interpretation of a direct tissue analysis is demonstrated with an example of its clinical application for an endometriosis study. Multivariate analysis of the data discovers lipid species differentially expressed in different tissues under investigation. High-resolution mass spectrometry allows unambiguous separation of peaks with close masses that correspond to proton and sodium adducts of phosphatidylcholines and to phosphatidylcholines differing in double bond number. PMID:27553733

  12. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  13. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    PubMed

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org . PMID:21063949

  14. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  15. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, T.; Booth, M.; Benyezzar, M.; Bacak, A.; Alfarra, M. R. R.; Topping, D. O.; Percival, C.

    2015-12-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  16. Quantification of Photocyanine in Human Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in a Pharmacokinetic Study

    PubMed Central

    Bi, Bing-Tian; Zou, Ben-Yan; Deng, Li-Ting; Zhan, Jing; Liao, Hai; Feng, Kun-Yao; Li, Su

    2014-01-01

    Photocyanine is a novel anticancer drug. Its pharmacokinetic study in cancer patients is therefore very important for choosing doses, and dosing intervals in clinical application. A rapid, selective and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for the determination of photocyanine in patient serum. Sample preparation involved one-step protein precipitation by adding methanol and N,N-dimethyl formamide to 0.1 mL serum. The detection was performed on a triple quadrupole tandem mass spectrometer operating in multiple reaction-monitoring (MRM) mode. Each sample was chromatographed within 7 min. Linear calibration curves were obtained for photocyanine at a concentration range of 20–2000 ng/mL (r > 0.995), with the lower limit of quantification (LLOQ) being 20 ng/mL. The intrabatch accuracy ranged from 101.98% to 107.54%, and the interbatch accuracy varied from 100.52% to 105.62%. Stability tests showed that photocyanine was stable throughout the analytical procedure. This study is the first to utilize the HPLC-MS/MS method for the pharmacokinetic study of photocyanine in six cancer patients who had received a single dose of photocyanine (0.1 mg/kg) administered intravenously. PMID:25050190

  17. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion studies of Dactylicapnos scandens in rats.

    PubMed

    Guo, Changchuan; Jiang, Yan; Li, Li; Hong, Lan; Wang, Yuqing; Shen, Qian; Lou, Yan; Hu, Haihong; Zhou, Hui; Yu, Lushan; Jiang, Huidi; Zeng, Su

    2013-02-23

    The herbal ingredients of isocorydine and protopine were isolated from Dactylicapnos scandens. This study was aimed at developing a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to quantify isocorydine and protopine in rat plasma and tissues for pharmacokinetic, tissue distribution and excretion studies. Biological samples were processed with ethyl acetate extraction, and corydaline was chosen as the internal standard (IS). The analytes were separated by a C(18) column and detected with a triple quadrupole mass spectrometer using positive ion ESI in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 342.0→278.9 for isocorydine, 354.1→188.0 for protopine and 370.0→192.0 for IS, respectively. Excellent linearity was observed over the concentration range between 10 and 3000 ng/mL for isocorydine and 10-300 ng/mL for protopine. The lower limit of quantification (LLOQ) was 10 ng/mL for both isocorydine and protopine. This novel method was rapid, accurate, high sensitive and high selective. It was successfully applied to the pharmacokinetic, tissue distribution and excretion studies of D. scandens. These preclinical data of D. scandens would be useful for the clinical reference. PMID:23245239

  18. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  19. Recent applications of mass spectrometry in forensic toxicology

    NASA Astrophysics Data System (ADS)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  20. Molecular Beam Mass Spectrometry (MBMS) (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    This fact sheet provides information about Molecular Beam Mass Spectrometry (MBMS) capabilities and applications at NREL's National Bioenergy Center. NREL has six MBMS systems that researchers and industry partners can use to understand thermochemical biomass conversion and biomass composition recalcitrance.

  1. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues (2010 Review)

    EPA Science Inventory

    This biennial review covers developments in environmental mass spectrometry for emerging environmental contaminants over the period of 2008-2009. A few significant references that appeared between January and February 2010 are also included. Analytical Chemistry’s current polic...

  2. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    SciTech Connect

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  3. Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, K. M.; Beaver, M. R.; St. Clair, J. M.; Crounse, J. D.; Paulot, F.; Wennberg, P. O.

    2011-08-01

    Chemical ionization mass spectrometry (CIMS) enables online, fast, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are capable of the measurement of hydroxyacetone, an analyte with minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. Measurement of hydroxyacetone and glycolaldehyde by these methods was demonstrated during the ARCTAS-CARB 2008 campaign and the BEARPEX 2009 campaign. Enhancement ratios of these compounds in ambient biomass burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

  4. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  5. Two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to study the excretion and metabolic interaction of edaravone and taurine in rats.

    PubMed

    Tang, Dao-quan; Zheng, Xiao-xiao; Li, Yin-jie; Bian, Ting-ting; Yu, Yan-yan; Du, Qian; Yang, Dong-zhi; Jiang, Shui-shi

    2014-11-01

    In this study, two independent and complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were respectively developed and validated for the determination of edaravone or taurine in rat urine, feces and bile after intravenous administration, using 3-methyl-l-p-tolyl-5-pyrazolone and sulfanilic acid as the internal standards (IS). Edaravone was separated on an Agilent Eclipse Plus C18 column (100×2.1 mm, 3.5 μm) using methanol and water (containing 5 mM ammonium formate and 0.02% formic acid) as mobile phase, while taurine was performed on a Waters Atlantis HILIC Silica column (150×2.1 mm, 3 μm) using acetonitrile and water (containing 5mM ammonium formate and 0.2% formic acid) as mobile phase. The mass analysis was performed in a Triple Quadrupole mass spectrometer via multiple reaction monitoring (MRM) with negative ionization mode. The optimized mass transition ion pairs (m/z) for quantification were 173.1→92.2 and 187.2→106.0 for edaravone and its IS, 124.1→80.0 and 172.0→80.0 for taurine and its IS, respectively. The validated methods have been successfully applied to the excretion and metabolism interaction study of edaravone and taurine in rats after independent intravenous administration and co-administration with a single dose. The results demonstrated that there were no significant alternations on the metabolism and cumulative excretion rate of edaravone and taurine, implying that the proposed combination therapy was pharmacologically viable.

  6. Desorption electrospray ionization-mass spectrometry of proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the detection of proteins ranging in molecular mass from 12 to 66 kDa. Proteins were uniformly deposited on a solid surface without pretreatment and analyzed with a DESI source coupled to a quadrupole ion trap mass spec...

  7. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  8. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  9. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry.

    PubMed

    Kyle, Jennifer E; Zhang, Xing; Weitz, Karl K; Monroe, Matthew E; Ibrahim, Yehia M; Moore, Ronald J; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S; Wagoner, Jessica; Polyak, Stephen J; Metz, Thomas O; Dey, Sudhansu K; Smith, Richard D; Burnum-Johnson, Kristin E; Baker, Erin S

    2016-03-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. PMID:26734689

  10. Simultaneous determination of nitroglycerin and dinitrate metabolites in metabolism studies using liquid chromatography-mass spectrometry with electrospray ionization.

    PubMed

    Miyayama, Takashi; Tsou, Pei-Suen; Fung, Sun-Mi; Fung, Ho-Leung

    2006-05-01

    We have developed a liquid chromatographic-mass spectrometric method for the simultaneous determination of nitroglycerin (NTG) and its active metabolites, glyceryl 1,2-dinitrate (1,2-GDN) and glyceryl 1,3-dinitrate (1,3-GDN), for metabolism studies in cell cultures. 1,2,4-Butanetriol-1,4-dinitrate was chosen as an internal standard. Using a linear gradient of water/methanol containing 0.025 mM NH(4)Cl, the compounds were eluted within 12.5 min on an Allure Aqueous C(18) column (100 mm x 2.1 mm). Detection and quantification was achieved with multiple reaction monitoring in the negative ion mode. Intra- and inter-day variabilities for simultaneous determination of the three nitrates were below 10 and 18%, respectively, over a range of NTG and GDN concentrations of 0.5-15 ng/ml. The lower limit of quantification was found to be about 0.01 ng on column. Application of this method was illustrated through in vitro metabolism studies of NTG in culture media bathing LLC-PK1 cells and human vascular smooth muscle cells (HA-VSMC) at 37 degrees C. The degradation half-life of NTG was found to be 4.5 +/- 0.4 h and 39.2 +/- 0.02 h, respectively, for LLC-PK1 cells versus HA-VSMC. At 5 h, the 1,2-GDN versus 1,3-GDN metabolite distribution ratio in the bathing medium was found to be 1.5 +/- 0.1 and 0.2 +/- 0.02 for LLC-PK1 and HA-VSMC cells, respectively. With this method, the degradation half-life of NTG in rat plasma at 37 degrees C was shown to be 26.8 +/- 1.8 min, consistent with previous values obtained using gas chromatography.

  11. Pharmacokinetic study of 14-(3-methylbenzyl)matrine and 14-(4-methylbenzyl)matrine in rat plasma using liquid chromatography-tandem mass spectrometry.

    PubMed

    Jiang, Minjie; Wang, Lisheng; Huang, Shulin; Xu, Liba; Hu, Chao; Jiang, Weizhe

    2015-01-01

    A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS) was developed and validated to determine the 14-(3-methylbenzyl)matrine (3MBM) and 14-(4-methylbenzyl)matrine (4MBM) levels in rat plasma in the present study. The analytes were separated using a C18 column (1.9 μm, 2.1 mm × 100 mm) equipped with a Security Guard C18 column (5 μm, 2.1 mm × 10 mm), followed by detection via triple-quadrupole mass spectrometry using an electrospray ionization (ESI) source. Sample pretreatment involved one-step protein precipitation with isopropanol:ethyl acetate (v/v, 25:75), and pseudoephedrine hydrochloride was used as an internal standard. The method was linear in the concentration range of 5-2000 ng/ml for both compounds. The intra-day and inter-day relative standard deviations (RSDs) were less than 15%, and all relative errors (REs) were within 15%. The proposed method enables the unambiguous identification and quantification of these two compounds in vivo. This study is the first to determine the 3MBM and 4MBM levels in rat plasma after oral administration of these compounds. These results provide a meaningful basis for evaluating the clinical applications of these medicines.

  12. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  13. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry.

    PubMed

    Cahill, Michael G; Caprioli, Giovanni; Vittori, Sauro; James, Kevin J

    2010-09-01

    The mass fragmentation of potato glycoalkaloids, α-solanine and α-chaconine, and the aglycons, demissidine and solasodine were studied using the Orbitrap Fourier transform (FT) mass spectrometer. Using the linear ion trap (LIT) mass spectrometry, multistage collisional-induced dissociation (CID) experiments (MS(n)) on the [M + H](+) precursor ions were performed to aid the elucidation of the mass fragmentation pathways. In addition, higher energy collisional-induced dissociation (HCD) mass spectra were generated for these toxins at a high resolution setting [100,000 FWHM (full width at half maximum)] using the Orbitrap. This hybrid mass spectrometry instrumentation was exploited to produce MS(3) spectra by selecting MS(2) product ions, generated using LIT MS, and fragmentation using HCD. The accurate mass data in the MS(3) spectra aided the confirmation of proposed product ion formulae. The precursor and product ions from glycoalkaloids lost up to four sugars from different regions during MS(n) experiments. Mass fragmentation of the six-ring aglycons were similar, generating major product ions that resulted from cleavages at the B-rings and E-rings.

  14. Toward Digital Staining using Imaging Mass Spectrometry and Random Forests

    PubMed Central

    Hanselmann, Michael; Köthe, Ullrich; Kirchner, Marc; Renard, Bernhard Y.; Amstalden, Erika R.; Glunde, Kristine; Heeren, Ron M. A.; Hamprecht, Fred A.

    2009-01-01

    We show on Imaging Mass Spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when inter-sample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a post-hoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques. PMID:19469555

  15. Laboratory studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Demarcke, M.; Amelynck, C.; Schoon, N.; Dhooghe, F.; Rimetz-Planchon, J.; van Langenhove, H.; Dewulf, J.

    2010-02-01

    The effect of the ratio of the electric field to the buffer gas number density (E/N) in the drift tube reactor of a proton transfer reaction-mass spectrometer (PTR-MS) on the product ion distributions of seven common biogenic unsaturated alcohols (2-methyl-3-buten-2-ol, 1-penten-3-ol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, 1-octen-3-ol, 6-methyl-5-hepten-2-ol and linalool) has been investigated. At low E/N values, the dominant product ion is the dehydrated protonated alcohol. Increasing E/N results in more extensive fragmentation for all compounds. For cis-3-hexenol and 6-methyl-5-hepten-2-ol the contribution of the protonated molecule can be enhanced by reducing E/N with respect to commonly used PTR-MS E/N values (120-130 Td). Significant differences have been found between some of the isomeric species studied, opening a way for selective detection. The C10 alcohol linalool mainly results in product ions at m/z 137 and 81, which are also PTR-MS fingerprints of monoterpenes. This may complicate monoterpene quantification when linalool and monoterpenes are simultaneously present in sampled air. Furthermore the influence of the water vapour pressure in the PTR-MS inlet line on the product ion distributions has been determined. Some major fingerprint ions of the unsaturated alcohols were found to depend significantly on the water vapour pressure in the inlet line and this should be taken into account for accurate quantification of these species by PTR-MS.

  16. Kinetics and product yields of the acetyl peroxy + HO2 radical reaction studied by photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dodson, L. G.; Shen, L.; Savee, J. D.; Eddingsaas, N. C.; Welz, O.; Taatjes, C. A.; Osborn, D. L.; Sander, S. P.; Okumura, M.

    2013-12-01

    The acetyl peroxy radical (CH3C(O)O2) is a key intermediate in the oxidation of carbonyl-containing hydrocarbons in the troposphere. Reaction of acetyl peroxy radicals with HO2 has been suggested as a source of OH radicals in low-NOx environments. Previous work on this reaction observed only two product channels forming (1) peracetic acid and (2) acetic acid. Recent experiments have shown that there is a third channel that generates the radicals OH and acetoxy: CH3C(O)O2 + HO2 → (1) CH3C(O)OOH + O2 (2) CH3C(O)OH + O3 (3) CH3C(O)O + O2 + OH This last pathway to OH formation would then contribute to the apparent isoprene OH recycling suggested by discrepancies between atmospheric models and field observations of OH. There have, however, been significant disagreements among experiments on the yield of OH from reaction of acetyl peroxy radicals with HO2. We report our preliminary studies of acetyl peroxy self-reaction and its reaction with HO2 at 298 K and 8 Torr. Experiments were conducted at the Advanced Light Source synchrotron at the Lawerence Berkeley National Laboratory using tunable VUV ionizing radiation coupled to the Sandia National Laboratory pulsed-laser-photolysis multiplexed photoionization mass spectrometer to detect the time- and isomer-resolved formation of radical intermediates and products. From these results, we report new branching fractions of the three product channels in the acetyl peroxy + HO2 radical reaction.

  17. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry.

    PubMed

    Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M

    2015-03-01

    An ultra-high performance liquid chromatography based method, coupled to high resolution mass spectrometry (UHPLC-HRMS), was developed to permit the detection and quantification of various nitrofuran and chloramphenicol residues in a number of animal based food products. This method is based on the hydrolysis of covalently bound metabolites and derivatization with 2-nitrobenzaldehyde. Clean-up is achieved by a liquid/liquid and a reversed phase/solid phase extraction. Not only are the four conventional nitrofurans (nitrofurantoin, furazolidone, nitrofurazone and furaltadone) detected, but also nifursol, nitrovin and nifuroxazide. Furthermore, an underivatizable nitrofuran (nifurpirinol) and another banned drug (chloramphenicol) can be quantified as well. The compounds are detected in the form of their precursor ions, [M+H](+) and [M-H](-), respectively. The mass resolving power of 70,000 FWHM, and the applied mass window ensure sufficient selectivity and sensitivity. Confirmation is obtained by monitoring the HRMS resolved product ions which were derived from the unit-mass resolved precursor ions. The multiplexing capability of the utilized Orbitrap instrument provides not only highly selective, but also sensitive confirmatory signals. This method has been validated according to the CD 2002/657/EC for the following matrices: muscle, liver, kidney, fish, honey, eggs and milk. PMID:25682427

  18. Calculating Measurement Uncertainties for Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Essex, R. M.; Goldberg, S. A.

    2006-12-01

    A complete and transparent characterization of measurement uncertainty is fundamentally important to the interpretation of analytical results. We have observed that the calculation and reporting of uncertainty estimates for isotopic measurement from a variety of analytical facilities are inconsistent, making it difficult to compare and evaluate data. Therefore, we recommend an approach to uncertainty estimation that has been adopted by both US national metrology facilities and is becoming widely accepted within the analytical community. This approach is outlined in the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The GUM approach to uncertainty estimation includes four major steps: 1) Specify the measurand; 2) Identify uncertainty sources; 3) Quantify components by determining the standard uncertainty (u) for each component; and 4) Calculate combined standard uncertainty (u_c) by using established propagation laws to combine the various components. To obtain a desired confidence level, the combined standard uncertainty is multiplied by a coverage factor (k) to yield an expanded uncertainty (U). To be consistent with the GUM principles, it is also necessary create an uncertainty budget, which is a listing of all the components comprising the uncertainty and their relative contribution to the combined standard uncertainty. In mass spectrometry, Step 1 is normally the determination of an isotopic ratio for a particular element. Step 2 requires the identification of the many potential sources of measurement variability and bias including: gain, baseline, cup efficiency, Schottky noise, counting statistics, CRM uncertainties, yield calibrations, linearity calibrations, run conditions, and filament geometry. Then an equation expressing the relationship of all of the components to the measurement value must be written. To complete Step 3, these potential sources of uncertainty must be characterized (Type A or Type B) and quantified. This information

  19. Precise atomic mass measurements by deflection mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  20. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    SciTech Connect

    J Kiselar; M Chance

    2011-12-31

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis