Science.gov

Sample records for mass spectrum analysis

  1. [Application of serum proteomic mass spectrum analysis in breast cancer].

    PubMed

    Ying, Min-gang; Chen, Qiang; Ye, Yun-bin; Chen, Hui-jing; Chen, Xia; Zheng, Hong-yu; Wu, Fan

    2010-09-01

    To analyze the characteristics of serum proteins mass spectra in healthy controls, benign breast tumors, and CA15-3 negative or CA15-3 positive breast cancer patients by surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS). Tissue samples of 113 cases of breast cancer (93 case of CA15-3 negative, 20 case of CA15-3 positive), 103 cases of benign breast tumor and 92 cases of healthy controls were examined and analyzed by SELDI and protein chip (CM10) techniques. Biomarker Pattern Software (BPS) was used to detect the protein peaks significantly different between them and establish a diagnostic pattern which was further evaluated by a blind test. Twelve significantly different protein peaks were found in serum samples between breast cancer patients and healthy controls. Eleven significantly different peaks were found between benign breast tumor patients and healthy controls. By combined analysis of those three different protein mass spectra, the peak 15 952 was found to be significantly different between breast cancer group and healthy controls, and the peak 7985 was significantly different among breast cancer group, benign breast tumor group and health controls. The blind test with the differential proteins for the serum samples of 93 cases of CA15-3 negative breast cancer and 36 cases of benign breast tumors showed that the sensitivity was 80.6% and specificity was 91.7%. The blind test in 20 cases of CA15-3 positive breast cancer and 36 cases of benign breast tumors showed that the sensitivity was 75.0% and specificity was 91.7%. Four significantly different protein peaks were found between the benign breast tumor patients and CA15-3 negative breast cancer patients. No significantly different protein were found between CA15-3 negative and CA15-3 positive patients. Significantly different protein peaks can be screened out in breast cancer, benign breast tumor patients and healthy controls by SELDI-TOF-MS analysis.

  2. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    SciTech Connect

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Clark, Michael

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.

  3. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants.

    PubMed

    Feng, Chenghong; Bi, Zhe; Tang, Hongxiao

    2015-01-06

    Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.

  4. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    PubMed

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  5. Analysis of the p p-bar mass spectrum in J/Psi

    SciTech Connect

    J. Haidenbauer; S. Krewald; U.-G. Meissner; A. Sibirtsev; A. W. Thomas

    2005-05-16

    The near-threshold enhancement in the p p-bar invariant mass spectrum of the reaction J/Psi --> gamma p p-bar, observed in an experiment by the BES Collaboration, is analysed. It is shown, within the Watson-Migdal approach to final state interactions, that the mass dependence of the p p-bar spectrum close to the threshold can be reproduced by the S-wave p p-bar interaction of the Jülich N N-bar model in the isospin I=1 state. Difficulties in the consistent interpretation of the p invariant mass spectrum of the reaction J/Psi --> pi^0 p p-bar, where there are no obvious signs for a final state interaction, are discussed.

  6. Mass spectrum analysis of serum biomarker proteins from patients with schizophrenia.

    PubMed

    Zhou, Na; Wang, Jie; Yu, Yaqin; Shi, Jieping; Li, Xiaokun; Xu, Bin; Yu, Qiong

    2014-05-01

    Diagnosis of schizophrenia does not have a clear objective test at present, so we aimed to identify the potential biomarkers for the diagnosis of schizophrenia by comparison of serum protein profiling between first-episode schizophrenia patients and healthy controls. The combination of a magnetic bead separation system with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS) was used to analyze the serum protein spectra of 286 first-episode patients with schizophrenia, 41 chronic disease patients and 304 healthy controls. FlexAnlysis 3.0 and ClinProTools(TM) 2.1 software was used to establish a diagnostic model for schizophrenia. The results demonstrated that 10 fragmented peptides demonstrated an optimal discriminatory performance. Among these fragmented peptides, the peptide with m/z 1206.58 was identified as a fragment of fibrinopeptide A. Receiver operating characteristic analysis for m/z 1206.58 showed that the area under the curve was 0.981 for schizophrenia vs healthy controls, and 0.999 for schizophrenia vs other chronic disease controls. From our result, we consider that the analysis of serum protein spectrum using the magnetic bead separation system and MALDI-TOF/TOF-MS is an objective diagnostic tool. We conclude that fibrinopeptide A has the potential to be a biomarker for diagnosis of schizophrenia. This protein may also help to elucidate schizophrenia disease pathogenesis.

  7. Mass exponent spectrum analysis of human ECG signals and its application to complexity detection

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Du, Sidan; Ning, Xinbao; Bian, Chunhua

    2008-06-01

    The complexity of electrocardiogram (ECG) signal may reflect the physiological function and healthy status of the heart. In this paper, we introduced two novel intermediate parameters of multifractality, the mass exponent spectrum curvature and area, to characterize the nonlinear complexity of ECG signal. These indicators express the nonlinear superposition of the discrepancies of singularity strengths from all the adjacent points of the spectrum curve and thus overall subsets of original fractal structure. The evaluation of binomial multifractal sets validated these two variables were entirely effective in exploring the complexity of this time series. We then studied the ECG mass exponent spectra taken from the cohorts of healthy, ischemia and myocardial infarction (MI) sufferer based on a large sets of 12 leads’ recordings, and took the statistical averages among each crowd. Experimental results suggest the two values from healthy ECG are apparently larger than those from the heart diseased. While the values from ECG of MI sufferer are much smaller than those from the other two groups. As for the ischemia sufferer, they are almost of moderate magnitude. Afterward, we compared these new indicators with the nonlinear parameters of singularity spectrum. The classification indexes and results of total separating ratios (TSR, defined in the paper) both indicated that our method could achieve a better effect. These conclusions may be of some values in early diagnoses and clinical applications.

  8. Using power spectrum analysis to evaluate (18)O-water labeling data acquired from low resolution mass spectrometers.

    PubMed

    Sadygov, Rovshan G; Zhao, Yingxin; Haidacher, Sigmund J; Starkey, Jonathan M; Tilton, Ronald G; Denner, Larry

    2010-08-06

    We describe a method for ratio estimations in (18)O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allow commonly used ion trap mass spectrometers to attain isotopic resolution, which makes them amenable to use in labeling schemes such as (18)O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach that may be uniquely suited to these data types. The software implementation uses a power spectrum to remove high-frequency noise and band-filter contributions from coeluting species of differing charge states. From the elemental composition of a peptide sequence, we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer.

  9. Using Power Spectrum Analysis to Evaluate 18O-Water Labeling Data Acquired from Low Resolution Mass Spectrometers

    PubMed Central

    Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry

    2010-01-01

    We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695

  10. Mass flow analysis of the ultraviolet spectrum of UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Kondo, Y.; Mccluskey, G. E., Jr.; Rahe, J.

    1980-01-01

    The ultraviolet spectrum of the close binary UW CMa, obtained with the Copernicus (OAO-3) and IUE satellites in the wavelength region from 1010 to 1510 A and from 1200 to 3000 A, respectively, is analyzed. The observed P Cygni line profiles are compared with theoretically predicted profiles formed by isotropic and coherent scattering in a spherically symmetric expanding circumstellar envelope. Tables illustrate the identified stellar lines, laboratory wavelengths, and line strengths in terms of peak height for emission or central depth for absorption components, normalized to the local stellar continuum.

  11. Mass flow analysis of the ultraviolet spectrum of UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Kondo, Y.; Mccluskey, G. E., Jr.; Rahe, J.

    1980-01-01

    The ultraviolet spectrum of the close binary UW CMa, obtained with the Copernicus (OAO-3) and IUE satellites in the wavelength region from 1010 to 1510 A and from 1200 to 3000 A, respectively, is analyzed. The observed P Cygni line profiles are compared with theoretically predicted profiles formed by isotropic and coherent scattering in a spherically symmetric expanding circumstellar envelope. Tables illustrate the identified stellar lines, laboratory wavelengths, and line strengths in terms of peak height for emission or central depth for absorption components, normalized to the local stellar continuum.

  12. Hadronic mass spectrum analysis of D+ ---> K- pi+ mu+ nu decay and measurement of the K*(892)0 mass and width

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Gobel, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-03-01

    We present a K{pi} mass spectrum analysis of the four-body semileptonic charm decay D{sup +} {yields} K{sup -}{pi}{sup +}{mu}{sup +}{nu} in the range of 0.65 GeV/c{sup 2} < m{sub K{pi}} < 1.5 GeV/c{sup 2}. We observe a non-resonant contribution of 5.30 {+-} 0.74{sub -0.51}{sup +0.99}% with respect to the total D{sup +} {yields} K{sup -} {pi}{sup +}{mu}{sup +}{nu} decay. For the K*(892){sup 0} resonance, we obtain a mass of 895.41 {+-} 0.32{sub -0.36}{sup +0.35} NeV/c{sup 2}, a width of 47.79 {+-} 0.86{sub -1.1}{sup +1.3} MeV/c{sup 2}, and a Blatt-Weisskopf damping factor parameter of 3.96 {+-} 0.54{sub -0.90}{sup +0.72} GeV{sup -1}. We also report 90% CL upper limits of 1.60% and 1.90% for the branching ratios {Lambda}(D{sup +} {yields} {bar K}*(1680){sup 0} {mu}{sup +}{nu})/{Lambda}(D{sup +} {yields} K{sup -} {pi}{sup +}{mu}{sup +}{nu}) and {Lambda}(D{sup +} {yields} {bar K}*{sub 0}(1430){sup 0}) {mu}{sup +}{nu}/{Lambda}(D{sup +} {yields} K{sup -}{pi}{sup +}) {mu}{sup +}{nu}, respectively.

  13. Dijet invariant mass spectrum at CDF

    SciTech Connect

    Incagli, M. )

    1992-11-01

    A summary of QCD results obtained using the dijet invariant mass spectrum d[sigma]/dM[sub jj] is presented. The spectrum is compared with QCD Leader Order and with the recently published Next to Leading Order calculations. A limit on the scale of an eventual quark compositness can be set at [Lambda]=1300 GeV. Limits on the production of new particles, decaying hadronically, are presented, too. Axigluons are ruled out in the mass range [240, 640] GeV, for a theory with N=10 strong interacting fermions, and in the two windows [260, 280] GeV and [450, 550] GeV, for N=20.

  14. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  15. MASSIS: a mass spectrum simulation system 1. Principle and method.

    PubMed

    Chen, HaiFeng; Fan, BoTao; Xia, HaiRong; Petitjean, Michael; Yuan, ShenGang; Panaye, Annick; Doucet, Jean-Pierre

    2003-01-01

    A mass spectrum simulation system was developed. The simulated spectrum for a given target structure is computed based on the cleavage knowledge and statistical rules established and stocked in pivot databases: cleavage rule knowledge, function groups, small fragments and fragment-intensity relationships. These databases were constructed from correlation charts and statistical analysis of large population of organic mass spectra using data mining techniques. Since 1980, several systems were proposed for mass spectrum simulation, but in present there is no any commercial software available. This shows the complexity and difficulties in the development of a such system. The reported mass spectral simulation system in this paper could be the first general software for organic chemistry use

  16. Electron ionization mass spectrum of tellurium hexafluoride.

    PubMed

    Clark, Richard A; McNamara, Bruce K; Barinaga, Charles J; Peterson, James M; Govind, Niranjan; Andersen, Amity; Abrecht, David G; Schwantes, Jon M; Ballou, Nathan E

    2015-05-18

    The electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported for the first time. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5(+), TeF4(+) TeF3(+), TeF2(+), TeF1(+), and Te(+), Te2(+). A trend in increasing abundance was observed for the odd fluoride bearing ions, TeF1(+) < TeF3(+) < TeF5(+), and a decreasing abundance was observed for the even fragment series, Te(F0)(+) > TeF2(+) > TeF4(+) > TeF6(+), with the molecular ion TeF6(+) not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species, and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6(+).

  17. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  18. Analysis of the dilepton invariant mass spectrum in C + C collisions at 2A and 1A GeV

    SciTech Connect

    Thomere, M.; Hartnack, C.; Aichelin, J.

    2007-06-15

    Recently the HADES Collaboration has published the invariant mass spectrum of e{sup +}e{sup -} pairs, dN/dM{sub e{sup +}}{sub e{sup -}}, produced in C + C collisions at 2A GeV. Using electromagnetic probes, one hopes to get information from this experiment on hadron properties at high density and temperature. Simulations show that firm conclusions on possible in-medium modifications of meson properties will only be possible when the elementary meson production cross sections, especially in the pn channel, as well as production cross sections of baryonic resonances are better known. Presently one can conclude that (i) simulations overpredict by far the cross section at M{sub e{sup +}}{sub e{sup -}}{approx_equal}M{sub {omega}}{sup 0} if free production cross sections are used and that (ii) the upper limit of the {eta} decay into e{sup +}e{sup -} is smaller than the present upper limit of the Particle Data Group. This is the result of simulations using the isospin quantum molecular dynamics approach.

  19. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  20. The dijet mass spectrum with the D0 detector

    SciTech Connect

    Choi, S.; D0 Collaboration

    1996-09-01

    The authors present preliminary results from an analysis of dijet data collected during the 1994--1995 Tevatron Collider run with an integrated luminosity of 91 pb{sup {minus}1}. Measurements of dijet mass spectrum distributions in {anti p}p collisions at {radical}s = 1.8 TeV are compared with next-to-leading order QCD theory.

  1. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    PubMed

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  2. Automated mass spectrum generation for new physics

    NASA Astrophysics Data System (ADS)

    Alloul, Adam; D'Hondt, Jorgen; De Causmaecker, Karen; Fuks, Benjamin; Rausch de Traubenberg, Michel

    2013-02-01

    We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.

  3. Superfine resolution acoustooptic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1991-01-01

    High resolution spectrum analysis of RF signals is required in applications such as the search for extraterrestrial intelligence, RF interference monitoring, or general purpose decomposition of signals. Sub-Hertz resolution in three-dimensional acoustooptic spectrum analysis is theoretically and experimentally demonstrated. The operation of a two-dimensional acoustooptic spectrum analyzer is extended to include time integration over a sequence of CCD frames.

  4. Superfine resolution acoustooptic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1991-01-01

    High resolution spectrum analysis of RF signals is required in applications such as the search for extraterrestrial intelligence, RF interference monitoring, or general purpose decomposition of signals. Sub-Hertz resolution in three-dimensional acoustooptic spectrum analysis is theoretically and experimentally demonstrated. The operation of a two-dimensional acoustooptic spectrum analyzer is extended to include time integration over a sequence of CCD frames.

  5. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  6. The mass spectrum of the first stars

    SciTech Connect

    Susa, Hajime; Tominaga, Nozomu; Hasegawa, Kenji

    2014-09-01

    We perform cosmological hydrodynamics simulations with non-equilibrium primordial chemistry to obtain 59 minihalos that host first stars. The obtained minihalos are used as the initial conditions of local three-dimensional radiation hydrodynamics simulations to investigate the formation of the first stars. We find that two-thirds of the minihalos host multiple stars, while the other third has single stars. The mass of the stars found in our simulations are in the range of 1 M {sub ☉} ≲ M ≲ 300 M {sub ☉}, peaking at several× 10 M {sub ☉}. Most of the very massive stars of ≳ 140 M {sub ☉} are born as single stars, although not all of the single stars are very massive. We also find a few stars of ≲ 1 M {sub ☉} that are kicked by the gravitational three body interactions to the position distant from the center of mass. The frequency that a star forming minihalo contains a binary system is ∼50%. We also investigate the abundance pattern of the stellar remnants by summing up the contributions from the first stars in the simulations. Consequently, the pattern is compatible with that of the low metallicity damped Lyα systems or the extremely metal-poor (EMP) stars, if the mass spectrum obtained in our experiment is shifted to the low mass side by 0.2 dex. If we consider the case that an EMP star is born in the remnant of the individual minihalo without mixing with others, the chemical signature of the pair instability supernova is more prominent, because most of them are born as single stars.

  7. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry.

    PubMed

    Han, Lianshu; Han, Feng; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gao, Xiaolan; Wang, Yu; Ji, Wenjun; Gu, Xuefan

    2015-03-01

    Information concerning inherited metabolic diseases in China is scarce. We investigated the prevalence and age distributions of amino acid, organic acid, and fatty acid oxidation disorders in Chinese patients. Blood levels of amino acids and acylcarnitines (tandem mass spectrometry) were measured in 18,303 patients with suspected inherited metabolic diseases. Diagnosis was based on clinical features, blood levels of amino acids or acylcarnitines, urinary organic acid levels (gas chromatography-mass spectrometry), and (in some) gene mutation tests. Inherited metabolic diseases were confirmed in 1,135 patients (739 males, 396 females). Median age was 12 months (1 day to 59 years). There were 28 diseases: 12 amino acid disorders (580 patients, 51.1%), with hyperphenylalaninemia (HPA) being the most common; nine organic acidemias (408 patients, 35.9%), with methylmalonic acidemia (MMA) as the most common; and seven fatty acid oxidation defects (147 patients, 13.0%), with multiple acyl-coenzyme A dehydrogenase deficiency (MADD) being the most common. Onset was mainly at 1-6 months for citrin deficiency, 0-6 months for MMA, and in newborns for ornithine transcarbamylase deficiency (OTCD). HPA was common in patients aged 1-3 years, and MADD was common in patients >18 years. In China, HPA, citrin deficiency, MMA, and MADD are the most common inherited disorders, particularly in newborns/infants. © 2014 Wiley Periodicals, Inc.

  8. Phase-Constrained Spectrum Deconvolution for Fourier Transform Mass Spectrometry.

    PubMed

    Grinfeld, Dmitry; Aizikov, Konstantin; Kreutzmann, Arne; Damoc, Eugen; Makarov, Alexander

    2017-01-17

    This Article introduces a new computationally efficient noise-tolerant signal processing method, referred to as phased spectrum deconvolution method (ΦSDM), designed for Fourier transform mass spectrometry (FT MS). ΦSDM produces interference-free mass spectra with resolution beyond the Fourier transform (FT) uncertainty limit. With a presumption that the oscillation phases are preserved, the method deconvolves an observed FT spectrum into a distribution of harmonic components bound to a fixed frequency grid, which is several times finer than that of FT. The approach shows stability under noisy conditions, and the noise levels in the resulting spectra are lower than those of the original FT spectra. Although requiring more computational power than standard FT algorithms, ΦSDM runs in a quasilinear time. The method was tested on both synthetic and experimental data, and consistently demonstrated performance superior to the FT-based methodologies, be it across the entire mass range or on a selected mass window of interest. ΦSDM promises substantial improvements in the spectral quality and the speed of FT MS instruments. It might also be beneficial for other spectroscopy approaches which require harmonic analysis for data processing.

  9. Spectrum analysis in beam diagnostics

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1993-04-23

    In this article, we discuss fundamentals of the spectrum analysis in beam diagnostics, where several important particle motions in a circular accelerator are considered. The properties of the Fourier transform are presented. Then the coasting and the bunched beam motion in both longitudinal and transverse are studied. The discussions are separated for the signal particle, multiple particle, and the Schottky noise cases. To demonstrate the interesting properties of the beam motion spectrum, time domain functions are generated, and then the associated spectra are calculated and plotted. In order to show the whole picture in a single plot, some data have been scaled, therefore they may not be realistic in an accelerator.

  10. Tandem Mass Spectrum Identification via Cascaded Search

    PubMed Central

    2016-01-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  11. Instanton contributions to the low-lying hadron mass spectrum

    NASA Astrophysics Data System (ADS)

    Thomas, Samuel D.; Kamleh, Waseem; Leinweber, Derek B.

    2015-11-01

    The role of instanton-like objects in the QCD vacuum on the mass spectrum of low-lying light hadrons is explored in lattice QCD. Using overimproved stout-link smearing, tuned to preserve instanton-like objects in the QCD vacuum, the evolution of the mass spectrum under smearing is examined. The calculation is performed using a 203×40 dynamical fat-link-irrelevant-clover (FLIC) fermion action ensemble with lattice spacing 0.126 fm. Through the consideration of a range of pion masses, the effect of the vacuum instanton content is compared at a common pion mass. While the qualitative features of ground-state hadrons are preserved on instanton-dominated configurations, the excitation spectrum experiences significant changes. The underlying physics revealed shows little similarity to the direct-instanton-interaction predictions of the instanton liquid model.

  12. Duality, mass spectrum and vacuum expectation values

    NASA Astrophysics Data System (ADS)

    Köberle, R.; Marino, E. C.

    1983-07-01

    We give a general proof that for an arbitrary two-dimensional theory containing order and disorder fields φ(x) and μ(x), defined so as to satisfy a dual algebra, then, the mass gap is zero, whenever <φ>=0 and <μ>=0. It is also shown that the dual algebra imposes certain restrictions on the mixed vacuum expectation values of the fields. In particular, the product <φ><μ> and the two-point functions <μφ> vanish. On leave of absence from and address after July 1, 1983, Departamento de Fisica, Universidade Federal de Sa~o Carlos, Cx.P. 676, 13560, Sa~o Carlos - SP Brazil.

  13. The quark masses and meson spectrum: A holographic approach

    SciTech Connect

    Afonin, S. S. Pusenkov, I. V.

    2016-01-22

    The spectrum of radially excited unflavored vector mesons is relatively well measured, especially in the heavy-quark sector. This provides a unique opportunity to observe the behavior of the hadron spectrum at fixed quantum numbers as a function of the quark mass. The experimental data suggests the approximately Regge form for the radial spectrum, Mn2 = An + B, where A and B are growing functions of the quark mass. We use the bottom-up holographic approach to find the functions A and B. The obtained result shows a good agreement with the phenomenology and consistency with some predictions of the Veneziano-like dual amplitudes. This proceedings and oral talk based on work: Phys. Lett. B726 (2013) 283–289.

  14. Universal seesaw mechanisms for quark-lepton mass spectrum

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.; Shinohara, Tadatomi

    1993-04-01

    Problems of fermion mass hierarchies and generation mixings are investigated through universal seesaw mechanisms (USM's) in an extension of the standard model with a left-right-symmetric gauge group SU(3)c×SU(2)L×SU(2)R×U(1)y. Electroweak Higgs doublets and singlets induce USM's between ordinary fermion multiplets and exotic electroweak singlets of fermions. The USM's work singly in the charged-fermion sectors to suppress their masses below the electroweak mass scale, and doubly in the neutral-fermion sector to make neutrinos superlight. The wide gap between vanishingly small neutrino masses and the 100 GeV scale of the top-quark mass is explained by multiple USM suppressions without presuming a huge Majorana mass. A global chiral U(1)A symmetry is introduced so as to circumvent the strong CP violation, to distinguish generations, and to restrict the pattern of the Yukawa interactions. Three kinds of electroweak Higgs singlets bring about USM's and cause the generation mixing leading to a realistic variety in each charge sector of the fermion mass spectrum. A fourth Higgs singlet with the largest vacuum expectation value is introduced to make the neutrino masses tiny and to make the axion invisible. By assigning chiral charges to make effective mass matrices of all fermion sectors of the extended Fritzsch type, characteristics of the mass spectra of charged fermions and the quark mixing matrix are described without introducing unnatural hierarchies in the Yukawa coupling constants. Neutrinos have a spectrum comprising doubly degenerate states with a smaller mass and a singlet state with a larger mass. The vacuum mixing angle takes a small value which is favorable for explaining both the new results of the GALLEX Collaboration and the data of the Homestake and Kamiokande experiments.

  15. Shedding light on the black hole mass spectrum.

    NASA Astrophysics Data System (ADS)

    Spera, M.; Giacobbo, N.; Mapelli, M.

    The mass spectrum of stellar black holes (BHs) is highly uncertain. Theoretical models of BH formation strongly depend on the efficiency of stellar winds of the progenitor stars and on the supernova (SN) explosion mechanism. We discuss the BH mass spectrum we obtain using SEVN{}, a new public population-synthesis code that includes up-to-date stellar-wind prescriptions and several SN explosion models. Our models have been used by the LIGO and Virgo collaboration to constrain the properties of the gravitational wave (GW) source GW150914, indicating a sub-solar metallicity environment for its progenitors. We show that our models predict substantially larger BH masses (up to ˜ 100 M⊙) than other population synthesis codes, at low metallicity. In this proceeding, we also discuss the impact of pair-instability SNe on our previously published models.

  16. Neutrino mass spectrum and future beta decay experiments

    NASA Astrophysics Data System (ADS)

    Farzan, Y.; Peres, O. L. G.; Smirnov, A. Yu.

    2001-09-01

    We study the discovery potential of future beta decay experiments on searches for the neutrino mass in the sub-eV range, and, in particular, KATRIN experiment with sensitivity m>0.3 eV. Effects of neutrino mass and mixing on the beta decay spectrum in the neutrino schemes which explain the solar and atmospheric neutrino data are discussed. The schemes which lead to observable effects contain one or two sets of quasi-degenerate states. Future beta decay measurements will allow to check the three-neutrino scheme with mass degeneracy, moreover, the possibility appears to measure the CP-violating Majorana phase. Effects in the four-neutrino schemes which can also explain the LSND data are strongly restricted by the results of Bugey and CHOOZ oscillation experiments: apart from bending of the spectrum and the shift of the end point one expects appearance of small kink of (<2%) size or suppressed tail after bending of the spectrum with rate below 2% of the expected rate for zero neutrino mass. We consider possible implications of future beta decay experiments for the neutrino mass spectrum, the determination of the absolute scale of neutrino mass and for establishing the nature of neutrinos. We show that beta decay measurements in combination with data from the oscillation and double beta decay experiments will allow to establish the structure of the scheme (hierarchical or non-hierarchical), the type of the hierarchy or ordering of states (normal or inverted) and to measure the relative CP-violating phase in the solar pair of states.

  17. Compound identification in GC-MS by simultaneously evaluating mass spectrum and retention index

    PubMed Central

    Wei, Xiaoli; Koo, Imhoi; Kim, Seongho

    2014-01-01

    We report a compound identification method (SimMR), which simultaneously evaluates the mass spectrum similarity and the retention index distance using an empirical mixture score function, for the analysis of GC-MS data. The performance of the developed SimMR method was compared to that of two existing compound identification strategies. One is mass spectrum matching method without incorporation of retention index information (SM). The other is the method that sequentially evaluates the mass spectrum similarity and retention index distance (SeqMR). For the comparison purpose, we used the NIST/EPA/NIH Mass Spectral Library 2005. Our study demonstrates that SimMR performs the best among the three compound identification methods, by improving the overall identification accuracy up to 1.53% and 4.81% compared to SeqMR and SM, respectively. PMID:24665464

  18. Injection Locking Techniques for Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-01

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  19. Injection Locking Techniques for Spectrum Analysis

    SciTech Connect

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-19

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  20. Recent results of the energy spectrum and mass composition from Telescope Array Fluorescence Detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Daisuke

    2013-02-01

    The Telescope Array experiment is the largest hybrid detector to observe Ultra-High Energy Cosmic Rays in the northern hemisphere. The observation started in November 2007 for Fluorescence Detector (FD) and in March 2008 for Surface Detectors (SD). Here, we present the preliminary results of the energy spectrum and mass composition of the UHECRs measured by the FD and hybrid technique from the Telescope Array three year observations. The energy spectrum measured by the Middle Drum FD station, which is the refurbished HiRes-I detector is consistent with the results from HiRes. The energy spectrum with the two newly constructed FDs and SD is also in good agreement with the result from HiRes, especially for the energy scale. The mass composition study with the slant depth of the maximum shower development (Xmax) is obtained by using the stereo and hybrid analysis. The result of the mass composition is consistent with the proton prediction.

  1. Mass spectrum and decay constants of radially excited vector mesons

    NASA Astrophysics Data System (ADS)

    Mojica, Fredy F.; Vera, Carlos E.; Rojas, Eduardo; El-Bennich, Bruno

    2017-07-01

    We calculate the masses and weak decay constants of flavorless and flavored ground and radially excited JP=1- mesons within a Poincaré covariant continuum framework based on the Bethe-Salpeter equation. We use in both the quark's gap equation and the meson bound-state equation an infrared massive and finite interaction in the leading symmetry-preserving truncation. While our numerical results are in rather good agreement with experimental values where they are available, no single parametrization of the QCD inspired interaction reproduces simultaneously the ground and excited mass spectrum, which confirms earlier work on pseudoscalar mesons. This feature being a consequence of the lowest truncation, we pin down the range and strength of the interaction in both cases to identify common qualitative features that may help to tune future interaction models beyond the rainbow-ladder approximation.

  2. Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions

    DTIC Science & Technology

    2015-02-01

    Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions by Joshua Smith ARL-TR-7217...1138 ARL-TR-7217 February 2015 Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions...REPORT TYPE Final 3. DATES COVERED (From - To) 06/2014–07/2014 4. TITLE AND SUBTITLE Spectrum Monitoring Using Spectrum Analysis LabVIEW

  3. Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), headspace gas chromatography with flame ionization detection (headspace-GC-FID), and flow injection mass spectrum (FIMS) fingerprints combined with multivariate data analysis.

    PubMed

    Gao, Boyan; Qin, Fang; Ding, Tingting; Chen, Yineng; Lu, Weiying; Yu, Liangli Lucy

    2014-08-13

    Ultraperformance liquid chromatography mass spectrometry (UPLC-MS), flow injection mass spectrometry (FIMS), and headspace gas chromatography (headspace-GC) combined with multivariate data analysis techniques were examined and compared in differentiating organically grown oregano from that grown conventionally. It is the first time that headspace-GC fingerprinting technology is reported in differentiating organically and conventionally grown spice samples. The results also indicated that UPLC-MS, FIMS, and headspace-GC-FID fingerprints with OPLS-DA were able to effectively distinguish oreganos under different growing conditions, whereas with PCA, only FIMS fingerprint could differentiate the organically and conventionally grown oregano samples. UPLC fingerprinting provided detailed information about the chemical composition of oregano with a longer analysis time, whereas FIMS finished a sample analysis within 1 min. On the other hand, headspace GC-FID fingerprinting required no sample pretreatment, suggesting its potential as a high-throughput method in distinguishing organically and conventionally grown oregano samples. In addition, chemical components in oregano were identified by their molecular weight using QTOF-MS and headspace-GC-MS.

  4. Measurement of the dipion mass spectrum in decays.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Daronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-03-17

    We measure the dipion mass spectrum in X(3872)--> J/psipi(+) pi(-) decays using 360 pb(-1) of pp collisions at square root s= 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity ((3)S(1), (1)P(1), and (3)D(J)) charmonia decaying to J/psipi(+) pi(-), as well as even C-parity states in which the pions are from rho(0) decay. The latter case also encompasses exotic interpretations, such as a D(0)D(*0) molecule. Only the (3)S(1) and J/psirho hypotheses are compatible with our data. Since (3)S(1) is untenable on other grounds, decay via J/psirho is favored, which implies C= +1 for the X(3872). Models for J/psi - rho different angular momenta L are considered. Flexibility in the models, especially the introduction of rho - omega interference, enables good descriptions of our data for both L = 0 and 1.

  5. The dijet mass spectrum at D-Zero

    SciTech Connect

    Abbott, B.; D0 Collaboration

    1997-11-01

    We present preliminary results from an analysis of jet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 93 pb{sup -1}. Measurements of dijet mass spectra in {anti p}p collisions at {radical}s = 1.8 TeV are compared to next-to-leading order QCD calculations.

  6. The Higgs mass and natural supersymmetric spectrum from the landscape

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael; Serce, Hasan

    2016-07-01

    In supersymmetric models where the superpotential μ term is generated with μ ≪msoft (e.g. from radiative Peccei-Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli), and where the string landscape 1. favors soft supersymmetry (SUSY) breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale m W , Z , h ∼ 100 GeV (i.e. not too weak of weak interactions), then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ∼ 125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e+e- collider with √{ s} > 2 m (higgsino).

  7. New Physics Search in Dijet Mass Spectrum with Compact Muon Solenoid

    SciTech Connect

    Jeong, Chiyoung

    2011-01-01

    Many extensions of the SM predict the existence of new massive objects that couple to quarks and gluons and result in resonances in the dijet mass spectrum. In this thesis we present a search for narrow resonances in the dijet mass spectrum using data corresponding to an integrated luminosity of 1 fb$^{-1}$ collected by the CMS experiment at the LHC, at a proton-proton collision energy of $\\sqrt{s}=7$ $TeV$. %This dijet analysis is searching for new particles in the dijet mass spectrum decaying to dijets. These new particles are predicted by new physics beyond Standard Model. This thesis presents a dijet analysis performed at the Compact Muon Solenoid (CMS) in pp collisions at $\\sqrt{s}=7$ $TeV$ for an integrated luminosities of 1.0 fb$^{-1}$. The dijet mass distribution of two leading jets is measured and compared to QCD predictions, simulated by PYTHIA with the CMS detector simulation. We select events which have two leading jets with $\\mid \\Delta\\eta \\mid < 1.3$ and $\\mid \\eta \\mid < 2.5$. We fit the dijet mass spectrum with QCD parameters. Since no evidence of new physics was found, we set upper limits at 95\\% CL on the resonance cross section and compare to the theoretical prediction for several models of new particles: string resonances, axigluons, colorons, excited quarks, $E_{6}$ diquarks, Randall-Sundrum gravitons, W' and Z'. We exclude at 95\\% CL string resonances in the mass range $1.0 < M(S) < 4.00$ TeV, excited quarks in the mass range $1.0mass range $1.0mass range $1.0mass range $1.0

  8. Full spectrum analysis in environmental monitoring.

    PubMed

    Reinhardt, Sascha

    2014-08-01

    In environmental radiation monitoring, the time-variable natural gamma radiation background complicates the nuclide identification and analysis of a gamma spectrum. A full spectrum analysis based on the noise adjusted singular value decomposition method for the description of the time-variable background and adjustment calculations is a possible analysis method, which may provide advantages compared with a peak-based analysis, if applied to a time series of gamma spectra. An analysis example is shown and discussed with a measured time series of gamma spectra obtained from a spectroscopic gamma detector with a NaI(Tl) scintillator as it is used in the environmental radiation monitoring. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Angular spectrum analysis in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Muñoz Martínez, Jose L.

    2017-01-01

    Heavy Ion Collisions serve to study some features of early-universe cosmology. In this contribution we adapt data analysis frequently used to understand the Cosmic Microwave Background anisotropies (such as the Mollweide projection and the angular power spectrum) to heavy ion collisions at the LHC. We examine a few publicly available events of the ALICE collaboration under this light. Because the ALICE time projection chamber has limited coverage in rapidity and some blind angles in the transverse plane, the angular spectrum seems very influenced by the detector's acceptance.

  10. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  11. Analysis of the production mechanism of narrow enhancements in the effective mass spectrum ( π+π-) in the reaction np → d π+π- at a neutron incident momentum of Pn = 1.73 GeV/ c

    NASA Astrophysics Data System (ADS)

    Abdivaliev, A.; Besliu, C.; Cotorobai, F.; Gasparian, A. P.; Gruia, S.; Ierusalimov, A. P.; Kopylova, D. K.; Moroz, V. I.; Nikitin, A. V.; Troyan, Yu. A.

    1980-06-01

    A new anomaly has been observed in the Mπ+π- effective mass spectrum for the reaction np → d π+π- at Pn = 1.73 GeV/ c. The peak position is at 0.40 GeV/ c2, and its full width is Λ ≲ 0.03 GeV/ c2. None of the models studied here describes the bulk of the experimental data from this reaction.

  12. Measurement of the top-quark mass from the b jet energy spectrum

    NASA Astrophysics Data System (ADS)

    Guerrero, Daniel; Compact Muon Solenoid (CMS) Collaboration

    2016-03-01

    A first measurement of the top-quark mass using only two body decay kinematics is presented. Based on a recent theoretical proposal, the mass extraction is carried out using the peak position of the energy distribution of b jets produced from top-quark decays. This analysis is performed selecting top-antitop events with electron-muon final states in proton-proton collision data at √{ s} = 8TeV with the CMS detector, corresponding to an integrated luminosity of 19.7 fb-1 . The energy peak position is obtained by fitting the observed energy spectrum. Consequently, this observable is calibrated using simulated events, and translated to a top-quark mass estimation using relativistic kinematics. The measurement yields a value of mt = 172 . 29 +/- 1 . 17 (stat .) +/- 2 . 66 (syst .) GeV .

  13. 126 264 Assigned Chemical Formulas from an Atmospheric Pressure Photoionization 9.4 T Fourier Transform Positive Ion Cyclotron Resonance Mass Spectrum.

    PubMed

    Krajewski, Logan C; Rodgers, Ryan P; Marshall, Alan G

    2017-10-11

    Here, we present atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance (FTICR) mass analysis of a volcanic asphalt sample by acquiring data for 20 Da wide mass segments across a 1000 Da range, stitched into a single composite mass spectrum, and compare to a broad-band mass spectrum for the same sample. The segmented spectrum contained 170 000 peaks with magnitude greater than 6σ of the root-mean-square (rms) baseline noise, for which 126 264 unique elemental compositions could be assigned. Approximately two-thirds of those compositions represent monoisotopic (i.e., chemically different) species. That complexity is higher than that for any previously reported mass spectrum and almost 3 times greater than that obtained from the corresponding broad-band spectrum (59 015). For the segmented mass spectrum, the signal-to-noise ratio (S/N) was significantly higher throughout the spectrum, but especially at the lower and upper ends of mass distribution relative to that of the near-Gaussian broad-band mass distribution. Despite this S/N improvement, mass measurement accuracy was noticeably improved only at lower masses. The increased S/N did, however, yield a higher number of peaks and higher dynamic range throughout the entire segmented spectrum relative to the conventional broad-band spectrum. The additional assigned peaks include higher heteroatom species, as well as additional radicals and isotopologues. Segmenting can require a significant investment in data acquisition and analysis time over broad-band spectroscopy (∼1775% in this case) making it best suited for targeted analysis and/or when complete compositional coverage is important. Finally, the present segmented spectrum contains, to our knowledge, more assigned peaks than any spectrum of any kind (e.g., UV-vis, infrared, microwave, magnetic resonance, etc.).

  14. [Laser Raman spectrum analysis of carbendazim pesticide].

    PubMed

    Wang, Xiao-bin; Wu, Rui-mei; Liu, Mu-hua; Zhang, Lu-ling; Lin, Lei; Yan, Lin-yuan

    2014-06-01

    Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was 'rigisure' and reset mode was 'sln'. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400-2 000, 700-1 400 and 200-700 cm(-1). And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm(-1), respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm(-1) in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.

  15. The mass spectrum analyzer (MSA) onboard BEPI COLOMBO MMO: Scientific objectives and prototype results

    NASA Astrophysics Data System (ADS)

    Delcourt, D.; Saito, Y.; Illiano, J.-M.; Krupp, N.; Berthelier, J.-J.; Fontaine, D.; Fraenz, M.; Leblanc, F.; Fischer, H.; Yokota, S.; Michalik, H.; Godefroy, M.; Saint-Jacques, E.; Techer, J.-D.; Fiethe, B.; Covinhes, J.; Gastou, J.; Attia, D.

    2009-03-01

    BEPI COLOMBO is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of ion sensors will be flown onboard the two probes that form BEPI COLOMBO. These ion sensors combined with electron analyzers will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Among the ion sensors, the Mass Spectrum Analyzer (MSA) is the experiment dedicated to composition analysis onboard the Mercury Magnetospheric Orbiter (MMO). It consists of a top-hat for energy analysis followed by a Time-Of-Flight (TOF) section to derive the ion mass. A notable feature of MSA is that the TOF section is polarized with a linear electric field that provides an enhanced mass resolution, a capability that is of importance at Mercury since a variety of species originating from the planet surface and exosphere is expected. MSA exhibits two detection planes: (i) one with moderate mass resolution but a high count rate making MSA appropriate for plasma analysis, (ii) another with a high (above 40) mass resolution though a low count rate making it appropriate for planetology science. Taking advantage of the spacecraft rotation, MSA will provide three-dimensional distribution functions of magnetospheric ions, from energies characteristic of exospheric populations (a few eVs or a few tens of eVs) up to the plasma sheet energy range (up to ˜40 keV/q) in one spin (4 s).

  16. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database.

    PubMed

    Fothergill, Amy; Kasinathan, Vyjayanti; Hyman, Jay; Walsh, John; Drake, Tim; Wang, Yun F Wayne

    2013-03-01

    Rapid identification of microorganisms causing bloodstream infections directly from a positive blood culture would decrease the time to directed antimicrobial therapy and greatly improve patient care. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable method for identifying microorganisms from positive culture. This study evaluates the performance of a novel filtration-based method for processing positive-blood-culture broth for immediate identification of microorganisms by MALDI-TOF with a Vitek MS research-use-only system (VMS). BacT/Alert non-charcoal-based blood culture bottles that were flagged positive by the BacT/Alert 3D system were included. An aliquot of positive-blood-culture broth was incubated with lysis buffer for 2 to 4 min at room temperature, the resulting lysate was filtered through a membrane, and harvested microorganisms were identified by VMS. Of the 259 bottles included in the study, VMS identified the organisms in 189 (73%) cultures to the species level and 51 (19.7%) gave no identification (ID), while 6 (2.3%) gave identifications that were considered incorrect. Among 131 monomicrobic isolates from positive-blood-culture bottles with one spot having a score of 99.9%, the IDs for 131 (100%) were correct to the species level. In 202 bottles where VMS was able to generate an ID, the IDs for 189 (93.6%) were correct to the species level, whereas the IDs provided for 7 isolates (3.5%) were incorrect. In conclusion, this method does not require centrifugation and produces a clean spectrum for VMS analysis in less than 15 min. This study demonstrates the effectiveness of the new lysis-filtration method for identifying microorganisms directly from positive-blood-culture bottles in a clinical setting.

  17. Vibrational assignment and Franck-Condon analysis of the mass-analyzed threshold ionization (MATI) spectrum of CH2ClI: The effect of strong spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Hyoseok; Lee, Yoon Sup; Kim, Myung Soo

    2005-06-01

    Detailed analysis of the one-photon mass-analyzed threshold ionization (MATI) spectrum of CH2ClI is presented. This includes the determination of the ionization energy of CH2ClI, complete vibrational assignments, and quantum-chemical calculations at the spin-orbit density-functional-theory (SODFT) level with various basis sets. Relativistic effective core potentials with effective spin-orbit operators can be used in SODFT calculations to treat the spin-orbit term on an equal footing with other relativistic effects and electron correlations. The comparison of calculated and experimental vibrational frequencies indicate that the spin-orbit effects are essential for the reasonable description of the CH2ClI+ cation. Geometrical parameters and thus the molecular shape of the cation are greatly influenced by the spin-orbit effects even for the ground state. Calculated geometrical parameters deviate substantially for different basis sets or effective core potentials. In an effort to derive the exact geometrical parameters for this cation, SODFT geometries were further improved utilizing Franck-Condon fit of the MATI spectral pattern. This empirical fitting produced the well-converged set of geometrical parameters that are quite insensitive to the choice of SODFT calculations. The C-I bond length and the Cl-C-I bond angle show large deviations among different SODFT calculations, but the empirical spectral fitting yields 2.191±0.003Å for the C-I bond length and 107.09±0.09° for the Cl-C-I angle. Those fitted geometrical parameters along with the experimental vibrational frequencies could serve as a useful reference in calibrating relativistic quantum-chemical methods for radicals.

  18. Mass Defect from Nuclear Physics to Mass Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Pourshahian, Soheil

    2017-09-01

    Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? [Figure not available: see fulltext.

  19. MOOG: LTE line analysis and spectrum synthesis

    NASA Astrophysics Data System (ADS)

    Sneden, Chris; Bean, Jacob; Ivans, Inese; Lucatello, Sara; Sobeck, Jennifer

    2012-02-01

    MOOG performs a variety of LTE line analysis and spectrum synthesis tasks. The typical use of MOOG is to assist in the determination of the chemical composition of a star. The basic equations of LTE stellar line analysis are followed. The coding is in various subroutines that are called from a few driver routines; these routines are written in standard FORTRAN. The standard MOOG version has been developed on unix, linux and macintosh computers. One of the chief assets of MOOG is its ability to do on-line graphics. The plotting commands are given within the FORTRAN code. MOOG uses the graphics package SM, chosen for its ease of implementation in FORTRAN codes. Plotting calls are concentrated in just a few routines, and it should be possible for users of other graphics packages to substitute other appropriate FORTRAN commands.

  20. Mass-Selective Chiral Analysis

    NASA Astrophysics Data System (ADS)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  1. Singular Spectrum Analysis in Astrometry and Geodynamics

    NASA Astrophysics Data System (ADS)

    Vityazev, V. V.; Miller, N. O.; Prudnikova, E. Ja.

    2010-10-01

    The paper presents the possibilities of the Singular Spectrum Analyses on the examples of its application to several astrometric and geodynamic time series. The comparisons of results obtained by other often used methods (Fourier transform, Wavelet Transform, different filter methods) are given. The Singular Spectrum Analyses method was used for the investigation of the Chandler wobble (CW), which was extracted from the IERS Pole coordinates and latitude variations at Pulkovo. The CW amplitude and phase variations were examined by means of the Hilbert transform. The main conclusion which can be made from this study is: we have found two epochs of deep CW amplitude decreases near 1850 and 2005, which are also accompanied by a large phase jump, similar to well known event in 1920s. The investigation of first latitude observations at Pulkovo (1840-1855) was executed with the aim to gain and analyse the sum of Chandler and annual components from very small quantity of very noisy observations. The SSA is applied for investigation of the zenith troposphere delay time-series derived from observations of several VLBI stations. Combined IVS time-series of the zenith wet and total troposphere delays obtained in IGG were used for analysis. For all stations under consideration the non-linear trends and the seasonal components with annual and semiannual periods were found. Some interesting peculiarities were found to be individual for every stations. Comparison of the trends with meteorological parameters is also presented.

  2. Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.

    PubMed

    Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H

    2010-07-22

    Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.

  3. Spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavors

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Giudice, Pietro; Münster, Gernot; Montvay, Istvan; Piemonte, Stefano

    2017-08-01

    In this work we present the results of our investigation of SU(2) gauge theory with two Dirac fermions in the adjoint representation (aQCD2), which belongs to the class of strongly interacting gauge theories that are of basic interest for extensions of the Standard Model. We have done numerical lattice simulations of this theory at two different values of the gauge coupling and several fermion masses. Our results include the particle spectrum and the mass anomalous dimension. The spectrum contains new exotic fermion-gluon states and flavor-singlet mesons. The mass anomalous dimension is determined from the scaling of the masses and the mode number. The remnant dependence of the universal mass ratios and mass anomalous dimension on the gauge coupling indicates the relevance of scaling corrections, such that earlier estimations for the universal fixed point value of the mass anomalous dimension are incomplete without their inclusion.

  4. The stealth spectrum analysis (SSA) of the electronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Dequan

    Stealth spectrum analysis is discussed for assessing total system stability in aircraft communications and navigation equipment by evaluating the stealth circuit. The general frequency response and convolution are calculated for the entire frequency spectrum in both the frequency and time domains. The general energy-density spectrum and the general equivalent noise bandwidth can be computed to analyze problems with stealth technologies.

  5. Prophossi: automating expert validation of phosphopeptide–spectrum matches from tandem mass spectrometry

    PubMed Central

    Martin, David M.A.; Nett, Isabelle R.E.; Vandermoere, Franck; Barber, Jonathan D.; Morrice, Nicholas A.; Ferguson, Michael A.J.

    2010-01-01

    Motivation: Complex patterns of protein phosphorylation mediate many cellular processes. Tandem mass spectrometry (MS/MS) is a powerful tool for identifying these post-translational modifications. In high-throughput experiments, mass spectrometry database search engines, such as MASCOT provide a ranked list of peptide identifications based on hundreds of thousands of MS/MS spectra obtained in a mass spectrometry experiment. These search results are not in themselves sufficient for confident assignment of phosphorylation sites as identification of characteristic mass differences requires time-consuming manual assessment of the spectra by an experienced analyst. The time required for manual assessment has previously rendered high-throughput confident assignment of phosphorylation sites challenging. Results: We have developed a knowledge base of criteria, which replicate expert assessment, allowing more than half of cases to be automatically validated and site assignments verified with a high degree of confidence. This was assessed by comparing automated spectral interpretation with careful manual examination of the assignments for 501 peptides above the 1% false discovery rate (FDR) threshold corresponding to 259 putative phosphorylation sites in 74 proteins of the Trypanosoma brucei proteome. Despite this stringent approach, we are able to validate 80 of the 91 phosphorylation sites (88%) positively identified by manual examination of the spectra used for the MASCOT searches with a FDR < 15%. Conclusions:High-throughput computational analysis can provide a viable second stage validation of primary mass spectrometry database search results. Such validation gives rapid access to a systems level overview of protein phosphorylation in the experiment under investigation. Availability: A GPL licensed software implementation in Perl for analysis and spectrum annotation is available in the supplementary material and a web server can be assessed online at http

  6. Alternative model of the Antonov problem: Generalization with the presence of a mass spectrum

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; García, S. Gómez; Guzmán, F.

    2009-01-01

    We extend the quasiergodic model proposed as an alternative version of the Antonov isothermal model [L. Velazquez and F. Guzman, Phys. Rev. E 68, 066116 (2003)] by including the incidence of a mass spectrum. We propose an iterative procedure inspired by the Newton-Raphson method to solve the resulting nonlinear structure equations. As an example of application, we assume the existence of a mass spectrum with a standard Salpeter form, dN=Cdm/mα . We analyze consequences of this realistic ingredient on the system thermodynamical behavior and perform a quantitative description of the mass segregation effect.

  7. Measuring peptide mass spectrum correlation using the quantum Grover algorithm.

    PubMed

    Choo, Keng Wah

    2007-03-01

    We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identification process. The approach coded the mass spectra on a quantum register and uses the Grover search algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity between the input and final states was used to quantify the similarity between the experimental and theoretical spectra. The optimal number of iteration is proven to be pi/4sqrt[N/k] , where k refers to the number of marked states. We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states. By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the correlation-based measurement used in the existing protein identification software. We concluded that the quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that decoherence can be kept to a minimum.

  8. An Analysis of Spectrum Research on Teaching

    ERIC Educational Resources Information Center

    Chatoupis, Constantine

    2010-01-01

    Spectrum research on teaching has been conducted since 1970s. The purpose of this study was to identify, categorize, and analyze research in this area. Fifty three Spectrum studies conducted between 1970 and 2008 were included in this study. Each paper was coded for (a) decade the study was published, (b) publication outlet/dissertation research,…

  9. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Mapelli, Michela; Bressan, Alessandro

    2015-08-01

    The mass spectrum of stellar mass black holes (BHs) is highly uncertain. Dynamical mass measurements are available only for few (˜10) BHs in X-ray binaries, while theoretical models strongly depend on the hydrodynamics of supernova (SN) explosions and on the evolution of massive stars. In this paper, we present and discuss the mass spectrum of compact remnants that we obtained with SEVN, a new public population-synthesis code, which couples the PARSEC stellar evolution tracks with up-to-date recipes for SN explosion (depending on the carbon-oxygen mass of the progenitor, on the compactness of the stellar core at pre-SN stage and on a recent two-parameter criterion based on the dimensionless entropy per nucleon at pre-SN stage). SEVN can be used both as a stand-alone code and in combination with direct-summation N-body codes (STARLAB, HIGPUS). The PARSEC stellar evolution tracks currently implemented in SEVN predict significantly larger values of the carbon-oxygen core mass with respect to previous models. For most of the SN recipes we adopt, this implies substantially larger BH masses at low metallicity (≤2 × 10-3), than other population synthesis codes. The maximum BH mass found with SEVN is ˜25, 60 and 130 M⊙ at metallicity Z = 2 × 10-2, 2 × 10-3 and 2 × 10-4, respectively. Mass loss by stellar winds plays a major role in determining the mass of BHs for very massive stars (≥90 M⊙), while the remnant mass spectrum depends mostly on the adopted SN recipe for lower progenitor masses. We discuss the implications of our results for the transition between neutron star and BH mass, and for the expected number of massive BHs (with mass >25 M⊙) as a function of metallicity.

  10. Electrical spectrum analysis of operating Hydro Electric machines

    NASA Astrophysics Data System (ADS)

    Timperley, J. E.

    1981-12-01

    The electrical spectrum analysis of the operation of five pumped storage machines is discussed. It was found that machines without electrical problems produced little radio noise, although all machines produced some noise. Severe problems produced severe radio noise. If stator deterioration increases, the noise level increases. Similar machines produce similar electrical spectrum signatures. The general source of discharges can be located. A likelihood of failure can be calculated from spectrum analysis.

  11. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  12. OpenMS-Simulator: an open-source software for theoretical tandem mass spectrum prediction.

    PubMed

    Wang, Yaojun; Yang, Fei; Wu, Peng; Bu, Dongbo; Sun, Shiwei

    2015-04-02

    Tandem mass spectrometry (MS/MS) acts as a key technique for peptide identification. The MS/MS-based peptide identification approaches can be categorized into two families, namely, de novo and database search. Both of the two types of approaches can benefit from an accurate prediction of theoretical spectrum. A theoretical spectrum consists of m/z and intensity of possibly occurring ions, which are estimated via simulating the spectrum generating process. Extensive researches have been conducted for theoretical spectrum prediction; however, the prediction methods suffer from low prediciton accuracy due to oversimplifications in the spectrum simulation process. In the study, we present an open-source software package, called OpenMS-Simulator, to predict theoretical spectrum for a given peptide sequence. Based on the mobile-proton hypothesis for peptide fragmentation, OpenMS-Simulator trained a closed-form model for the intensity ratio of adjacent y ions, from which the whole theoretical spectrum can be constructed. On a collection of representative spectra datasets with annotated peptide sequences, experimental results suggest that OpenMS-Simulator can predict theoretical spectra with considerable accuracy. The study also presents an application of OpenMS-Simulator: the similarity between theoretical spectra and query spectra can be used to re-rank the peptide sequence reported by SEQUEST/X!Tandem. OpenMS-Simulator implements a novel model to predict theoretical spectrum for a given peptide sequence. Compared with existing theoretical spectrum prediction tools, say MassAnalyzer and MSSimulator, our method not only simplifies the computation process, but also improves the prediction accuracy. Currently, OpenMS-Simulator supports the prediction of CID and HCD spectrum for peptides with double charges. The extension to cover more fragmentation models and support multiple-charged peptides remains as one of the future works.

  13. Decision Analysis of Dynamic Spectrum Access Rules

    SciTech Connect

    Juan D. Deaton; Luiz A. DaSilva; Christian Wernz

    2011-12-01

    A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.

  14. Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    NASA Astrophysics Data System (ADS)

    Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-11-01

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ns. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ mν < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ8. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on ns can be accommodated by allowing for a running dns/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ mν. We discuss possible interpretations of these results in the context of slow-roll inflation.

  15. Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    SciTech Connect

    Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Lesgourgues, Julien; Viel, Matteo; Weinberg, David E-mail: christophe.yeche@cea.fr E-mail: christophe.magneville@cea.fr E-mail: Julien.Lesgourgues@cern.ch

    2015-11-01

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index n{sub s}. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ m{sub ν} < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ{sub 8}. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on n{sub s} can be accommodated by allowing for a running dn{sub s}/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ m{sub ν}. We discuss possible interpretations of these results in the context of slow-roll inflation.

  16. N-flation: Observable predictions from the random matrix mass spectrum

    SciTech Connect

    Kim, Soo A; Liddle, Andrew R.

    2007-09-15

    We carry out numerical investigations of the perturbations in N-flation models where the mass spectrum is generated by random matrix theory. The tensor-to-scalar ratio and non-Gaussianity are already known to take the single-field values, and so the density perturbation spectral index is the main parameter of interest. We study several types of random field initial conditions and compute the spectral index as a function of mass spectrum parameters. Comparison with microwave anisotropy data from the Wilkinson Microwave Anisotropy Probe shows that the model is currently viable in the majority of its parameter space.

  17. Calculation of the Mass Spectrum and Deconfining Temperature in Non-Abelian Gauge Theory.

    NASA Astrophysics Data System (ADS)

    Vohwinkel, Claus

    1989-03-01

    Using a small volume expansion the mass spectrum and deconfining temperature of SU(2) and SU(3) gauge theory are evaluated. Including non-perturbative features by restoring symmetries which were broken in perturbation theory we obtain results which are valid up to intermediate volumes. The mass spectrum obtained is in good agreement with Luscher's small volume expansion in the small-volume limit and with Monte Carlo Data in medium sized volumes. Using asymmetric volumes we are able to derive the deconfining temperature and find a reasonable agreement with Monte Carlo calculations.

  18. Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer.

    PubMed

    Zeng, Guoqiang; Tan, Chengjun; Ge, Liangquan; Zhang, Qingxian; Gu, Yi

    2014-02-01

    Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Mass Spectrum Analyzer (MSA) on board the BepiColombo MMO

    NASA Astrophysics Data System (ADS)

    Delcourt, D.; Saito, Y.; Leblanc, F.; Verdeil, C.; Yokota, S.; Fraenz, M.; Fischer, H.; Fiethe, B.; Katra, B.; Fontaine, D.; Illiano, J.-M.; Berthelier, J.-J.; Krupp, N.; Buhrke, U.; Bubenhagen, F.; Michalik, H.

    2016-07-01

    Observations from the MESSENGER spacecraft have considerably enhanced our understanding of the plasma environment at Mercury. In particular, measurements from the Fast Imaging Plasma Spectrometer provide evidences of a variety of ion species of planetary origin (He+, O+, and Na+) in the northern dayside cusp and in the nightside plasma sheet. A more comprehensive view of Mercury's plasma environment will be provided by the BepiColombo mission that will be launched in 2018. On board the BepiColombo MMO spacecraft, the Mercury Plasma/Particle Experiment consortium gathers different sensors dedicated to particle measurements. Among these sensors, the Mass Spectrum Analyzer (MSA) is the instrument dedicated to plasma composition analysis. It consists of a top hat for energy analysis followed by a time-of-flight (TOF) chamber to derive the ion mass. Taking advantage of the spacecraft rotation, MSA will measure three-dimensional distribution functions in one spin (4 s), from energies characteristic of exospheric populations (in the eV range) up to plasma sheet energies (up to ~38 keV/q). A notable feature of the MSA instrument is that the TOF chamber is polarized with a linear electric field that leads to isochronous TOFs and enhanced mass resolution (typically, m/∆m ≈ 40 for ions with energies up to 13 keV/q). At Mercury, this capability is of paramount importance to thoroughly characterize the wide variety of ion species originating from the planet surface. It is thus anticipated that MSA will provide unprecedented information on ion populations in the Hermean environment and hence improve our understanding of the coupling processes at work.

  20. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  1. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    SciTech Connect

    Gu, Renliang E-mail: ald@iastate.edu; Dogandžić, Aleksandar E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.

  2. Unification and mass spectrum in a B-L extended MSSM

    SciTech Connect

    Hernandez-Pinto, R. J.; Perez-Lorenzana, A.

    2009-04-20

    The simplest B-L extension of the minimum supersymmetric standard model (MSSM) may change some of the conceptions about the path for gauge unification as well as to affect the predicted spectrum of the supersymmetric particles at low energy. We present our results for the running of gauge coupling constants and mass parameter in this context.

  3. Neutrino mass^2 inferred from the cosmic ray spectrum and tritium beta decay

    NASA Astrophysics Data System (ADS)

    Ehrlich, R.

    2000-11-01

    An earlier prediction of a cosmic ray neutron line right at the energy of the knee of the cosmic ray spectrum was based on the speculation that the electron neutrino is a tachyon whose mass is reciprocally related to the energy of the knee, $E_k$. Given the large uncertainty in $E_k$, the values of ${m_\

  4. Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function

    NASA Astrophysics Data System (ADS)

    Roy, A.; André, Ph.; Arzoumanian, D.; Peretto, N.; Palmeirim, P.; Könyves, V.; Schneider, N.; Benedettini, M.; Di Francesco, J.; Elia, D.; Hill, T.; Ladjelate, B.; Louvet, F.; Motte, F.; Pezzuto, S.; Schisano, E.; Shimajiri, Y.; Spinoglio, L.; Ward-Thompson, D.; White, G.

    2015-12-01

    A complete understanding of the origin of the prestellar core mass function (CMF) is crucial. Two major features of the prestellar CMF are 1) a broad peak below 1 M⊙, presumably corresponding to a mean gravitational fragmentation scale, and 2) a characteristic power-law slope, very similar to the Salpeter slope of the stellar initial mass function (IMF) at the high-mass end. While recent Herschel observations have shown that the peak of the prestellar CMF is close to the thermal Jeans mass in marginally supercritical filaments, the origin of the power-law tail of the CMF/IMF at the high-mass end is less clear. In 2001, Inutsuka proposed a theoretical scenario in which the origin of the power-law tail can be understood as resulting from the growth of an initial spectrum of density perturbations seeded along the long axis of star-forming filaments by interstellar turbulence. Here, we report the statistical properties of the line-mass fluctuations of filaments in the Pipe, Taurus, and IC 5146 molecular clouds observed with Herschel for a sample of subcritical or marginally supercritical filaments using a 1D power spectrum analysis. The observed filament power spectra were fitted by a power-law function (Ptrue(s) ∝ sα) after removing the effect of beam convolution at small scales. A Gaussian-like distribution of power-spectrum slopes was found, centered at α̅corr = -1.6 ± 0.3. The characteristic index of the observed power spectra is close to that of the 1D velocity power spectrum generated by subsonic Kolomogorov turbulence (-1.67). Given the errors, the measured power-spectrum slope is also marginally consistent with the power spectrum index of -2 expected for supersonic compressible turbulence. With such a power spectrum of initial line-mass fluctuations, Inutsuka's model would yield a mass function of collapsed objects along filaments approaching dN/dM ∝ M- 2.3 ± 0.1 at the high-mass end (very close to the Salpeter power law) after a few free-fall times

  5. [Backscattering spectrum analysis of nonspheroid soot particle].

    PubMed

    Xing, Jian; Sun, Xiao-gang; Yuan, Gui-bin; Qi, Xu; Tang, Hong

    2010-08-01

    In the process of measuring soot concentration and grain diameter, the backscattering spectrum of soot particle model was calculated to ascertain and analyze main effective factor of backscattering intensity. In the present paper, ellipsoid, column and generalized Chebyshev, three nonspheroid models, were selected according to micrograph of practical soot particle, which aims to simulate practical soot particle with equivalent diameter of about 1 microm. T-matrix method was used to calculate backscattering spectrum of the three nonspheriod models, and the main effective factor curves of intensity were obtained, too. Both numerical computer simulations and experimental results illustrate that nonspheroid particle backscattering intensity is stronger than that of spheroid particle in the visible/infrared spectrum band, especially for generalized Chebyshev model, whose backscattering intensity can be even 3.5 times higher than that of forward scattering. Meanwhile, the absorbency non-spheroid particle (complex refractive index m = 1.57 - 0.56i) backscattering intensity is stronger than that of non-absorbency nonspheriod particle (complex refractive index m = 1.57 - 0.001i). Furthermore, with the increase in particle equivalent radius, the light source wavelength also needs to be increase to obtain more light intensity information. The backscattering light spectrum information provides a reasonable basis for selecting light source and measure angle.

  6. Spectrum analysis for introductory musical acoustics

    NASA Astrophysics Data System (ADS)

    Smedley, John E.

    1998-02-01

    A "real time" fast Fourier transform spectrum analyzer facilitates several experiments for an introductory course in musical acoustics. With its rapidly updated display, the time-dependent vibrations of an aluminum bar are easily studied. Using longer time acquisitions and correspondingly higher resolution facilitates the study of string inharmonicities, resonant energy transfer, and sound radiation patterns in guitar acoustics.

  7. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    NASA Astrophysics Data System (ADS)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; du Mas des Bourboux, Hélion

    2017-06-01

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k-modes of 0.070 s km-1. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k-modes of 0.057 s km-1. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ mν < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ mν < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: mX gtrsim 2.08 : keV (95% C.L.) for early decoupled thermal relics, and ms gtrsim 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to mX gtrsim 4.17 : keV and ms gtrsim 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from mX gtrsim 2.74 : keV for BOSS alone to mX gtrsim 3.10 : keV for the combined BOSS+XQ-100 data set. Finally, we include in our analysis the

  8. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  9. Neutrino mass limits: Robust information from the power spectrum of galaxy surveys

    NASA Astrophysics Data System (ADS)

    Cuesta, Antonio J.; Niro, Viviana; Verde, Licia

    2016-09-01

    We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.

  10. [Measurement and analysis of absorption spectrum of human blood].

    PubMed

    Zhao, Zhi-Min; Xin, Yu-Jun; Wang, Le-Xin; Zhu, Wei-Hua; Zheng, Min; Guo, Xin

    2008-01-01

    The present paper puts forward a method of disease diagnosis by using the technology of spectrum analysis of human blood serum. The generation mechanism of absorption spectrum is explained and the absorption spectra of the normal blood serum and the sick blood serum are listed from the experiments of absorption spectrometry. Though the value of absorbency of the sick blood serum is almost equal to that of the normal blood serum in the most absorption spectra, there are some differences around 278 nm in the absorption spectrum. The absorbency of the blood serum with hyperglycemia is greater than that of the normal blood serum at 285 nm in the spectrum, and besides, there comes a peak shift of absorption with hyperglycemia. In the absorption spectrum of the blood serum with hypercholesterolemia, there is a clear absorption peak at 414 nm. However there is not any peak at that wavelength in the absorption spectrum of the normal blood serum. Through comparing the characters of the spectrum, we can judge if the blood sample is or not, and this blood analysis is a new method for the diagnosis of disease. Compared with other methods of blood measurements, the method of absorption spectrum analysis of blood serum presented in this paper, is more convenient for measurement, simpler for analysis, and easier to popularize.

  11. CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM

    SciTech Connect

    Kong, Lingyao; Li, Zilong; Bambi, Cosimo

    2014-12-20

    In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.

  12. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library.

    PubMed

    Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong

    2014-10-01

    A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues

  13. High-resolution mass-analyzed threshold ion spectrum of Argon obtained on beamline 9.0.2.2

    SciTech Connect

    Hsu, C.W.; Lu, K.T.; Evans, M.

    1997-04-01

    The first mass analyzed threshold ion (MATI) spectrum using dc electric fields and a continuous wave light source has been obtained on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source. MATI provides researchers with fundamental spectroscopic information about atomic and molecular ions with the added advantage of mass analysis. The MATI technique involves the detection of ions formed by field ionization of long-lived high-n Rydberg states approaching an ionization threshold. The MATI apparatus consists of a differentially pumped supersonic molecular beam source, a photoionization region followed by a series of electrostatic lenses, a quadrupole mass spectrometer, and a Daly-type detector. The MATI technique can be used to probe the Rydberg states approaching an ionization continuum and yield information about the lifetimes of these states. In addition, MATI could be used to obtain the spectrum of a single species present in a sample mixture due to the mass selective nature of the experiment. MATI could also be used to form mass selected and state specific ions for use in ion molecule reaction experiments.

  14. Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.

    PubMed

    Muth, Thilo; Rapp, Erdmann; Berven, Frode S; Barsnes, Harald; Vaudel, Marc

    2016-01-01

    Protein identification via database searches has become the gold standard in mass spectrometry based shotgun proteomics. However, as the quality of tandem mass spectra improves, direct mass spectrum sequencing gains interest as a database-independent alternative. In this chapter, the general principle of this so-called de novo sequencing is introduced along with pitfalls and challenges of the technique. The main tools available are presented with a focus on user friendly open source software which can be directly applied in everyday proteomic workflows.

  15. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    SciTech Connect

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  16. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    SciTech Connect

    Killian, E.W.

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  17. Analysis of writing inks on paper using direct analysis in real time mass spectrometry.

    PubMed

    Jones, Roger W; McClelland, John F

    2013-09-10

    Ink analysis is central to questioned document examination. We applied direct analysis in real time mass spectrometry (DART MS) to ballpoint, gel, and fluid writing ink analysis. DART MS acquires the mass spectrum of an ink while it is still on a document without altering the appearance of the document. Spectra were acquired from ink on a variety of papers, and the spectrum of the blank paper could be subtracted out to produce a cleanly isolated ink spectrum in most cases. Only certain heavy or heavily processed papers interfered. The time since an ink is written on paper has a large effect on its spectrum. DART spectra change radically during the first few months after an ink is written as the more volatile components evaporate, but the spectra stabilize after that. A library-search study involving 166 well-aged inks assessed the ability to identify inks from their DART spectra. The aggregate success rate was 92%.

  18. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  19. Analysis of relaxation in terahertz spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Jia-chun; Lu, Yu-min; Shi, Min; Zhao, Da-peng; Xu, Bo; Chen, Zong-sheng

    2011-08-01

    There is a close correlation between dielectric loss and complex dielectric constant of non-magnetism medium, and the former is the macroscopical representation for the later. Relaxation is one of important cause of the dielectric loss. This paper educes the complex dielectric constant and complex refractive index of non-magnetism medium in Terahertz spectrum on the base of initial Drude Model, analyzing their characteristics; it also calculates the Argand Picture of Drude Model, comparing with the counterpoint of Debye Model.

  20. Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments

    PubMed Central

    Spivak, Marina; Bereman, Michael S.; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them. We propose a richer and more flexible feature set representation that is based on the parametrization of the SEQUEST XCorr score and that can be used by all of these algorithms. This extended feature set allows a more effective ranking of the peptide-spectrum matches based on the target-decoy strategy, in comparison to a baseline feature set devoid of these XCorr-based features. Ranking using the extended feature set gives 10–40% improvement in the number of distinct peptide identifications relative to a range of q-value thresholds. While this work is inspired by the model of the theoretical spectrum and the similarity measure between spectra used specifically by SEQUEST, the method itself can be applied to the output of any database search. Further, our approach can be trivially extended beyond XCorr to any linear operator that can serve as similarity score between experimental spectra and peptide sequences. PMID:22866926

  1. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences.

    PubMed

    Chrysostomou, Charalambos; Seker, Huseyin; Aydin, Nizamettin

    2015-01-01

    Complex informational spectrum analysis for protein sequences (CISAPS) and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  2. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    PubMed Central

    Seker, Huseyin; Aydin, Nizamettin

    2015-01-01

    Complex informational spectrum analysis for protein sequences (CISAPS) and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work. PMID:25632276

  3. Spectrum Analysis of Some Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Yang, Tong; Yu, Hongjun

    2016-11-01

    We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with {γ≥q-2}. As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate {t^{-5/4}}) as {tto∞} to that of the compressible Navier-Stokes equations for initial data around an equilibrium state.

  4. [Infrared absorption spectrum analysis and its application to blood].

    PubMed

    Wang, Le-xin; Zhao, Zhi-min; Yao, Hong-bing; Chen, Yu-ming; Shi, Lei; Gao, Yong

    2002-12-01

    The technology of infrared absorption spectrum is a branch of optical ment measurement technology, and the research on the application of infrared spectrum plays an important role in the development of technology of optical measurement. In this paper, the analysis technology of blood infrared absorption spectrum is presented. By comparison, the difference of the spectra between normal and abnormal blood samples was obtained. The infrared absorption spectra of normal blood sample and abnormal blood sample were detected, and the differences between the spectra are presented. And the analysis results of the infrared absorption spectra of normal whole blood, serum and hyperglycemia are presented also. All of these provide an experimental basis for the diagnosis of diseases, which is valuable for application. This technology features easy operation, convenient analysis and suitability for advanced experiment. The work offers a new way in the research on the application of infrared absorption spectrum.

  5. Characterization of bone microstructure using photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.

  6. Characterization of bone microstructure using photoacoustic spectrum analysis

    PubMed Central

    Feng, Ting; Perosky, Joseph E.; Kozloff, Kenneth M.; Xu, Guan; Cheng, Qian; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-01-01

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic (PA) signal from the bone. Modeling and numerical simulation of PA signal were performed on trabecular bone simulations and CT scans with different trabecular thicknesses. The resulting quasi-linear photoacoustic spectra were fittted by linear regression, from which the spectral parameter slope was quantified. The simulation based on two different models both demonstrate that bone specimens with thinner trabecular thicknesses have higher slope. Experiment on osteoporotic rat femoral heads with different mineral content was conducted. The finding from the experiment was in good agreement with the simulation, demonstrating that the frequency-domain analysis of PA signals can provide an objective assessment of bone microstructure and deterioration. Considering that PA measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and non-calcified tissues, this new bone evaluation method based on photoacoustic spectral analysis holds potential for clinical management of osteoporosis and other bone diseases. PMID:26406719

  7. Characterization of bone microstructure using photoacoustic spectrum analysis.

    PubMed

    Feng, Ting; Perosky, Joseph E; Kozloff, Kenneth M; Xu, Guan; Cheng, Qian; Du, Sidan; Yuan, Jie; Deng, Cheri X; Wang, Xueding

    2015-09-21

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic (PA) signal from the bone. Modeling and numerical simulation of PA signal were performed on trabecular bone simulations and CT scans with different trabecular thicknesses. The resulting quasi-linear photoacoustic spectra were fittted by linear regression, from which the spectral parameter slope was quantified. The simulation based on two different models both demonstrate that bone specimens with thinner trabecular thicknesses have higher slope. Experiment on osteoporotic rat femoral heads with different mineral content was conducted. The finding from the experiment was in good agreement with the simulation, demonstrating that the frequency-domain analysis of PA signals can provide an objective assessment of bone microstructure and deterioration. Considering that PA measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and non-calcified tissues, this new bone evaluation method based on photoacoustic spectral analysis holds potential for clinical management of osteoporosis and other bone diseases.

  8. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Boettger, Heinz G. (Inventor); Giffin, Charles E. (Inventor); Dreyer, William J. (Inventor); Kuppermann, Aron (Inventor)

    1978-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vidicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  9. The intrinsic collective X-ray spectrum of luminous high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2017-06-01

    Using a sample of 200 luminous (LX, unabs > 1038 erg s-1, where LX, unabs is the unabsorbed 0.25-8 keV luminosity) high-mass X-ray binary (HMXB) candidates found with Chandra in 27 nearby galaxies, we have constructed the collective X-ray spectrum of HMXBs in the local Universe per unit star formation rate, corrected for observational biases associated with intrinsic diversity of HMXB spectra and X-ray absorption in the interstellar medium. This spectrum is well fit by a power law with a photon index Γ = 2.1 ± 0.1 and is dominated by ultraluminous X-ray sources with LX, unabs > 1039 erg s-1. Hard sources (those with the 0.25-2 to 0.25-8 keV flux ratio of <0.6) dominate above ˜2 keV, while soft and supersoft sources (with the flux ratios of 0.6-0.95 and >0.95, respectively) at lower energies. The derived spectrum probably represents the angle-integrated X-ray emission of the near- and supercritically accreting stellar mass black holes and neutron stars in the local Universe. It provides an important constraint on supercritical accretion models and can be used as a reference spectrum for calculations of the X-ray preheating of the Universe by the first generations of X-ray binaries.

  10. Near threshold enhancement of the p p-bar mass spectrum in J/Psi decay

    SciTech Connect

    A. Sibirtsev; J. Haidenbauer; S. Krewald; Ulf-G. Meissner; A.W. Thomas

    2004-12-01

    We investigate the nature of the near-threshold enhancement in the p {bar p} invariant mass spectrum of the reaction J/{Psi} {yields} {gamma} p {bar p} reported recently by the BES Collaboration. Using the Juelich N {bar N} model we show that the mass dependence of the p {bar p} spectrum close to the threshold can be reproduced by the S-wave p {bar p} final state interaction in the isospin I=1 state within the Watson-Migdal approach. However, because of our poor knowledge of the N {bar N} interaction near threshold and of the J/{Psi} {yields} {gamma} p {bar p} reaction mechanism and in view of the controversial situation in the decay J/{Psi} {yields} {pi}{sup 0} p {bar p}, where no obvious signs of a p {bar p} final state interaction are seen, explanations other than final state interactions cannot be ruled out at the present stage.

  11. Mass spectrum and decay properties of heavy-light mesons: D, Ds, B and Bs mesons

    NASA Astrophysics Data System (ADS)

    Yazarloo, B. H.; Mehraban, H.

    2017-02-01

    We present a study of mass spectrum and decay properties of heavy-light mesons in the non-relativistic potential model. We consider a new type of potential for the mesonic system, the combination of harmonic and Yukawa-type potentials. To obtain the wave function of the system, we use the perturbation method. We take the harmonic term as parent and the Yukawa term as perturbation for the generation of wave function for the meson. For calculating the parent wave function, the Nikiforov-Uvarov (NU) approach is used and thereby we obtained a series solution for the perturbative wave function and then reported the total wave function. With this wave function, we then study the mass spectrum, the decay constant, the leptonic and semileptonic decay widths of heavy-light mesons.

  12. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    SciTech Connect

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-06-20

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-{beta} decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  13. 78 FR 31568 - Proposed Collection; 60-day Comment Request: Autism Spectrum Disorder Research Portfolio Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Collection; 60-day Comment Request: Autism Spectrum Disorder Research Portfolio Analysis SUMMARY: In... this publication. Proposed Collection: Autism Spectrum Disorder (ASD) Research Portfolio Analysis,...

  14. Spectrum analysis with quantum dynamical systems

    NASA Astrophysics Data System (ADS)

    Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei

    2016-04-01

    Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.

  15. Baryon Spectrum Analysis using Covariant Constraint Dynamics

    NASA Astrophysics Data System (ADS)

    Whitney, Joshua; Crater, Horace

    2012-03-01

    The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.

  16. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  17. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2011-11-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  18. Synchrotron peak luminosity, black hole mass and Eddington ratio for SDSS flat-spectrum radio quasars

    NASA Astrophysics Data System (ADS)

    Gu, Minfeng; Chen, Zhaoyu

    2010-01-01

    For a sample of 185 flat-spectrum radio quasars (FSRQs) constructed from the SDSS DR3 quasar catalog, we found a significant correlation between the synchrotron peak luminosity and both the black hole mass and Eddington ratio. This implies that the physics of its jet formation is not only tightly related with the black hole mass, but also with the accretion rate. We verify that the synchrotron peak luminosity can be a better indicator of jet emission than 5 GHz luminosity, through comparing the relationships between each of these two parameters and both black hole mass and Eddington ratio. The fundamental plane of black hole activity for our FSRQs is established as L r ∝ L {x/0.80±0.06} M {bh/-0.04±0.09} with a weak dependence on black hole mass, however, the scatter is significant.

  19. A toroidal vortex field as an origin of the narrow mass spectrum of neutron stars

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-03-01

    The evolution and collapse of a gaseous, self-gravitating sphere in the presence of an internal massive toroidal vortex analogous to the vortex created by the toroidal magnetic field of the Sun is considered. When thermal pressure is taken into account, for sufficiently high masses, the instability is preserved even for a polytropic index γ < 4/3. In the case of a degenerate gas, the evolution of the electrons and neutrons differs appreciably. In the ultrarelativistic limit, an interval of stablemasses arises in a neutron gas, between a minimum mass that depends on the circulation velocity in the vortex and the critical mass for the formation of a black hole. This suggests toroidal vortex fields as a possible physical origin for the observed narrow spectrum of neutron-star masses.

  20. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    PubMed Central

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  1. Heart sound biometric system based on marginal spectrum analysis.

    PubMed

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-02-18

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. 

  2. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  3. Reference MWA EoR Power Spectrum analysis

    NASA Astrophysics Data System (ADS)

    Hazelton, Bryna; Pober, Jonathan; Beardsley, Adam; Morales, Miguel F.; Sullivan, Ian S.; MWA Collaboration

    2015-01-01

    Observations of the Epoch of Reionization using redshifted 21cm HI emission promise to provide sensitive new cosmological constraints in the next few years. The current generation of HI EoR telescopes are targeting a statistical detection of the EoR in the power spectrum of the 21cm emission. The principal challenge lies in extracting the faint cosmological signal in the face of bright foregrounds and instrumental systematics that threaten to overwhelm it.We present the UW EoR power spectrum code, the reference code for the MWA and the first power spectrum analysis to analytically propagate the error bars through the full data analysis pipeline. We demonstrate the sensitivity of the power spectrum as a diagnostic tool for identifying subtle systematics and show power spectra of the first season of MWA observations.

  4. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Stone, Judy

    2016-01-01

    Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs.

  5. Energy spectrum analysis - A model of echolocation processing. [in animals

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Titlebaum, E. L.

    1976-01-01

    The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.

  6. Energy spectrum analysis - A model of echolocation processing. [in animals

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Titlebaum, E. L.

    1976-01-01

    The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.

  7. A pseudo-spectrum analysis of galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Oguri, Masamune

    2016-10-01

    We present the application of the pseudo-spectrum method to galaxy-galaxy lensing. We derive explicit expressions for the pseudo-spectrum analysis of the galaxy-shear cross-spectrum, which is the Fourier space counterpart of the stacked galaxy-galaxy lensing profile. The pseudo-spectrum method corrects observational issues such as the survey geometry, masks of bright stars and their spikes, and inhomogeneous noise, which distort the spectrum and also mix the E-mode and the B-mode signals. Using ray-tracing simulations in N-body simulations including realistic masks, we confirm that the pseudo-spectrum method successfully recovers the input galaxy-shear cross-spectrum. We also show that the galaxy-shear cross-spectrum has an excess covariance relative to the Gaussian covariance at small scales (k ≳ 1h Mpc-1) where the shot noise is dominated in the Gaussian approximation. We find that the excess is consistent with the expectation from the halo sample variance (HSV), which originates from the matter fluctuations at scales larger than the survey area. We apply the pseudo-spectrum method to the observational data of Canada-France-Hawaii Telescope Lensing survey shear catalogue and three different spectroscopic samples of Sloan Digital Sky Survey Luminous Red Galaxy, and Baryon Oscillation Spectroscopic Survey CMASS and LOWZ galaxies. The galaxy-shear cross-spectra are significantly detected at the level of 7-10σ using the analytic covariance with the HSV contribution included. We also confirm that the observed spectra are consistent with the halo model predictions with the halo occupation distribution parameters estimated from previous work. This work demonstrates the viability of galaxy-galaxy lensing analysis in the Fourier space.

  8. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b.

    PubMed

    Knutson, Heather A; Benneke, Björn; Deming, Drake; Homeier, Derek

    2014-01-02

    GJ 436b is a warm--approximately 800 kelvin--exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10(5) times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b's atmosphere obtained during transit. The data indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.

  9. Acoustic spectrum analysis for gyro bearings

    NASA Astrophysics Data System (ADS)

    Heitzman, C. E.

    1981-08-01

    An acoustic system analyzer has been developed that will be an aid in bearing analysis for displacement gyros. The phenomenon of the Fourier Transform has made possible the development of an optical processor that operates by the interaction of light from a light emitting diode array sweeping across a binary frequency mask and through lenses onto a vidicon tube. This arrangement performs the Fourier Transform of large time samples of sound in a parallel process, preserving amplitude, frequency and phase information. The resultant information can then be entered into a computer for programmed analysis or displayed for visual analysis of the condition of gyro-bearings.

  10. Surface roughness monitoring by singular spectrum analysis of vibration signals

    NASA Astrophysics Data System (ADS)

    García Plaza, E.; Núñez López, P. J.

    2017-02-01

    This study assessed two methods for enhanced surface roughness (Ra) monitoring based on the application of singular spectrum analysis (SSA) to vibrations signals generated in workpiece-cutting tool interaction in CNC finish turning operations i.e., the individual analysis of principal components (I-SSA), and the grouping analysis of correlated principal components (G-SSA). Singular spectrum analysis is a non-parametric technique of time series analysis that decomposes a signal into a set of independent additive time series referred to as principal components. A number of experiments with different cutting conditions were performed to assess surface roughness monitoring using both of these methods. The results show that singular spectrum analysis of vibration signal processing discriminated the frequency ranges effective for predicting surface roughness. Grouping analysis of correlated principal components (G-SSA) proved to be the most efficient method for monitoring surface roughness, with optimum prediction and reliability results at a lower analytical-computational cost. Finally, the results show that singular spectrum analysis is an ideal method for analyzing vibration signals applied to the on-line monitoring of surface roughness.

  11. Singular spectrum analysis for time series with missing data

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2001-01-01

    Geophysical time series often contain missing data, which prevents analysis with many signal processing and multivariate tools. A modification of singular spectrum analysis for time series with missing data is developed and successfully tested with synthetic and actual incomplete time series of suspended-sediment concentration from San Francisco Bay. This method also can be used to low pass filter incomplete time series.

  12. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  13. The REFLEX II galaxy cluster survey: power spectrum analysis

    NASA Astrophysics Data System (ADS)

    Balaguera-Antolínez, A.; Sánchez, Ariel G.; Böhringer, H.; Collins, C.; Guzzo, L.; Phleps, S.

    2011-05-01

    We present the power spectrum of galaxy clusters measured from the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. This new sample extends the flux limit of the original REFLEX catalogue to 1.8 × 10-12 erg s-1 cm-2, yielding a total of 911 clusters with ≥94 per cent completeness in redshift follow-up. The analysis of the data is improved by creating a set of 100 REFLEX II-catalogue-like mock galaxy cluster catalogues built from a suite of large-volume Λ cold dark matter (ΛCDM) N-body simulations (L-BASICC II). The measured power spectrum is in agreement with the predictions from a ΛCDM cosmological model. The measurements show the expected increase in the amplitude of the power spectrum with increasing X-ray luminosity. On large scales, we show that the shape of the measured power spectrum is compatible with a scale-independent bias and provide a model for the amplitude that allows us to connect our measurements with a cosmological model. By implementing a luminosity-dependent power-spectrum estimator, we observe that the power spectrum measured from the REFLEX II sample is weakly affected by flux-selection effects. The shape of the measured power spectrum is compatible with a featureless power spectrum on scales k > 0.01 h Mpc-1 and hence no statistically significant signal of baryonic acoustic oscillations can be detected. We show that the measured REFLEX II power spectrum displays signatures of non-linear evolution.

  14. [The spectrum characteristic analysis of mammoth ivory].

    PubMed

    Yin, Zuo-wei; Luo, Qin-feng; Zheng, Chen; Bao, De-qing; Li, Xiao-lu; Li, Yu-ling; Chen, Quan-li

    2013-09-01

    Due to the similarities between mammoth ivory ornaments and modern elephant ivory ones in the market, the spectral properties of the two kinds of ivories were analyzed and compared in the present paper through the gemological tests, infrared spectrum and X-ray powder diffraction, etc. The research found that the refractive index and specific gravity of the two ivories are very similar. The refractive index of mammoth ivory is 1.52-1.53 whereas that of elephant ivory is 1.54-1.55. The specific gravity of mammoth ivory is 1.77 and that of elephant ivory is 1.72. It should be careful that Schreger angles are used to distinguish the two kinds of ivories, because the angles of inner and middle layers in the two kinds of tusks are similar except the angles of elephant tusk out-layers are larger than those of mammoth (The Schreger angle of the sample mammoth ivory belonging to out-layer tusks is 100 degrees nd that of elephant ivory is 115 degrees). In addition, the out-layer Schreger angles of Asian elephants are normally less than 120 degrees, while those of Africa elephants are bigger than 120 degrees (This can be used to identify Asian and Africa elephant ivories). The infrared spectroscopy test shows that the water-molecule-related absorption peaks of 3319, 1642 and 1557 cm(-1) are more obvious in the modern elephant ivory samples than in the mammoth ivory samples; the collagen-related absorption peaks of 2927and 2855 cm(-1) are obvious in the modern elephant ivory but extremely weak in the mammoth ivory. The results indicate that collagen and crystallized water in mammoth ivory reduced to a very low level after having been buried for a long period. X-ray powder diffraction results show that the diffraction peak splits of mammoth ivories are more obvious and sharp than that of elephant ivories, which means hydroxyapatites crystallized better despite being buried for thousands of years. Hence, it is an important reference for identifying the two kinds of ivories that

  15. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses.

    PubMed

    Calderoni, Sara; Retico, Alessandra; Biagi, Laura; Tancredi, Raffaella; Muratori, Filippo; Tosetti, Michela

    2012-01-16

    Several studies on structural MRI in children with autism spectrum disorders (ASD) have mainly focused on samples prevailingly consisting of males. Sex differences in brain structure are observable since infancy and therefore caution is required in transferring to females the results obtained for males. The neuroanatomical phenotype of female children with ASD (ASDf) represents indeed a neglected area of research. In this study, we investigated for the first time the anatomic brain structures of a sample entirely composed of ASDf (n=38; 2-7 years of age; mean=53 months; SD=18) with respect to 38 female age and non verbal IQ matched controls, using both mass-univariate and pattern classification approaches. The whole brain volumes of each group were compared using voxel-based morphometry (VBM) with diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure, allowing us to build a study-specific template. Significantly more gray matter (GM) was found in the left superior frontal gyrus (SFG) in ASDf subjects compared to controls. The GM segments obtained in the VBM-DARTEL preprocessing are also classified with a support vector machine (SVM), using the leave-pair-out cross-validation protocol. Then, the recursive feature elimination (SVM-RFE) approach allows for the identification of the most discriminating voxels in the GM segments and these prove extremely consistent with the SFG region identified by the VBM analysis. Furthermore, the SVM-RFE map obtained with the most discriminating set of voxels corresponding to the maximum Area Under the Receiver Operating Characteristic Curve (AUC(max)=0.80) highlighted a more complex circuitry of increased cortical volume in ASDf, involving bilaterally the SFG and the right temporo-parietal junction (TPJ). The SFG and TPJ abnormalities may be relevant to the pathophysiology of ASDf, since these structures participate in some core atypical features of autism. Copyright © 2011 Elsevier Inc. All

  16. Characterization of the 163Ho Electron Capture Spectrum: A Step Towards the Electron Neutrino Mass Determination

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.-O.; Hassel, C.; Wegner, M.; Hengstler, D.; Kempf, S.; Fleischmann, A.; Enss, C.; Gastaldo, L.; Herlert, A.; Johnston, K.

    2017-09-01

    The isotope 163Ho is in many ways the best candidate to perform experiments to investigate the value of the electron neutrino mass. It undergoes an electron capture process to 163Dy with an energy available to the decay, QEC, of about 2.8 keV. According to the present knowledge, this is the lowest QEC value for such transitions. Here we discuss a newly obtained spectrum of 163Ho, taken by cryogenic metallic magnetic calorimeters with 163Ho implanted in the absorbers and operated in anticoincident mode for background reduction. For the first time, the atomic deexcitation of the 163Dy daughter atom following the capture of electrons from the 5 s shell in 163Ho, the OI line, was observed with a calorimetric measurement. The peak energy is determined to be 48 eV. In addition, a precise determination of the energy available for the decay QEC=(2.858 ±0.01 0stat±0.0 5syst) keV was obtained by analyzing the intensities of the lines in the spectrum. This value is in good agreement with the measurement of the mass difference between 163Ho and 163Dy obtained by Penning-trap mass spectrometry, demonstrating the reliability of the calorimetric technique.

  17. Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Greene, J. E.; Ho, L. C.; Ulvestad, J. S.

    2008-10-01

    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 M⊙. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically thin synchrotron spectrum with a spectral index α = - 0.76 +/- 0.05 (Sν propto ν+ α), is less than 11% linearly polarized, and is steady—although poorly sampled—on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 M⊙ yr-1, is inconsistent with the rate of less than 2 M⊙ yr-1 derived from narrow Hα and [O II] λ3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those galaxies, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher linear resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black hole growth.

  18. Power spectrum analysis of astronomical photographs digitised with small apertures.

    NASA Astrophysics Data System (ADS)

    Stobie, R. S.; Okamura, S.; Davenhall, A. C.; MacGillivray, H. T.

    A total of 8 UK Schmidt Telescope plates, 2 Anglo-Australian Telescope prime focus plates and 2 Palomar Observatory Sky Survey (POSS) copies were measured with a scanning aperture of 11 μm and a pixel spacing of 16 μm. Power spectrum analysis of the resulting data shows the plate noise (with the exception of the POSS plates) to correspond to almost white noise over the frequency range 0.1 - 60 cycles mm-1. The signal-to-noise power spectrum is shown to be a useful tool for measuring the information content of an astronomical photograph. A comparison was made of the information content of a survey quality UKST IIIaJ plate and atlas quality copies on very fine-grained emulsion. Power spectrum analysis of exactly the same area on the original plate and copies showed no significant degradation in either emulsion noise or image content of the copy relative to the original.

  19. Spectrum analysis on quality requirements consideration in software design documents.

    PubMed

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  20. Mass spectrum analysis of K- π+ from the semileptonic decay D+ → K- π+μ+v

    SciTech Connect

    Massafferri Rodrigues, Andre

    2004-03-01

    The Higgs mechanism preserves the gauge symmetries of the Standard Model while giving masses to the W, Z bosons. Supersymmetry, which protects the Higgs boson mass scale from quantum corrections, predicts at least 5 Higgs bosons, none of which has been directly observed. This thesis presents a search for neutral Higgs bosons, produced in association with bottom quarks. The production rate is greatly enhanced at large values of the Supersymmetric parameter tan β. High-energy p$\\bar{p}$ collision data, collected from Run II of the Fermilab Tevatron using the D0 detector, are analyzed. In the absence of a signal, values of tan β > 80-120 are excluded at 95% Confidence Level (C.L.), depending on the (CP-odd) neutral Higgs boson mass (studied from 100 to 150 GeV/c2).

  1. Is it possible to estimate the Higgs mass from the CMB power spectrum?

    SciTech Connect

    Arbuzov, A. B. Barbashov, B. M.; Borowiec, A.; Pervushin, V. N.; Shuvalov, S. A.; Zakharov, A. F.

    2009-05-15

    General Relativity and Standard Model are considered as a theory of dynamical scale symmetry with definite initial data compatible with the accepted Higgs mechanism. In this theory the Early Universe behaves like a factory of electroweak bosons and Higgs scalars, and it gives a possibility to identify three peaks in the Cosmic Microwave Background power spectrum with the contributions of photonic decays and annihilation processes of primordial Higgs, W and Z bosons in agreement with the QED coupling constant, Weinberg's angle, and Higgs' particle mass of about 118 GeV.

  2. A SEYFERT-2-LIKE SPECTRUM IN THE HIGH-MASS X-RAY BINARY MICROQUASAR V4641 SGR

    SciTech Connect

    Morningstar, Warren R.; Miller, Jon M.; Reynolds, M. T.; Maitra, Dipankar E-mail: jonmm@umich.edu

    2014-05-10

    We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power law. The first spectrum, however, is remarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a Γ ≅ 2.0 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.

  3. A dynamic spectrum analysis solution for the characterization of the UHF spectrum

    NASA Astrophysics Data System (ADS)

    Pooler, Richard K.; Narayanan, Ram M.; Sherbondy, Kelly D.; Martone, Anthony F.; Gallagher, Kyle A.

    2016-05-01

    The Spectral Analysis Solution (SAS), under development, is a multichannel superheterodyne signal analyzer with the intended applications of radio frequency (RF) research, radar verification, and general purpose spectrum sensing, primarily in the ultra-wideband (UWB) range from ultra high frequency (UHF) to the S-band. The SAS features a wideband channel operating from 100 kHz to 1.8 GHz and eight narrowband channels having adjustable instantaneous bandwidths ranging from 1 MHz to 100 MHz. The wideband channel provides a large picture of the RF spectrum while the narrowband channels allow for high resolution, low noise floor, and high spurious free dynamic range (SFDR) capabilities. An adaptive graphic user interface (GUI) has been implemented for the system that actively pulls and processes the system data in real time. This paper outlines the motivation and theory behind the system along with system validation and implementation results.

  4. Mass spectrometry analysis of nucleosides and nucleotides.

    PubMed

    Dudley, Ed; Bond, Liz

    2014-01-01

    Mass spectrometry has been widely utilised in the study of nucleobases, nucleosides and nucleotides as components of nucleic acids and as bioactive metabolites in their own right. In this review, the application of mass spectrometry to such analysis is overviewed in relation to various aspects regarding the analytical mass spectrometric and chromatographic techniques applied and also the various applications of such analysis. © 2013 Wiley Periodicals, Inc.

  5. 2009 Autism Spectrum Disorder Research: Portfolio Analysis Report

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2011

    2011-01-01

    In 2010, the Office of Autism Research Coordination (OARC) and Acclaro Research Solutions, Inc., on behalf of the Interagency Autism Coordinating Committee (IACC), conducted a comprehensive analysis of the 2009 autism spectrum disorder (ASD) research portfolio of major Federal agencies and private organizations. This is the second annual analysis…

  6. FFT-Based Spectrum Analysis Using a Digital Signal Processor

    DTIC Science & Technology

    2007-11-02

    Thesis Advisor: Herschel H. Loomis, Jr. Second Reader: Jon Butler Approved for public release; distribution is unlimited. Report Documentation Page...Guide, Texas Instruments, 1999. 8. Gardner, William A., Statistical Spectrum Analysis, Prentice-Hall, 1988. 9. Gutman, Ron. “Algorithm Alley,” Dr...California 3. Loomis, Herschel H., Code EC/Lm. . . . . . . . . . . . . . . . . . . . . . 1 Naval Postgraduate School Monterey, California 4. Butler

  7. Analysis of the Absorption Spectrum of Ruby at High Pressures

    DTIC Science & Technology

    1988-12-01

    8217- Analysis of the absorption spectrum of ruby at high pressures Surinder M. Sharma and Y.M. Gupta Shock Dynamics Laboratory Department of Physics...Elements de Transition et des Elements Lourds Daus Les Solides, Lyon, France, p. 51 (1976). 20. Surinder M. Sharma and Y.M. Gupta, Appl. Phys. Lett. 54, 84

  8. Energy spectrum and effective mass of carriers in the InSe/GaSe superlattice

    NASA Astrophysics Data System (ADS)

    Gashimzade, F. M.; Mustafaev, N. B.

    1995-03-01

    Within an effective mass approximation the energy spectrum and mass of carriers in the InSe/GaSe superlattice have been calculated. The superlattice belongs to type II: electrons are primarily confined to the InSe layers whereas the holes are mosfly confined to the GaSe layers. The characteristic feature of electronic structure of the superlattice is the existence of minibands of light carriers at the θ point of the Brillouin zone and minibands of heavy carriers at the M point. The dependence of the miniband structure on thickness of layers has been computed. It is shown that the minibands of light and heavy carriers compete with one another in energy. A general conclusion is made concerning the influence of the competition between the minibands on optic and kinetic properties of the superlattice.

  9. Ion energy spectrum of expanding laser-plasma with limited mass

    SciTech Connect

    Murakami, M.; Kang, Y.-G.; Nishihara, K.; Fujioka, S.; Nishimura, H.

    2005-06-15

    A simple analytical model is presented for hydrodynamic expansion of laser-produced plasma with a limited mass, which expands quasi-isothermally during laser irradiation and quasiadiabatically after turning off the laser. During the isothermal expansion, the masses undergo entire disintegration under a relatively long laser pulse, while the ions are being kept accelerated. This physical picture significantly contrasts with that described by the orthodox self-similar solution for a semi-infinite planar rarefaction wave. The two successive expansions, i.e., isothermal expansion followed by adiabatic expansion, are described, respectively, by different self-similar solutions, which are found to be connected smoothly with each other in time and space. The ion energy spectrum obtained by the model reproduces well experimental results obtained under different geometrical conditions. The maximum ion kinetic energy is also estimated in terms of the laser and target parameters.

  10. [EMD Time-Frequency Analysis of Raman Spectrum and NIR].

    PubMed

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe

    2016-02-01

    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  11. Combined analysis of galaxy cluster number count, thermal Sunyaev-Zel'dovich power spectrum, and bispectrum

    NASA Astrophysics Data System (ADS)

    Hurier, G.; Lacasa, F.

    2017-08-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is a powerful probe of the evolution of structures in the universe, and is thus highly sensitive to cosmological parameters σ8 and Ωm, though its power is hampered by the current uncertainties on the cluster mass calibration. In this analysis we revisit constraints on these cosmological parameters as well as the hydrostatic mass bias, by performing (i) a robust estimation of the tSZ power-spectrum, (ii) a complete modeling and analysis of the tSZ bispectrum, and (iii) a combined analysis of galaxy clusters number count, tSZ power spectrum, and tSZ bispectrum. From this analysis, we derive as final constraints σ8 = 0.79 ± 0.02, Ωm = 0.29 ± 0.02, and (1-b) = 0.71 ± 0.07. These results favor a high value for the hydrostatic mass bias compared to numerical simulations and weak-lensing based estimations. They are furthermore consistent with both previous tSZ analyses, CMB derived cosmological parameters, and ancillary estimations of the hydrostatic mass bias.

  12. Condensing Raman spectrum for single-cell phenotype analysis.

    PubMed

    Sun, Shiwei; Wang, Xuetao; Gao, Xin; Ren, Lihui; Su, Xiaoquan; Bu, Dongbo; Ning, Kang

    2015-01-01

    In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  13. Preparing transition-metal clusters in known structural forms: The mass-analyzed threshold ionization spectrum of V3

    NASA Astrophysics Data System (ADS)

    Ford, Mark S.; Mackenzie, Stuart R.

    2005-08-01

    The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44000-45000cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as A1'2 and the V3+ ground state as A2'3, both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying A1'1 excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.

  14. Spectral mixture analysis of EELS spectrum-images.

    PubMed

    Dobigeon, Nicolas; Brun, Nathalie

    2012-09-01

    Recent advances in detectors and computer science have enabled the acquisition and the processing of multidimensional datasets, in particular in the field of spectral imaging. Benefiting from these new developments, Earth scientists try to recover the reflectance spectra of macroscopic materials (e.g., water, grass, mineral types…) present in an observed scene and to estimate their respective proportions in each mixed pixel of the acquired image. This task is usually referred to as spectral mixture analysis or spectral unmixing (SU). SU aims at decomposing the measured pixel spectrum into a collection of constituent spectra, called endmembers, and a set of corresponding fractions (abundances) that indicate the proportion of each endmember present in the pixel. Similarly, when processing spectrum-images, microscopists usually try to map elemental, physical and chemical state information of a given material. This paper reports how a SU algorithm dedicated to remote sensing hyperspectral images can be successfully applied to analyze spectrum-image resulting from electron energy-loss spectroscopy (EELS). SU generally overcomes standard limitations inherent to other multivariate statistical analysis methods, such as principal component analysis (PCA) or independent component analysis (ICA), that have been previously used to analyze EELS maps. Indeed, ICA and PCA may perform poorly for linear spectral mixture analysis due to the strong dependence between the abundances of the different materials. One example is presented here to demonstrate the potential of this technique for EELS analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Bronchial atresia: the hidden pathology within a spectrum of prenatally diagnosed lung masses.

    PubMed

    Kunisaki, Shaun M; Fauza, Dario O; Nemes, Luanne P; Barnewolt, Carol E; Estroff, Judy A; Kozakewich, Harry P; Jennings, Russell W

    2006-01-01

    This study was aimed at determining whether different congenital lung masses represent diverse manifestations of a single developmental abnormality associated with fetal airway obstruction. We conducted a 3-year retrospective review of patients who underwent surgical resection of a prenatally diagnosed lung mass. Prenatal imaging was used to define mass position and its effect on adjacent organs. Lung specimens were examined through careful full-specimen microdissections, as well as by plain and contrast roentgenograms. Twenty-five patients underwent lung resection during this study period. Based on the final pathology reports, 56% were congenital cystic adenomatoid malformations, 12% were congenital lobar emphysemas, 8% were bronchopulmonary sequestrations, and 24% had features of both cystic adenomatoid malformation and bronchopulmonary sequestrations. No bronchogenic cysts were present in this series. Overall, bronchial atresia was identified in 77% of the examined specimens (n = 22) and was associated with all types of lung malformations. Bronchial atresia is a common, unrecognized component of prenatally diagnosed congenital cystic adenomatoid malformations, bronchopulmonary sequestrations, congenital lobar emphysemas, and lesions of mixed pathology. Most congenital lung masses may be part of a spectrum of anomalies linked to obstruction of the developing fetal airway as an underlying component in their pathogenesis.

  16. [Method of infrared spectrum analysis of hydrocarbon mixed gas based on multilevel and SVM-subset].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2008-02-01

    The hydrocarbon mixed gas was characterized by multi-component and varied density. In order to deal with the difficulties that can not be actually solved with mass mixture gas spectrum data samples, 15 kinds of subset patterns were determined on the basis of investigations and studies, which needed 5 500 spectrum data samples for training and testing. On the basis of this, a method of hydrocarbon mixed gas infrared spectrum analysis based on 2-levels and 15 SVM-subsets was proposed in the light of the idea of working pattern recognition --> mixture gas analysis --> the final result output. In order to solve the problem of new subset working pattern, the SVM online categorization algorithm based on spectrum data relational rule was used. The experimental results show that the component concentration maximal deviation is 0.41% and the maximal average deviation is 0.04%. The method can be used in other mixture gas infrared spectrum analyses, and has the theoretic and application value.

  17. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-08

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  18. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  19. Spectral saliency via automatic adaptive amplitude spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  20. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  1. Tom Bonner Prize Lecture: The Beta Spectrum of Tritium and the Problem of Neutrino Mass

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    1997-04-01

    Enrico Fermi showed more than 60 years ago that the shape of beta spectra was sensitive to the mass of the unobserved particle, the neutrino, proposed by Wolfgang Pauli. With the discovery of tritium and its small decay energy, increasingly stringent limits were placed on the electron antineutrino mass. A roadblock at about 50 eV, namely the atomic and molecular structure of tritium-containing substances, was surmounted in the 1980s with the development at Los Alamos of methods for high-resolution beta spectroscopy with gases, together with worldwide theoretical work on the structure of diatomic T2 and T^3He^+. It was then possible to reach the very interesting region of cosmological relevance below 20 eV. An unexpected and strange new roadblock has now been encountered in all experiments on T_2. The spectrum near the endpoint is not consistent with theory either with or without neutrino mass. The questions now are, do the experiments all report the same phenomenon, and (if so) is it atomic theory, particle theory, or perhaps cosmology that needs repair?

  2. Whether the Autism Spectrum Quotient Consists of Two Different Subgroups? Cluster Analysis of the Autism Spectrum Quotient in General Population

    ERIC Educational Resources Information Center

    Kitazoe, Noriko; Fujita, Naofumi; Izumoto, Yuji; Terada, Shin-ichi; Hatakenaka, Yuhei

    2017-01-01

    The purpose of this study was to investigate whether the individuals in the general population with high scores on the Autism Spectrum Quotient constituted a single homogeneous group or not. A cohort of university students (n = 4901) was investigated by cluster analysis based on the original five subscales of the Autism Spectrum Quotient. Based on…

  3. Mass spectrum of vector mesons and their leptonic-decay constants in the bilocal relativistic potential model

    SciTech Connect

    Ablakulov, Kh. Narzikulov, Z.

    2015-01-15

    A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.

  4. Power spectrum analysis of astronomical photographs digitised with small apertures

    NASA Astrophysics Data System (ADS)

    Stobie, R. S.; Okamura, S.; Davenhall, A. C.; MacGillivray, H. T.

    1984-04-01

    Noise characteristics of images on 8 UK Schmidt Telescope plates, 2 Anglo-Australian Telescope prime focus plates, and 2 Palomar Observatory Sky Survey (POSS) copies (comprising 3 different emulsion types) were measured with a scanning aperture of 11 microns and a pixel spacing of 16 microns. Power spectrum analysis shows plate noise (except POSS plates) to correspond to almost white noise over the frequency range 0.1 to 60 cycles/mm. The signal-to-noise power spectrum is shown to be a useful tool for measuring the information content of an astronomical photograph. Macronoise computed over 8 x 8 mm regions on the plates varies as the minus half power of the aperture area. Information content of a survey quality IIIa-J plate and atlas quality copies on very fine-grained emulsion were compared. Analysis shows no significant degradation in emulsion noise or image content of the copy relative to the original.

  5. Spectral Analysis Of Digital Wave Data Computer Program: SPECTRUM

    DTIC Science & Technology

    1987-06-01

    spectrum and time series analysis may be found in Bendat and Piersol (L97L), Borgman (1972), Borgman (1973), Lund (1986), and Welch (1967). The...Including Procedures Based on the Fast Fourier Transform Algorithm", STL #2008, University of Wyoming, Laramie, WY. Lund , Robert B. "A Mathematical Model...Engineering Research Center, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Rye, Henrik . 1977. "The Stability of Some Currently Used Wave

  6. Blind Extraction and Security Analysis of Spread Spectrum Hidden Watermarks

    DTIC Science & Technology

    2012-04-01

    DATES COVERED (From - To) JAN 2009 – DEC 2010 4. TITLE AND SUBTITLE BLIND EXTRACTION AND SECURITY ANALYSIS OF SPREAD SPECTRUM HIDDEN WATERMARKS ...Multi Signature Embedding, Watermarking , DSSS. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 15 19a... watermarks John A. Marsh*a,b, and Gerard F. Wohlrabc aSUNY Institute of Technology, 100 Seymour Dr., Utica, NY 13502; bAssured Information

  7. Isotopic trace analysis by atomic mass spectrometry

    SciTech Connect

    Stoffels, J.J.

    1993-12-01

    All the production facilities at Hanford are now shut down. However, the legacy from half a century of plutonium production includes 177 underground storage tanks of up to one million gallons each containing the largest accumulation of high-level radioactive waste in what used to be called ``the free world.`` Hanford`s new mission, in addition to a spectrum of ongoing research and development, is radioactive waste management and environmental restoration. Isotope-ratio mass spectrometry will continue to be an essential tool in monitoring the progress of that mission.

  8. [Research of Identify Spatial Object Using Spectrum Analysis Technique].

    PubMed

    Song, Wei; Feng, Shi-qi; Shi, Jing; Xu, Rong; Wang, Gong-chang; Li, Bin-yu; Liu, Yu; Li, Shuang; Cao Rui; Cai, Hong-xing; Zhang, Xi-he; Tan, Yong

    2015-06-01

    The high precision scattering spectrum of spatial fragment with the minimum brightness of 4.2 and the resolution of 0.5 nm has been observed using spectrum detection technology on the ground. The obvious differences for different types of objects are obtained by the normalizing and discrete rate analysis of the spectral data. Each of normalized multi-frame scattering spectral line shape for rocket debris is identical. However, that is different for lapsed satellites. The discrete rate of the single frame spectrum of normalized space debris for rocket debris ranges from 0.978% to 3.067%, and the difference of oscillation and average value is small. The discrete rate for lapsed satellites ranges from 3.118 4% to 19.472 7%, and the difference of oscillation and average value relatively large. The reason is that the composition of rocket debris is single, while that of the lapsed satellites is complex. Therefore, the spectrum detection technology on the ground can be used to the classification of the spatial fragment.

  9. Dependence of the non-linear mass power spectrum on the equationof state of dark energy

    NASA Astrophysics Data System (ADS)

    McDonald, Patrick; Trac, Hy; Contaldi, Carlo

    2006-02-01

    We present N-body simulation calculations of the dependence of the power spectrum of non-linear cosmological mass density fluctuations on the equation of state of the dark energy, w=p/ρ. At fixed linear theory power, increasing w leads to an increase in non-linear power, with the effect increasing with k. By k= 10hMpc-1, a model with w=-0.75 has ~12 per cent more power than a standard cosmological constant model (w=-1), while a model with w=-0.5 has ~33 per cent extra power (at z= 0). The size of the effect increases with increasing dark energy fraction, and to a lesser extent increasing power spectrum normalization, but is insensitive to the power spectrum shape (the numbers above are for Ωm= 0.281 and σ8= 0.897). A code quantifying the non-linear effect of varying w, as a function of k, z and other cosmological parameters, which should be accurate to a few per cent for k<~ 10hMpc-1 for models that fit the current observations, is available at http://www.cita.utoronto.ca/~pmcdonal/code.html. This paper also serves as an example of a detailed exploration of the numerical convergence properties of ratios of power spectra for different models, which can be useful because some kinds of numerical error cancel in a ratio. When precision calculations based on numerical simulations are needed for many different models, efficiency may be gained by breaking the problem into a calculation of the absolute prediction at a central point, and calculations of the relative change in the prediction with model parameters.

  10. Measurement of the dipion mass spectrum in X(3872) ---> J/psi pi+ pi- decays

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2005-12-01

    The authors measure the dipion mass spectrum in X(3872) {yields} J/{psi}{pi}{sup +}{pi}{sup -} decays using 360 pb{sup -1} of {bar p}p collisions at {radical}s = 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity ({sup 3}S{sub 1}, {sup 1}P{sub 1}, and {sup 3}D{sub J}) charmonia decaying to J/{psi}{pi}{sup +}{pi}{sup -}, as well as event C-parity states in which the pions are from {rho}{sup 0} decay. The latter case also encompasses exotic interpretations, such as a D{sup 0}{bar D}*{sup 0} molecule. Only the {sup 3}S{sub 1} and J/{psi} {rho} hypotheses are compatible with the data. Since {sup 3}S{sub 1} is untenable on other grounds, decay via J/{psi} {rho} is favored, which implies C = +1 for the X(3872). Models for different J/{psi}-{rho} angular momenta L are considered. Flexibility in the models, especially the introduction of {rho}-{omega} interference, enable good descriptions of the data for both L = 0 and 1.

  11. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, H. J.; González, D. M.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be released simultaneously with the /γ-ray surge. If contemporary measurements of both /γ and /ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedentedly tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model, since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra.

  12. Bursts of Gravitational Radiation from Superconducting Cosmic Strings and the Neutrino Mass Spectrum

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.; González, Danays Morejón

    2001-09-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be released simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model, since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra.

  13. Condensing Raman spectrum for single-cell phenotype analysis

    PubMed Central

    2015-01-01

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication. PMID:26681607

  14. The dijet mass spectrum and angular distributions with the D0 detector

    SciTech Connect

    Abachi, S.

    1996-07-01

    We present preliminary results from an analysis of dijet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 91 pb{sup -1}. Measurements of dijet mass spectra and dijet angular distributions in {anti p}p collisions at {radical}s- = 1.8 TeV are compared with next-to-leading order QCD theory.

  15. Spectrum-based network visualization for topology analysis.

    PubMed

    Hu, Xianlin; Lu, Aidong; Wu, Xintao

    2013-01-01

    Network visualization techniques have been widely used to explore social networks, which are crucial to many application domains. A proposed visual-analytics approach provides functions that were previously hard to obtain. Based on recent achievements in spectrum-based analysis, it uses the features of node distribution and coordinates in the high-dimensional spectral space. Specifically, three-stage node projection and dispersion on a k-dimensional sphere in the spectral space determines the network layout. To assist interactive exploration of network topologies, network visualization and interactive analysis let users filter nodes and edges in a way that's meaningful to the global topology structure.

  16. Multivariate statistical analysis of low-voltage EDS spectrum images

    SciTech Connect

    Anderson, I.M.

    1998-03-01

    Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.

  17. Underground fluid composition analysis based on the near infrared spectrum

    NASA Astrophysics Data System (ADS)

    Li, Wenxi; Liao, Yanbiao; Zhang, Min

    2011-11-01

    The near-infrared spectrum is very practical for real-time analyzing in the field of industry. This paper describes the structure of optical system, which is a part of the well logging instruments. The optical system is designed to analyze the composition of underground fluid, using the differences between oil and water in near-infrared absorption. Using Beer- Lambert law, the article analyzes the light intensity when broad-spectrum light passes through the liquid. According to the results of analysis, a group of wavelength including center wavelength and bandwidth can be selected. With each selected wavelength, light intensity changes significantly as the concentration of liquid changes. By measuring the light intensity, the system can analyse the composition of underground fluid.

  18. Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-06-01

    The spheroidal harmonics Slm (θ ; c) have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues {Alm (c) } of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime m → ∞ with a fixed value of c, or to the complementary regime | c | → ∞ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit m → ∞ and | c | → ∞ with a fixed m / c ratio.

  19. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  20. Spectrum analysis of speech recognition via discrete Tchebichef transform

    NASA Astrophysics Data System (ADS)

    Ernawan, Ferda; Abu, Nur Azman; Suryana, Nanna

    2011-10-01

    Speech recognition is still a growing field. It carries strong potential in the near future as computing power grows. Spectrum analysis is an elementary operation in speech recognition. Fast Fourier Transform (FFT) is the traditional technique to analyze frequency spectrum of the signal in speech recognition. Speech recognition operation requires heavy computation due to large samples per window. In addition, FFT consists of complex field computing. This paper proposes an approach based on discrete orthonormal Tchebichef polynomials to analyze a vowel and a consonant in spectral frequency for speech recognition. The Discrete Tchebichef Transform (DTT) is used instead of popular FFT. The preliminary experimental results show that DTT has the potential to be a simpler and faster transformation for speech recognition.

  1. Structures of the neutrino mass spectrum and of lepton mixing as results of mirror-symmetry breaking

    NASA Astrophysics Data System (ADS)

    Dyatlov, I. T.

    2017-07-01

    The mechanism of broken mirror symmetry may be the reason behind the appearance of the observed weak-mixing matrix for leptons that has a structure involving virtually no visible regularities (flavor riddle). Special features of the Standard Model such as the particle-mass hierarchy and the neutrino spectrum deviating from the hierarchy prove here to be necessary conditions for reproducing a structure of this type. The inverse character of the neutrino spectrum and a small value of the mass m 3 are also mandatory. The smallness of the angle θ 13 is due precisely to the smallness of the mass ratios in the hierarchical lepton spectrum. The emergence of distinctions between the neutrino spectrum and the spectra of other Standard Model fermions is explained. The inverse character of the neutrino spectrum and the observed value of θ 13 make it possible to estimate the absolute values of their masses as m 1 ≈ m 2 ≈ 0.05 eV and m 3 ≈ 0.01 eV.

  2. Langevin simulation of the full QCD hadron mass spectrum on a lattice

    SciTech Connect

    Fukugita, M.; Oyanagi, Y.; Ukawa, A.

    1987-08-01

    Langevin simulation of quantum chromodynamics (QCD) on a lattice is carried out fully taking into account the effect of the quark vacuum polarization. It is shown that the Langevin method works well for full QCD and that simulation on a large lattice is practically feasible. A careful study is made of systematic errors arising from a finite Langevin time-step size. The magnitude of the error is found to be significant for light quarks, but the well-controlled extrapolation allows a separation of the values at the vanishing time-step size. As another important ingredient for the feasibility of Langevin simulation the advantage of the matrix inversion algorithm of the preconditioned conjugate residual method is described, as compared with various other algorithms. The results of a hadron-mass-spectrum calculation on a 9/sup 3/ x 18 lattice at ..beta.. = 5.5 with the Wilson quark action having two flavors are presented. It is shown that the contribution of vacuum quark loops significantly modifies the hadron masses in lattice units, but that the dominant part can be absorbed into a shift of the gauge coupling constant at least for the ground-state hadrons. Some suggestion is also presented for the physical effect of vacuum quark loops for excited hadrons.

  3. Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider

    SciTech Connect

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-12-01

    A search for signatures of extra dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions at {radical}s = 7 TeV corresponding to an integrated luminosity of 2.2 fb{sup -1}. In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3-3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86-1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.

  4. Search for signatures of extra dimensions in the diphoton mass spectrum at the large hadron collider.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knapitsch, A; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Trauner, C; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Luyckx, S; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Léonard, A; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, S; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Voutilainen, M; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Viret, S; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Heidemann, C; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Davids, M; Flügge, G; Geenen, H; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Petrukhin, A; Pitzl, D; Raspereza, A; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Görner, M; Hermanns, T; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schröder, M; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Berger, J; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Guthoff, M; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Röcker, S; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J; Singh, S P; Ahuja, S; Choudhary, B C; Kumar, A; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, S; Jain, S; Khurana, R; Sarkar, S; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Romano, F; Selvaggi, G; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Rizzi, A; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Franci, D; Grassi, M; Longo, E; Meridiani, P; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Sigamani, M; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Jo, H Y; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Seo, E; Sim, K S; Choi, M; Kang, S; Kim, H; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Polujanskas, M; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Pela, J; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Guiducci, L; Gundacker, S; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stoye, M; Tsirou, A; Vichoudis, P; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Casal, B; Chanon, N; Chen, Z; Cittolin, S; Deisher, A; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Lecomte, P; Lustermann, W; Martinez Ruiz del Arbol, P; Milenovic, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Weng, J; Aguilo, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Schmidt, A; Snoek, H; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Henderson, C; Avetisyan, A; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Houtz, R; Ko, W; Kopecky, A; Lander, R; Mall, O; Miceli, T; Pellett, D; Robles, J; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sfiligoi, I; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; George, C; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Mullin, S D; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pivarski, J; Pordes, R; Prokofyev, O; Schwarz, T; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Goldberg, S; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Mitselmakher, G; Muniz, L; Park, M; Remington, R; Rinkevicius, A; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Gaultney, V; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Silvestre, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Peterman, A; Rossato, K; Rumerio, P; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Jindal, P; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Smith, K; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Vuosalo, C; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Laird, E; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Borrello, L; Bortoletto, D; De Mattia, M; Everett, A; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Petrillo, G; Sakumoto, W; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Atramentov, O; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Richards, A; Rose, K; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Bardak, C; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Gurrola, A; Issah, M; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Conetti, S; Cox, B; Francis, B; Goadhouse, S; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Bellinger, J N; Bernardini, J; Carlsmith, D; Cepeda, M; Dasu, S; Efron, J; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2012-03-16

    A search for signatures of extra spatial dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions at √s=7 TeV corresponding to an integrated luminosity of 2.2 fb(-1). In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3-3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86-1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.

  5. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  6. NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the Stellar Mass Spectrum

    NASA Astrophysics Data System (ADS)

    Rhee, Joseph

    2007-07-01

    Association of planetary systems with dusty debris disks is now quite secure, and advances in our understanding of planet formation and evolution can be achieved by the identification and characterization of an ensemble of debris disks orbiting a range of central stars with different masses and ages. Imaging debris disks in starlight scattered by dust grains remains technically challenging so that only about a dozen systems have thus far been imaged. A further advance in this field needs an increased number of imaged debris disks. However, the technical challege of such observations, even with the superb combination of HST and NICMOS, requires the best targets. Recent HST imaging investigations of debris disks were sample-limited not limited by the technology used. We performed a search for debris disks from a IRAS/Hipparcos cross correlation which involved an exhaustive background contamination check to weed out false excess stars. Out of ~140 identified debris disks, we selected 22 best targets in terms of dust optical depth and disk angular size. Our target sample represents the best currently available target set in terms of both disk brightness and resolvability. For example, our targets have higher dust optical depth, in general, than newly identified Spitzer disks. Also, our targets cover a wider range of central star ages and masses than previous debris disk surveys. This will help us to investigate planetary system formation and evolution across the stellar mass spectrum.The technical feasibility of this program in two-gyro mode guiding has been proven with on-orbit calibration and science observations during HST cycles 13, 14, and 15.

  7. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  8. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  9. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  10. Mixed Spectrum Analysis on fMRI Time-Series.

    PubMed

    Kumar, Arun; Lin, Feng; Rajapakse, Jagath C

    2016-06-01

    Temporal autocorrelation present in functional magnetic resonance image (fMRI) data poses challenges to its analysis. The existing approaches handling autocorrelation in fMRI time-series often presume a specific model of autocorrelation such as an auto-regressive model. The main limitation here is that the correlation structure of voxels is generally unknown and varies in different brain regions because of different levels of neurogenic noises and pulsatile effects. Enforcing a universal model on all brain regions leads to bias and loss of efficiency in the analysis. In this paper, we propose the mixed spectrum analysis of the voxel time-series to separate the discrete component corresponding to input stimuli and the continuous component carrying temporal autocorrelation. A mixed spectral analysis technique based on M-spectral estimator is proposed, which effectively removes autocorrelation effects from voxel time-series and identify significant peaks of the spectrum. As the proposed method does not assume any prior model for the autocorrelation effect in voxel time-series, varying correlation structure among the brain regions does not affect its performance. We have modified the standard M-spectral method for an application on a spatial set of time-series by incorporating the contextual information related to the continuous spectrum of neighborhood voxels, thus reducing considerably the computation cost. Likelihood of the activation is predicted by comparing the amplitude of discrete component at stimulus frequency of voxels across the brain by using normal distribution and modeling spatial correlations among the likelihood with a conditional random field. We also demonstrate the application of the proposed method in detecting other desired frequencies.

  11. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  12. The Spectrum of LSST Data Analysis Challenges: Kiloscale to Petascale

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.; Babu, G. J.; Borne, K. D.; Feigelson, E. D.; Gray, A. G.; Informatics, LSST; Statistics Science Collaboration proposed

    2010-01-01

    The unprecedented science opportunities enabled by LSST's wide-fast-deep mode of operation are accompanied by equally unprecedented data analysis challenges, due to the huge size and synoptic scope of LSST data products. While the most obvious challenges are those due to the petabyte scale of fundamental LSST databases, new and difficult data analysis problems that span a broad range of sizes, types, and complexity, and require a matching breadth of methodological research, must also be addressed. Some smaller-scale LSST data products, such as multicolor light curves for individual objects, will present challenging statistics problems; e.g., requiring multivariate time series methods capable of handling nonuniform, non-simultaneous sampling with measurement errors. Very large-scale LSST data products, such as comprehensive catalogs of stars or galaxies, will require significant informatics/data mining innovation; e.g., to enable accurate classification or photo-z estimation for huge samples. These scales mark the boundaries of a broad spectrum of LSST data analysis problems; research-level informatics and statistics challenges arise in various combinations across this whole spectrum. We survey the diversity of forthcoming LSST data analysis problems and opportunities, highlighting representative problems that address compelling astronomical science and present significant methodological challenges involving both astrostatistics and astroinformatics.

  13. Spectrum properties analysis of different soil moisture content

    NASA Astrophysics Data System (ADS)

    Fang, Shenghui; Hu, Bo; Lin, Fan

    2009-10-01

    Soil moisture content is one of the most important factors in soil business. The basic of detecting soil moisture content using remote sensing technology is to analyze the relationship between soil moisture content and emissivity. In this paper, based on the analysis of spectrum collection and processing by a portable spectrometer, a set of measure schemes were first established which can accurately measure the reflectivity and emissivity of soil spectrum with different moisture content in near-infrared and thermal infrared bands. Then we selected different bare soil areas as the areas for survey, and studied the relationship of different moisture content and the spectrum curve in the soil both of the same kind and of different kind (like the soil whose structure has been modified caused by the change of organic matter contents or soil particle size). Finally, we emphasized on the quantitative relationship between soil reflectivity & emissivity and soil moisture content using the test data, and establish a model depicting the quantitative relationship above in near-infrared and thermal infrared bands.

  14. Highly multiparametric analysis by mass cytometry.

    PubMed

    Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Nitz, Mark; Winnik, Mitchell A; Tanner, Scott

    2010-09-30

    This review paper describes a new technology, mass cytometry, that addresses applications typically run by flow cytometer analyzers, but extends the capability to highly multiparametric analysis. The detection technology is based on atomic mass spectrometry. It offers quantitation, specificity and dynamic range of mass spectrometry in a format that is familiar to flow cytometry practitioners. The mass cytometer does not require compensation, allowing the application of statistical techniques; this has been impossible given the constraints of fluorescence noise with traditional cytometry instruments. Instead of "colors" the mass cytometer "reads" the stable isotope tags attached to antibodies using metal-chelating labeling reagents. Because there are many available stable isotopes, and the mass spectrometer provides exquisite resolution between detection channels, many parameters can be measured as easily as one. For example, in a single tube the technique allows for the ready detection and characterization of the major cell subsets in blood or bone marrow. Here we describe mass cytometric immunophenotyping of human leukemia cell lines and leukemia patient samples, differential cell analysis of normal peripheral and umbilical cord blood; intracellular protein identification and metal-encoded bead arrays. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Analysis of Glycosaminoglycans Using Mass Spectrometry

    PubMed Central

    Staples, Gregory O.; Zaia, Joseph

    2015-01-01

    The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS. PMID:25705143

  16. Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. H.

    2015-03-01

    Background: The standard kinematic method for determining neutrino mass from the β decay of tritium or other isotope is to measure the shape of the electron spectrum near the endpoint. A similar distortion of the "visible energy" remaining after electron capture is caused by neutrino mass. There has been a resurgence of interest in using this method with 163Ho, driven by technological advances in microcalorimetry. Recent theoretical analyses offer reassurance that there are no significant theoretical uncertainties. Purpose: The theoretical analyses consider only single vacancy states in the daughter 163Dy atom. It is necessary to consider configurations with more than one vacancy that can be populated owing to the change in nuclear charge. Method: The shakeup and shake-off theory of Carlson and Nestor is used as a basis for estimating the population of double-vacancy states. Results: A spectrum of satellites associated with each primary vacancy created by electron capture is presented. Conclusions: The theory of the calorimetric spectrum is more complicated than has been described heretofore. There are numerous shakeup and shake-off satellites present across the spectrum, and some may be very near the endpoint. The spectrum shape is presently not understood well enough to permit a sensitive determination of the neutrino mass in this way.

  17. Analysis of omnoponum by surface-ionization mass spectrometry and liquid chromatography tandem mass spectrometry methods.

    PubMed

    Usmanov, Dilshadbek; Khasanov, Usman; Pantsirev, Aleksey; Van Bocxlaer, Jan

    2010-12-01

    This paper provides the development of analytical capabilities of surface-ionization mass spectrometry (SI/MS) and high performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS) for narcotic analgesic omnoponum, which perfectly exemplifies a mixture of opium alkaloids. It has been revealed that the investigated opiates solution, omnoponum, is ionized by the surface ionization (SI) method with high sensitivity. In the SI mass spectrum, M+, (M-H)+, (M-H-2nH)+, (M-R)+ and (M-R-2nH)+ ion lines, where M is a molecule, H is the hydrogen atom and R is a radical, were observed. These ion lines consist of combined omnoponum mixture SI mass spectra, i.e. morphine, codeine, thebaine, papaverine, and narcotine. Moreover, while the study of omnoponum by HPLC/MS/MS methods has attested that the mixture really consists of 5 components, it has been demonstrated that the SI/MS method can be utilized for the analysis of this mixture without the necessity of its chromatographic separation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum.

    PubMed

    Kumozaki, Shotaro; Sato, Kengo; Sakakibara, Yasubumi

    2015-01-01

    Recently, glycomics has been actively studied and various technologies for glycomics have been rapidly developed. Currently, tandem mass spectrometry (MS/MS) is one of the key experimental tools for identification of structures of oligosaccharides. MS/MS can observe MS/MS peaks of fragmented glycan ions including cross-ring ions resulting from internal cleavages, which provide valuable information to infer glycan structures. Thus, the aim of de novo sequencing of glycans is to find the most probable assignments of observed MS/MS peaks to glycan substructures without databases. However, there are few satisfiable algorithms for glycan de novo sequencing from MS/MS spectra. We present a machine learning based approach to de novo sequencing of glycans from MS/MS spectrum. First, we build a suitable model for the fragmentation of glycans including cross-ring ions, and implement a solver that employs Lagrangian relaxation with a dynamic programming technique. Then, to optimize scores for the algorithm, we introduce a machine learning technique called structured support vector machines that enable us to learn parameters including scores for cross-ring ions from training data, i.e., known glycan mass spectra. Furthermore, we implement additional constraints for core structures of well-known glycan types including N-linked glycans and O-linked glycans. This enables us to predict more accurate glycan structures if the glycan type of given spectra is known. Computational experiments show that our algorithm performs accurate de novo sequencing of glycans. The implementation of our algorithm and the datasets are available at http://glyfon.dna.bio.keio.ac.jp/.

  19. Subunit mass analysis for monitoring antibody oxidation

    PubMed Central

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J.; Hu, Ping

    2017-01-01

    ABSTRACT Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation. PMID:28106519

  20. Subunit mass analysis for monitoring antibody oxidation.

    PubMed

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  1. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  2. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  3. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  4. Search for Structure in the Bs0π± Invariant Mass Spectrum

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2016-10-01

    The Bs0π± invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to 3 fb-1 of p p collision data at √{s }=7 and 8 TeV. No significant excess is found, and upper limits are set on the production rate of the claimed X (5568 ) state within the LHCb acceptance. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the Bs0π± final state. The same limits also apply to a possible exotic meson decaying through the chain Bs*0π±, Bs*0→Bs0γ where the photon is excluded from the reconstructed decays.

  5. Search for Structure in the B_{s}^{0}π^{±} Invariant Mass Spectrum.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2016-10-07

    The B_{s}^{0}π^{±} invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to 3  fb^{-1} of pp collision data at sqrt[s]=7 and 8 TeV. No significant excess is found, and upper limits are set on the production rate of the claimed X(5568) state within the LHCb acceptance. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the B_{s}^{0}π^{±} final state. The same limits also apply to a possible exotic meson decaying through the chain B_{s}^{*0}π^{±}, B_{s}^{*0}→B_{s}^{0}γ where the photon is excluded from the reconstructed decays.

  6. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using a spectrum summing

    SciTech Connect

    Killian, E.W.

    1997-05-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radio nuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radionuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogenous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container.

  7. Bayesian Angular Power Spectrum Analysis of Interferometric Data

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Wandelt, Benjamin D.; Malu, Siddarth S.

    2012-09-01

    We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as {O}(n_p log n_p) where np measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.

  8. BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Malu, Siddarth S.

    2012-09-15

    We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as O(n{sub p} log n{sub p}) where n{sub p} measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.

  9. The pulse spectrum analysis at three stages of pregnancy.

    PubMed

    Liao, Yin-Tzu; Chen, Huey-Yi; Huang, Chin-Ming; Ho, Ming; Lin, Jaung-Geng; Chiu, Chun-Chien; Wang, Hong-Song; Chen, Fun-jou

    2012-04-01

    This study is the first to detect the radial pulses of the three diagnosis positions (inch, bar, and cubit) in both wrists (six positions) by pulse spectrum analysis. The purpose of this study was to identify the difference among pulses of the six positions at three stages of pregnancy and to examine whether the results of this study agree with the theory of Traditional Chinese Medicine (TCM), which states that the cubit pulse shows unique changes for an expectant woman and that the pulse changes coincide with the progression of gestation. One hundred and fifty (150) healthy pregnant women were divided into three groups according to gestational age (9-14 weeks, 20-28 weeks, and 32-37 weeks of gestation) and 50 healthy nonpregnant women were used as controls. A pulse analyzer was used to detect the six positions of the radial pulses and to calculate the 10 relative energy values of the spectrum's harmonics of the six positions. Results show that most of the 10 relative spectral energy values of the right and left cubits are statistically (p<0.01) higher than those of the inch for the pregnant women as compared with the nonpregnant women. In addition, the 10 relative spectral energy values of the six positions are not identical at the three stages of pregnancy. The cubit pulse is unique for pregnant women, which is consistent with the theory of TCM. In addition, the pulse conditions at the three stages of pregnancy are dissimilar.

  10. Spectrum Identification using a Dynamic Bayesian Network Model of Tandem Mass Spectra

    PubMed Central

    Singh, Ajit P.; Halloran, John; Bilmes, Jeff A.; Kirchoff, Katrin; Noble, William S.

    2013-01-01

    Shotgun proteomics is a high-throughput technology used to identify unknown proteins in a complex mixture. At the heart of this process is a prediction task, the spectrum identification problem, in which each fragmentation spectrum produced by a shotgun proteomics experiment must be mapped to the peptide (protein subsequence) which generated the spectrum. We propose a new algorithm for spectrum identification, based on dynamic Bayesian networks, which significantly out-performs the de-facto standard tools for this task: SEQUEST and Mascot. PMID:25383048

  11. [The applications for Fourier transform infrared spectrum analysis technique in preventive medicine field].

    PubMed

    Yang, Jiao-lan; Luo, Tian

    2002-08-01

    This paper expatriated the applications for Fourier transform infrared spectrum analysis technique in preventive medicine field from four aspects of environmental pollution, life science, and the latest infrared analysis methods and near infrared analysis technique. In the environmental pollution field, it mainly described the advantages, the limitations and the solutions of the combined applications for gas chromatograph and Fourier transform infrared spectrum. In the life science field, it described the application for Fourier transform infrared spectrum analysis technique on protein secondary structure, membrane protein, phospholipid, nucleic acid, cell, tissue. In addition, it also introduced a few latest infrared analysis methods and the applications for near infrared spectrum analysis technique in food, cosmetic, drug.

  12. Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2016-11-01

    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg ⁡ (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.

  13. Body mass index change in autism spectrum disorders: comparison of treatment with risperidone and aripiprazole.

    PubMed

    Wink, Logan K; Early, Maureen; Schaefer, Tori; Pottenger, Amy; Horn, Paul; McDougle, Christopher J; Erickson, Craig A

    2014-03-01

    The purpose of this study was to assess change in body mass index (BMI) and age- and gender-adjusted BMI Z-score in subjects ages 2-20 years with autism spectrum disorders (ASD), who were treated longitudinally with risperidone or aripiprazole at a tertiary care ASD clinic. As part of a larger project involving longitudinal drug treatment data in ASD, detailed demographic and treatment data were collected for 142 subjects ages 2-20 years who had been started on risperidone or aripiprazole for treatment of irritability. Mean age at start of treatment, treatment duration, final Clinical Global Impressions-Improvement Scale score, BMI change per year of treatment, and BMI Z-score change per year of treatment (primary outcome measure) were calculated for each drug treatment group. Group means were compared using t tests and Wilcoxon rank sum tests. There was a statistically significant BMI and BMI Z-score increase in the risperidone and aripiprazole treatment groups individually. No statistically significant difference between the two treatment groups was noted in mean BMI change per year of treatment or BMI Z-score change per year of treatment. In our review of long-term naturalistic treatment of irritability using risperidone versus aripiprazole in persons with ASD, a significant increase in both BMI and age- and gender-adjusted BMI Z-score was noted for each treatment group. No significant difference in BMI or BMI Z-score change was noted when the two treatment groups were compared. We conclude that in our patient population at a tertiary care ASD clinic, the effects of risperidone and aripiprazole on body weight gain in naturalistic long-term treatment are no different.

  14. Broad-spectrum drug screening of meconium by liquid chromatography with tandem mass spectrometry and time-of-flight mass spectrometry.

    PubMed

    Ristimaa, Johanna; Gergov, Merja; Pelander, Anna; Halmesmäki, Erja; Ojanperä, Ilkka

    2010-09-01

    Analysis of the major drugs of abuse in meconium has been established in clinical practice for detecting fetal exposure to illicit drugs, particularly for the ready availability of the sample and ease of collection from diapers, compared with neonatal hair and urine. Very little is known about the occurrence and detection possibilities of therapeutic and licit drugs in meconium. Meconium specimens (n = 209) were collected in delivery hospitals, from infants of mothers who were suspected to be drug abusers. A targeted analysis method by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was developed for abused drugs: amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, morphine, codeine, 6-monoacetylmorphine, oxycodone, methadone, tramadol, buprenorphine, and norbuprenorphine. A separate LC-MS/MS method was developed for 11-nor-∆(9)-tetrahydrocannabinol-9-carboxylic acid. A screening method based on LC coupled to time-of-flight MS was applied to a broad spectrum of drugs. As a result, a total of 77 different compounds were found. The main drug findings in meconium were as follows: local anesthetics 82.5% (n = 172), nicotine or its metabolites 61.5% (n = 129), opioids 48.5% (n = 101), stimulants 21.0% (n = 44), hypnotics and sedatives 19.0% (n = 40), antidepressants 18.0% (n = 38), antipsychotics 5.5% (n = 11), and cannabis 3.0% (n = 5). By revealing drugs and metabolites beyond the ordinary scope, the present procedure helps the pediatrician in cases where maternal denial is strong but the infant seems to suffer from typical drug-withdrawal symptoms. Intrapartum drug administration cannot be differentiated from gestational drug use by meconium analysis, which affects the interpretation of oxycodone, tramadol, fentanyl, pethidine, and ephedrine findings.

  15. Modeling daily realized futures volatility with singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Thomakos, Dimitrios D.; Wang, Tao; Wille, Luc T.

    2002-09-01

    Using singular spectrum analysis (SSA), we model the realized volatility and logarithmic standard deviations of two important futures return series. The realized volatility and logarithmic standard deviations are constructed following the methodology of Andersen et al. [J. Am. Stat. Ass. 96 (2001) 42-55] using intra-day transaction data. We find that SSA decomposes the volatility series quite well and effectively captures both the market trend (accounting for about 34-38% of the total variance in the series) and, more importantly, a number of underlying market periodicities. Reliable identification of any periodicities is extremely important for options pricing and risk management and we believe that SSA can be a useful addition to the financial practitioners’ toolbox.

  16. Performance analysis of spread spectrum modulation in data hiding

    NASA Astrophysics Data System (ADS)

    Gang, Litao; Akansu, Ali N.; Ramkumar, Mahalingam

    2001-12-01

    Watermarking or steganography technology provides a possible solution in digital multimedia copyright protection and pirate tracking. Most of the current data hiding schemes are based on spread spectrum modulation. A small value watermark signal is embedded into the content signal in some watermark domain. The information bits can be extracted via correlation. The schemes are applied both in escrow and oblivious cases. This paper reveals, through analysis and simulation, that in oblivious applications where the original signal is not available, the commonly used correlation detection is not optimal. Its maximum likelihood detection is analyzed and a feasible suboptimal detector is derived. Its performance is explored and compared with the correlation detector. Subsequently a linear embedding scheme is proposed and studied. Experiments with image data hiding demonstrates its effectiveness in applications.

  17. Mutational Spectrum Analysis of Neurodegenerative Diseases and Its Pathogenic Implication.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2015-10-14

    One of the most conspicuous features of neurodegenerative diseases (NDs) is the occurrence of dramatic conformation change of individual proteins. We performed a mutational spectrum analysis of disease-causing missense mutations in seven types of NDs at nucleotide and amino acid levels, and compared the results with those of non-NDs. The main findings included: (i) The higher mutation ratio of G:C→T:A transversion to G:C→A:T transition was observed in NDs than in non-NDs, interpreting the excessive guanine-specific oxidative DNA damage in NDs; (ii) glycine and proline had highest mutability in NDs than in non-NDs, which favor the protein conformation change in NDs; (iii) surprisingly low mutation frequency of arginine was observed in NDs. These findings help to understand how mutations may cause NDs.

  18. Singular Spectrum Analysis Based on L1-Norm

    NASA Astrophysics Data System (ADS)

    Kalantari, Mahdi; Yarmohammadi, Masoud; Hassani, Hossein

    2016-03-01

    In recent years, the singular spectrum analysis (SSA) technique has been further developed and increasingly applied to solve many practical problems. The aim of this research is to introduce a new version of SSA based on L1-norm. The performance of the proposed approach is assessed by applying it to various real and simulated time series, especially with outliers. The results are compared with those obtained using the basic version of SSA which is based on the Frobenius norm or L2-norm. Different criteria are also examined including reconstruction errors and forecasting performances. The theoretical and empirical results confirm that SSA based on L1-norm can provide better reconstruction and forecasts in comparison to basic SSA when faced with time series which are polluted by outliers.

  19. Reduction of S-parameter errors using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ozturk, Turgut; Uluer, Ihsan; Ünal, Ilhami

    2016-07-01

    A free space measurement method, which consists of two horn antennas, a network analyzer, two frequency extenders, and a sample holder, is used to measure transmission (S21) coefficients in 75-110 GHz (W-Band) frequency range. Singular spectrum analysis method is presented to eliminate the error and noise of raw S21 data after calibration and measurement processes. The proposed model can be applied easily to remove the repeated calibration process for each sample measurement. Hence, smooth, reliable, and accurate data are obtained to determine the dielectric properties of materials. In addition, the dielectric constant of materials (paper, polyvinylchloride-PVC, Ultralam® 3850HT, and glass) is calculated by thin sheet approximation and Newton-Raphson extracting techniques using a filtered S21 transmission parameter.

  20. Reduction of S-parameter errors using singular spectrum analysis.

    PubMed

    Ozturk, Turgut; Uluer, İhsan; Ünal, İlhami

    2016-07-01

    A free space measurement method, which consists of two horn antennas, a network analyzer, two frequency extenders, and a sample holder, is used to measure transmission (S21) coefficients in 75-110 GHz (W-Band) frequency range. Singular spectrum analysis method is presented to eliminate the error and noise of raw S21 data after calibration and measurement processes. The proposed model can be applied easily to remove the repeated calibration process for each sample measurement. Hence, smooth, reliable, and accurate data are obtained to determine the dielectric properties of materials. In addition, the dielectric constant of materials (paper, polyvinylchloride-PVC, Ultralam® 3850HT, and glass) is calculated by thin sheet approximation and Newton-Raphson extracting techniques using a filtered S21 transmission parameter.

  1. Terahertz Spectrum Analysis Based on Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Su, Yunpeng; Zheng, Xiaoping; Deng, Xiaojiao

    2017-08-01

    Precise identification of terahertz absorption peaks for materials with low concentration and high attenuation still remains a challenge. Empirical mode decomposition was applied to terahertz spectrum analysis in order to improve the performance on spectral fingerprints identification. We conducted experiments on water vapor and carbon monoxide respectively with terahertz time domain spectroscopy. By comparing their absorption spectra before and after empirical mode decomposition, we demonstrated that the first-order intrinsic mode function shows absorption peaks clearly in high-frequency range. By comparing the frequency spectra of the sample signals and their intrinsic mode functions, we proved that the first-order function contains most of the original signal's energy and frequency information so that it cannot be left out or replaced by high-order functions in spectral fingerprints detection. Empirical mode decomposition not only acts as an effective supplementary means to terahertz time-domain spectroscopy but also shows great potential in discrimination of materials and prediction of their concentrations.

  2. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  3. Quantification of tissue texture with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul

    2014-05-01

    Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.

  4. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry.

    PubMed

    Cao, Qichen; Zhao, Xinyuan; Zhao, Qing; Lv, Xiaodong; Ma, Cheng; Li, Xianyu; Zhao, Yan; Peng, Bo; Ying, Wantao; Qian, Xiaohong

    2014-07-15

    Core fucosylation (CF) is a special glycosylation pattern of proteins that has a strong relationship with cancer. The Food and Drug Administration (FDA) has approved the core fucosylated α-fetoprotein as a biomarker for the early diagnosis of hepatocellular carcinoma (HCC). The technology for identifying core fucosylated proteins has significant practical value. The major method for core fucosylated glycoprotein/glycopeptide analysis is neutral loss-based MS(3) scanning under collision-induced dissociation (CID) by ion trap mass spectrometry. However, due to the limited speed and low resolution of the MS(3) scan mode, it is difficult to achieve high-throughput, with only dozens of core fucosylated proteins identified in a single run. In this work, we developed a novel strategy for the identification of CF glycopeptides at a large scale, integrating the stepped fragmentation function, one novel feature of quadrupole-orbitrap mass spectrometry, with "glycan diagnostic ion"-based spectrum optimization. By using stepped fragmentation, we were able to obtain both highly accurate glycan and peptide information of a simplified CF glycopeptide in one spectrum. Moreover, the spectrum could be recorded with the same high speed as the conventional MS(2) scan. By using the "glycan diagnostic ion"-based spectrum refinement method, the efficiency of the CF glycopeptide discovery was significantly improved. We demonstrated the feasibility and reproducibility of our method by analyzing CF glycoproteomes of mouse liver tissue and HeLa cell samples spiked with standard CF glycoprotein. In total, 1364 and 856 CF glycopeptides belonging to 702 and 449 CF glycoproteins were identified, respectively, within a 78-min gradient analysis, which was approximately a 7-fold increase in the identification efficiency of CF glycopeptides compared to the currently used method. In this work, we took core fucosylated glycopeptides as a practical example to demonstrate the great potential of our

  5. Mass Spectrometry Methodology in Lipid Analysis

    PubMed Central

    Li, Lin; Han, Juanjuan; Wang, Zhenpeng; Liu, Jian’an; Wei, Jinchao; Xiong, Shaoxiang; Zhao, Zhenwen

    2014-01-01

    Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease. PMID:24921707

  6. Mass spectrometry methodology in lipid analysis.

    PubMed

    Li, Lin; Han, Juanjuan; Wang, Zhenpeng; Liu, Jian'an; Wei, Jinchao; Xiong, Shaoxiang; Zhao, Zhenwen

    2014-06-11

    Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.

  7. INFRARED SPECTRUM OF POTASSIUM-CATIONIZED TRIETHYLPHOSPHATE GENERATED USING TANDEM MASS SPECTROMETRY AND INFRARED MULTIPLE PHOTON DISSOCIATION

    SciTech Connect

    Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain; Jos Oomens; Jeff Steill; van Stipdonk, Michael J.

    2009-09-01

    Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.

  8. Infrared spectrum of potassium-cationized triethylphosphate generated using tandem mass spectrometry and infrared multiple photon dissociation.

    PubMed

    Groenewold, Gary S; Leavitt, Christopher M; Dain, Ryan P; Oomens, Jos; Steill, Jeffrey D; van Stipdonk, Michael J

    2009-09-01

    Tandem mass spectrometry and wavelength-selective infrared photodissociation were used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K(+). Prominent absorptions were observed in the region of 900 to 1300 cm(-1) that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+G(d), 6-311+G(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.

  9. Mass Spectrometric Analysis of Histone Proteoforms

    NASA Astrophysics Data System (ADS)

    Yuan, Zuo-Fei; Arnaudo, Anna M.; Garcia, Benjamin A.

    2014-06-01

    Histones play important roles in chromatin, in the forms of various posttranslational modifications (PTMs) and sequence variants, which are called histone proteoforms. Investigating modifications and variants is an ongoing challenge. Previous methods are based on antibodies, and because they usually detect only one modification at a time, they are not suitable for studying the various combinations of modifications on histones. Fortunately, mass spectrometry (MS) has emerged as a high-throughput technology for histone analysis and does not require prior knowledge about any modifications. From the data generated by mass spectrometers, both identification and quantification of modifications, as well as variants, can be obtained easily. On the basis of this information, the functions of histones in various cellular contexts can be revealed. Therefore, MS continues to play an important role in the study of histone proteoforms. In this review, we discuss the analysis strategies of MS, their applications on histones, and some key remaining challenges.

  10. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.

    PubMed

    Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James

    2010-09-01

    This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P < 0.01), when expressed in mean-scaled units. The augmentation of LF powers in PPGV during haemodialysis may indicate the recovery and possibly further enhancement of peripheral sympathetic vascular modulation subsequent to volume unloading, whilst the increase in respiratory HF power in PPGV is most likely a sign of preload reduction. Spectral analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.

  11. Blind Extraction of an Exoplanetary Spectrum through Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.; Tinetti, G.; Deroo, P.; Hollis, M. D. J.; Yurchenko, S. N.; Tennyson, J.

    2013-03-01

    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a "blind" analysis of the data is based on the concept of independent component analysis. The detrending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior or auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10%-30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of ~0.09 μm. This represents a reasonable trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.

  12. Energy spectrum and mass composition of primary cosmic radiation in the region above the knee from the GAMMA experiment

    NASA Astrophysics Data System (ADS)

    Martirosov, Romen

    The energy spectrum of the primary cosmic radiation in the energy range 1 - 100 PeV and the extensive air shower (EAS) characteristics obtained on the basis of the expanded data bank of the GAMMA experiment (Mt. Aragats, Armenia) are presented. With increased statistics we confirm our previous results on the energy spectrum. The spectral index above the knee is about -3.1, but at energies beyond 20 PeV a flattening of the spectrum is observed. The existence of the 'bump' at about 70 PeV is confirmed with a significance of more than 4{\\sigma}. In the energy range of 10 - 100 PeV the shower age becomes energy independent and we observe a direct proportionality of the EAS size to the primary energy. This suggests an approximately constant depth of the EAS maximum in this energy range. This is evidence in favour of an increasing average mass of primary particles at energies above 20 PeV. The additional source scenario, which is a possible explanation of the 'bump' in the spectrum, also leads to the conclusion of increasing mass of the primary cosmic rays. A comparison with the data of other experiments is presented.

  13. Plans for a high-resolution measurement of the tritium beta-spectrum end point to determine the neutrino mass

    NASA Astrophysics Data System (ADS)

    Graham, R. L.; Lone, M. A.; Andrews, H. R.; Geiger, J. S.; Gallant, J. L.; Knowles, J. W.; Lee, H. C.; Lee-Whiting, G. E.

    1983-06-01

    The Chalk River π ≫2 iron-free beta spectrometer is being recommissioned and upgraded for a precise meaurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60—element detector array an overall energy resolution of σ 19 eV FWHM is expected. Computer simulation of the expected experimental Kurie plots are presented for various and anti-neutrino mass assumptions.

  14. Plans for a high-resolution measurement of the tritium. beta. -spectrum end point to determine the neutrino mass

    SciTech Connect

    Graham, R.L.; Lone, M.A.; Andrews, H.R.; Geiger, J.S.; Gallant, J.L.; Knowles, J.W.; Lee, H.C.; Lee-Whiting, G.E.

    1983-01-01

    The Chalk River ..pi.. ..sqrt..2 iron-free ..beta.. spectrometer is being recommissioned and upgraded for a precise measurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60-element detector array an overall energy resolution of less than or equal to 19 eV FWHM is expected. Computer simulations of the expected experimental Kurie plots are presented for various anti-neutrino mass assumptions.

  15. Power spectrum analysis for defect screening in integrated circuit devices

    DOEpatents

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  16. Isotope ratio analysis by Orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/∆M in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of

  17. Theoretical analysis of spectrum flattening in fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Wang, Zefeng; Xu, Xiaojun; Lu, Qisheng

    2017-01-01

    The flatness of laser spectrum is important in many applications. In this manuscript, a method of acquiring flattened spectrum directly from a fiber oscillator by optimizing the reflective spectrum of Fiber Bragg Gratings (FBG) was demonstrated and optimized result at wavelength around 1064 nm and 1080 nm was presented. An optimization path to alter the reflectivity of FBGs using greedy algorithm was interpreted by analyzing the single-trip gain inside the resonant cavity. Our method has a guiding significance of controlling the output spectrum of laser oscillator using FBGs.

  18. Features in the primordial spectrum from WMAP: A wavelet analysis

    SciTech Connect

    Shafieloo, Arman; Souradeep, Tarun; Manimaran, P.; Panigrahi, Prasanta K.; Rangarajan, Raghavan

    2007-06-15

    Precise measurements of the anisotropies in the cosmic microwave background enable us to do an accurate study on the form of the primordial power spectrum for a given set of cosmological parameters. In a previous paper [A. Shafieloo and T. Souradeep, Phys. Rev. D 70, 043523 (2004).], we implemented an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the first year of WMAP data to determine the primordial power spectrum assuming a concordance cosmological model. This recovered spectrum has a likelihood far better than a scale invariant, or, 'best fit' scale free spectra ({delta}lnL{approx_equal}25 with respect to the Harrison-Zeldovich spectrum, and, {delta}lnL{approx_equal}11 with respect to the power law spectrum with n{sub s}=0.95). In this paper we use the discrete wavelet transform (DWT) to decompose the local features of the recovered spectrum individually to study their effect and significance on the recovered angular power spectrum and hence the likelihood. We show that besides the infrared cutoff at the horizon scale, the associated features of the primordial power spectrum around the horizon have a significant effect on improving the likelihood. The strong features are localized at the horizon scale.

  19. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2015-07-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution develops an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach is evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60 %, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30 % for the first four principal components, respectively. Both the mean absolute error and mean root mean squared error of the reconstructed time series by ISSA are also smaller than those by SSAM. The respective improvements are 34.45 and 33.91 % when the missing data accounts for 60 %. The results from real incomplete time series also show that the standard deviation (SD) derived by ISSA is 12.27 mg L-1, smaller than the 13.48 mg L-1 derived by SSAM.

  20. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2014-12-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution will develop an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach was evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60%, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30% for the first four principal components, respectively. Besides, both the mean absolute errors and mean root mean squared errors of the reconstructed time series by ISSA are also much smaller than those by SSAM. The respective improvements are 34.45 and 33.91% when the missing data accounts for 60%. The results from real incomplete time series also show that the SD derived by ISSA is 12.27 mg L-1, smaller than 13.48 mg L-1 derived by SSAM.

  1. Full-spectrum analysis of natural gamma-ray spectra.

    PubMed

    Hendriks, P H; Limburg, J; de Meijer, R J

    2001-01-01

    In this paper, a new system to measure natural gamma-radiation in situ will be presented. This system combines a high-efficiency BGO scintillation detector with full-spectrum data analysis (FSA). This technique uses the (nearly) full spectral shape and the so-called 'standard spectra' to calculate the activity concentrations of 40K, 232Th and 238U present in a geological matrix (sediment, rock, etc.). We describe the FSA and the determination of the standard spectra. Standard spectra are constructed for various geometries and a comparison in intensity and shape will be made. The performance of such a system has been compared to a more traditional system, consisting of a NaI detector in combination with the 'windows' analysis. For count rates typically encountered in field experiments, the same accuracy is obtained 10-20 times faster using the new system. This allows for shorter integration times and hence shorter measurements or a better spatial resolution. The applicability of such a system will be illustrated via an example of an airborne experiment in which the new system produced results comparable to those of much larger traditional systems. This paper will conclude with a discussion of the current status of the system and an outlook for future research.

  2. Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis.

    PubMed

    Wang, Su; Tang, Hongying Lilian; Al Turk, Lutfiah Ismail; Hu, Yin; Sanei, Saeid; Saleh, George Michael; Peto, Tunde

    2017-05-01

    Reliable recognition of microaneurysms (MAs) is an essential task when developing an automated analysis system for diabetic retinopathy (DR) detection. In this study, we propose an integrated approach for automated MA detection with high accuracy. Candidate objects are first located by applying a dark object filtering process. Their cross-section profiles along multiple directions are processed through singular spectrum analysis. The correlation coefficient between each processed profile and a typical MA profile is measured and used as a scale factor to adjust the shape of the candidate profile. This is to increase the difference in their profiles between true MAs and other non-MA candidates. A set of statistical features of those profiles is then extracted for a K-nearest neighbor classifier. Experiments show that by applying this process, MAs can be separated well from the retinal background, the most common interfering objects and artifacts. The results have demonstrated the robustness of the approach when testing on large scale datasets with clinically acceptable sensitivity and specificity. The approach proposed in the evaluated system has great potential when used in an automated DR screening tool or for large scale eye epidemiology studies.

  3. Localizing heart sounds in respiratory signals using singular spectrum analysis.

    PubMed

    Ghaderi, Foad; Mohseni, Hamid R; Sanei, Saeid

    2011-12-01

    Respiratory sounds are always contaminated by heart sound interference. An essential preprocessing step in some of the heart sound cancellation methods is localizing primary heart sound components. Singular spectrum analysis (SSA), a powerful time series analysis technique, is used in this paper. Despite the frequency overlap of the heart and lung sound components, two different trends in the eigenvalue spectra are recognizable, which leads to find a subspace that contains more information about the underlying heart sound. Artificially mixed and real respiratory signals are used for evaluating the performance of the method. Selecting the appropriate length for the SSA window results in good decomposition quality and low computational cost for the algorithm. The results of the proposed method are compared with those of well-established methods, which use the wavelet transform and entropy of the signal to detect the heart sound components. The proposed method outperforms the wavelet-based method in terms of false detection and also correlation with the underlying heart sounds. Performance of the proposed method is slightly better than that of the entropy-based method. Moreover, the execution time of the former is significantly lower than that of the latter.

  4. Neutrino mass constraint from the Sloan Digital Sky Survey power spectrum of luminous red galaxies and perturbation theory

    SciTech Connect

    Saito, Shun; Takada, Masahiro; Taruya, Atsushi

    2011-02-15

    We compare the model power spectrum, computed based on perturbation theory, with the power spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7 catalog, assuming a flat, cold dark matter-dominated cosmology. The model includes the effects of massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a self-consistent manner. We first test the accuracy of the perturbation theory model by comparing the model predictions with the halo power spectrum in real- and redshift-space, measured from 70 simulation realizations for a cold dark matter model without massive neutrinos. We show that the perturbation theory model with bias parameters being properly adjusted can fairly well reproduce the simulation results. As a result, the best-fit parameters obtained from the hypothetical parameter fitting recover, within statistical uncertainties, the input cosmological parameters in simulations, including an upper bound on neutrino mass, if the power spectrum information up to k{approx_equal}0.15 hMpc{sup -1} is used. However, for the redshift-space power spectrum, the best-fit cosmological parameters show a sizable bias from the input values if using the information up to k{approx_equal}0.2 hMpc{sup -1}, probably due to nonlinear redshift distortion effect. Given these tests, we decided, as a conservative choice, to use the LRG power spectrum up to k=0.1 hMpc{sup -1} in order to minimize possible unknown nonlinearity effects. In combination with the recent results from Wilkinson Microwave Background Anisotropy Probe (WMAP), we derive a robust upper bound on the sum of neutrino masses, given as (95% C.L.), marginalized over other parameters including nonlinear bias parameters and dark energy equation of state parameter. The upper bound is only slightly improved to if including the LRG spectrum up to k=0.2 hMpc{sup -1}, due to severe parameter degeneracies, although the constraint may be biased as

  5. Mass Balance Analysis of Contaminated Heparin Product

    PubMed Central

    Liu, Zhenling; Xiao, Zhongping; Masuko, Sayaka; Zhao, Wenjing; Sterner, Eric; Bansal, Vinod; Fareed, Jawed; Dordick, Jonathan; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    A quantitative analysis of a recalled contaminated lot of heparin (HP) sodium injection United States Pharmacopeial (USP) was undertaken in response to the controversy regarding the exact nature of the contaminant involved in the HP crisis. A mass balance analysis of the formulated drug product was performed. After freeze-drying, a 1 ml vial for injection afforded 54.8 ± 0.3 mg of dry solids. The excipients, sodium chloride and residual benzyl alcohol, accounted for 11.4 ± 0.5 mg and 0.9 ± 0.5 mg, respectively. Active pharmaceutical ingredient (API) represented 41.5 ± 1.0 mg, corresponding to 75.7 wt% of dry mass. Exhaustive treatment of API with specific enzymes, heparin lyases and/or chondroitin lyases was used to close mass balance. HP represented 30.5 ± 0.5 mg, corresponding to 73.5 wt% of the API. Dermatan sulfate (DS) impurity represented 1.7 ± 0.3 mg, corresponding to 4.1 wt% of the API. Contaminant, 9.3 ± 0.1 mg corresponding to 22.4 wt% of API, was found in the contaminated formulated drug product. The recovery of contaminant was close to quantitative (95.6-100 wt%). A single contaminant was unambiguously identified as oversulfated chondroitin sulfate (OSCS). PMID:20850409

  6. Real-Time Broad Spectrum Characterization of Hazardous Mixed Waste by Membrane Introduction Mass Spectrometry

    SciTech Connect

    Wilkerson Jr., Charles W.

    2000-12-31

    The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the mass spectrometer. Transport of the analyte through the membrane occurs by the process of pervaporation. This process is described by adsorption to the outer surface of the membrane, diffusion through the membrane, and desorption from the inner membrane surface into a helium gas flow or into vacuum. The driving force for this work is the need for a rapid, sensitive, and broadly applicable tool for characterizing organic and metal-containing contaminants in a variety of DOE (and other) waste streams. In all characterization scenarios, a balance must be struck between evaluation of the hazards and their extent at a waste site, and the resources available for the overall mitigation of that risk. In the case of chemically, physically, and geometrically homogeneous waste, the situation is aided by the ability to reasonably assume that any sample collected is representative of the overall site constituents. However, few real environmental challenges are homogeneous. As a result, detailed sampling plans must be prepared, and chemical analyses must be performed on a number of samples in order to identify areas of contamination and assess further options. For many years, the chemical analysis part of this process has been accomplished by delivering the samples to a (typically) physically remote laboratory, where very detailed, and

  7. Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.

    PubMed

    Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R

    2017-02-01

    Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph(®))) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sparsity analysis of DS spread spectrum signals via theoretical analysis and dictionary learning

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wu, Bin; Wang, Bo

    2017-04-01

    For the purpose of solving the problem of high sampling rate and massive data processing brought by high bandwidth in the field of Aerospace Communication, researchers applied CS theory to spread spectrum signal processing. Sparsity analysis is the prerequisite for the application of CS theory. This paper studies the sparsity of the DS spread spectrum signals, which is the most common kind of signal in the current TT&C systems. Based on the theoretical analysis we get the sparse dictionary, then the dictionary is optimized by K-SVD dictionary learning algorithm. The simulation results show that the two signals have strong sparsity in the constructed sparse base dictionary, which lays a theoretical foundation for the TT&C spread spectrum signal processing based on CS theory.

  9. Multivariate singular spectrum analysis and the road to phase synchronization

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Ghil, Michael

    2010-05-01

    Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have

  10. Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-10-01

    A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at sqrt(s)=7 TeV corresponding to an integrated luminosity of 1 inverse femtobarn, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV.

  11. Whether the Autism Spectrum Quotient consists of two different subgroups? Cluster analysis of the Autism Spectrum Quotient in general population.

    PubMed

    Kitazoe, Noriko; Fujita, Naofumi; Izumoto, Yuji; Terada, Shin-Ichi; Hatakenaka, Yuhei

    2017-04-01

    The purpose of this study was to investigate whether the individuals in the general population with high scores on the Autism Spectrum Quotient constituted a single homogeneous group or not. A cohort of university students (n = 4901) was investigated by cluster analysis based on the original five subscales of the Autism Spectrum Quotient. Based on the results of the analysis, the students could be divided into six clusters: the first with low scores on all the five subscales, the second with high scores on only the 'attention to detail' subscale, the third and fourth with intermediate scores on all the subscales, the fifth with high scores on four of the five subscales but low scores on the 'attention to detail' subscale and the sixth with high scores on all the five subscales. The students with high total Autism Spectrum Quotient scores (n = 166) were divided into two groups: one with high scores on four subscales but low scores on the 'attention to detail' subscale and the other with high scores on all the five subscales. The results of this study suggested that individuals from the general population with high Autism Spectrum Quotient scores may consist of two qualitatively different groups.

  12. Multiple spectrum analysis and evaluation for optical constants of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dandan; Liu, Huasong; Jiang, Chenghui; Jiang, Yugang; Wang, Lishuan; Zhao, Zhihong; Ji, Yiqin

    2014-08-01

    HfO2 thin films were deposited on ZS1 silica by Ion Beam Sputtering (IBS) technique. Optical constants of HfO2 thin films were obtained by multiple spectrum analysis method, which combined the transmittance spectrum and ellipsometry spectrum of the film. The refractive index and extinction coiefficient of HfO2 thin films were evaluated by etching experiments of the film. The analysis spectral range was between 250nm and 850nm.

  13. Roller element bearing fault diagnosis using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Muruganatham, Bubathi; Sanjith, M. A.; Krishnakumar, B.; Satya Murty, S. A. V.

    2013-02-01

    Most of the existing time series methods of feature extraction involve complex algorithm and the extracted features are affected by sample size and noise. In this paper, a simple time series method for bearing fault feature extraction using singular spectrum analysis (SSA) of the vibration signal is proposed. The method is easy to implement and fault feature is noise immune. SSA is used for the decomposition of the acquired signals into an additive set of principal components. A new approach for the selection of the principal components is also presented. Two methods of feature extraction based on SSA are implemented. In first method, the singular values (SV) of the selected SV number are adopted as the fault features, and in second method, the energy of the principal components corresponding to the selected SV numbers are used as features. An artificial neural network (ANN) is used for fault diagnosis. The algorithms were evaluated using two experimental datasets—one from a motor bearing subjected to different fault severity levels at various loads, with and without noise, and the other with bearing vibration data obtained in the presence of a gearbox. The effect of sample size, fault size and load on the fault feature is studied. The advantages of the proposed method over the exiting time series method are discussed. The experimental results demonstrate that the proposed bearing fault diagnosis method is simple, noise tolerant and efficient.

  14. The Spectrum and Term Analysis of V II

    NASA Astrophysics Data System (ADS)

    Thorne, A. P.; Pickering, J. C.; Semeniuk, J. I.

    2013-07-01

    The spectrum and extended term analysis of V II are presented. Fourier transform spectrometry was used to record high resolution spectra of singly ionized vanadium in the region 1492-5800 Å (67020-17260 cm-1) with vanadium-neon and vanadium-argon hollow cathode lamps as sources. The wavenumber uncertainty for the center of gravity of the strongest lines is typically 0.002 cm-1, an improvement of an order of magnitude over previous measurements. Most of the lines exhibit partly resolved hyperfine structure. The V II energy levels in the 1985 compilation of Sugar and Corliss have been confirmed and revised, with the exception of the high-lying 4f levels and eight of the lower levels. Thirty-nine of the additional eighty-five high levels published by Iglesias et al. have also been confirmed and revised, and three of their missing levels have been found. The energy uncertainty of the revised levels has been reduced by about an order of magnitude. In total, 176 even levels and 233 odd levels are presented. Wavenumbers and classifications are given for 1242 V II lines.

  15. THE SPECTRUM AND TERM ANALYSIS OF V II

    SciTech Connect

    Thorne, A. P.; Pickering, J. C.; Semeniuk, J. I.

    2013-07-15

    The spectrum and extended term analysis of V II are presented. Fourier transform spectrometry was used to record high resolution spectra of singly ionized vanadium in the region 1492-5800 A (67020-17260 cm{sup -1}) with vanadium-neon and vanadium-argon hollow cathode lamps as sources. The wavenumber uncertainty for the center of gravity of the strongest lines is typically 0.002 cm{sup -1}, an improvement of an order of magnitude over previous measurements. Most of the lines exhibit partly resolved hyperfine structure. The V II energy levels in the 1985 compilation of Sugar and Corliss have been confirmed and revised, with the exception of the high-lying 4f levels and eight of the lower levels. Thirty-nine of the additional eighty-five high levels published by Iglesias et al. have also been confirmed and revised, and three of their missing levels have been found. The energy uncertainty of the revised levels has been reduced by about an order of magnitude. In total, 176 even levels and 233 odd levels are presented. Wavenumbers and classifications are given for 1242 V II lines.

  16. Mapping Upper Mantle Seismic Discontinuities Using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Dokht, R.; Sacchi, M. D.

    2015-12-01

    Seismic discontinuities are fundamental to the understanding of mantle composition and dynamics. Their depth and impedance are generally determined using secondary seismic phases, most commonly SS precursors and P-to-S converted waves. However, the analysis and interpretation using these approaches often suffer from incomplete data coverage, high noise levels and interfering seismic phases, especially near tectonically complex regions such as subduction zones and continental margins. To overcome these pitfalls, we apply Singular Spectrum Analysis (SSA) to remove random noise, reconstruct missing traces and enhance the robustness of SS precursors and P-to-S conversions from seismic discontinuities. Our method takes advantage of the predictability of time series in frequency-space domain and performs a rank reduction using a singular value decomposition of the trajectory matrix. We apply SSA to synthetic record sections as well as observations of 1) SS precursors beneath the northwestern Pacific subduction zones, and 2) P-to-S converted waves from the Western Canada Sedimentary Basin (WCSB). In comparison with raw or interpolated data, the SSA enhanced reflectivity maps show a greater resolution and a stronger negative correlation between the depths of the 410 and 660 km discontinuities. These effects can be attributed to the suppression of incoherent noise, which tends to reduce the signal amplitude during normal averaging procedures, through rank reduction and the emphasis of principle singular values. Our new results suggest a more laterally coherent 520 km reflection in the western Pacific regions. Similar improvements in data imaging are achieved in western Canada, where strong lateral variations in discontinuity topography are observed in the craton-Cordillera boundary zone. Improvements from SSA relative to conventional approaches are most notable in under-sampled regions.

  17. HIGH-RESOLUTION SPECTROSCOPY DURING ECLIPSE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS 0535-0546. II. SECONDARY SPECTRUM: NO EVIDENCE THAT SPOTS CAUSE THE TEMPERATURE REVERSAL

    SciTech Connect

    Mohanty, Subhanjoy; Stassun, Keivan G. E-mail: keivan.stassun@vanderbilt.edu

    2012-10-10

    We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy in surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.

  18. Observation of a Near-Threshold Enhancement in the ωϕ Mass Spectrum from the Doubly OZI-Suppressed Decay J/ψ→γωϕ

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.

    2006-04-01

    An enhancement near threshold is observed in the ωϕ invariant mass spectrum from the doubly Okubo-Zweig-Iizuka suppressed decays of J/ψ→γωϕ, based on a sample of 5.8×107 J/ψ events collected with the BESII detector. A partial wave analysis shows that this enhancement favors JP=0+, and its mass and width are M=1812-26+19(stat)±18(syst)MeV/c2 and Γ=105±20(stat)±28(syst)MeV/c2. The product branching fraction is determined to be B(J/ψ→γX)B(X→ωϕ)=[2.61±0.27(stat)±0.65(syst)]×10-4.

  19. Observation of the Y (4140) structure in the J/ψϕ mass spectrum in B±→ J/ψϕK± decays

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Buccianton, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; de Cecco, S.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Ttito-Guzmán, P.; Tkaczyk, S.; Tokar, S.; Tollefson, K.; Tomura, T.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Whitehouse, B.; Whiteson, D.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.

    2017-08-01

    The observation of the Y (4140) structure in B±→ J/ψϕK± decays produced in p¯p collisions at s = 1.96 TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψϕ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19 ± 6(stat) ± 3(syst) resonance events, and resonance mass and width of 4143.4-3.0+2.9(stat) ± 0.6(syst)MeV/c2 and 15.3-6.1+10.4(stat) ± 2.5(syst)MeV/c2, respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.

  20. Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK± decays

    DOE PAGES

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; ...

    2017-07-27

    Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less

  1. Electrospray Modifications for Advancing Mass Spectrometric Analysis

    PubMed Central

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-01-01

    Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082

  2. [A Composition Analysis Method of Mixed Pigments Based on Spectrum Expression and Independent Component Analysis].

    PubMed

    Wang, Gong-ming; Liu, Zhi-yong

    2015-06-01

    Reflectance spectrometry is a common method in composition analysis of mixed pigments. In this method, similarity is used to determine the type of basic pigments that constitute the mixed pigments. But its result may be inaccurate because it is easily influenced by a variety of basic pigments. In this study, a composition analysis method of mixed pigments based on spectrum expression and independent component analysis is proposed, and the composition of mixed pigments can be calculated accurately. First of all, the spectral information of mixed pigments is obtained with spectrometer, and is expressed as the discrete signal. After that, the spectral information of basic pigments is deduced with independent component analysis. Then, the types of basic pigments are determined by calculating the spectrum similarity between the basic pigments and known pigments. Finally, the ratios of basic pigments are obtained by solving the Kubelka-Munk equation system. In addition, the simulated spectrum data of Munsell color card is used to validate this method. The compositions of mixed pigments from three basic pigments are determined under the circumstance of normality and disturbance. And the compositions of mixture from several pigments within the set of eight basic pigments are deduced successfully. The curves of separated pigment spectrums are very similar to the curves of original pigment spectrums. The average similarity is 97.72%, and the maximum one can reach to 99.95%. The calculated ratios of basic pigments close to the original one. It can be seen that this method is suitable for composition analysis of mixed pigments.

  3. Probability-based pattern recognition and statistical framework for randomization: modeling tandem mass spectrum/peptide sequence false match frequencies.

    PubMed

    Feng, Jian; Naiman, Daniel Q; Cooper, Bret

    2007-09-01

    In proteomics, reverse database searching is used to control the false match frequency for tandem mass spectrum/peptide sequence matches, but reversal creates sequences devoid of patterns that usually challenge database-search software. We designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths from large sequence datasets. The patterns found in a protein sequence database were used to create decoy databases using a Monte Carlo sampling algorithm. Searching these decoy databases led to the prediction of false positive rates for spectrum/peptide sequence matches. We show examples where this method, independent of instrumentation, database-search software and samples, provides better estimation of false positive identification rates than a prevailing reverse database searching method. The pattern detection algorithm can also be used to analyze sequences for other purposes in biology or cryptology. On request from the authors. http://bioinformatics.psb.ugent.be/.

  4. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data

    SciTech Connect

    Ting, Ying S.; Egertson, Jarrett D.; Payne, Samuel H.; Kim, Sangtae; MacLean, Brendan; Kall, Lukas; Aebersold, Ruedi; Smith, Richard D.; Noble, William; MacCoss, Michael

    2015-09-01

    In mass spectrometry-based bottom-up proteomics, data-independent acquisition (DIA) is an emerging technique due to its comprehensive and unbiased sampling of precursor ions. However, current DIA methods use wide precursor isolation windows, resulting in co- fragmentation and complex mixture spectra. Thus, conventional database searching tools that identify peptides by interpreting individual MS/MS spectra are inherently limited in analyzing DIA data. Here we discuss an alternative approach, peptide-centric analysis, which tests directly for the presence and absence of query peptides. We discuss how peptide-centric analysis resolves some limitations of traditional spectrum-centric analysis, and we outline the benefits of peptide-centric analysis in general.

  5. Spectrum analysis techniques for personnel detection using seismic sensors

    NASA Astrophysics Data System (ADS)

    Houston, Kenneth M.; McGaffigan, Daniel P.

    2003-09-01

    There is a general need for improved detection range and false alarm performance for seismic sensors used for personnel detection. In this paper we describe a novel footstep detection algorithm which was developed and run on seismic footstep data collected at the Aberdeen Proving Ground in December 2000. The initial focus was an assessment of achievable detection range. The conventional approach to footstep detection is to detect transients corresponding to individual footfalls. We feel this is an error-prone approach. Because many real-world signals unrelated to human locomotion look like transients, transient-based footstep detection will inevitably either suffer from high false alarm rates or will be insensitive. Instead, we examined the use of spectrum analysis on envelope-detected seismic signals and have found the general method to be quite promising, not only for detection, but also for discrimination against other types of seismic sources. In particular, gait patterns and their corresponding signatures may help discriminate between human intruders and animals. In the APG data set, mean detection ranges of 64 meters (at PD=50%) were observed for normal walking, significantly improving on ranges previously reported. For running, mean detection ranges of 84 meters were observed. However, stealthy walking (creeping) remains a considerable problem. Even at short ranges (10 meters), in some cases the detection rate was less than 50%. In future efforts, additional data sets for a range of geologic and environmental conditions should be acquired and analyzed. Improvements to the detection algorithms are possible, including estimation of direction of travel and the number of intruders.

  6. [Chlorophyll fluorescence spectrum analysis of greenhouse cucumber disease and insect damage].

    PubMed

    Sui, Yuan-yuan; Yu, Hai-ye; Zhang, Lei; Luo, Han; Ren, Shun; Zhao, Guo-gang

    2012-05-01

    The present paper is based on chlorophyll fluorescence spectrum analysis. The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration. Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis (PCA). The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%. By comparing and analysing three modeling methods, namely the partial least square regression (PLSR), BP neural network (BP) and least square support vector machine regression (LSSVMR), regarding correlation coefficient of true value and predicted value as evaluation criterion, eventually, LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis.

  7. Channelized broadband signal spectrum analysis based on weighted overlap-add structure.

    PubMed

    Guo, Lianping; Jiang, Jun; Tan, Feng; Pan, Huiqing; Zhang, Peng; Zeng, Hao; Bai, Lihong

    2016-10-01

    The digital channelization technology has been applied in many electronic areas, and the real-time broadband spectrum analysis has been the research hotspot in the area of signal processing. This paper introduces the channelized broadband signal spectrum analysis method. Based on the weighted overlap-add (WOLA) structure, this method divides the input broadband signal into several sub-bands or channels, and then downconverts and decimates the sub-band signals to obtain the baseband signals with a low sampling rate. The spectrum analysis results of the input broadband signal are achieved by conducting further decimation, fast Fourier transform and spectrum splicing to the baseband signals. The Matlab simulation results verify the correctness of the WOLA structure, and finally, an experimental platform is designed in detail to verify the practicability of this broadband spectrum analysis method.

  8. Channelized broadband signal spectrum analysis based on weighted overlap-add structure

    NASA Astrophysics Data System (ADS)

    Guo, Lianping; Jiang, Jun; Tan, Feng; Pan, Huiqing; Zhang, Peng; Zeng, Hao; Bai, Lihong

    2016-10-01

    The digital channelization technology has been applied in many electronic areas, and the real-time broadband spectrum analysis has been the research hotspot in the area of signal processing. This paper introduces the channelized broadband signal spectrum analysis method. Based on the weighted overlap-add (WOLA) structure, this method divides the input broadband signal into several sub-bands or channels, and then downconverts and decimates the sub-band signals to obtain the baseband signals with a low sampling rate. The spectrum analysis results of the input broadband signal are achieved by conducting further decimation, fast Fourier transform and spectrum splicing to the baseband signals. The Matlab simulation results verify the correctness of the WOLA structure, and finally, an experimental platform is designed in detail to verify the practicability of this broadband spectrum analysis method.

  9. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  10. A new method of intracranial pressure monitoring by EEG power spectrum analysis.

    PubMed

    Chen, Hui; Wang, Jian; Mao, Sizhong; Dong, Weiwei; Yang, Hao

    2012-07-01

    To investigate the feasibility of Electroencephalogram (EEG) power spectrum analysis as a noninvasive method for monitoring intracranial pressure (ICP). The EEG signals were recorded in 62 patients (70 cases) with central nervous system (CNS) disorders in our hospital. By using self-designed software, EEG power spectrum analysis was conducted and pressure index (PI) was calculated automatically. Intracranial pressure was measured by lumbar puncture (LP). We found a significant negative correlation between PI and ICP (r = -0.849, p < 0.01). The PI obtained from EEG analysis is correlated with ICP. Analysis of specific parameters from EEG power spectrum might reflect the ICP.

  11. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1973-01-01

    Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.

  12. Improvement of the edge rotation diagnostic spectrum analysis via simulation.

    PubMed

    Luo, J; Zhuang, G; Cheng, Z F; Zhang, X L; Hou, S Y; Cheng, C

    2014-11-01

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  13. Improvement of the edge rotation diagnostic spectrum analysis via simulation

    SciTech Connect

    Luo, J.; Zhuang, G. Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-15

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  14. Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices

    SciTech Connect

    Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.

    2007-04-01

    We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.

  15. Prevalence of Schizophrenia Spectrum Disorders in Average-IQ Adults with Autism Spectrum Disorders: A Meta-analysis.

    PubMed

    Lugo Marín, Jorge; Alviani Rodríguez-Franco, Montserrat; Mahtani Chugani, Vinita; Magán Maganto, María; Díez Villoria, Emiliano; Canal Bedia, Ricardo

    2017-10-04

    Since their separation as independent diagnostics, autism spectrum disorders (ASD) and schizophrenia spectrum disorders (SSD) have been conceptualized as mutually exclusive disorders. Similarities between both disorders can lead to misdiagnosis, especially when it comes to average-IQ adults who were not identified during childhood. The aim of this review was to examine the occurrence of SSD in average-IQ adults with ASD. Electronic and manual searches identified a total of 278 references, of which 10 were included in a meta-analysis. The pooled prevalence of SSD in the total ASD sample was close to 6%, pointing to a high co-occurrence of the two conditions. Further research is needed to determine the factors that predispose members of this population to the emergence of psychotic disorders.

  16. RELATIONSHIP BETWEEN MASS FLUX REDUCTION AND SOURCE-ZONE MASS REMOVAL: ANALYSIS OF FIELD DATA

    PubMed Central

    DiFilippo, Erica L.

    2010-01-01

    The magnitude of contaminant mass flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. ~8%) for similar mass removals (~40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass transfer and displacement). Conversely, a significant degree of mass flux reduction was observed for a site wherein mass removal was inefficient

  17. Study of the Dijet Mass Spectrum in pp→W+jets Events at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.

    2012-12-01

    We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in pp→W+2-jet and W+3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0fb-1 collected with the CMS detector at s=7TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

  18. N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function

    SciTech Connect

    Wagner, Christian; Verde, Licia; Boubekeur, Lotfi E-mail: liciaverde@gmail.com

    2010-10-01

    We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/∼liciaverde/NGSCP.html.

  19. Mass Media Representation of Teaching: A Behaviour Analysis Approach.

    ERIC Educational Resources Information Center

    Hobbs, Sandy; Mackie, Stirling

    Although psychological studies of the mass media have been dominated by cognitivist and psychodynamic concepts, a study of the mass media using a behavior analysis method may be used to analyze the content of the mass media. By applying that analysis to fictional teacher-learner interactions an interpretation of those relationships can be made and…

  20. DoD Spectrum Management: A Critical Analysis

    DTIC Science & Technology

    2008-06-01

    29  13. IRAC Council...Administration (NTIA) Interdepartmental Radio Advisory Committee ( IRAC ). Each nation manages its own spectrum bands in a similar manner since the...Services continue to work with NTIA and the IRAC Frequency Assignment Subcommittee (FAS) to reduce the processing times. Figure 4 Frequency

  1. Factor Analysis of the Autism Spectrum Screening Questionnaire

    ERIC Educational Resources Information Center

    Posserud, Britt; Lundervold, Astri J.; Steijnen, Maaike C.; Verhoeven, Sophie; Stormark, Kjell Morten; Gillberg, Christopher

    2008-01-01

    The present study investigated the factor structure of parent and teacher Autism Spectrum Screening Questionnaire (ASSQ) in a population of 7-9 years old children. For validation purposes, factors derived were correlated with results on the Strengths and Difficulties Questionnaire (SDQ). A three-factor solution was identified on both parent and…

  2. Dream Content Analysis in Persons with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Daoust, Anne-Marie; Lusignan, Felix-Antoine; Braun, Claude M. J.; Mottron, Laurent; Godbout, Roger

    2008-01-01

    Dream questionnaires were completed by 28 young adults with autism spectrum disorder (ASD) participants. Seventy-nine typically developed individual served as the control group. In a subset of 17 persons with ASD and 11 controls matched for verbal IQ, dream narratives were obtained following REM sleep awakenings in a sleep laboratory.…

  3. Dream Content Analysis in Persons with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Daoust, Anne-Marie; Lusignan, Felix-Antoine; Braun, Claude M. J.; Mottron, Laurent; Godbout, Roger

    2008-01-01

    Dream questionnaires were completed by 28 young adults with autism spectrum disorder (ASD) participants. Seventy-nine typically developed individual served as the control group. In a subset of 17 persons with ASD and 11 controls matched for verbal IQ, dream narratives were obtained following REM sleep awakenings in a sleep laboratory.…

  4. Three-dimensional acousto-optic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Metscher, Brian; Lesh, James R.

    1990-01-01

    A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.

  5. Rotational Doppler shift for electromagnetic waves carrying orbital angular momentum based on spectrum analysis

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wang, Gang

    2017-03-01

    We investigate the rotational Doppler effect for the electromagnetic wave carrying orbital angular momentum (OAM) with a method based on spectrum analysis, which is appropriate for both optics and free-space radio cases. We find that the frequency spectrum received is the convolution of emission spectrum and a discrete spectrum about OAM states, and verify it in the numerical simulations as well. This discovery makes it possible to distinguish the linear and rotational Doppler shift, and is helpful to developments of remote sensing and velocimetry in radar.

  6. Error analysis of system mass properties

    NASA Technical Reports Server (NTRS)

    Brayshaw, J.

    1984-01-01

    An attempt is made to verify the margin of system mass properties over values that are sufficient for the support of such other critical system requirements as those of dynamic control. System nominal mass properties are designed on the basis of an imperfect understanding of the mass and location of constituent elements; the effect of such element errors is to introduce net errors into calculated system mass properties. The direct measurement of system mass properties is, however, impractical. Attention is given to these issues in the case of the Galileo spacecraft.

  7. [Research on the method of copper converting process determination based on emission spectrum analysis].

    PubMed

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  8. Extended analysis of fifth spectrum of bromine: Br V

    NASA Astrophysics Data System (ADS)

    Riyaz, A.; Tauheed, A.; Rahimullah, K.

    2014-11-01

    The fifth spectrum of bromine (Br V) has been studied in the 200-2400 Å wavelength region. The spectrum was photographed on a 3-m normal incidence vacuum spectrograph at the St. Francis Xavier University, Antigonish (Canada) and 6.65-m grazing incidence spectrograph at the Zeeman laboratory (Amsterdam). The light sources used were a triggered spark and sliding spark. The ground configuration of Br V is 4s24p. The excited configurations 4s4p2+4s2(4d+5d+5s+6s+7s+5g+6g)+4s4p(5p+4f)+4p24d in the even parity system and the 4p3+4s2(5p+6p+7p+4f)+4s4p4d+4s4p5s configurations in the odd parity system have been studied. Relativistic Hartree-Fock (HFR) and least squares fitted (LSF) parametric calculations have been used to interpret the observed spectrum. 99 levels of Br V have now been established, 43 being new. Among 394 classified spectral lines, 181 are newly classified. The level 4s27s 2S1/2 is revised. We estimate the accuracy of our measured wavelengths for sharp and unblended lines to be±0.005 Å. The ionization limit is determined as 479,657±200 cm-1 (59.470±0.025 eV).

  9. Observation of a broad structure in the pi+ pi- J/psi mass spectrum around 4.26 GeV/c2.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Vazquez, W P; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Edgar, C L; Hodgkinson, M C; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; van Bakel, N; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S; Thompson, J M; Va'vra, J; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Williams, G; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Neal, H

    2005-09-30

    We study initial-state radiation events, e+ e- --> gammaISR pi+ pi- J/psi, with data collected with the BABAR detector. We observe an accumulation of events near 4.26 GeV/c2 in the invariant-mass spectrum of pi+ pi- J/psi. Fits to the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/c2 is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to 90 MeV/c2, depending on the fit hypothesis.

  10. Mass spectrum and correlation functions of non-Abelian quantum magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Marino, E. C.; Ramos, Rudnei O.

    1994-01-01

    The method of quantization of magnetic monopoles based on the order-disorder duality existing between the monopole operator and the Lagrangian fields is applied to the description of the quantum magnetic monopoles of 't Hooft and Polyakov in the SO(3) Georgi-Glashow model. The commutator of the monopole operator with the magnetic charge is computed explicitly, indicating that indeed the quantum monopole carries 4π/g units of magnetic charge. An explicit expression for the asymptotic behavior of the monopole correlation function is derived. From this, the mass of the quantum monopole is obtained. The tree-level result for the quantum monopole mass is shown to satisfy the Bogomol'nyi bound (Mmon>=4πM/g2) and to be within the range of values found for the energy of the classical monopole solution.

  11. Analysis of MALDI FT-ICR Mass Spectrometry Data: a Time Series Approach

    PubMed Central

    Kronewitter, Scott R.; Lebrilla, Carlito B.; Rocke, David M.

    2009-01-01

    Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry is a technique for high mass-resolution analysis of substances that is rapidly gaining popularity as an analytic tool. Extracting signal from the background noise, however, poses significant challenges. In this article, we model the noise part of a spectrum as an autoregressive, moving average (ARMA) time series with innovations given by a generalized gamma distribution with varying scale parameter but constant shape parameter and exponent. This enables us to classify peaks found in actual spectra as either noise or signal using a reasonable criterion that outperforms a standard threshold criterion. PMID:19646586

  12. Analysis of MALDI FT-ICR mass spectrometry data: a time series approach.

    PubMed

    Barkauskas, Donald A; Kronewitter, Scott R; Lebrilla, Carlito B; Rocke, David M

    2009-08-26

    Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry is a technique for high mass-resolution analysis of substances that is rapidly gaining popularity as an analytic tool. Extracting signal from the background noise, however, poses significant challenges. In this article, we model the noise part of a spectrum as an autoregressive, moving average (ARMA) time series with innovations given by a generalized gamma distribution with varying scale parameter but constant shape parameter and exponent. This enables us to classify peaks found in actual spectra as either noise or signal using a reasonable criterion that outperforms a standard threshold criterion.

  13. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Dar, Irfaan A.; Tao, Chao; Liu, Xiaojun; Deng, Cheri X.; Wang, Xueding

    2012-11-01

    This study investigates the feasibility of characterizing the microstructures within a biological tissue by analyzing the frequency spectrum of the photoacoustic signal from the tissue. Hypotheses are derived from theoretical analyses on the relationships between the dimensions/concentrations of the photoacoustic sources within the region-of-interest and the linear model fitted to the power spectra of photoacoustic signals. The hypotheses are validated, following the procedures of ultrasound spectrum analysis, by simulations and experiments with phantoms fabricated by embedding the polyethylene microspheres in porcine gelatin, indicating that photoacoustic spectrum analysis could be a potential tool for characterizing microstructures in biological samples.

  14. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study

    PubMed Central

    Xu, Guan; Dar, Irfaan A.; Tao, Chao; Liu, Xiaojun; Deng, Cheri X.; Wang, Xueding

    2012-01-01

    This study investigates the feasibility of characterizing the microstructures within a biological tissue by analyzing the frequency spectrum of the photoacoustic signal from the tissue. Hypotheses are derived from theoretical analyses on the relationships between the dimensions/concentrations of the photoacoustic sources within the region-of-interest and the linear model fitted to the power spectra of photoacoustic signals. The hypotheses are validated, following the procedures of ultrasound spectrum analysis, by simulations and experiments with phantoms fabricated by embedding the polyethylene microspheres in porcine gelatin, indicating that photoacoustic spectrum analysis could be a potential tool for characterizing microstructures in biological samples. PMID:23284178

  15. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study.

    PubMed

    Xu, Guan; Dar, Irfaan A; Tao, Chao; Liu, Xiaojun; Deng, Cheri X; Wang, Xueding

    2012-11-26

    This study investigates the feasibility of characterizing the microstructures within a biological tissue by analyzing the frequency spectrum of the photoacoustic signal from the tissue. Hypotheses are derived from theoretical analyses on the relationships between the dimensions/concentrations of the photoacoustic sources within the region-of-interest and the linear model fitted to the power spectra of photoacoustic signals. The hypotheses are validated, following the procedures of ultrasound spectrum analysis, by simulations and experiments with phantoms fabricated by embedding the polyethylene microspheres in porcine gelatin, indicating that photoacoustic spectrum analysis could be a potential tool for characterizing microstructures in biological samples.

  16. 2-D Acousto-Optic Signal Processors for Simultaneous Spectrum Analysis and Direction Finding

    DTIC Science & Technology

    1990-11-01

    National Dfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS 00 AND DIRECTION FINDING (U) by NM Jim P.Y...Wr pdft .1w I0~1111191 3 05089 National DIfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND DIRECTION...Processing, J.T. Tippet et al., Eds., Chapter 38, pp. 715-748, MIT Press, Cambridge 1965. [6] A.E. Spezio," Acousto - optics for Electronic Warfare

  17. SPRT Analysis of Anomalies in Tritium Beta Decay Spectrum

    NASA Astrophysics Data System (ADS)

    Goldman, T.; Stephenson, G. J., Jr.

    1997-10-01

    The experimentally observed deviations from the Kurie plot near the endpoint of Tritium beta decay are opposite to those expected for the case of massive neutrinos. We reexamine(O. Kofoed-Hansen, Phil. Mag. 42), 1448 (1951). the possibility that these deviations are due to new hypoweak interactions. We find that enhancement above the massless neutrino beta spectrum does occur for all cases (scalar, pseudoscalar, tensor or right-handed currents), although it apparently cannot be large enough to explain the data and be consistent with other experimental constraints. Bounds on the strength of these non-standard model interactions are derived.

  18. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  19. Localization and mass spectrum of q-form fields on branes

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Zhong, Yuan; Xie, Qun-Ying; Liu, Yu-Xiao

    2016-06-01

    In this paper, we investigate localization of a bulk massless q-form field on codimension-one branes by using a new Kaluza-Klein (KK) decomposition, for which there are two types of KK modes for the bulk q-form field, the q-form and (q - 1)-form modes. The first modes may be massive or massless while the second ones are all massless. These two types of KK modes satisfy two Schrödinger-like equations. For a five-dimensional brane model with a finite extra dimension, the spectrum of a bulk 3-form field on the brane consists of some massive bound 3-form KK modes as well as some massless bound 2-form ones with different configuration along the extra dimension. These 2-form modes are different from those obtained from a bulk 2-form field. For a five-dimensional degenerated Bloch brane model with an infinite extra dimension, some massive 3-form resonant KK modes and corresponding massless 2-form resonant ones are obtained for a bulk 3-form field.

  20. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    SciTech Connect

    Riot, V; Coffee, K; Gard, E; Fergenson, D; Ramani, S; Steele, P

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. The last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.

  1. Spectrum analysis of rectangular pulse in the atmospheric turbulence propagation

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Ni, Xiaolong; Jiang, Huilin; Wang, Junran; Liu, Zhi

    2016-11-01

    Atmospheric turbulence has a great influence on the performance of the atmospheric laser communication system reducing the signal to noise ratio (SNR) and increasing the bit error rate (BER). However, there is rarely study on the effect of atmospheric turbulence on the power spectrum of the rectangular pulse. In this paper, a spectral analyzing method is used to analyze the influence of atmospheric turbulence on the signal. An experiment of laser beam propagation characteristic is carried out on a 6km horizontal atmospheric link, the wavelength is 808 nm. The signal is 100MHz rectangular pulse. The waveform of the rectangular pulse is collected by the oscilloscope, and the power spectral density of the signal is calculated and analyzed by the method of periodogram. Experimental results show that the response and noise characteristics of the laser and photoelectric detector have a great influence on the signal power spectrum distribution which can increase the noise component in the 10^6 Hz frequency range. After the atmospheric turbulence propagation, the signal power decreases in the whole frequency range. However, as the existence of atmospheric turbulence, the signal power increases in the atmospheric turbulence characteristic frequency (tens to hundreds of Hz). The noise power increases in the high frequency range (10^7 10^8 Hz).

  2. Analysis of the Sub-Millimeter Rotational Spectrum of Urea

    NASA Astrophysics Data System (ADS)

    Thomas, Jessica R.; Fosnight, Alyssa M.; Medvedev, Ivan R.

    2013-06-01

    Urea, ((NH_{2})_{2}CO), has broad presence in biological species. As a byproduct of human metabolism, this molecule is commonly tested for in blood to diagnose different pathologies. Furthermore, urea is seen in interstellar medium and its detection could yield valuable insight into the mechanisms governing star formation. Despite the prevalence of urea, an absence exists in recorded frequencies of this molecule. The new generation of the sub-millimeter telescopes, such as ALMA, HERSCHEL, and SOFIA, allows detection of interstellar molecular spectra at unprecedented spatial and spectral resolutions. The knowledge of the precise frequencies of spectra transitions present in interstellar molecular clouds would alleviate the problem of spectral congestion and aid in molecular identification. This paper reports the most recent investigation of the submillimeter/terahertz gas phase spectrum of urea. Up until now, only the microwave laboratory spectrum of urea's vibrational ground state has been available. This paper reports the high-resolution spectra of urea in the sub-millimeter range, and extends the spectroscopic assignment of the rotational transitions in the vibrational ground state. Additionally, the assignment of the first vibrational state and tentative assignments of two additional vibrational states have been made.

  3. The clinical spectrum of phaeochromocytoma: analysis of 115 patients.

    PubMed

    Safwat, Ahmed S; Bissada, Nabil K; Seyam, Raouf M; Al Sobhi, Saif; Hanash, Kamal A

    2008-06-01

    To analyse the presentation, manifestations and outcome in consecutive patients with phaeochromocytoma, as this disease has a wide range of pathological and clinical expressions. The records of 115 patients with phaeochromocytoma were analysed retrospectively, recording the patients' age, sex, presenting symptoms and clinical signs, chemical, radiological and pathological findings and associated conditions. Of the 115 patients, 90 had adrenal tumours, 18 extra-adrenal and seven combined adrenal and extra-adrenal tumours. Ten patients had malignant and 105 had benign phaeochromocytoma. Eighty-six patients had sporadic and 29 had familial phaeochromocytoma, comprising eight with von Hippel-Lindau (VHL) disease, 17 with multiple endocrine neoplasia type II (MEN II) and four with von Recklinghausen disease. Two patients with sporadic phaeochromocytoma had Grave's disease. Ten patients (8.7%) had malignant phaeochromocytoma, of whom two had MEN II. A pregnant woman required prolonged intensive-care management before adrenalectomy and lost a fetus. Phaeochromocytoma is an interesting clinical entity with a wide spectrum of pathological and clinical manifestations. The diagnosis of phaeochromocytoma is confirmed by chemical methods, and located using imaging techniques, with computed tomography, magnetic resonance imaging and (131)I-meta-iodobenzyl guanidine radioisotope scanning being the most common. This series reflects the pathological and clinical spectrum of phaeochromocytoma. The presence of other manifestations of familial phaeochromocytoma influenced the presentation and prognosis of these patients.

  4. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra

    PubMed Central

    Allen, Felicity; Pon, Allison; Wilson, Michael; Greiner, Russ; Wishart, David

    2014-01-01

    CFM-ID is a web server supporting three tasks associated with the interpretation of tandem mass spectra (MS/MS) for the purpose of automated metabolite identification: annotation of the peaks in a spectrum for a known chemical structure; prediction of spectra for a given chemical structure and putative metabolite identification—a predicted ranking of possible candidate structures for a target spectrum. The algorithms used for these tasks are based on Competitive Fragmentation Modeling (CFM), a recently introduced probabilistic generative model for the MS/MS fragmentation process that uses machine learning techniques to learn its parameters from data. These algorithms have been extensively tested on multiple datasets and have been shown to out-perform existing methods such as MetFrag and FingerId. This web server provides a simple interface for using these algorithms and a graphical display of the resulting annotations, spectra and structures. CFM-ID is made freely available at http://cfmid.wishartlab.com. PMID:24895432

  5. Primordial power spectrum: a complete analysis with the WMAP nine-year data

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2013-07-01

    We have improved further the error sensitive Richardson-Lucy deconvolution algorithm making it applicable directly on the un-binned measured angular power spectrum of Cosmic Microwave Background observations to reconstruct the form of the primordial power spectrum. This improvement makes the application of the method significantly more straight forward by removing some intermediate stages of analysis allowing a reconstruction of the primordial spectrum with higher efficiency and precision and with lower computational expenses. Applying the modified algorithm we fit the WMAP 9 year data using the optimized reconstructed form of the primordial spectrum with more than 300 improvement in χ{sup 2}{sub eff} with respect to the best fit power-law. This is clearly beyond the reach of other alternative approaches and reflects the efficiency of the proposed method in the reconstruction process and allow us to look for any possible feature in the primordial spectrum projected in the CMB data. Though the proposed method allow us to look at various possibilities for the form of the primordial spectrum, all having good fit to the data, proper error-analysis is needed to test for consistency of theoretical models since, along with possible physical artefacts, most of the features in the reconstructed spectrum might be arising from fitting noises in the CMB data. Reconstructed error-band for the form of the primordial spectrum using many realizations of the data, all bootstrapped and based on WMAP 9 year data, shows proper consistency of power-law form of the primordial spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization data in to the analysis have not improved much our results due to its low quality but we expect Planck data will allow us to make a full analysis on CMB observations on both temperature and polarization separately and in combination.

  6. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    PubMed

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  7. Atmospheric parameter determination for massive stars via non-LTE spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2010-11-01

    We describe a self-consistent spectrum analysis technique employing non-LTE line formation, which allows precise atmospheric parameters of massive stars to be derived: 1σ-uncertainties as low as ~1% in effective temperature and ~0.05-0.10 dex in surface gravity can be achieved. Special emphasis is given to the minimisation of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis. Examples of applications are discussed for OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ~8 to 25 M⊙ and a range in effective temperature from ~8000 to 35000 K. Relaxing the assumption of local thermodynamic equilibrium in stellar spectral synthesis has been shown to be decisive for improving the accuracy of quantitative analyses. Despite the present examples, which concentrate on hot, massive stars, the same philosophy can be applied to line-formation calculations for all types of stars, including cooler objects like the Sun, once the underlying stellar atmospheric physics is reproduced consistently.

  8. Mass quantity gauging by RF mode analysis

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Ellerbruch, D.; Cruz, J. E.; Stokes, R. W.; Luft, P. E.; Peterson, R. G.; Hiester, A. E.

    1973-01-01

    Work done to date is reported concerning Radio Frequency Mass Quantity Gauging. Experimental apparatus has been designed and tested which measures the resonant frequencies of a tank in the time domain. These frequencies correspond to the total mass of fluid within the tank. Experimental results are discussed for nitrogen and hydrogen in normal gravity both in the supercritical state and also in the two phase (liquid-gas) region. Theoretical discussions for more general cases are given.

  9. MACRAD: A mass analysis code for radiators

    SciTech Connect

    Gallup, D.R.

    1988-01-01

    A computer code to estimate and optimize the mass of heat pipe radiators (MACRAD) is currently under development. A parametric approach is used in MACRAD, which allows the user to optimize radiator mass based on heat pipe length, length to diameter ratio, vapor to wick radius, radiator redundancy, etc. Full consideration of the heat pipe operating parameters, material properties, and shielding requirements is included in the code. Preliminary results obtained with MACRAD are discussed.

  10. New asymptotic effects for the spectrum of problems on concentrated masses near the boundary

    NASA Astrophysics Data System (ADS)

    Nazarov, Sergey A.; Pérez, Eugenia

    2009-08-01

    The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain Ω⊂R are considered. We assume that Ω has a piecewise smooth boundary ∂ Ω and the density function is equal to 1+ɛχ in Ω, where ɛ>0 is a small parameter, m∈R and χ is the characteristic function of the union ωɛ0∪⋯∪ωɛJ-1 of small sets (the concentrated masses) distributed periodically near a straight segment Γ⊂∂Ω. We describe asymptotics for the eigenelements of both problems as ɛ→0. To cite this article: S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).

  11. Mass spectrum of the butadiynyl radical (C4H; X2[summation operator]+)

    NASA Astrophysics Data System (ADS)

    Gu, Xibin; Guo, Ying; Kaiser, Ralf I.

    2005-11-01

    We utilized the crossed molecular beams method to synthesize the butadiynyl radical, C4H(X2[summation operator]+), via the reaction of dicarbon molecules with acetylene, under single collision conditions. Time-of-flight spectra of the radical were recorded at the center-of-mass angle (31°) of the parent ion (m/z = 49; C4H+) and of the fragments at m/z = 48 (C4+), m/z = 37 (C3H+), and m/z = 36 (C3+) This yields relative intensity ratios of I(m/z = 49):I(m/z = 48):I(m/z = 37):I(m/z = 36):I(m/z = 25):I(m/z = 24) = 1.0:0.67 +/- 0.07:0.47 +/- 0.06:0.2 +/- 0.02:0.08 +/- 0.02:0.04 +/- 0.02 at 70 eV electron impact energy. Signal at m/z = 13 (CH+) and 12 (C+) contribute less than 0.04 relative to the parent peak; the intensity of the 13C isotopic peak of the butadiynyl radical at m/z = 50 (13C12C3H+) depicts an intensity of 0.04 +/- 0.01 relative to m/z = 49. Employing linear scaling methods, the absolute ionization cross section of the butadiynyl radical was computed to be 8.8 +/- 1.8 × 10-16 cm2. These data can be employed in future space missions to detect the butadiynyl radical in oxygen-poor combustion flames and in the atmospheres of planets (Jupiter, Saturn, Uranus, Neptune and Pluto) and their moons (Titan, Triton and Oberon) in situ via matrix interval arithmetic assisted mass spectrometry.

  12. Normal mode and experimental analysis of TNT Raman spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng

    2017-04-01

    In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.

  13. Factor analysis of the Autism Spectrum Screening Questionnaire.

    PubMed

    Posserud, Britt; Lundervold, Astri J; Steijnen, Maaike C; Verhoeven, Sophie; Stormark, Kjell Morten; Gillberg, Christopher

    2008-01-01

    The present study investigated the factor structure of parent and teacher Autism Spectrum Screening Questionnaire (ASSQ) in a population of 7-9 years old children. For validation purposes, factors derived were correlated with results on the Strengths and Difficulties Questionnaire (SDQ). A three-factor solution was identified on both parent and teacher ASSQ. Most of the variance was explained by one factor including measures of social function, validated by a high correlation with the SDQ peer problems scale. The second factor included measures of autism-associated problems. The items allocated to the third factor were more specific for a cognitive style typically found in high-functioning individuals with autism/Asperger syndrome. This factor did not correlate highly with any of the SDQ subscales. The results indicated that the screening efficiency of ASSQ could be increased by closer examination of the individual profile of factor scores.

  14. Photonic crystal biosensor based on angular spectrum analysis.

    PubMed

    Hallynck, Elewout; Bienstman, Peter

    2010-08-16

    The need for cost effective and reliable biosensors in e.g. medical applications is an ever growing and everlasting one. Not only do we strive to increase sensitivity and detection limit of such sensors; ease of fabrication or implementation are equally important. In this work, we propose a novel, photonic crystal based biosensor that is able to operate at a single frequency, contrary to resonance based sensors. In a certain frequency range, guided photonic crystal modes can couple to free space modes resulting in a Lorentzian shape in the angular spectrum. This Lorentzian can shift due to refractive index changes and simulations have shown sensitivities of 65 degrees per refractive index unit and more.

  15. Analysis of the Palierne model by relaxation time spectrum

    NASA Astrophysics Data System (ADS)

    Kwon, Mi Kyung; Cho, Kwang Soo

    2016-02-01

    Viscoelasticity of immiscible polymer blends is affected by relaxation of the interface. Several attempts have been made for linear viscoelasticity of immiscible polymer blends. The Palierne model (1990) and the Gramespacher-Meissner model (1992) are representative. The Gramespacher-Meissner model consists of two parts: ingredients and interface. Moreover, it provides us the formula of the peak of interface in weighted relaxation time spectrum, which enables us to analyze the characteristics relating to interface more obviously. However, the Gramespacher-Meissner model is a kind of empirical model. Contrary to the Gramespacher-Meissner model, the Palierne model was derived in a rigorous manner. In this study, we investigated the Palierne model through the picture of the Gramespacher-Meissner model. We calculated moduli of immiscible blend using two models and obtained the weighted relaxation time spectra of them. The fixed-point iteration of Cho and Park (2013) was used in order to determine the weighted relaxation spectra.

  16. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s=8TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-01-12

    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions atmore » $$\\sqrt{s}$$=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb$-$1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. Lastly, the most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.« less

  17. An analysis of space power system masses

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Cull, Ronald C.; Kankam, M. D.

    1990-01-01

    Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving.

  18. An analysis of space power system masses

    SciTech Connect

    Kenny, B.H.; Cull, R.C.; Kankam, M.D.

    1990-01-01

    Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving.

  19. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: Analytical model

    PubMed Central

    Xu, Guan; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2015-01-01

    Photoacoustic spectrum analysis (PASA) has demonstrated the capability of identifying the microstructures in phantoms and biological tissues. PASA adopts the procedures in ultrasound (US) spectrum analysis although the signal generation mechanisms related to ultrasound backscatter and photoacoustic wave generation differ. The purpose of this study is to theoretically validate the method of PASA. The analytical solution to the power spectrum of PA signals generated by identical microspheres following discrete uniform random distribution in space was derived. The simulation and experiment validation of analytical solution include: 1) the power spectrum profile of a single microsphere with a diameter of 300 μm; and 2) the PASA parameters of the PA signals generated by randomly distributed microspheres of diameters of 100, 200, 300, 400 and 500 μm, and at concentrations of 30, 60, 120, 240, 480 per 1.53cm3 in the observation range of [0.5, 13MHz]. PMID:25748521

  20. Blood Glutamate Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis

    PubMed Central

    Zheng, Zhen; Zhu, Tingting; Qu, Yi; Mu, Dezhi

    2016-01-01

    Objective Glutamate plays an important role in brain development, neuronal migration, differentiation, survival and synaptogenesis. Recent studies have explored the relationship between blood glutamate levels and autism spectrum disorder (ASD). However, the findings are inconsistent. We undertook the first systematic review with a meta-analysis of studies examining blood glutamate levels in ASD compared with controls. Methods A literature search was conducted using PubMed, Embase, and the Cochrane Library for studies published before March 2016. A random-effects model was used to calculate the pooled standardized mean difference (SMD) of the outcomes. Subgroup analyses were used to explore the potential sources of heterogeneity, and the publication bias was estimated using Egger’s tests. Results Twelve studies involving 880 participants and 446 incident cases were included in this meta-analysis. The meta-analysis provided evidence for higher blood glutamate levels in ASD [SMD = 0.99, 95% confidence interval (95% CI) = 0.58–1.40; P < 0.001] with high heterogeneity (I2 = 86%, P < 0.001) across studies. The subgroup analyses revealed higher glutamate levels in ASD compared with controls in plasma [SMD = 1.04, 95% CI = 0.58–1.50; P < 0.001] but not true in serum [SMD = 0.79, 95% CI = -0.41–1.99; P = 0.20]. Studies employing high performance liquid chromatography (HPLC) or liquid chromatography-tandem mass spectrometry (LC-MS) assays also revealed higher blood glutamate levels in ASD. A sensitivity analysis found that the results were stable, and there was no evidence of publication bias. Conclusions Blood glutamate levels might be a potential biomarker of ASD. PMID:27390857

  1. Recording and spectrum analysis of the planarian electroencephalogram.

    PubMed

    Aoki, R; Wake, H; Sasaki, H; Agata, K

    2009-03-17

    Many animals produce continuous brainwaves, known as the electroencephalogram (EEG), but it is not known at what point in evolution the EEG developed. Planarians possess the most primitive form of brain, but still exhibit learning and memory behaviors. Here, we observed and characterized the EEG waveform of the planarian. We inserted a monopole electrode into the head of a planarian on a cold stage, and were able to observe the EEG at sub-microvolt amplitudes. The EEG had a continuous waveform, similar to that of evolutionarily advanced animals with more developed brains. Occasional myogenic potential spikes were observed in the EEG due to sticking of the electrode, but this was markedly diminished by cooling the sample, which enabled us to investigate the intrinsic character of the continuous EEG waveform. The frequency spectrum of the EEG was observed in the range of 0.1-5 Hz, showing a broad rise below 0.5 Hz and a monotonic decrease above 1 Hz, apparently following the 1/f law. The intensity of the total EEG diminished during anesthesia by cooling to 2-3 degrees C, and recovered when the sample was warmed to about 10 degrees C. The EEG signal was sustained for 30-40 min, and gradually weakened as the animal died. Stimulation of the planarian with water vibration at 0.5-2 Hz induced chaotic resonance with a broad peak spectrum of around the stimulation frequency. Strong illumination suppressed the EEG signals for several minutes, with the degree of suppression positively correlating with the intensity of the light. This provides evidence that the EEG responds to optical signals, although there were no synchronous reactions to light flashes. The continuous EEG waveform suggests the existence of feedback loop circuits in the neural network of the planarian, which was supposed in electric shock memory experiments [McConnell JV, Cornwell P, Clay M (1960) An apparatus for conditioning planaria. Am J Psychol 73:618-622]. However, because of the broad band character of

  2. Mass Spectral Analysis of PAMPRE Tholins

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Adams, R.; Carrasco, N.; Djevahirdjian, L.; Pernot, P.; Sciamma-O'Brien, E.; Szopa, C.; Thissen, R.; Vuitton, V.; Yelle, R. V.

    2009-09-01

    The destruction of N2 and CH4 and subsequent complex chemical processes lead to the formation of organic aerosols in Titan's atmosphere. To further the understanding of the formation and composition of these aerosols, laboratory experiments have been designed to produce aerosols under Titan atmospheric conditions. We have characterized tholins generated by the PAMPRE (Production d'Aérosols en Microgravité par Plasma REactif) experiment. The PAMPRE experiment uses capacitively coupled RF plasma discharge to initiate the chemistry between N2 and CH4 that leads to the production of solid particles (tholins). The tholins form and grow while levitated in the plasma, which minimizes any possible wall effects. Tholins were generated using 3 different N2/CH4 gas mixtures: 98/2, 95/5, 90/10. The tholins were characterized using the LTQ-Orbitrap XL mass spectrometer, which has a resolving power of 1.e5 at 400 amu and accuracy in exact mass determination of 2 ppm. Thousands of molecules have been identified ranging in mass from 50 to 800 amu. The spectra exhibit groups of peaks with a mass periodicity of 13.5, which provides insight into the chemical processes involved in tholin synthesis. The application of the knowledge gained from these experiments to the study of corresponding processes on Titan will be briefly discussed.

  3. Alternate modal combination methods in response spectrum analysis

    SciTech Connect

    Wang, Y.K.; Bezler, P.

    1989-01-01

    In piping analyses using the response spectrum method Square Root of the Sum of the Squares (SRSS) with clustering between closely spaced modes is the combination procedure most commonly used to combine between the modal response components. This procedure is simple to apply and normally yields conservative estimates of the time history results. The purpose of this study is to investigate alternate methods to combine between the modal response components. These methods are mathematically based to properly account for the combination between rigid and flexible modal responses as well as closely spaced modes. The methods are those advanced by Gupta, Hadjian and Lindley-Yow to address rigid response modes and the Double Sum Combination (DSC) method and the Complete Quadratic Combination (CQC) method to account for closely spaced modes. A direct comparison between these methods as well as the SRSS procedure is made by using them to predict the response of six piping systems. For two piping systems thirty-three earthquake records were considered to account for the impact of variations in the characteristics of the excitation. The results provided by each method are compared to the corresponding time history estimates of results as well as to each other. The degree of conservatism associated with each method is characterized. 7 refs., 4 figs., 2 tabs.

  4. Alternate modal combination methods in response spectrum analysis

    SciTech Connect

    Bezler, P.; Curreri, J.R.; Wang, Y.K.; Gupta, A.K. )

    1990-10-01

    In piping analyses using the response spectrum method Square Root of the Sum of the Squares (SRSS) with clustering between closely spaced modes is the combination procedure most commonly used to combine between the modal response components. This procedure is simple to apply and normally yields conservative estimates of the time history results. The purpose of this study is to investigate alternate methods to combine between the modal response components. These methods are mathematically based to properly account for the combination between rigid and flexible modal responses as well as closely spaced modes. The methods are those advanced by Gupta, Hadjian and Lindely-Yow to address rigid response modes and the Double Sum Combination (DSC) method and the Complete Quadratic Combination (CQC) method to account for closely spaced modes. A direct comparison between these methods as well as the SRSS procedure is made by using them to predict the response of six piping systems. The results provided by each method are compared to the corresponding time history estimates of results as well as to each other. The degree of conservatism associated with each method is characterized. 19 refs., 16 figs., 10 tabs.

  5. Dynamic analysis and control of novel moving mass flight vehicle

    NASA Astrophysics Data System (ADS)

    Li, Jianqing; Gao, Changsheng; Jing, Wuxing; Wei, Pengxin

    2017-02-01

    In terms of the moving mass control technology, the configuration of internal moving masses is a key challenge. In order to reduce the complexity of configuring these moving masses in a flight vehicle, a combination bank-to-turn control mode with the single moving mass and reaction jet is proposed in this paper. To investigate the dynamics and the potential of the control mechanism, an attitude dynamic model with single moving mass is generated. The dynamic analysis indicates that the control stability, control authority and dynamic behavior of the pitch channel are determined by the mass ratio of the moving mass to the system and the difference between the mass center of the moving mass and the mass center of the vehicle body. Interestingly, control authority increases proportionally with increasing mass ratio and also with decreasing the magnitude of the static margin. To deal with the coupling caused by the additional inertia moment which is generated by the motion of the moving mass, an adaptive control law by using dynamic inversion theory and the extended state observer is designed. Also, a compensator is designed for eliminating the influence of the servo actuator's dynamics on attitude of the flight vehicle. Finally, the simulation results validate the quality of the proposed adaptive controller which ensures a good performance in the novel configuration with internal moving mass.

  6. In situ mass analysis of particles by surface ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.; Moen, A. L.

    1974-01-01

    A qualitative study of the application of surface ionization and mass spectrometry to the in situ detection and constituent analysis of atmospheric particles was conducted. The technique consists of mass analysis of ions formed as a result of impingement of a stream of particles on a hot filament where, it is presumed, surface ionization takes place. Laboratory air particles containing K, Ca, and possibly hydrocarbons were detected. Other known particles such as Al2O3, Pb(NO3)2, and Cr2O3 were analyzed by detecting the respective metal atoms making up the particles. In some cases, mass numbers indicative of compounds making up the particles were detected showing surface ionization of particles sometimes leads to chemical analysis as well as to elemental analysis. Individual particles were detected, and it was shown that the technique is sensitive to Al2O3 particles with a mass of a few nanograms.

  7. Precision analysis of electron energy spectrum and angular distribution of neutron β- decay with polarized neutron and electron

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-05-01

    We give a precision analysis of the correlation coefficients of the electron energy spectrum and angular distribution of the β- decay and radiative β- decay of the neutron with polarized neutron and electron to order 10-3. The calculation of correlation coefficients is carried out within the standard model, with contributions of order 10-3 caused by the weak magnetism and proton recoil taken to next-to-leading order in the large proton mass expansion, and with radiative corrections of order α /π ˜10-3 calculated to leading order in the large proton mass expansion. The obtained results can be used for the planning of experiments on the search for contributions of order 10-4 of interactions beyond the standard model.

  8. Analysis of selective reflection spectrum in cholesteric liquid crystal cells for solar-ray controller

    NASA Astrophysics Data System (ADS)

    Ogiwara, Akifumi; Kakiuchida, Hiroshi

    2015-09-01

    The cholesteric liquid crystal (CLC) cells are fabricated by varying the concentration of various chiral dopants and liquid crystal (LC) diacrylate monomers. The wavelength and bandwidth of selective reflection spectrum in CLC cells are measured by a spectroscopic technique. The variation of the selective reflection spectrum in CLC cells is investigated by doping the different kinds of liquid crystal (LC) diacrylate monomers which stabilize a helical twisting structure by photopolymerization. The effects of the selective reflection spectrum on the visible and infrared lights in spectral solar irradiance are explained by the performance for a solar-ray controller based on the spectral solar irradiance for air mass 1.5 and the standard luminous efficiency function for photopic vision.

  9. Measurement of the Hadronic Mass Spectrum in B to Xulnu Decaysand Determination of the b-Quark Mass at the BaBar Experiment

    SciTech Connect

    Tackmann, Kerstin

    2008-06-26

    I present preliminary results of the measurement of the hadronic mass spectrum and its first three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated hadronic mass moments are used for the first determination of the b-quark mass and the nonperturbative parameters μπ2 and ρD3 in this B-meson decay channel. The study is based on 383 x 106 B$\\bar{B}$ decays collected with the BABAR experiment at the PEP-II e+e- storage rings, located at the Stanford Linear Accelerator Center. The first, second central, and third central hadronic mass moment with a cut on the hadronic mass mX2 < 6.4GeV2 and the lepton momentum p* > 1 GeV are measured to be: M1 = (1.96 ± 0.34stat ± 0.53syst) GeV2; U2 = (1.92 ± 0.59stat ± 0.87syst) GeV4; and U3 = (1.79 ± 0.62stat ± 0.78syst) GeV6; with correlation coefficients ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88, respectively. Using Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract: mb = (4.60 ± 0.13stat ± 0.19syst ± 0.10theo GeV); μπ2 = (0.40 ± 0.14stat ± 0.20syst ± 0.04theo) GeV2; ρD3 = (0.10 ± 0.02stat ± 0.02syst ± 0.07theo) GeV3; at μ = 1 GeV, with correlation coefficients ρmbμπ2 = -0.99, ρ μπ2ρD3 = 0.57, and ρmbρD3 = -0.59. The results are in good agreement with earlier determinations in inclusive charmed semileptonic and radiative penguin B-meson decays and have a

  10. A detailed X-ray investigation of ζ Puppis. III. Spectral analysis of the whole RGS spectrum

    NASA Astrophysics Data System (ADS)

    Hervé, A.; Rauw, G.; Nazé, Y.

    2013-03-01

    Context. ζ Pup is the X-ray brightest O-type star of the sky. This object was regularly observed with the RGS instrument onboard XMM-Newton for calibration purposes, which led to an unprecedented set of high-quality spectra. Aims: We have previously reduced and extracted this data set and integrated it into the most detailed high-resolution X-ray spectrum of any early-type star so far. Here we present the analysis of this spectrum, taking into account for the presence of structures in the stellar wind. Methods: For this purpose, we used our new modeling tool that allows fitting the entire spectrum with a multi-temperature plasma. We illustrate the impact of a proper treatment of the radial dependence of the X-ray opacity of the cool wind on the best-fit radial distribution of the temperature of the X-ray plasma. Results: The best-fit of the RGS spectrum of ζ Pup is obtained assuming no porosity. Four plasma components at temperatures between 0.10 and 0.69 keV are needed to adequately represent the observed spectrum. Whilst the hardest emission is concentrated between ~3 and 4 R∗, the softer emission starts already at 1.5 R∗ and extends to the outer regions of the wind. Conclusions: The inferred radial distribution of the plasma temperatures agrees rather well with theoretical expectations. The mass-loss rate and CNO abundances corresponding to our best-fit model also agree quite well with the results of recent studies of ζ Pup in the UV and optical domain. Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  11. EEG Power Spectrum Analysis in Children with ADHD.

    PubMed

    Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro

    2016-06-01

    Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4-15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4-15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10-20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD.

  12. Spectral analysis of the fifth spectrum of indium: In V

    NASA Astrophysics Data System (ADS)

    Swapnil; Tauheed, A.

    2016-01-01

    The fifth spectrum of indium (In V) has been investigated in the grazing and normal incidence wavelength regions. In4+ is a Rh-like ion with the ground configuration 4p64d9 and first excited configurations of the type 4p64d8nℓ (n≥4). The theoretical predications for this ion were made by Cowan's quasi-relativistic Hartree-Fock code with superposition of configurations involving 4p64d8(5p+6p+7p+4f+5f+6f), 4p54d10, 4p64d75s(5p+4f) for the odd parity matrix and 4p64d8 (5s+6s+7s+5d+6d), 4p64d7(5s2+5p2) for the even parity system. The spectra used for this work were recorded on 10.7 m grazing and normal incidence spectrographs at the National Institute of Standards and Technology, Gaithersburg, Maryland (USA) and also on a 3-m normal incidence vacuum spectrograph at Antigonish (Canada). The sources used were a sliding spark and a triggered spark respectively. Two hundred and thirty two energy levels based on the identification of 873 spectral lines have been established, forty six being new. Least squares fitted parametric calculations were used to interpret the observed level structure. The energy levels were optimized using a level optimization computer program (LOPT). Our wavelength accuracy for sharp and unblended lines is estimated to be within ±0.005 Å for λ below 400 Å and ±0.006 Å up to 1200 Å.

  13. EEG Power Spectrum Analysis in Children with ADHD

    PubMed Central

    Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro

    2016-01-01

    Background Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. Methods EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4–15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4–15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10–20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. Results The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. Conclusion The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD. PMID:27493489

  14. COMPREHENSIVE ANALYSIS OF CORONAL MASS EJECTION MASS AND ENERGY PROPERTIES OVER A FULL SOLAR CYCLE

    SciTech Connect

    Vourlidas, A.; Howard, R. A.; Esfandiari, E.; Patsourakos, S.; Yashiro, S.; Michalek, G.

    2010-10-20

    The LASCO coronagraphs, in continuous operation since 1995, have observed the evolution of the solar corona and coronal mass ejections (CMEs) over a full solar cycle with high-quality images and regular cadence. This is the first time that such a data set becomes available and constitutes a unique resource for the study of CMEs. In this paper, we present a comprehensive investigation of the solar cycle dependence on the CME mass and energy over a full solar cycle (1996-2009) including the first in-depth discussion of the mass and energy analysis methods and their associated errors. Our analysis provides several results worthy of further studies. It demonstrates the possible existence of two event classes: 'normal' CMEs reaching constant mass for >10 R{sub sun} and {sup p}seudo{sup -}CMEs which disappear in the C3 field of view. It shows that the mass and energy properties of CME reach constant levels and therefore should be measured only above {approx}10 R{sub sun}. The mass density (g/R {sup 2}{sub sun}) of CMEs varies relatively little (< order of magnitude) suggesting that the majority of the mass originates from a small range in coronal heights. We find a sudden reduction in the CME mass in mid-2003 which may be related to a change in the electron content of the large-scale corona and we uncover the presence of a 6 month periodicity in the ejected mass from 2003 onward.

  15. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  16. Steroid Hormone Analysis by Tandem Mass Spectrometry

    PubMed Central

    Soldin, Steven J.; Soldin, Offie P.

    2013-01-01

    BACKGROUND New high-performance liquid chromatography/ tandem mass spectrometry (LC-MS/MS) methods are among the most successful approaches to improve specificity problems inherent in many immunoassays. CONTENT We emphasize problems with immunoassays for the measurement of steroids and review the emerging role of LC-MS/MS in the measurement of clinically relevant steroids. The latest generation of tandem mass spectrometers has superior limits of quantification, permitting omission of previously employed derivatization steps. The measurement of steroid profiles in the diagnosis and treatment of congenital adrenal hyperplasia, adrenal insufficiency, chronic pelvic pain and prostatitis, oncology (breast cancer), and athletes has important new applications. CONCLUSIONS LC-MS/MS now affords the specificity, imprecision, and limits of quantification necessary for the reliable measurement of steroids in human fluids, enhancing diagnostic capabilities, particularly when steroid profiles are available. PMID:19325015

  17. Sociosexuality Education for Persons with Autism Spectrum Disorders Using Principles of Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Wolfe, Pamela S.; Condo, Bethany; Hardaway, Emily

    2009-01-01

    Applied behavior analysis (ABA) has emerged as one of the most effective empirically based strategies for instructing individuals with autism spectrum disorders (ASD). Four ABA-based strategies that have been found effective are video modeling, visual strategies, social script fading, and task analysis. Individuals with ASD often struggle with…

  18. Factor Analysis of the Aberrant Behavior Checklist in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Brinkley, Jason; Nations, Laura; Abramson, Ruth K.; Hall, Alicia; Wright, Harry H.; Gabriels, Robin; Gilbert, John R.; Pericak-Vance, Margaret A. O.; Cuccaro, Michael L.

    2007-01-01

    Exploratory factor analysis (varimax and promax rotations) of the aberrant behavior checklist-community version (ABC) in 275 individuals with Autism spectrum disorder (ASD) identified four- and five-factor solutions which accounted for greater than 70% of the variance. Confirmatory factor analysis (Lisrel 8.7) revealed indices of moderate fit for…

  19. Sociosexuality Education for Persons with Autism Spectrum Disorders Using Principles of Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Wolfe, Pamela S.; Condo, Bethany; Hardaway, Emily

    2009-01-01

    Applied behavior analysis (ABA) has emerged as one of the most effective empirically based strategies for instructing individuals with autism spectrum disorders (ASD). Four ABA-based strategies that have been found effective are video modeling, visual strategies, social script fading, and task analysis. Individuals with ASD often struggle with…

  20. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    NASA Astrophysics Data System (ADS)

    Cole, Shaun; Percival, Will J.; Peacock, John A.; Norberg, Peder; Baugh, Carlton M.; Frenk, Carlos S.; Baldry, Ivan; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Cross, Nicholas J. G.; Dalton, Gavin; Eke, Vincent R.; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Jenkins, Adrian; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-09-01

    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 +/- 0.016 and a baryon fraction Ωb/Ωm= 0.185 +/- 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 +/- 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 +/- 0.021.

  1. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    PubMed

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  2. OMA and OPA--software-supported mass spectra analysis of native and modified nucleic acids.

    PubMed

    Nyakas, Adrien; Blum, Lorenz C; Stucki, Silvan R; Reymond, Jean-Louis; Schürch, Stefan

    2013-02-01

    The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated double-stranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.

  3. OMA and OPA—Software-Supported Mass Spectra Analysis of Native and Modified Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Nyakas, Adrien; Blum, Lorenz C.; Stucki, Silvan R.; Reymond, Jean-Louis; Schürch, Stefan

    2013-02-01

    The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated double-stranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.

  4. [Fluorescence spectrum analysis system for protoporphyrin IX in serum based on wavelet transform].

    PubMed

    Zhu, Dian-ming; Yang, Hong-peng; Luo, Xiao-sen; Liu, Ying; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2007-12-01

    Protoporphyrin IX is an important kind of organic compound for vital movement, and can be used as the sign of tumour blood. Human protoporphyrin IX content in serum is very low, and affected by various factors. The serum fluorescence spectrum analysis system based on wavelet transform was used to discriminated the protoporphyrin IX weak signals. The protoporphyrin IX fluorescence spectrum was obtained by a multi-function spectrum measuring system, and decomposed several times by wavelet transform to distinguish the noise and spectrum signals. The fluorescence spectrum can be divided into corresponding discrete approximations signals (a1-a6) and discrete details signals (d1-d6) by six times of decomposition, showing the signal frequency decreasing with decomposition times increasing and the protoporphyrin IX fluorescence character peak appears here. The weak signals were discriminated and the exactly component and quantity can be acquired for further analysis. So it can be analysed quantitatively. The researches in the present paper provide the potential application in the diagnosis of incipient tumous using the serum fluorescence spectrum

  5. [Contrastive analysis on disease spectrum of otorhinolaryngology in 230 pilots of three generation fighters].

    PubMed

    Wang, Yong; Xu, Xianrong

    2006-01-01

    To comprehend the changes of disease spectrum of otorhinolaryngology in pilots of fighters. It was analysed that disease spectrum of otorhinolaryngology in 230 pilots of three generation fighter, named as F5, F6 and F7. (1) The top 10 diagnosis in disease spectrum were aortitis media, vertigo, noise-induced deafness, aero-sinusitis, illusion in flight, air-sickness, allergic rhinitis, vestibular dysfunction, chronic rhinitis and Meniere disease. (2) The top 10 diagnosis of F7 pilots changed obviously comparing with those of F5 and F6 pilots. The disease spectrum of otorhinolaryngology of pilots is different in three generation fighters. Compared with F5 and F6 pilots, the proportion of some diseases in F7 pilots shows a trend of decrease, and some others shows a trend of increase. Analysis on the reasons for this change may improve the quality of asiatic medical service.

  6. On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.

    PubMed

    Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi

    2017-07-08

    Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.

  7. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  8. Mass spectrum and leptonic decay constants of ground and radially excited states of ηc and ηb in a Bethe-Salpeter equation framework

    NASA Astrophysics Data System (ADS)

    Negash, Hluf; Bhatnagar, Shashank

    2015-04-01

    In this paper, we study the mass spectrum and decay constants of ground state (1S) and radially excited states (2S and 3S) of heavy equal mass pseudoscalar mesons, ηc and ηb. We have employed the framework of Bethe-Salpeter equation (BSE) under Covariant Instantaneous Ansatz (CIA). Our predictions are in reasonable agreement with the data on available states and results of other models.

  9. EEG power spectrum analysis for monitoring depth of anaesthesia during experimental surgery.

    PubMed

    Otto, Klaus A

    2008-01-01

    The first attempts to introduce computerized power spectrum analysis of the electroencephalogram (EEG) as an intraoperative anaesthesia monitoring device started approximately 30 years ago. Since that time, the effects of various anaesthetic agents, sedative and analgesic drugs on the EEG pattern have been addressed in numerous studies in human patients and different animal species. These studies revealed dose-dependent changes in the EEG power spectrum for many intravenous and volatile anaesthetics. Moreover, EEG responses evoked by surgical stimuli during relative light levels of surgical anaesthesia have been classified as 'arousal' and 'paradoxical arousal' reaction, previously referred to as 'desynchronization' and 'synchronization', respectively. Contrasting reports on the correlation between quantitative EEG (QEEG) variables derived from power spectrum analysis (i.e. spectral edge frequency, median frequency) and simultaneously recorded clinical signs such as movement and haemodynamic responses, however, limited the routine use of intraoperative EEG monitoring. In addition, the appearance of EEG burst suppression pattern and isoelectricity at clinically relevant concentrations/doses of newer general anaesthetics (i.e. isoflurane, sevoflurane, propofol) may have weakened the dose-related EEG changes previously reported. Despite these findings, the EEG power spectrum analysis may still provide valuable information during intraoperative monitoring in the individual subject. The information obtained from EEG power spectrum analysis may be further supplemented by newer EEG indices such as bispectral index and approximate entropy or other neurophysiological monitors including auditory evoked potentials or somatosensory evoked potentials.

  10. [Keratoplasty classification and primary disease spectrum analysis of 315 cases].

    PubMed

    Cai, S B; Sun, M; Li, S; Xu, L J; Wang, W; Wang, J; Hu, W K; Li, X Y; Wang, P; Zhang, H; Li, G G

    2017-06-11

    Objective: To identify the primary disease spectrum and trends of surgical procedure of keratoplasty patients. Methods: Retrospective case series study. To review all patients who underwent keratoplasty at Department of ophthalmology in Tongji Hospital from January 1, 2012 to December 31, 2015. The data collected included age, sex, birthplace, and primary corneal disease and associated surgical procedures. Then the data were compared with similar papers domestic and foreign. Results: A total of 315 keratoplasties were performed during this 4-year period. The average age of patients at time of surgery was (42.0± 1.8) years, range from 33 days to 89 years, 229 cases (72.7%) were from 18 to 65 years; male: female ratio was 2.06:1. Totally 289 cases (91.8%)came from Hubei province, 26 cases (8.2%) were from other provinces. The leading indications for corneal transplantation were keratitis in 125 cases (39.7%), followed by corneal scar in 71 cases (22.5%), keratoconus in 41 cases (13.0%), pseudophakic bullous keratopathy in 26 cases (8.3%), corneal dermoid in 18 cases (5.7%), corneal dystrophy and degeneration in 16 cases (5.1%), and others (including chemical injuries, thermal burns, post-traumatic corneal scar and corneal opacity) in 18 cases (5.7%). Of the 125 keratitis cases, 51 cases (40.8%) were associated with fungus, 43 cases (34.4%)were associated with virus, and 24 cases (19.2%)were associated with bacterial. In accordance with the classification of corneal transplant surgery, penetrating keratoplasty was performed in 212 cases (67.3% ), lamellar keratoplasty was completed in 87 cases (27.6% ), corneal endothelial transplantation was made in 16 patients (5.1%). Conclusions: Infectious keratitis was the leading indication for corneal transplantation followed by corneal scar, keratoconus and pseudophakic bullous keratopathy in Tongji hospital patients who underwent keratoplasty. And fungus was the first cause of infectious keratitis. Penetrating keratoplasty

  11. Ultrasonic tissue characterization using 2-D spectrum analysis and its application in ocular tumor diagnosis

    PubMed Central

    Liu, Tian; Lizzi, Frederic L.; Silverman, Ronald H.; Kutcher, Gerald J.

    2009-01-01

    We are investigating the utility of a new ultrasonic tissue characterization technique, specifically two-dimensional (2-D) spectrum analysis of radio-frequency backscatter signals, which promises to provide quantitative measures of the physical properties of tissue microstructures. Previously successful 1-D spectrum analysis is expanded to 2-D to more fully characterize diagnostically significant features of biological tissue. Two new spectral functions, radially integrated spectral power (RISP) and angularly integrated spectral power (AISP), are defined to quantitatively characterize tissue properties. This new approach is applied to the diagnosis of in vivo ocular melanomas. Our initial results indicate that 2-D spectrum analysis can provide significant new information on tissue anisotropy that are not apparent in 1-D spectra. Acoustic scattering models are applied to relate the 2-D spectral parameters to the physical properties (e.g., size and shape) of biological tissues. PMID:15191289

  12. Fermentation exhaust gas analysis using mass spectrometry

    SciTech Connect

    Buckland, B.; Brix, Fastert, H.; Gbewonyo, K.; Hunt, G.; Jain, D.

    1985-11-01

    A Perkin Elmer MGA-1200 mass spectrometer has been coupled with a mini-computer and a sampling manifold to analyze up to 8 components in the exhaust gases of fermentors. Carbon dioxide, oxygen, and nitrogen are typically analyzed, but ethanol for yeast fermentations can also be tested by heating the line from the fermentor to the sampling manifold. Specifications, operation, and performance of the system are described. The system has been used for process control, the study of fermentation kinetics, and process development. 8 references, 7 figures, 1 table.

  13. Maternal Smoking and Autism Spectrum Disorder: A Meta-Analysis

    ERIC Educational Resources Information Center

    Rosen, Brittany N.; Lee, Brian K.; Lee, Nora L.; Yang, Yunwen; Burstyn, Igor

    2015-01-01

    We conducted a meta-analysis of 15 studies on maternal prenatal smoking and ASD risk in offspring. Using a random-effects model, we found no evidence of an association (summary OR 1.02, 95% CI 0.93-1.12). Stratifying by study design, birth year, type of healthcare system, and adjustment for socioeconomic status or psychiatric history did not alter…

  14. Maternal Smoking and Autism Spectrum Disorder: A Meta-Analysis

    ERIC Educational Resources Information Center

    Rosen, Brittany N.; Lee, Brian K.; Lee, Nora L.; Yang, Yunwen; Burstyn, Igor

    2015-01-01

    We conducted a meta-analysis of 15 studies on maternal prenatal smoking and ASD risk in offspring. Using a random-effects model, we found no evidence of an association (summary OR 1.02, 95% CI 0.93-1.12). Stratifying by study design, birth year, type of healthcare system, and adjustment for socioeconomic status or psychiatric history did not alter…

  15. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    ERIC Educational Resources Information Center

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  16. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    ERIC Educational Resources Information Center

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  17. Comparing Massed-Trial Instruction, Distributed-Trial Instruction, and Task Interspersal to Teach Tacts to Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Majdalany, Lina M.; Wilder, David A.; Greif, Abigail; Mathisen, David; Saini, Valdeep

    2014-01-01

    Although massed-trial instruction, distributed-trial instruction, and task interspersal have been shown to be effective methods of teaching skills to children with autism spectrum disorders, they have not been directly compared. In the current study, we taught 6 children to tact shapes of countries using these methods to determine which would…

  18. Analysis of Milk Oligosaccharides by Mass Spectrometry.

    PubMed

    Wu, Lauren D; Ruhaak, L Renee; Lebrilla, Carlito B

    2017-01-01

    Human milk oligosaccharides (HMOs) are a highly abundant constituent in human milk, and its protective and prebiotic properties have attracted considerable attention. HMOs have been shown to directly and indirectly benefit the overall health of the infant due to a number of functions including serving as a beneficial food for gut bacteria, block to pathogens, and aiding in brain development. Researchers are currently exploring whether these structures may act as possible disease and nutrition biomarkers. Because of this, rapid-throughput methods are desired to investigate biological activity in large patient sets. We have optimized a rapid-throughput protocol to analyze human milk oligosaccharides using micro-volumes of human breast milk for nutritional biomarkers. This method may additionally be applied to other biological fluid substrates such as plasma, urine, and feces. The protocol involves lipid separation via centrifugation, protein precipitation using ethanol, alditol reduction with sodium borohydride, and a final solid-phase extraction purification step using graphitized carbon cartridges. Samples are analyzed using HPLC-Chip/TOF-MS and data filtered on Agilent MassHunter using an in-house library. Individual structural identification is matched against a previously developed HMO library using accurate mass and retention time. Using this method will allow in-depth characterization and profiling of HMOs in large patient sets, and will ease the process of discovering significant nutritional biomarkers in human milk.

  19. Reply to ``Comment on `Mobility spectrum computational analysis using a maximum entropy approach' ''

    NASA Astrophysics Data System (ADS)

    Mironov, O. A.; Myronov, M.; Kiatgamolchai, S.; Kantser, V. G.

    2004-03-01

    In their Comment [J. Antoszewski, D. D. Redfern, L. Faraone, J. R. Meyer, I. Vurgaftman, and J. Lindemuth, Phys. Rev. E 69, 038701 (2004)] on our paper [S. Kiatgamolchai, M. Myronov, O. A. Mironov, V. G. Kantser, E. H. C. Parker, and T. E. Whall, Phys. Rev. E 66, 036705 (2002)] the authors present computational results obtained with the improved quantitative mobility spectrum analysis technique implemented in the commercial software of Lake Shore Cryotronics. We suggest that this is just information additional to the mobility spectrum analysis (MSA) in general without any direct relation to our maximum entropy MSA (ME-MSA) algorithm.

  20. Implementation of modal combination rules for response spectrum analysis using GEMINI

    SciTech Connect

    Nukala, P K

    1999-06-01

    One of the widely used methodologies for describing the behavior of a structural system subjected to seismic excitation is response spectrum modal dynamic analysis. Several modal combination rules are proposed in the literature to combine the responses of individual modes in a response spectrum dynamic analysis. In particular, these modal combination rules are used to estimate the representative maximum value of a particular response of interest for design purposes. Furthermore, these combination rules also provide guidelines for combining the representative maximum values of the response obtained for each of the three orthogonal spatial components of an earthquake. This report mainly focuses on the implementation of different modal combination rules into GEMINI [I].

  1. [Research progress in water quality monitoring technology based on ultraviolet spectrum analysis].

    PubMed

    Zeng, Tian-Ling; Wen, Zhi-Yu; Wen, Zhong-Quan; Zhang, Zhong-Wei; Wei, Kang-Lin

    2013-04-01

    The water quality monitoring technology based on ultraviolet spectrum analysis has the characteristics of small volume, low cost, and no secondary pollution, and it doesn't need any reagent and sample pretreatment. On account of these characteristics, the direct ultra-violet technology has remarkable superiority over traditional technologies when applied in online monitoring of drinking water, surface water and industrial wastewater, and it has become an important development tendency of modern water monitoring technologies. The principle, characteristics, present situation and development trend of modern water quality monitoring technology based on ultra-violet spectrum analysis were introduced, and the key technical problems were further discussed in this paper.

  2. bamr: Bayesian analysis of mass and radius observations

    NASA Astrophysics Data System (ADS)

    Steiner, Andrew W.

    2014-08-01

    bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O2scl (ascl:1408.019) be installed before compilation.

  3. Quaternion Singular Spectrum Analysis of Electroencephalogram With Application in Sleep Analysis.

    PubMed

    Enshaeifar, Shirin; Kouchaki, Samaneh; Took, Clive Cheong; Sanei, Saeid

    2016-01-01

    A novel quaternion-valued singular spectrum analysis (SSA) is introduced for multichannel analysis of electroencephalogram (EEG). The analysis of EEG typically requires the decomposition of data channels into meaningful components despite the notoriously noisy nature of EEG--which is the aim of SSA. However, the singular value decomposition involved in SSA implies the strict orthogonality of the decomposed components, which may not reflect accurately the sources which exhibit similar neural activities. To allow for the modelling of such co-channel coupling, the quaternion domain is considered for the first time to formulate the SSA using the augmented statistics. As an application, we demonstrate how the augmented quaternion-valued SSA (AQSSA) can be used to extract the sources, even at a signal-to-noise ratio as low as -10 dB. To illustrate the usefulness of our quaternion-valued SSA in a rehabilitation setting, we employ the proposed SSA for sleep analysis to extract statistical descriptors for five-stage classification (Awake, N1, N2, N3 and REM). The level of agreement using these descriptors was 74% as quantified by the Cohen's kappa.

  4. Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables

    NASA Astrophysics Data System (ADS)

    Ihantola, S.; Pelikan, A.; Pöllänen, R.; Toivonen, H.

    2011-11-01

    The correct handling of statistical uncertainties is crucial especially when unfolding alpha spectra that contain a low number of counts or overlapping peaks from different nuclides. For this purpose, we have developed a new spectrum analysis software package called ADAM, which performs a full covariance calculus for alpha-particle emitting radionuclides. By analyzing a large number of simulated and measured spectra, the program was proved to give unbiased peak areas and statistically correct uncertainty limits. This applies regardless of the peak areas and the number of unknown parameters during the fitting. In addition, ADAM performs reliable deconvolution for multiplets, which opens the way for the determination of isotope ratios, such as 239Pu/240Pu.

  5. The expanding universe of mass analyzer configurations for biological analysis.

    PubMed

    Calvete, Juan J

    2014-01-01

    Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419-435, 2008; Gelpí J. Mass Spectrom 44:1137-1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.

  6. Accelerator mass spectrometry (AMS) in plutonium analysis.

    PubMed

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  7. A meta-analysis of the social communication questionnaire: Screening for autism spectrum disorder.

    PubMed

    Chesnut, Steven R; Wei, Tianlan; Barnard-Brak, Lucy; Richman, David M

    2016-08-07

    The current meta-analysis examines the previous research on the utility of the Social Communication Questionnaire as a screening instrument for autism spectrum disorder. Previously published reports have highlighted the inconsistencies between Social Communication Questionnaire-screening results and formal autism spectrum disorder diagnoses. The variations in accuracy resulted in some researchers questioning the validity of the Social Communication Questionnaire. This study systematically examined the accuracy of the Social Communication Questionnaire as a function of the methodological decisions made by researchers screening for autism spectrum disorder over the last 15 years. Findings from this study suggest that the Social Communication Questionnaire is an acceptable screening instrument for autism spectrum disorder (area under the curve = 0.885). Variations in methodological decisions, however, greatly influenced the accuracy of the Social Communication Questionnaire in screening for autism spectrum disorder. Of these methodological variations, using the Current instead of the Lifetime version of the Social Communication Questionnaire resulted in the largest detrimental effect (d = -3.898), followed by using the Social Communication Questionnaire with individuals younger than 4 years of age (d = -2.924) and relying upon convenience samples (d = -4.828 for clinical samples, -2.734 for convenience samples, and -1.422 for community samples). Directions for future research and implications for using the Social Communication Questionnaire to screen for autism spectrum disorder are discussed.

  8. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  9. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    PubMed Central

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-01-01

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643

  10. Dual parallel mass spectrometry for lipid and vitamin D analysis

    USDA-ARS?s Scientific Manuscript database

    There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary ...

  11. Applications of mass spectrometry to structural analysis of marine oligosaccharides.

    PubMed

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-06-30

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.

  12. Power spectrum analysis and cardiovascular morbidity in anxiety disorders.

    PubMed

    Cohen, Hagit; Benjamin, Jonathan

    2006-07-30

    Spectral analysis of heart rate variability (HRV) and related measures has been shown to be a reliable noninvasive technique enabling quantitative assessment of cardiovascular autonomic regulatory responses to autonomic regulatory mechanisms; it provides a dynamic probe of sympathetic and parasympathetic tone, reflecting the interactions between the two. Over 20 studies reported abnormalities of HRV in anxiety, and patients with heart disease and anxiety are at increased risk for morbidity and mortality. Psychiatric drugs partly correct abnormalities of HRV and, recently, autonomic drugs (beta-blockers) have been studied in anxiety disorders. The authors call for further studies, especially in patients with co-existing anxiety disorders and heart disease, incorporating assessment of HRV.

  13. Combined computational metabolite prediction and automated structure-based analysis of mass spectrometric data.

    PubMed

    Stranz, David D; Miao, Shichang; Campbell, Scott; Maydwell, George; Ekins, Sean

    2008-01-01

    ABSTRACT As high-throughput technologies have developed in the pharmaceutical industry, the demand for identification of possible metabolites using predominantly liquid chromatographic/mass spectrometry-mass spectrometry/mass spectrometry (LC/MS-MS/MS) for a large number of molecules in drug discovery has also increased. In parallel, computational technologies have also been developed to generate predictions for metabolites alongside methods to predict MS spectra and score the quality of the match with experimental spectra. The goal of the current study was to generate metabolite predictions from molecular structure with a software product, MetaDrug. In vitro microsomal incubations were used to ultimately produce MS data that could be used to verify the predictions with Apex, which is a new software tool that can predict the molecular ion spectrum and a fragmentation spectrum, automating the detailed examination of both MS and MS/MS spectra. For the test molecule imipramine used to illustrate the combined in vitro/in silico process proposed, MetaDrug predicts 16 metabolites. Following rat microsomal incubations with imipramine and analysis of the MS(n) data using the Apex software, strong evidence was found for imipramine and five metabolites and weaker evidence for five additional metabolites. This study suggests a new approach to streamline MS data analysis using a combination of predictive computational approaches with software capable of comparing the predicted metabolite output with empirical data when looking at drug metabolites.

  14. Applications of Mass Spectrometry for Cellular Lipid Analysis

    PubMed Central

    Wang, Chunyan; Wang, Miao; Han, Xianlin

    2015-01-01

    Mass spectrometric analysis of cellular lipids is an enabling technology for lipidomics, which is a rapidly-developing research field. In this review, we briefly discuss the principles, advantages, and possible limitations of electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry-based methodologies for the analysis of lipid species. The applications of these methodologies to lipidomic research are also summarized. PMID:25598407

  15. Ultrasound characterization of the infertile male testis with rf power spectrum analysis

    NASA Astrophysics Data System (ADS)

    Coleman, Jonathan A.; Silverman, Ronald H.; Rondeau, Mark; Coleman, D. J.; Schlegel, Peter

    2002-04-01

    Objective: To investigate and diagnose testicular pathology in patients with testicular dysfunction using the technique of ultrasound power spectrum analysis. Methods: Testicular ultrasound studies with power spectrum tissue characterization analysis were performed on men with testicular abnormalities as well as normal controls. Semen analysis, biopsy data, microscopic intra-operative findings and data pertaining to testicular function were collected for each surgically evaluated subject. Ultrasound data were analyzed for power spectrum characteristics of microscopic scatterer size and concentration within discrete areas of testicular tissue. Results: Patients with varicoceles and greater than 2x106 sperm/ml on semen analysis had larger average scatterer size (107.7 micrometers ) and lower scatterer concentration (-15.02 dB) than non-obstructed, azoospermic patients with varicoceles (92.4 micrometers and -11.41 dB, respectively). Subjects with obstructed azoospermia had slightly larger average tissue scatterer size (108.1 micrometers ) and lower concentration (-15.73 dB) while normal control data revealed intermediate values of size (102.3 micrometers ) and concentration (-13.1 dB) of scatterers. Spectral data from pure testicular seminoma lesions had the lowest average scatterer size (82.3 micrometers ) with low relative concentration (-14.7 dB). Summary: Ultrasound tissue characterization based on RF spectrum analysis may distinguish different types of testicular pathology including obstructed and non-obstructed azoospermia and tissue changes due to varicocele and tumor.

  16. The Role of Perturbations in the B-X UV Spectrum of S_{2} in a Temperature-Dependent Mechanism for Sulfur Mass Independent Fractionation

    NASA Astrophysics Data System (ADS)

    Hull, Alexander W.; Field, Robert W.; Ono, Shuhei

    2017-06-01

    Sulfur mass independent fractionation (S-MIF) describes anomalous sulfur isotope ratios commonly found in sedimentary rocks older than 2.45 billion years. These anomalies likely originate from photochemistry of small, sulfur-containing molecules in the atmosphere, and their sudden disappearance from rock samples younger than 2.45 years is thought to be correlated with a sharp rise in atmospheric oxygen levels. The emergence of atmospheric oxygen is an important milestone in the development of life on Earth, but the mechanism for sulfur MIF in an anoxic atmosphere is not well understood. In this context, we present an analysis of the B-X UV spectrum of S_{2}, an extension of work presented last year. The B state of S_{2} is strongly perturbed by the nearby B" state, as originally described by Green and Western (1996). Our analysis suggests that a doorway-mediated transfer mechanism shifts excited state population from the short-lifetime B state to the longer-lifetime B" state. Furthermore, access to the perturbed doorway states is strongly dependent on the population distribution in the ground state. This suggests that the temperature of the Achaean atmosphere may have played a significant role in determining the extent of S-MIF.

  17. Observation of a Broad Structure in the $\\pi^+\\pi^-J/\\psi$ Mass Spectrum around 4.26~GeV/$c^2$

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-07-06

    The authors study initial-state radiation events, e{sup +}e{sup -} {yields} {gamma}{sub ISR} {pi}{sup +}{pi}{sup -} J/{psi}, with data collected with the BABAR detector. They observe an accumulation of events near 4.26 GeV/c{sup 2} in the invariant-mass spectrum of {pi}{sup +}{pi}{sup -} J/{psi}. Fits of the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/c{sup 2} is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to 90 MeV/c{sup 2}, depending on the fit hypothesis.

  18. Gap Filling of Precipitation Data by SSA - Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Filho, A. S. F.; Lima, G. A. R.

    2016-10-01

    From the macroscopic standpoint, the precipitation time series is obtained from observation of natural systems rather than in the laboratory. These time series are often full of gaps (missing values) due to the conditions under which the measurements are made. Missing values give rise to various problems in spectral estimation, inhibit statistical analysis and in specifying boundary conditions for numerical models. Hence, gap filling is necessary in environmental science. The aim of this study is to highlight the application of the SSA forecasting algorithm to fill in missing values to real-life time series. It was applied to several monthly precipitation time series recorded over a large savannah area in Brazil. The results are promising and the accuracy and reliability depend on the pattern and relative length of the gaps with respect to the total length of the time series and presence of noise.

  19. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2017-05-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  20. Low frequency signal spectrum analysis for strong earthquakes

    NASA Astrophysics Data System (ADS)

    Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Schwingenschuh, Konrad; Hayakawa, Masashi

    2012-04-01

    We examined changes in the spectral composition of the low frequency (LF) subionospheric signals from the NRK transmitter (37.5 kHz) in Iceland that were received in Bari (Italy) relative to the earthquake that occurred in L'Aquila on April 6, 2009. In our previous studies, we have reported the occurrence of preseismic night-time anomalies using observations from three receivers located in Bari, Graz (Austria) and Moscow (Russia). The strongest anomalies in the signals were observed in the NRK-Bari propagation path during the period 5-6 days before the L'Aquila earthquake, as well as during the series of aftershocks. During this period, similar very low frequency (VLF)/LF amplitude anomalies were also observed along several other propagation paths that crossed the L'Aquila seismogenic zone. Spectral analysis of the LF signals filtered in the frequency range 0.28 mHz to 15 mHz shows differences in the spectra for seismo-disturbed days when compared to those for either quiet or geomagnetically disturbed days. These spectral anomalies, which are only observed in the propagation path between NRK and Bari, contain signals with periods of about 10 min to 20 min. These periodic signals are absent both in the spectra of the undisturbed signals for the control paths, and in the spectra of the signals received during geomagnetic storms. The same changes in the spectral composition were observed in the analysis of LF (40 kHz) signals from the JJY transmitter in Japan that were received in Petropavlovsk-Kamchatsky (Russia) during the occurrence of three strong earthquakes with M ≥7.0. The results of this study support the theoretical prediction that the possible mechanism for energy penetration from the origin of an earthquake through the atmosphere and into the ionosphere is based on the excitation and upward propagation of internal gravity waves.

  1. The use of random projections for the analysis of mass spectrometry imaging data.

    PubMed

    Palmer, Andrew D; Bunch, Josephine; Styles, Iain B

    2015-02-01

    The 'curse of dimensionality' imposes fundamental limits on the analysis of the large, information rich datasets that are produced by mass spectrometry imaging. Additionally, such datasets are often too large to be analyzed as a whole and so dimensionality reduction is required before further analysis can be performed. We investigate the use of simple random projections for the dimensionality reduction of mass spectrometry imaging data and examine how they enable efficient and fast segmentation using k-means clustering. The method is computationally efficient and can be implemented such that only one spectrum is needed in memory at any time. We use this technique to reveal histologically significant regions within MALDI images of diseased human liver. Segmentation results achieved following a reduction in the dimensionality of the data by more than 99% (without peak picking) showed that histologic changes due to disease can be automatically visualized from molecular images.

  2. The Use of Random Projections for the Analysis of Mass Spectrometry Imaging Data

    NASA Astrophysics Data System (ADS)

    Palmer, Andrew D.; Bunch, Josephine; Styles, Iain B.

    2015-02-01

    The `curse of dimensionality' imposes fundamental limits on the analysis of the large, information rich datasets that are produced by mass spectrometry imaging. Additionally, such datasets are often too large to be analyzed as a whole and so dimensionality reduction is required before further analysis can be performed. We investigate the use of simple random projections for the dimensionality reduction of mass spectrometry imaging data and examine how they enable efficient and fast segmentation using k-means clustering. The method is computationally efficient and can be implemented such that only one spectrum is needed in memory at any time. We use this technique to reveal histologically significant regions within MALDI images of diseased human liver. Segmentation results achieved following a reduction in the dimensionality of the data by more than 99% (without peak picking) showed that histologic changes due to disease can be automatically visualized from molecular images.

  3. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  4. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  5. Kepler Planet Masses and Eccentricities from TTV Analysis

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Lithwick, Yoram

    2017-07-01

    We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo simulations based on N-body integration, and an analytic fitting approach. Mass measurements of 49 planets, including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and radius measurements, we infer the masses of planets’ gaseous envelopes for both our TTV sample and transiting planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are generally small, typically a few percent, but in many instances are nonzero.

  6. Fractal analysis of surface electromyography signals: a novel power spectrum-based method.

    PubMed

    Talebinejad, Mehran; Chan, Adrian D C; Miri, Ali; Dansereau, Richard M

    2009-10-01

    This paper presents a novel power spectrum-based method for fractal analysis of surface electromyography signals. This method, named the bi-phase power spectrum method, provides a bi-phase power-law which represents a multi-scale statistically self-affine signal. This form of statistical self-affinity provides an accurate approximation for stochastic signals originating from a strong non-linear combination of a number of similar distributions, such as surface electromyography signals which are formed by the summation of a number of single muscle fiber action potentials. This power-law is characterized by a set of spectral indicators, which are related to distributional and geometrical characteristics of the electromyography signal's interference pattern. These novel spectral indicators are capable of sensing the effects of motor units' recruitment and shape separately by exploiting the geometry of the interference pattern. The bi-phase power spectrum method is compared to geometrical techniques and the 1/f(alpha) approach for fractal analysis of electromyography signals. The extracted indicators using the bi-phase power spectrum method are evaluated in the context of force and joint angle and the results of a human study are presented. Results demonstrate that the bi-phase power spectrum method provides reliable information, consisting of components capable of sensing force and joint angle effects separately, which could be used as complementary information for confounded conventional measures.

  7. Recovery of macular pigment spectrum in vivo using hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Fawzi, Amani A.; Lee, Noah; Acton, Jennifer H.; Laine, Andrew F.; Smith, R. Theodore

    2011-10-01

    We investigated the feasibility of a novel method for hyperspectral mapping of macular pigment (MP) in vivo. Six healthy subjects were recruited for noninvasive imaging using a snapshot hyperspectral system. The three-dimensional full spatial-spectral data cube was analyzed using non-negative matrix factorization (NMF), wherein the data was decomposed to give spectral signatures and spatial distribution, in search for the MP absorbance spectrum. The NMF was initialized with the in vitro MP spectrum and rank 4 spectral signature decomposition was used to recover the MP spectrum and optical density in vivo. The recovered MP spectra showed two peaks in the blue spectrum, characteristic of MP, giving a detailed in vivo demonstration of these absorbance peaks. The peak MP optical densities ranged from 0.08 to 0.22 (mean 0.15+/-0.05) and became spatially negligible at diameters 1100 to 1760 μm (4 to 6 deg) in the normal subjects. This objective method was able to exploit prior knowledge (the in vitro MP spectrum) in order to extract an accurate in vivo spectral analysis and full MP spatial profile, while separating the MP spectra from other ocular absorbers. Snapshot hyperspectral imaging in combination with advanced mathematical analysis provides a simple cost-effective approach for MP mapping in vivo.

  8. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.

    PubMed

    Zhang, Luxi; Holmes, Ian P; Hochgräfe, Falko; Walker, Scott R; Ali, Naveid A; Humphrey, Emily S; Wu, Jianmin; de Silva, Melanie; Kersten, Wilhelmus J A; Connor, Theresa; Falk, Hendrik; Allan, Lynda; Street, Ian P; Bentley, John D; Pilling, Patricia A; Monahan, Brendon J; Peat, Thomas S; Daly, Roger J

    2013-07-05

    Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239.

  9. Using the Language Environment Analysis (LENA) System in Preschool Classrooms with Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Sabatos-DeVito, Maura G.; Irvin, Dwight W.; Boyd, Brian A.; Hume, Kara A.; Odom, Sam L.

    2013-01-01

    This study describes the language environment of preschool programs serving children with autism spectrum disorders (ASDs) and examines relationships between child characteristics and an automated measure of adult and child language in the classroom. The Language Environment Analysis (LENA) system was used with 40 children with ASD to collect data…

  10. A Meta-Analysis of the Reading Comprehension Skills of Individuals on the Autism Spectrum

    ERIC Educational Resources Information Center

    Brown, Heather M.; Oram-Cardy, Janis; Johnson, Andrew

    2013-01-01

    This meta-analysis examined 36 studies comparing autism spectrum disorder (ASD) and control groups in reading comprehension. Three moderators (semantic knowledge, decoding skill, PIQ) and two text types (high vs. low social knowledge) were examined as predictors of reading comprehension in ASD. The overall standardized mean difference for reading…

  11. Evidence-Based Practice: Quality Indicator Analysis of Antecedent Exercise in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kasner, Melanie; Reid, Greg; MacDonald, Cathy

    2012-01-01

    The purpose of the research was to conduct a quality indicator analysis of studies exploring the effects of antecedent exercise on self-stimulatory behaviors of individuals with autism spectrum disorders (ASD). Educational Resources Information Center (ERIC), Google Scholar, SPORTDiscus, PsychINFO, and PubMed/MedLine databases from 1980 to October…

  12. Exploring the Relationship between Autism Spectrum Disorder and Epilepsy Using Latent Class Cluster Analysis

    ERIC Educational Resources Information Center

    Cuccaro, Michael L.; Tuchman, Roberto F.; Hamilton, Kara L.; Wright, Harry H.; Abramson, Ruth K.; Haines, Jonathan L.; Gilbert, John R.; Pericak-Vance, Margaret

    2012-01-01

    Epilepsy co-occurs frequently in autism spectrum disorders (ASD). Understanding this co-occurrence requires a better understanding of the ASD-epilepsy phenotype (or phenotypes). To address this, we conducted latent class cluster analysis (LCCA) on an ASD dataset (N = 577) which included 64 individuals with epilepsy. We identified a 5-cluster…

  13. Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups

    ERIC Educational Resources Information Center

    Obafemi-Ajayi, Tayo; Miles, Judith H.; Takahashi, T. Nicole; Qi, Wenchuan; Aldridge, Kristina; Zhang, Minqi; Xin, Shi-Qing; He, Ying; Duan, Ye

    2015-01-01

    Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in…

  14. Video Modeling for Children and Adolescents with Autism Spectrum Disorder: A Meta-Analysis

    ERIC Educational Resources Information Center

    Thompson, Teresa Lynn

    2014-01-01

    The objective of this research was to conduct a meta-analysis to examine existing research studies on video modeling as an effective teaching tool for children and adolescents diagnosed with Autism Spectrum Disorder (ASD). Study eligibility criteria included (a) single case research design using multiple baselines, alternating treatment designs,…

  15. Innovative Technology-Based Interventions for Autism Spectrum Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Grynszpan, Ouriel; Weiss, Patrice L.; Perez-Diaz, Fernando; Gal, Eynat

    2014-01-01

    This article reports the results of a meta-analysis of technology-based intervention studies for children with autism spectrum disorders. We conducted a systematic review of research that used a pre-post design to assess innovative technology interventions, including computer programs, virtual reality, and robotics. The selected studies provided…

  16. Effects of Physical Exercise on Autism Spectrum Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sowa, Michelle; Meulenbroek, Ruud

    2012-01-01

    It is generally agreed that regular physical exercise promotes physical and mental health, but what are the benefits in people with Autism Spectrum Disorders (ASD)? This meta-analysis evaluates 16 behavioural studies reporting on a total of 133 children and adults with various variants of the syndrome who were offered structured physical…

  17. Using the Language Environment Analysis (LENA) System in Preschool Classrooms with Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Sabatos-DeVito, Maura G.; Irvin, Dwight W.; Boyd, Brian A.; Hume, Kara A.; Odom, Sam L.

    2013-01-01

    This study describes the language environment of preschool programs serving children with autism spectrum disorders (ASDs) and examines relationships between child characteristics and an automated measure of adult and child language in the classroom. The Language Environment Analysis (LENA) system was used with 40 children with ASD to collect data…

  18. Parents' Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Reiff, Marian; Giarelli, Ellen; Bernhardt, Barbara A.; Easley, Ebony; Spinner, Nancy B.; Sankar, Pamela L.; Mulchandani, Surabhi

    2015-01-01

    Clinical guidelines recommend chromosomal microarray analysis (CMA) for all children with autism spectrum disorders (ASDs). We explored the test's perceived usefulness among parents of children with ASD who had undergone CMA, and received a result categorized as pathogenic, variant of uncertain significance, or negative. Fifty-seven parents…

  19. A Meta-Analysis of Behavioral Interventions for Adolescents and Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Roth, Matthew E.; Gillis, Jennifer M.; DiGennaro Reed, Florence D.

    2014-01-01

    Evaluation of evidence-based treatments is important for adolescents and adults with autism spectrum disorders (ASD) given the increasing number of interventions available and the prevalence of ASD. In this study, we sought to evaluate the effectiveness of behavioral interventions for this population by conducting a meta-analysis of published…

  20. Innovative Technology-Based Interventions for Autism Spectrum Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Grynszpan, Ouriel; Weiss, Patrice L.; Perez-Diaz, Fernando; Gal, Eynat

    2014-01-01

    This article reports the results of a meta-analysis of technology-based intervention studies for children with autism spectrum disorders. We conducted a systematic review of research that used a pre-post design to assess innovative technology interventions, including computer programs, virtual reality, and robotics. The selected studies provided…

  1. Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups

    ERIC Educational Resources Information Center

    Obafemi-Ajayi, Tayo; Miles, Judith H.; Takahashi, T. Nicole; Qi, Wenchuan; Aldridge, Kristina; Zhang, Minqi; Xin, Shi-Qing; He, Ying; Duan, Ye

    2015-01-01

    Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in…

  2. Parents' Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Reiff, Marian; Giarelli, Ellen; Bernhardt, Barbara A.; Easley, Ebony; Spinner, Nancy B.; Sankar, Pamela L.; Mulchandani, Surabhi

    2015-01-01

    Clinical guidelines recommend chromosomal microarray analysis (CMA) for all children with autism spectrum disorders (ASDs). We explored the test's perceived usefulness among parents of children with ASD who had undergone CMA, and received a result categorized as pathogenic, variant of uncertain significance, or negative. Fifty-seven parents…

  3. Video Modeling for Children and Adolescents with Autism Spectrum Disorder: A Meta-Analysis

    ERIC Educational Resources Information Center

    Thompson, Teresa Lynn

    2014-01-01

    The objective of this research was to conduct a meta-analysis to examine existing research studies on video modeling as an effective teaching tool for children and adolescents diagnosed with Autism Spectrum Disorder (ASD). Study eligibility criteria included (a) single case research design using multiple baselines, alternating treatment designs,…

  4. Evidence-Based Practice: Quality Indicator Analysis of Antecedent Exercise in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kasner, Melanie; Reid, Greg; MacDonald, Cathy

    2012-01-01

    The purpose of the research was to conduct a quality indicator analysis of studies exploring the effects of antecedent exercise on self-stimulatory behaviors of individuals with autism spectrum disorders (ASD). Educational Resources Information Center (ERIC), Google Scholar, SPORTDiscus, PsychINFO, and PubMed/MedLine databases from 1980 to October…

  5. Exploring the Relationship between Autism Spectrum Disorder and Epilepsy Using Latent Class Cluster Analysis

    ERIC Educational Resources Information Center

    Cuccaro, Michael L.; Tuchman, Roberto F.; Hamilton, Kara L.; Wright, Harry H.; Abramson, Ruth K.; Haines, Jonathan L.; Gilbert, John R.; Pericak-Vance, Margaret

    2012-01-01

    Epilepsy co-occurs frequently in autism spectrum disorders (ASD). Understanding this co-occurrence requires a better understanding of the ASD-epilepsy phenotype (or phenotypes). To address this, we conducted latent class cluster analysis (LCCA) on an ASD dataset (N = 577) which included 64 individuals with epilepsy. We identified a 5-cluster…

  6. Effects of Physical Exercise on Autism Spectrum Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sowa, Michelle; Meulenbroek, Ruud

    2012-01-01

    It is generally agreed that regular physical exercise promotes physical and mental health, but what are the benefits in people with Autism Spectrum Disorders (ASD)? This meta-analysis evaluates 16 behavioural studies reporting on a total of 133 children and adults with various variants of the syndrome who were offered structured physical…

  7. [Analysis of fluorescence spectrum of petroleum-polluted water].

    PubMed

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  8. Soft X-ray emission lines in the afterglow spectrum of GRB 011211: A detailed XMM-Newton analysis

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Watson, D.; Osborne, J. P.; Pounds, K. A.; O'Brien, P. T.

    2003-05-01

    We report on an XMM-Newton observation of the X-ray afterglow of the Gamma Ray Burst GRB 011211, originally detected by Beppo-SAX on 11th December 2001. The early afterglow spectrum obtained by XMM-Newton, observed 11 hours after the initial burst, appeared to reveal decaying H-like Kalpha emission lines of Mg, Si, S, Ar and Ca, arising in enriched material with an outflow velocity of order 0.1c (Reeves et al. \\cite{Reeves2002}). This was attributed to matter ejected from a massive stellar progenitor occurring shortly before the burst itself. Here, we present a detailed re-analysis of the XMM-Newton EPIC observations of GRB 011211. In particular, we show that the detection of the soft X-ray line emission appears robust, regardless of detector background, calibration, spectral binning, or the spectral model that is assumed. We demonstrate that thermal emission, from an optically thin plasma, is the most plausible model that can account for the soft X-ray emission, which appears to be the case for at least two burst afterglow spectra observed by XMM-Newton. The X-ray spectrum of GRB 011211 appears to evolve with time after the first 10 ks of the XMM-Newton observation as the Si and S emission lines are only detected during the first 10 ks of observation. The observations suggest that thermal emission is present during the early afterglow spectrum, whilst a power-law component dominates the latter stages. Finally we estimate the mass of the ejected material in GRB 011211 to be of the order 4-20 solar masses.

  9. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  10. Considerations in the analysis of hydrogen exchange mass spectrometry data

    PubMed Central

    Wales, Thomas E.; Eggertson, Michael J.; Engen, John R.

    2013-01-01

    i. Summary A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide sequence, retention time and retention time range, mass range and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined. Various software platforms have been developed in order to perform this specific type of data analysis. We describe the fundamental parameters to be considered at each step along the way and how data processing, either by an individual or by software, must approach the analysis. PMID:23666730

  11. Classification of the PALMS single particle mass spectral data from Atlanta by regression tree analysis

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Murphy, D. M.; Lee, S.; Lee, S.; Lee, S.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    During the Atlanta Supersites project in August 1999, the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument collected over 500,000 individual particle spectra. The Atlanta data were originally analyzed by examining combinations of peaks and relative peak areas [Lee et al., 2001a,b], and a wide range of particle components such as sulfate, nitrate, mineral species, metals, organic species, and elemental carbon were detected. To further study the dataset, a classification program using regression tree analysis was developed and applied. Spectral data were compressed into a lower resolution spectrum (every 0.25 mass units) of the raw data and a list of peak areas (every mass unit). Each spectrum started as a normalized classification vector by itself. If the dot product of two classification vectors was within a certain threshold, they were combined into a new classification. The new classification vector was a normalized running average of the classifications being combined. In subsequent steps, the threshold for combining classifications was continuously lowered until a reasonable number of classifications remained. After the final iteration, each spectrum was compared individually with the entire set of classification vectors. Classifications were also combined manually. The classification results from the Atlanta data are generally consistent with those determined by peak identification. However, the classification program identified specific patterns in the mass spectra that were not found by peak identification and generated new particle types. Furthermore, rare particle types that may affect human health were studied in more detail. A description of the classification program as well as the results for the Atlanta data will be presented. Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook, Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersites Project

  12. Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum

    SciTech Connect

    Aab, Alexander

    2016-09-28

    Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at $\\lg(E/{\\rm eV})=18.5-19.0$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.

  13. Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum

    DOE PAGES

    Aab, Alexander

    2016-09-28

    Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less

  14. [Laser Raman and infrared spectrum analysis of low-density lipoproteins purified from hen egg yolk].

    PubMed

    Xue, Hui-jun; Sun, Run-guang; Wang, Xiao-mei; Chang, Yi-guang

    2010-11-01

    During the experiment, diversified proteins were separated from hen egg yolk by ammonium sulphate rapid fractionation, and pure LDL was obtained after filtrating through Sephadex G-200 chromatography. After the qualitative detection of SDS-PAGE, the authors discovered that LDL consists of five major apoprotein. The Raman and infrared spectrum showed CH2 asymmetric stretching and symmetric stretching mode. However, the authors found C==O stretching vibrations of protein peptide bonds and N+ (CH3)3 asymmetric stretching vibration from the choline group in phospholipids. Laser Raman and infrared spectrum analysis of LDL provided useful information for studying their structure.

  15. From Spectrum Analysis to Spectrochemical Analysis: Redefining the Boundary of Spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Mina

    2007-04-01

    In 1930s-1940s, there were attempts to redefine the boundary of spectroscopy. First, spectroscopists who had been mainly trained as physicists tried to extend an area of spectroscopy beyond physics and physical astronomy by providing diverse examples of how to use spectroscopy in many fields of sciences and industry. Second, some spectroscopists attempted to redefine their professional identity within physics by organizing a new society for applied spectroscopy and trying to separate from optical society. Third, instrument makers helped to decrease resistance for spectroscopy to enter new fields by making more usable spectroscopes for who didn't have expertise in spectroscopy. Why did spectroscopists try these attempts in 1930s-1940s? Why did spectroscopy try to change its boundary within physics and beyond physics? In 1930s, spectroscopists should find out new sets of problems as the golden age of spectroscopy which was brought by quantum mechanics had been over. They found new opportunities in spectrochemical analysis which analyzed materials by spectrum and as spectrochemical analysis was more effective in chemistry, biology and metallurgy rather than in physics, they tried to redefine spectroscopy's boundary and their professional identity. In addition, instrument makers' interests to extend a spectroscopes market also contributed for this change.

  16. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    SciTech Connect

    Klose, Verena

    2011-08-12

    This thesis presents first measurements of moments of the hadronic nX2 distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → Xcℓν. The variable nX2 is a combination of the invariant mass of the charmed meson mX, its energy in the B-meson rest-frame EX;BRF, and a constant ~Λ = 0.65 GeV, nX2 = mX2c4-2~ΛEX,BRF + ~Λ2. The moments Xk> with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e+e- → Υ(4S) {yields} B$\\bar{B}$ events recorded with the BABAR experiment at the PEP-II e+e--storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the nX2 distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments Xk> up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B → Xcℓν and moments of the photon-energy spectrum in decays B → Xsγ, we determine the quark-mixing parameter |Vcb|, the bottom and charm quark masses, the semileptonic branching fraction β(B → Xcℓν), and four non-perturbative heavy quark

  17. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b

    NASA Astrophysics Data System (ADS)

    Lendl, M.; Delrez, L.; Gillon, M.; Madhusudhan, N.; Jehin, E.; Queloz, D.; Anderson, D. R.; Demory, B.-O.; Hellier, C.

    2016-03-01

    Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H2O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. Aims: We apply this technique to the MP = 0.40MJ, Rp = 1.20RJ, P = 2.78 d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 ¯m and search for the features of K and H2O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the i' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 ¯m, as well as a transmission spectrum between 0.65 and 1.02 ¯m from the combined analysis of FORS2 and broadband data. The results obtained from the three

  18. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Tinkov, Alexey A

    2017-06-01

    The primary objective of the present study is analysis of hair trace elements content in children with communication disorder (CD) and autism spectrum disorder (ASD). A total of 99 children from control, CD, and ASD groups (n = 33) were examined. All children were additionally divided into two subgroups according to age. Hair levels of trace elements were assessed using inductively coupled plasma mass spectrometry. The difference was considered significant at p < 0.01. The obtained data demonstrate that children with CD are characterized by significantly increased hair lithium (Li) (96 %; p = 0.008), selenium (Se) (66 %; p < 0.001), arsenic (As) (96 %; p = 0.005), beryllium (Be) (150 %; p < 0.001), and cadmium (Cd) (72 %; p = 0.007) content, being higher than the respective control values. In the ASD group, hair copper (Cu), iodine (I), and Be levels tended to be lower than the control values. In turn, the scalp hair content of Se significantly exceeded the control values (33 %; p = 0.004), whereas the level of iron (Fe) and aluminum (Al) tended to increase. After gradation for age, the most prominent differences in children with CD were detected in the elder group (5-8 years), whereas in the case of ASD-in the younger group (3-4 years old). Taking into account the role of hair as excretory mechanism for certain elements including the toxic ones, it can be proposed that children suffering from ASD are characterized by more profound alteration of metal handling and excretion in comparison to CD.

  19. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    PubMed

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.

  20. HIGH-RESOLUTION SPECTROSCOPY DURING ECLIPSE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS 0535-0546. I. PRIMARY SPECTRUM: COOL SPOTS VERSUS OPACITY UNCERTAINTIES

    SciTech Connect

    Mohanty, Subhanjoy; Stassun, Keivan G.; Doppmann, Greg W. E-mail: keivan.stassun@vanderbilt.ed

    2010-10-20

    We present high-resolution Keck optical spectra of the very young substellar eclipsing binary 2MASS J05352184-0546085, obtained during eclipse of the lower-mass (secondary) brown dwarf. The observations yield the spectrum of the higher-mass (primary) brown dwarf alone, with negligible ({approx}1.6%) contamination by the secondary. We perform a simultaneous fine analysis of the TiO-{epsilon} band and the red lobe of the K I doublet, using state-of-the-art PHOENIX DUSTY and COND synthetic spectra. Comparing the effective temperature and surface gravity derived from these fits to the empirically determined surface gravity of the primary (log g = 3.5) then allows us to test the model spectra as well as probe the prevailing photospheric conditions. We find that: (1) fits to TiO-{epsilon} alone imply T{sub eff} = 2500 {+-} 50 K; (2) at this T{sub eff}, fits to K I imply log g = 3.0, 0.5 dex lower than the true value; and (3) at the true log g, K I fits yield T{sub eff} = 2650 {+-} 50 K, {approx}150 K higher than from TiO-{epsilon} alone. On the one hand, these are the trends expected in the presence of cool spots covering a large fraction of the primary's surface (as theorized previously to explain the observed T{sub eff} reversal between the primary and secondary). Specifically, our results can be reproduced by an unspotted stellar photosphere with T{sub eff} = 2700 K and (empirical) log g = 3.5, coupled with axisymmetric cool spots that are 15% cooler (2300 K), have an effective log g = 3.0 (0.5 dex lower than photospheric), and cover 70% of the surface. On the other hand, the trends in our analysis can also be reproduced by model opacity errors: there are lacks in the synthetic TiO-{epsilon} opacities, at least for higher-gravity field dwarfs. Stringently discriminating between the two possibilities requires combining the present results with an equivalent analysis of the secondary (predicted to be relatively unspotted compared to the primary).

  1. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    PubMed

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  2. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    PubMed

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  3. The efficient discrete Tchebichef transform for spectrum analysis of speech recognition

    NASA Astrophysics Data System (ADS)

    Ernawan, Ferda; Abu, Nur A.; Suryana, Nanna

    2013-03-01

    Spectrum analysis is an elementary operation in speech recognition. Fast Fourier Transform (FFT) is a famous technique to analyze frequency spectrum of the signal in speech recognition. The Discrete Tchebichef Transform (DTT) is proposed as possible alternative to the FFT. DTT has lower computational complexity and it does not require complex transform with imaginary numbers. This paper proposes an approach based on 256 discrete orthonormal Tchebichef polynomials for efficient to analyze a vowel and a consonant in spectral frequency of speech recognition. The comparison between 1024 discrete Tchebichef transform and 256 discrete Tchebichef transform has been done. The preliminary experimental results show that 256 DTT has the potential to be efficient to transform time domain into frequency domain for speech recognition. 256 DTT produces simpler output than 1024 DTT in frequency spectrum. The used of 256 Discrete Tchebichef Transform can produce concurrently four formants F1, F2, F3 and F4 for the consonant.

  4. Nature of the atmospheric dynamics on Venus from power spectrum analysis of Mariner 10 images

    NASA Technical Reports Server (NTRS)

    Travis, L. D.

    1978-01-01

    Power spectrum analysis of Mariner 10 images for planetary zonal wavenumbers no less than 3 and for latitudes in the range 55 deg S to 25 deg N yields spectra which show a systematic and apparently significant variation with latitude. Accordingly, average spectra are determined for three latitude zones: an equatorial region, a midlatitude region, and an intermediate zone. A comparison of the results for Venus with brightness distribution spectra for terrestrial clouds reveals similarities between the Venus midlatitude region spectrum and that for the equatorial region of the earth. The only indication of a departure from a general power law behavior for the Venus spectra is a flattening of the equatorial spectrum in the region of wavenumbers 3 and 4. The characteristics of the Venus image spectra appear to be compatible with the interpretation that the observable clouds lie in a region of high static stability with the inertial eddy motions corresponding to two-dimensional turbulence.

  5. Adolescent boys with an autism spectrum disorder and their experience of sexuality: An interpretative phenomenological analysis.

    PubMed

    Dewinter, Jeroen; Van Parys, Hanna; Vermeiren, Robert; van Nieuwenhuizen, Chijs

    2017-01-01

    This qualitative study explored how adolescent boys with autism spectrum disorder experience their sexuality. Previous research has demonstrated that sexuality is a developmental task for boys with autism spectrum disorder, as it is for their peers. Case studies have suggested a relation between autism spectrum disorder and atypical sexual development; empirical studies on this subject, however, are scant and inconsistent. This study is based on interviews with eight boys, aged 16-20 years, with Asperger's disorder or autistic disorder. Interpretative phenomenological analysis of the data revealed three major themes relating to (a) how they experience sexual feelings, think about sexuality and think about themselves as sexual beings; (b) how they perceive messages relating to sexuality in their surroundings; and (c) how they experience finding and having a partner and partnered sex. We believe that attention to these themes is needed in assessment, education and further research.

  6. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  7. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  8. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  9. Rapid classification of enzymes in cleaning products by hydrolysis, mass spectrometry and linear discriminant analysis.

    PubMed

    Beneito-Cambra, Miriam; Herrero-Martínez, José Manuel; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2008-11-01

    A method for the rapid classification of proteases, lipases, amylases and cellulases used as enhancers in cleaning products, based on precipitation with acetone, hydrolysis with HCl, dilution of the hydrolysates with ethanol, and direct infusion into the electrospray ion source of an ion-trap mass spectrometer, has been developed. The abundances of the ([M+H]+ ions of the amino acids, from the hydrolysates of both the enzyme industrial concentrates and the detergent bases spiked with them, were used to construct linear discriminant analysis models, capable of distinguishing between the enzyme classes. For this purpose, the variables were normalized as follows: (A) the ion abundance of each amino acid was divided by the sum of the ion abundances of all the amino acids in the corresponding mass spectrum; (B) the ratios of pairs of ion abundances were obtained by dividing the ion abundance of each amino acid by each one of the ion abundances of the other 17 amino acids in the corresponding mass spectrum. Using normalization procedure B, excellent class-resolution between proteases, lipases, amylases and cellulases was achieved. In all cases, enzymes in industrial concentrates and manufactured cleaning products were correctly classified with >98% assignment probability.

  10. [Experiments of micro-distance measurement for GMLM with spectrum analysis method].

    PubMed

    Zhang, Jie; Huang, Shang-Lian; Zhang, Zhi-Hai; Sun, Ji-Yong; Shi, Ling-Na; Zhu, Yong

    2008-07-01

    Projection display devices are undergoing a period of multi-development, and with the maturation of MEMS technology, which leads to MEMS-based light modulators for display applications, have become one of the research focuses. The structure of MEMS-based grating moving light modulator (GMLM) is composed of the reflection plate, address electrode and four cantilevers, and movable grating plate, which is supported by four crab-cantilevers placed around, and is actuated like a piston by electrostatic force. The piston-type motion of grating can be used to modulate the phase of incident light. The micro-distance between the upper surface of movable grating and underlying reflector is a key parameter and is important to GMLM performance. Traditional measurement method such as step-machine would destroy the device; while a high accuracy and non-contact measurement machine called KYKO White Light Interferometer is expensive. In the present paper, the GMLM optical principle using scalar diffraction theory was in details analyzed. A novel non-contact wavelength scanning spectrum analysis method was put forward to measure the distance between the upper surface of movable grating and underlying reflector. The U-4100 spectrophotometer was adopted to gain spectrum information; while the spectrum analysis method using peak wavelength position was introduced to calculate the micro distance. The measurement result is consistent to theoretical result. The micro-distance is 1.131 3 microm using such non-contact wavelength scanning spectrum analysis method, while it is 1.240 0 microm with WYKO White Light Interferometer. The relative error was lower than 1%, compared with the results measured by WYKO White Light Interferometer, and the method has good repetition ability and is cheap with RMB50 Yuan each time. Furthermore, measuring pull-in voltage, resonance frequency and micro distance in MEMS-based diffraction and interference devices was proposed completely based on such non

  11. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection.

    PubMed

    Yang, Huan; Shen, Yuping; Xu, Ying; Maqueda, Aida Serra; Zheng, Jie; Wu, Qinan; Tam, James P

    2015-01-01

    Gelatinous Chinese medicines made from mammalian skin or horn or reptile shell are a very important type of animal-derived Chinese medicine. They have been extensively used either as both hemopoietic and hemostatic agents to treat vertigo, palpitation, hematuria, and insomnia in traditional Chinese medicine clinics; consumed as a popular tonic for weaker persons such as the elderly or women after giving birth; or further manufactured to health supplements for certain populations. However, they cannot be discriminated from each other by only using the routine approach in the Chinese Pharmacopoeia, as it lacks enough specificity and, consequently, and the requirements can be met even by adding assayed ingredients. In this study, our efforts to differentiate three gelatinous Chinese medicines, Asini Corii Colla, Cervi Cornus Colla, and Testudinis Carapacis ET Plastri Colla, are presented, and a novel strategy based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detector analysis is proposed herein. Fourteen diagnostic fragments identified from the digests of these medicines were exclusively selected for their discrimination. By taking advantage of the favorable features of this strategy, it is feasible and convenient to identify enzymatic-digested peptides originated from signature proteins in each medicine, which thus could be employed as potential biomarkers for their form of raw medicinal material, and the pulverized and the complex especially, that being the direct basis for authentication purpose.

  12. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection

    PubMed Central

    Yang, Huan; Shen, Yuping; Xu, Ying; Maqueda, Aida Serra; Zheng, Jie; Wu, Qinan; Tam, James P

    2015-01-01

    Gelatinous Chinese medicines made from mammalian skin or horn or reptile shell are a very important type of animal-derived Chinese medicine. They have been extensively used either as both hemopoietic and hemostatic agents to treat vertigo, palpitation, hematuria, and insomnia in traditional Chinese medicine clinics; consumed as a popular tonic for weaker persons such as the elderly or women after giving birth; or further manufactured to health supplements for certain populations. However, they cannot be discriminated from each other by only using the routine approach in the Chinese Pharmacopoeia, as it lacks enough specificity and, consequently, and the requirements can be met even by adding assayed ingredients. In this study, our efforts to differentiate three gelatinous Chinese medicines, Asini Corii Colla, Cervi Cornus Colla, and Testudinis Carapacis ET Plastri Colla, are presented, and a novel strategy based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detector analysis is proposed herein. Fourteen diagnostic fragments identified from the digests of these medicines were exclusively selected for their discrimination. By taking advantage of the favorable features of this strategy, it is feasible and convenient to identify enzymatic-digested peptides originated from signature proteins in each medicine, which thus could be employed as potential biomarkers for their form of raw medicinal material, and the pulverized and the complex especially, that being the direct basis for authentication purpose. PMID:26345994

  13. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  14. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  15. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  16. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  17. Association between bipolar spectrum disorder and bone health: a meta-analysis and systematic review protocol

    PubMed Central

    Brennan-Olsen, Sharon L; Stuart, Amanda L; Pasco, Julie A; Berk, Michael; Hodge, Jason M; Williams, Lana J

    2017-01-01

    Introduction Bipolar spectrum disorder is a chronic, episodic illness, associated with significant personal, social and economic burden. It is estimated to affect ∼2.4% of the population worldwide and is commonly associated with psychological and/or physiological comorbidities. Osteoporosis is one such comorbidity, a disease of bone that is asymptomatic until a fracture occurs. This systematic review attempts to capture, collate, assess and discuss the literature investigating the association between bipolar spectrum disorder and bone health. Methods and analysis We aim to identify articles that investigate the association between bipolar spectrum disorder and bone health in adults by systematically searching the MEDLINE, PubMed, OVID and CINAHL databases. Two independent reviewers will determine eligibility of studies according to predetermined criteria, and methodological quality will be assessed using a previously published scoring system. A meta-analysis will be conducted, and statistical methods will be used to identify and control for heterogeneity, if possible. If numerical syntheses are prevented due to statistical heterogeneity, a best evidence synthesis will be conducted to assess the level of evidence for associations between bipolar spectrum disorder and bone health. Ethics and dissemination Ethical permission will not be required for this systematic review since only published data will be used. This protocol will be registered with PROSPERO. Findings of the review will be published in a peer-reviewed scientific journal, and will be presented to clinical and population health audiences at national and international conferences. PMID:28246138

  18. Spectrum analysis of seismic surface waves and its applications in seismic landmine detection.

    PubMed

    Alam, Mubashir; McClellan, James H; Scott, Waymond R

    2007-03-01

    In geophysics, spectrum analysis of surface waves (SASW) refers to a noninvasive method for soil characterization. However, the term spectrum analysis can be used in a wider sense to mean a method for determining and identifying various modes of seismic surface waves and their properties such as velocity, polarization, etc. Surface waves travel along the free boundary of a medium and can be easily detected with a transducer placed on the free surface of the boundary. A new method based on vector processing of space-time data obtained from an array of triaxial sensors is proposed to produce high-resolution, multimodal spectra from surface waves. Then individual modes can be identified in the spectrum and reconstructed in the space-time domain; also, reflected waves can be separated easily from forward waves in the spectrum domain. This new SASW method can be used for detecting and locating landmines by analyzing the reflected waves for resonance. Processing examples are presented for numerically generated data, experimental data collected in a laboratory setting, and field data.

  19. A de-noising algorithm to improve SNR of segmented gamma scanner for spectrum analysis

    NASA Astrophysics Data System (ADS)

    Li, Huailiang; Tuo, Xianguo; Shi, Rui; Zhang, Jinzhao; Henderson, Mark Julian; Courtois, Jérémie; Yan, Minhao

    2016-05-01

    An improved threshold shift-invariant wavelet transform de-noising algorithm for high-resolution gamma-ray spectroscopy is proposed to optimize the threshold function of wavelet transforms and reduce signal resulting from pseudo-Gibbs artificial fluctuations. This algorithm was applied to a segmented gamma scanning system with large samples in which high continuum levels caused by Compton scattering are routinely encountered. De-noising data from the gamma ray spectrum measured by segmented gamma scanning system with improved, shift-invariant and traditional wavelet transform algorithms were all evaluated. The improved wavelet transform method generated significantly enhanced performance of the figure of merit, the root mean square error, the peak area, and the sample attenuation correction in the segmented gamma scanning system assays. We also found that the gamma energy spectrum can be viewed as a low frequency signal as well as high frequency noise superposition by the spectrum analysis. Moreover, a smoothed spectrum can be appropriate for straightforward automated quantitative analysis.

  20. Differences in pulse spectrum analysis between atopic dermatitis and nonatopic healthy children.

    PubMed

    Liou, Jyh-min; Huang, Chin-Ming; Chiu, Chun-Chien; Wang, Hong-Song; Liao, Yin Tzu; Peng, Yu-Chi; Cheng, Yu-Chen; Liang, Shinn-Jye; Lin, Jaung-Geng; Chen, Fun-jou

    2011-04-01

    Atopic dermatitis (AD) is a common allergy that causes the skin to be dry and itchy. It appears at an early age, and is closely associated with asthma and allergic rhinitis. Thus, AD is an indicator that other allergies may occur later. Literatures indicate that the molecular basis of patients with AD is different from that of healthy individuals. According to the classics of Traditional Chinese Medicine, the body constitution of patients with AD is also different. The purpose of this study is to determine the differences in pulse spectrum analysis between patients with AD and nonatopic healthy individuals. A total of 60 children (30 AD and 30 non-AD) were recruited for this study. A pulse spectrum analyzer (SKYLARK PDS-2000 Pulse Analysis System) was used to measure radial arterial pulse waves of subjects. Original data were then transformed to frequency spectrum by Fourier transformation. The relative strength of each harmonic wave was calculated. Moreover, the differences of harmonic values between patients with AD and non-atopic healthy individuals were compared and contrasted. This study showed that harmonic values and harmonic percentage of C3 (Spleen Meridian, according to Wang's hypothesis) were significantly different. These results demonstrate that C3 (Spleen Meridian) is a good index for the determination of atopic dermatitis. Furthermore, this study demonstrates that the pulse spectrum analyzer is a valuable auxiliary tool to distinguish a patient who has probable tendency to have AD and/or other allergic diseases.

  1. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model.

    PubMed

    Xu, Guan; Fowlkes, J Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2015-05-01

    Photoacoustic spectrum (PA) analysis (PASA) has been found to have the ability to identify the microstructures in phantoms and biological tissues. PASA adopts the procedures in ultrasound spectrum analysis, although the signal generation mechanisms related to ultrasound backscatter and PA wave generation differ. The purpose of this study was to theoretically validate PASA. The analytical solution to the power spectrum of PA signals generated by identical microspheres following discrete uniform random distribution in space was derived. The simulation and experiment validation of the analytical solution include: (i) the power spectrum profile of a single microsphere with a diameter of 300 μm, and (ii) the PASA parameters of the PA signals generated by randomly distributed microspheres 100, 200, 300, 400 and 500 μm in diameter, at concentrations of 30, 60, 120, 240, 480 per 1.5(3) cm(3) in the observation range 0.5-13 MHz. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in N{sub f}=12 QCD at small quark mass

    SciTech Connect

    Alexandru, Andrei; Horváth, Ivan

    2016-01-22

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.

  3. Analysis of solid uranium samples using a small mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kahr, Michael S.; Abney, Kent D.; Olivares, José A.

    2001-07-01

    A mass spectrometer for isotopic analysis of solid uranium samples has been constructed and evaluated. This system employs the fluorinating agent chlorine trifluoride (ClF 3) to convert solid uranium samples into their volatile uranium hexafluorides (UF 6). The majority of unwanted gaseous byproducts and remaining ClF 3 are removed from the sample vessel by condensing the UF 6 and then pumping away the unwanted gases. The UF 6 gas is then introduced into a quadrupole mass spectrometer and ionized by electron impact ionization. The doubly charged bare metal uranium ion (U 2+) is used to determine the U 235/U 238 isotopic ratio. Precision and accuracy for several isotopic standards were found to be better than 12%, without further calibration of the system. The analysis can be completed in 25 min from sample loading, to UF 6 reaction, to mass spectral analysis. The method is amenable to uranium solid matrices, and other actinides.

  4. High-sensitivity analysis and sequencing of peptides and proteins by quadrupole ion trap mass spectrometry.

    PubMed

    Marina, A; García, M A; Albar, J P; Yagüe, J; López de Castro, J A; Vázquez, J

    1999-01-01

    This paper describes experience with the commercially available LCQ quadrupole ion trap mass spectrometer applied to the off-line analysis of peptides and proteins. The standard front end of the electrospray probe was replaced with a micromanipulator which, with the aid of a magnifying device, allowed the use of a variety of miniaturized spraying interfaces. The low sample consumption and extended analysis times of these devices were ideally suitable to obtain improved results in terms of sensitivity and mass accuracy. This needed a careful optimization of the number of ions stored inside the trap (ion target parameter) and required spectrum averaging of many scans. A method is presented for the mathematical fitting of ZoomScan spectra to theoretical isotopic distributions, which allowed the mass determination of large peptides with more accuracy than that achieved by conventional deconvolution algorithms. A very simple on-line desalting configuration is also described which needed no external micro-high-performance liquid chromatographic pumps, and can be easily mounted using the built-in syringe delivery system of the LCQ. This set-up allowed extended analysis times of 'in-gel' protein digests in subpicomole amounts. Finally, the multiple fragmentation capabilities of the ion trap were found to be extremely useful for the analysis of peptide modifications such as phosphorylation and for sequencing individual peptides from highly complex MHC-bound peptide pools.

  5. Impurities analysis of polycrystalline silicon substrates: Neutronic Activation Analysis (NAA) and Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Lenouar, K.; Gritly, Y.; Abbad, B.; Azzaz, M.; Taïbi, K.

    2010-01-01

    In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012neutron cm-2 s-1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012n.cm-2 s-1; E = 2 Mev), thermal neutrons (ΦTH = 1013n.cm-2 s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm-2 s-1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

  6. DISCO: Distance and Spectrum Correlation Optimization Alignment for Two Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry-based Metabolomics

    PubMed Central

    Wang, Bing; Fang, Aiqin; Heim, John; Bogdanov, Bogdan; Pugh, Scott; Libardoni, Mark; Zhang, Xiang

    2010-01-01

    A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson’s correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment. PMID:20476746

  7. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  8. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  9. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements

    PubMed Central

    Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.

    2010-01-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250

  10. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements.

    PubMed

    Liu, Tian; Lizzi, Frederic L; Ketterling, Jeffrey A; Silverman, Ronald H; Kutcher, Gerald J

    2007-03-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization.

  11. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  12. A new derivative for oxosteroid analysis by mass spectrometry

    PubMed Central

    Rigdova, K.; Wang, Y.; Ward, M.; Griffiths, W.J.

    2014-01-01

    Here we report a new method for oxosteroid identification utilizing “tandem mass tag hydrazine” (TMTH) carbonyl-reactive derivatisation reagent. TMTH is a reagent with a chargeable tertiary amino group attached through a linker to a carbonyl-reactive hydrazine group. Thirty oxosteroids were analysed after derivatisation with TMTH by electrospray ionization mass spectrometry (ESI-MS) and were found to give high ion-currents compared to underivatised molecules. ESI-tandem mass spectrometry (MS/MS) analysis of the derivatives yielded characteristic fragmentation patterns with specific mass reporter ions derived from the TMT group. A shotgun ESI-MS method incorporating TMTH derivatisation was applied to a urine sample. PMID:24525129

  13. A new derivative for oxosteroid analysis by mass spectrometry.

    PubMed

    Rigdova, K; Wang, Y; Ward, M; Griffiths, W J

    2014-04-11

    Here we report a new method for oxosteroid identification utilizing "tandem mass tag hydrazine" (TMTH) carbonyl-reactive derivatisation reagent. TMTH is a reagent with a chargeable tertiary amino group attached through a linker to a carbonyl-reactive hydrazine group. Thirty oxosteroids were analysed after derivatisation with TMTH by electrospray ionization mass spectrometry (ESI-MS) and were found to give high ion-currents compared to underivatised molecules. ESI-tandem mass spectrometry (MS/MS) analysis of the derivatives yielded characteristic fragmentation patterns with specific mass reporter ions derived from the TMT group. A shotgun ESI-MS method incorporating TMTH derivatisation was applied to a urine sample. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  15. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  16. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  17. Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation

    SciTech Connect

    Quarry, M J; Rose, J L

    2000-09-26

    A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.

  18. Performance Analysis of Coded Frequency-Hopped Spread-Spectrum Systems with Unknown Interference.

    DTIC Science & Technology

    1987-08-01

    A186 669 PERFORMANCE ANALYSIS OF CODED FREQUECY-NOPPED 1/SPREAD-SPECTRUM SYSTEMS WJI (U) MICHIGAN UNIV ANN ARBOR COMMUNICATIONS AND SIGNAL...INTERFERENCE M. Hegde COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science The University of Michigan Ann...ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION Communications & Signal (if 4111ccol) Office of Naval Research Processing Laboratory I S.G

  19. Analysis of the x-ray spectrum emitted by laser-produced plasma of dysprosium

    SciTech Connect

    Marcus, Gilad; Louzon, Einat; Henis, Zohar; Maman, Shlomo; Mandelbaum, Pinchas

    2007-05-15

    A detailed analysis of the x-ray spectrum (5-10.2 A ring ) emitted by laser-produced plasma of dysprosium (Dy) is given using ab initio calculations with the HULLAC relativistic code and isoelectronic trends. Resonance 3d-4p, 3d-nf (n=4 to 7), 3p-4s, and 3p-4d transitions of Ni I-like Dy XXXIX and neighboring ion satellite transitions (from Dy XXXIV to Dy XL) are identified.

  20. Optical spectrum measurement of a cell-adhered microcavity for the cell-cycle analysis applications

    NASA Astrophysics Data System (ADS)

    Saito, Ryusuke; Terakawa, Mitsuhiro; Tanabe, Takasumi

    2015-03-01

    We build a setup and demonstrate successful measurement of the transmittance spectrum of a whispering gallery mode silica optical microcavity in which NIH 3T3 cells adhered on the top surface to achieve real-time and label-free measurement of the cell cycle. Label-free measurement is expected to prevent the cells to exhibit secondary effect. We build a system that enables the control of the gap distance between the microcavity and the tapered fiber, both of which are placed in the cell culture medium. The optimization of the tapered fiber diameter is the key to measure the spectrum of a microcavity in liquid. A swept wavelength laser light at a wavelength of 766 to 780 nm is used for the measurement. The cavity exhibit a Q of 1 . 0 ×106 in air, where the value is 1 . 0 ×105 in the medium and drops to 3 . 1 ×104 after the cell-adhesion. Still the Q of the microcavity is sufficiently high to detect the change at the cavity surface. Indeed we observe slight spectrum shift toward a longer wavelength, which we believe is due to the adherence of NIH 3T3 cells on the silica microcavity.The successful measurement of the transmittance spectrum of a microcavity in cell culture medium is the first step to realize the analysis of the cell-cycle based on microcavity system.

  1. Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Chu, Yanqiu; Ling, Xing; Ding, Zhengzhi; Xu, Chongsheng; Ding, Li; Ding, Chuan-Fan

    2013-09-01

    A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses.

  2. [Tobacco quality analysis of producing areas of Yunnan tobacco using near-infrared (NIR) spectrum].

    PubMed

    Wang, Yi; Ma, Xiang; Wen, Ya-Dong; Yu, Chun-Xia; Wang, Luo-Ping; Zhao, Long-Lian; Li, Jun-Hui

    2013-01-01

    In the present study, tobacco quality analysis of different producing areas was carried out applying spectrum projection and correlation methods. The group of industrial classification data was near-infrared (NIR) spectrum in 2010 year of middle parts of tobacco plant from Hongta Tobacco (Group) Co., Ltd. Twelve hundred seventy six superior tobacco leaf samples were collected from four producing areas, in which three areas from Yuxi, Chuxiong and Zhaotong, in Yunnan province all belong to tobacco varieties of K326 and one area from Dali belongs to tobacco varieties of Hongda. The conclusion showed that when the samples were divided into two parts by the ratio of 2 : 1 randomly as analysis and verification sets, the verification set corresponded with the analysis set applying spectrum projection because their correlation coefficients by the first and second dimensional projection were all above 0.99. At the same time, The study discussed a method to get the quantitative similarity values of different producing areas samples. The similarity values were instructive in tobacco plant planning, quality management, acquisition of raw materials of tobacco and tobacco leaf blending.

  3. Predicting Flaw-Induced Resonance Spectrum Shift with Theoretical Perturbation Analysis

    SciTech Connect

    Lai, Canhai; Sun, Xin

    2013-10-28

    Resonance inspection is an emerging non-destructive evaluation (NDE) technique which uses the resonance spectra differences between the good part population and the flawed parts to identify anomalous parts. It was previously established that finite-element (FE)-based modal analysis can be used to predict the resonance spectrum for an engineering scale part with relatively good accuracy. However, FE-based simulations can be time consuming in examining the spectrum shifts induced by all possible structural flaws. This paper aims at developing a computationally efficient perturbation technique to quantify the frequency shifts induced by small structural flaws, based on the FE simulated resonance spectrum for the perfect part. A generic automotive connecting rod is used as the example part for our study. The results demonstrate that the linear perturbation theory provides a very promising way in predicting frequency changes induced by small structural flaws. As the flaw size increases, the discrepancy between the perturbation analysis and the actual FE simulation results increases due to nonlinearity, yet the perturbation analysis is still able to predict the right trend in frequency shift.

  4. Investigation and development of a high spectral resolution coherent optical spectrum analysis system.

    PubMed

    Feng, Kunpeng; Cui, Jiwen; Dang, Hong; Zhao, Shiyuan; Wu, Weidong; Tan, Jiubin

    2016-10-31

    Focusing on high resolution optical spectroscopy, a coherent optical spectrum analysis (COSA) system is investigated in this paper. Principle is built to demonstrate the operation of COSA and its signal processing in both time and frequency domain. According to COSA principle, resolution bandwidth (RBW) filters are found to have significant influence on power accuracy and spectral resolution of the optical spectrum analysis (OSA). Much effort is paid to design RBW filters, including center frequency, bandwidth and type of filters. Two RBW filters are optimized to reduce the power uncertainty of different spectral resolution and satisfy different signal under test. Then, simulations and experiments are conducted to verify COSA principle and results show that the power uncertainty is less than 0.5% and 1.2% for high and medium spectral resolution application, respectively. Finally, experiments on the OSA of actual spectra indicate that COSA system can achieve a 6 MHz spectral resolution and has an excellent capacity in analysis of fine spectrum structures.

  5. Analysis of lipids: metal oxide laser ionization mass spectrometry.

    PubMed

    McAlpin, Casey R; Voorhees, Kent J; Corpuz, April R; Richards, Ryan M

    2012-09-18

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for lipid analysis; however, one of the drawbacks of this technique is matrix interference peaks at low masses. Metal oxide surfaces are described here for direct, matrix-free analysis of small (MW < 1000 Da) lipid compounds, without interferences in the resulting spectra from traditional matrix background peaks. Spectra from lipid standards produced protonated and sodiated molecular ions. More complex mixtures including vegetable oil shortening and lipid extracts from bacterial and algal sources provided similar results. Mechanistic insight into the mode of ionization from surface spectroscopy, negative ion mass spectrometry, and stable isotope studies is also presented. The metal oxide system is compared to other reported matrix-free systems.

  6. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort.

  7. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of vinyl bromide: Franck-Condon analysis and vibrational assignment

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2003-09-01

    Vibrational spectrum of vinyl bromide cation in the ground electronic state was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy using coherent vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. From MATI spectrum, ionization energy to the ground state of the cation was determined to be 9.8171±0.0006 eV (79 180±5 cm-1). Almost complete vibrational assignments for the peaks in the MATI spectrum were possible by utilizing vibrational frequencies and Franck-Condon factors calculated at the Becke three parameter Lee-Yang-Parr (B3LYP)/6-311++G(df,pd) level. Franck-Condon analysis for one-photon MATI spectra is especially useful because calculations of only the ground electronic states are involved while that for two-photon MATI spectra requires excited state calculations.

  8. THE APPLICATION OF MASS SPECTROMETRY TO PROTEIN ANALYSIS

    EPA Science Inventory

    The purpose of this presentation is to give our NHEERL collaborators a brief introduction to the use of mass spectrometric (MS) techniques in the analysis of proteins. The basic principles of electrospray ionization and matrix-assisted laser desorption ionization will be discuss...

  9. Ultratrace Analysis of Uranium and Plutonium By Mass Spectrometry

    SciTech Connect

    Wacker, John F.; Wogman, Ned A.; Olsen, Khris B.; Petersen, Steven L.; Farmer, O T.; Kelley, James M.; Eiden, Greg C.; Maiti, Tapas C.

    2003-01-01

    At the Pacific Northwest National Laboratory (PNNL), we have developed highly sensitive methods to analyze uranium and plutonium in environmental samples. The development of an ultratrace analysis capability for measuring uranium and plutonium has arisen from a need to detect and characterize environmental samples for signatures associated with nuclear industry processes. Our most sensitive well-developed methodologies employ thermal ionization mass spectrometry (TIMS), however, recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have shown considerable promise for use in detecting uranium and plutonium at ultratrace levels. The work at PNNL has included the development of both chemical separation and purification techniques, as well as the development of mass spectrometric instrumentation and techniques. At the heart of our methodology for TIMS analysis is a procedure that utilizes 100-microliter-volumes of analyte for chemical processing to purify, separate, and load actinide elements into resin beads for subsequent mass spectrometric analysis. The resin bead technique has been combined with a thorough knowledge of the physicochemistry of thermal ion emission to achieve femtogram detection limits for the TIMS analysis of plutonium in environmental samples.

  10. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  11. Multiple parallel mass spectrometry for lipid and vitamin D analysis

    USDA-ARS?s Scientific Manuscript database

    Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the method of choice for analysis of complex lipid samples. Two types of ionization sources have emerged as the most commonly used to couple LC to MS: atmospheric pressure chemical ionization (APCI) and electrospray ionization ...

  12. On-Line Synthesis and Analysis by Mass Spectrometry

    ERIC Educational Resources Information Center

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  13. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  14. THE APPLICATION OF MASS SPECTROMETRY TO PROTEIN ANALYSIS

    EPA Science Inventory

    The purpose of this presentation is to give our NHEERL collaborators a brief introduction to the use of mass spectrometric (MS) techniques in the analysis of proteins. The basic principles of electrospray ionization and matrix-assisted laser desorption ionization will be discuss...

  15. On-Line Synthesis and Analysis by Mass Spectrometry

    ERIC Educational Resources Information Center

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  16. Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material

    NASA Astrophysics Data System (ADS)

    Brown, Alexander Earl

    Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon

  17. Analysis of proteins and proteomes by mass spectrometry.

    PubMed

    Mann, M; Hendrickson, R C; Pandey, A

    2001-01-01

    A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.

  18. Qualitative analysis of algal secretions with multiple mass spectrometric platforms.

    PubMed

    Kind, Tobias; Meissen, John K; Yang, Dawei; Nocito, Fernando; Vaniya, Arpana; Cheng, Yu-Shen; Vandergheynst, Jean S; Fiehn, Oliver

    2012-06-29

    Lipid secretions from algae pose a great opportunity for engineering biofueler feedstocks. The lipid exudates could be interesting from a process engineering perspective because lipids could be collected directly from the medium without harvesting and disrupting cells. We here report on the extracellular secretions of algal metabolites from the strain UTEX 2341 (Chlorella minutissima) into the culture medium. No detailed analysis of these lipid secretions has been performed to date. Using multiple mass spectrometric platforms, we observed around 1000 compounds and were able to annotate 50 lipids by means of liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometry (LC-QTOF), direct infusion with positive and negative electrospray ion trap mass spectrometry and gas chromatography coupled to mass spectrometry (GC-MS). These compounds were annotated by tandem mass spectral (MS/MS) database matching and retention time range filtering. We observed a series of triacylglycerols (TG), sulfoquinovosyldiacylglycerols (SQDG), phosphatidylinositols and phosphatidylglycerols, as well as betaine lipids diacylglyceryl-N,N,N-trimethylhomoserines (DGTS).

  19. Using the Autism-Spectrum Quotient to Measure Autistic Traits in Anorexia Nervosa: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Westwood, Heather; Eisler, Ivan; Mandy, William; Leppanen, Jenni; Treasure, Janet; Tchanturia, Kate

    2016-01-01

    Interest in the link between Autism Spectrum Disorder (ASD) and Anorexia Nervosa (AN) has led to estimates of the prevalence of autistic traits in AN. This systematic review and meta-analysis assessed the use of the Autism-Spectrum Quotient (AQ) or abbreviated version (AQ-10) to examine whether patients with AN have elevated levels of autistic…

  20. Using the Autism-Spectrum Quotient to Measure Autistic Traits in Anorexia Nervosa: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Westwood, Heather; Eisler, Ivan; Mandy, William; Leppanen, Jenni; Treasure, Janet; Tchanturia, Kate

    2016-01-01

    Interest in the link between Autism Spectrum Disorder (ASD) and Anorexia Nervosa (AN) has led to estimates of the prevalence of autistic traits in AN. This systematic review and meta-analysis assessed the use of the Autism-Spectrum Quotient (AQ) or abbreviated version (AQ-10) to examine whether patients with AN have elevated levels of autistic…

  1. Comparison of different fluorescence spectrum analysis techniques to characterize humification levels of waste-derived dissolved organic matter.

    PubMed

    Shao, L M; Zhang, C Y; He, P J; Lü, F

    2012-12-01

    In the present work, the humification level of waste-derived dissolved organic matter (DOM) at different waste biostability was investigated, by using fluorescent excitation-emission matrix (EEM) scanning. Different fluorescence spectrum analysis techniques were applied and compared. Experimental results demonstrate that parallel factor (PARAFAC) analysis was sensitive to reflect DOM humification, and the most reasonable to deconstruct DOM compositions, when compared with other spectrum analysis techniques. It suggests applying the DOM-EEM-PARAFAC pipeline for rapid estimation of waste biostability.

  2. The Mass Spectrum of Metal-free Stars Resulting from Photodissociation Feedback: A Scenario for the Formation of Low-Mass Population III Stars

    NASA Astrophysics Data System (ADS)

    Omukai, Kazuyuki; Yoshii, Yuzuru

    2003-12-01

    The initial mass function (IMF) of metal-free stars that form in the initial starburst of massive (virial temperatures >~104 K) metal-free protogalaxies is studied. In particular, we focus on the effect of H2 photodissociation by preexisting stars on the fragmentation mass scale, presumedly determined by the Jeans mass at the end of the initial free-fall phase, i.e., at the so-called loitering phase, characterized by the temporary temperature minimum. Photodissociation diminishes the Jeans mass at the loitering phase, thereby reducing the fragmentation mass scale of primordial clouds. Thus, in a given cloud, far-ultraviolet (FUV) radiation from the first star, which is supposedly very massive (~103Msolar), reduces the mass scale for subsequent fragmentation. Through a series of similar processes the IMF for metal-free stars is established. If FUV radiation exceeds a threshold level, the star-forming clumps collapse solely through atomic cooling. Correspondingly, the fragmentation scale drops discontinuously from a few × 10Msolar to subsolar scales. In compact clouds (<~1.6 kpc for clouds of gas mass 108Msolar), this level of radiation field is attained and subsolar-mass stars are formed, even in a metal-free environment. Consequently, the IMF becomes bimodal, with peaks at a few tenths Msolar and a few × 10 Msolar. The high-mass portion of the IMF, ξhigh(m*), is found to be a very steep function of the stellar mass m*, ξhigh(m*)~m-5*. Therefore, the typical mass scale of metal-free stars is significantly smaller than that of the very first stars. In an appendix we study the thermal instability in collapsing primordial prestellar cores and discuss why the thermal instability occurring during the three-body H2 formation does not appear to manifest itself in causing further fragmentation of such cores.

  3. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  4. Classification of awake, REM, and NREM from EEG via singular spectrum analysis.

    PubMed

    Mohammadi, Sara Mahvash; Enshaeifar, Shirin; Ghavami, Mohammad; Sanei, Saeid

    2015-01-01

    In this study, a single-channel electroencephalography (EEG) analysis method has been proposed for automated 3-state-sleep classification to discriminate Awake, NREM (non-rapid eye movement) and REM (rapid eye movement). For this purpose, singular spectrum analysis (SSA) is applied to automatically extract four brain rhythms: delta, theta, alpha, and beta. These subbands are then used to generate the appropriate features for sleep classification using a multi class support vector machine (M-SVM). The proposed method provided 0.79 agreement between the manual and automatic scores.

  5. IMPLEMENTING THE STANDARD SPECTRUM METHOD FOR ANALYSIS OF β-γ COINCIDENCE SPECTRA

    SciTech Connect

    Biegalski, S.; Flory, Adam E.; Schrom, Brian T.; Ely, James H.; Haas, Derek A.; Bowyer, Ted W.; Hayes, James C.

    2011-09-14

    The standard deconvolution analysis tool (SDAT) algorithms were developed and tested at the University of Texas at Austin. These algorithms utilize the standard spectrum technique for spectral analysis of {beta}-{gamma} coincidence spectra for nuclear explosion monitoring. Work has been conducted under this contract to implement these algorithms into a useable scientific software package with a graphical user interface. Improvements include the ability to read in PHD formatted data, gain matching, and data visualization. New auto-calibration algorithms were developed and implemented based on 137Cs spectra for assessment of the energy vs. channel calibrations. Details on the user tool and testing are included.

  6. Innovative technology-based interventions for autism spectrum disorders: a meta-analysis.

    PubMed

    Grynszpan, Ouriel; Weiss, Patrice L Tamar; Perez-Diaz, Fernando; Gal, Eynat

    2014-05-01

    This article reports the results of a meta-analysis of technology-based intervention studies for children with autism spectrum disorders. We conducted a systematic review of research that used a pre-post design to assess innovative technology interventions, including computer programs, virtual reality, and robotics. The selected studies provided interventions via a desktop computer, interactive DVD, shared active surface, and virtual reality. None employed robotics. The results provide evidence for the overall effectiveness of technology-based training. The overall mean effect size for posttests of controlled studies of children with autism spectrum disorders who received technology-based interventions was significantly different from zero and approached the medium magnitude, d = 0.47 (confidence interval: 0.08-0.86). The influence of age and IQ was not significant. Differences in training procedures are discussed in the light of the negative correlation that was found between the intervention durations and the studies' effect sizes. The results of this meta-analysis provide support for the continuing development, evaluation, and clinical usage of technology-based intervention for individuals with autism spectrum disorders.

  7. Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture

    NASA Technical Reports Server (NTRS)

    Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.

  8. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  9. DNA analysis by MALDI-TOF mass spectrometry.

    PubMed

    Gut, Ivo Glynne

    2004-05-01

    The last decade has seen an increased demand for high-throughput DNA analysis. This is mainly due to the human genome sequencing project that is now completed. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was pinpointed early on as a technology that could be of great use for sequence variation analysis in the post-genome sequencing era. Applications developed first on this platform were for SNP genotyping. Several strategies for allele-discrimination (hybridization, cleavage, ligation, and primer extension) were combined with MALDI-TOF mass spectrometric detection. Nowadays, in practice, only primer extension methods are applied for large-scale SNP genotyping studies with MALDI-TOF detection. Problems surrounding the integration of SNP genotyping by MALDI-TOF mass spectrometry at high throughput are largely master